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ABSTRACT

Cascading in an electric power transmission system is a sequence of dependent outages that

successively weakens the transmission system. It is caused by initial outages and then propagates

as a series of dependent outages. Cascading is one of the main causes of blackouts in high voltage

transmission networks. Utilities are routinely collecting outage data. This work proposes

statistical methods that are applied to real outage data. It aims to understand the propagation of

cascading outages for blackout mitigation and resilience evaluation and study the distribution of

initial outages for reliability analysis and contingency selection.

A Markovian influence graph model is formed from historical outage data. This Markovian

influence graph defines a Markov chain and generalizes the previous influence graph by including

multiple line outages as Markov chain states. It describes the transition probabilities between

generations of cascading outages. The Markovian influence graph reproduces the distribution of

the cascade size in the data and estimates the probabilities of small, medium, and large cascades.

The key advantage of the Markovian influence graph is that it allows the mitigation effects to be

analyzed and readily tested, which is not available from the historical data. The asymptotic

property of the Markov chain indicates the critical lines that are most involved in the propagation

of large cascades. Upgrading these critical lines will reduce the probability of large cascades.

Extreme events can damage power system components and then cause cascading outages.

Methods are needed to evaluate the cascading phase of resilience. The Markovian influence graph

can simulate cascading line outages that follow initial outages from extreme events by an

improved sampling method. It efficiently produces large cascade samples. Thus, we can better

estimate the large cascades that are rare but significant for cascade resilience.

The Markovian influence graph is validated by two tests. As mitigation results are not easily

extracted from historical outage data, simulation is indicated to further test the Markovian



xii

influence graph. The test forms the Markovian influence graph from simulated cascades before

mitigation, calculates the mitigation effect using the influence graph, and compares this computed

mitigation effect with simulated mitigation effect. It uses several different cascading models on

several different power systems. Moreover, the Markovian influence graph assumes current line

outages depend only on preceding line outages. This assumption is tested by comparing the

influence graph with the kinetic Monte Carlo (KMC) cascading simulation which is also a Markov

chain but depends all line outages before current line outages.

Transmission line outage rates are foundation for many reliability calculations. However, line

outages are rare, occurring only about once per year. A Bayesian hierarchical model is proposed

to mitigate the limited data problem. This Bayesian hierarchical model leverages line

dependencies to better estimate individual transmission line outage rates. The Bayesian estimator

produces more accurate estimates of individual line outage rates and the uncertainty of these

estimates. Better estimates of individual line outage rates using the Bayesian hierarchical model

benefit the reliability calculation. Three applications are illustrated: detect lines with increased

outage rates, quantify outage rates for specific causes, and discuss the effect of outage rate

uncertainty on a simple availability calculation.

Multiple contingencies show different patterns in the graph representation of a power grid.

The analysis of the historical outage data reveals that multiple contingencies occur frequently in

contingency motifs, which are subgraphs that occur significantly more frequently than random

subgraphs in the given power network. Based on this finding, this study proposes a probabilistic

model to estimate the probability of multiple contingencies and a corresponding contingency

selection scheme. The contingency selection scheme is much more efficient than randomly selecting

contingencies. Moreover, the analysis reveals that the diameter of contingency subgraphs, the

maximum network distance between any two lines in the subgraphs, follows a Zipf distribution.
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CHAPTER 1. INTRODUCTION

1.1 Background

Cascading in an electric power transmission system is a sequence of dependent outages that

successively weakens the transmission system. [2]. It is triggered by initial events and then

propagates. One useful way to study cascading phenomena on the power transmission system is

to record the sequences of lines outages. Some cascades of line outages, especially the longer ones,

will result in a blackout (significant amounts of load shed), whereas others do not result in load

shedding and can be regarded as precursors to a blackout. These blackouts are infrequent but

high-impact events that occur often enough to pose a substantial risk to society [3, 4]. From 2008

to 2018 in the US, 10 million or more people were affected due to the power outages, as surveyed

in [5].

The cascading outage is one of the major causes of blackouts. Ekisheva in [6] analyzed the

historical outage data in the North American bulk power system, and found that groups of

outages overlapping in time were initialized by many causes and propagated because of power

system conditions, such as overloading, voltage problems, and bad weather.

Utilities in many countries are routinely collecting outage data. The Bonneville Power

Administration (BPA) has made its outage data publicly available [7]. The North American

Electric Reliability Corporation (NERC) has been collecting transmission element outages since

2008 through the Transmission Availability Data System (TADS) [6]. [8] summarised outage data

systems developed in different countries. These outage data collecting entities include but are not

limited to the Mid-Atlantic Power Pool since 1997, the Western Electricity Coordinating Council

(WECC) since 2006, the Canadian Electricity Association’s Equipment Reliability Information

System since 1980, the ENTSO-E Regional Group Nordic in Europe since 1990, and the Idaho

Power Company since 1991.
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Cascading outages involve various mechanisms. [5] summarizes causes of recorded severe

power outages around the world. Also, by inspecting the outage data recorded by BPA, dozens of

outage causes are recorded (Table 7.3), and the main causes are lightning, terminal equipment

failure, and unknown causes from inside and outside of the BPA area.

1.2 Motivation

Model-based simulation is widely used in studying cascading outages. However, this

simulation method is practically limited to approximating a subset of cascading mechanisms, and

the cascading model in the simulation has often not been well benchmarked and validated for

estimating the blackout risk [9, 10]. Historical outage data encompass all the information about

cascading mechanisms during the observed period. The power industry has always analyzed

specific blackouts and taken steps to mitigate cascading. However, and especially for the largest

blackouts of the highest risk, the challenges of evaluating and mitigating the cascading risk in a

quantitative way remain. This motivates us to analyze real outage data for the cascading risk by

data-driven methods.

A perennial problem of using real outage data is that outages are rare events, and the outage

data is limited. On average, each transmission line outages once per year. Effective methods are

needed to address the sparse outage data problem.

Components in the power system are not equally important, and some of them are more

critical than others in terms of cascading risks. The power system is a complex network

comprising hundreds and thousands of components such as transmission lines, transformers,

buses, and others. Not all components have equal importance. Indeed, only a small set of system

components contributes to a large blackout [11]. This implies that we can upgrade a small

number of critical components to reduce cascading risks by a large proportion. Also, it is

practical to upgrade an only limited number of components within a budget. Therefore,

identifying critical components is significant to mitigate cascading blackouts.
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Cascading line outages are comprised of initial outages and propagating outages. Transmission

lines in initial outages and propagating outages have different influences on cascading outages.

We should identify critical lines in initial outages and propagating outages, respectively.

The significance of studying initial line outages is twofold. For one thing, line outage rates are

foundation for many reliability calculations; for another thing, the analysis of initial outages

benefits the power system security analysis, especially contingency selection.

1.3 Research Objective

The research objective is to develop statistical methods that are applied to real outage data to

understand the propagation of cascading outages and the distribution of initial outages.

Specifically,

• use observed transmission line outage data to make a Markovian influence graph that

describes the probabilities of transitions between generations of cascading line outages. This

generalized influence graph is used to reproduce the distribution of cascade sizes in outage

data and evaluate the mitigation effect. The asymptotic property of the Markovian

influence graph is used to identify the critical lines that are most involved in the

propagation of large cascades.

• test two aspects of the Markovian influence graph: the large cascade mitigation and the

model assumption.

• have better estimates of outage rates for individual transmission lines by proposing a

Bayesian hierarchical model. The Bayesian hierarchical model incorporates prior

information of transmission lines and leverages transmission line dependencies to mitigate

the limited data problem. The Bayesian estimator produces the uncertainty of outage rates.

• explore the applications of the Markovian influence graph driven by historical data and the

Bayesian estimates of individual transmission line outage rates.



4

• study the spatial characteristics of initial outages and form a systematic contingency

selection scheme.
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CHAPTER 2. LITERATURE REVIEW

2.1 Influence graphs for power system cascading outages

This section reviews the previous literature on influence graphs for power grid cascading

outages and related topics. There is increasing interest in graphs to represent cascading outages,

in which the graph describes the interaction between outaged components and is not the power

grid topology. These graphs of interactions have differences in how they are formed and have

different names, such as the influence graph, the interaction graph, the correlation network, and

the cascading faults graph. The idea of a graph of interactions can be traced back to [12] which

has a stochastic process at each graph node that interacts with different strengths along the graph

edges joining that node to other nodes. Rahnamay-Naeini [13] generalizes the model of

interacting and cascading nodes in [12] to include interactions within and between two

interdependent networks. This type of interacting particle system model has some nice properties

allowing analysis, but remains a somewhat abstract model for power system cascading because it

is not known how to estimate the model parameters from data.

Influence graphs in their present form were introduced by Hines and Dobson [14], and further

developed by Qi, Hines, and Dobson [15,16]. These influence graphs describe the statistics of

cascading data with networks whose nodes represent outages of single transmission lines and

whose directed edges represent probabilistic interactions between successive line outages. The

more probable edges correspond to the interactions between line outages that appear more

frequently in the data. Cascades in the influence graph start with initial line outages at the nodes

and spread probabilistically along the directed graph edges. Once the influence graph is formed

from the simulated cascading data, it can be used to identify critical components and test

mitigation of blackouts by upgrading the most critical components [15–17].
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As well as outages of single lines, cascading data typically includes multiple line outages that

occur nearly simultaneously. When the states are single line outages, these multiple simultaneous

outages cause problems in obtaining well-defined Markov chain transitions between states. For

example, if the outage of two lines causes an outage in the next generation, it is hard to tell which

line caused the subsequent outage or whether the two lines caused the subsequent outage together.

To address this, [16] assigns an equal share to the two lines. The resulting influence graph is then

approximated to enable analysis. Qi [15] assumes that the subsequent outage is caused by the

most frequent line outage. Improving on this assumption, Qi [18] considers the causal

relationships among successive outages as hidden variables and uses an expectation maximization

algorithm to estimate the interactions underlying the multiple outage data. This work solves this

problem in a novel way by defining an additional state for each multiple line outage. Thus the

new influence graph generalizes the interaction between single lines to multiple line outages, so we

do not need to make assumptions or approximations when calculating the interactions between

two single lines. This enables a Markov chain to be cleanly and clearly defined.

Considering the different types of graphs of interactions more generally, there are three

methods of quantifying interactions between components which are the edges in the graph of

interactions. First, as explained in the preceding paragraph, in [14–16], the edge corresponds to

the conditional probability of a single line outage given that the previous line has outaged.

Second, in [19–21], the edge weight is calculated based on the line flow changes due to a single line

outage applied to the base case using a DC load flow (In contrast to [14–16] and this work, this

implies that the edge weights do not change during the cascade.). In Merrill [20], the edge weight

is obtained from the line outage distribution factors. In Zhang [19] and Ma [21], the directed edge

weights are obtained from both the line flow changes and the remaining margin in the line the

power is transferred to. Then Zhang [19] combines the directed edges to give undirected edges.

On the other hand, Ma [21] retains the directed edges and also represents hidden failures by

additional nodes. Third, in Yang [22], the edge corresponds to the correlation between any two

lines. In [23], Carreras constructs a synchronization matrix from simulation data from the OPA
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model to identify the lines with higher overloading probabilities. Other papers [17,18,24–26] form

their graph of interactions similarly to the above methods. This work bases the influence graph

edges on conditional probabilities. However, the edges are different than the edges in [14–16] as

they directly correspond to transition probabilities in a rigorously defined Markov chain.

Influence graphs describing the interactions between successive cascading outages were

developed using simulated data (Zhou [17] is an exception, but [17] differs from this work because

it applies the methods of [16] to utility data). But even for simulated cascade data, there remain

challenges in extracting good statistics for the influence graph from limited data. Hines, Dobson

and Qi [14–16] estimate the conditional probabilities of transitions with empirical probabilities.

This work mitigates the limited historical cascading data by using a Bayesian method and

carefully combining the sparser data of the later stages of cascading in a sophisticated way.

Various measures are proposed for the identification of critical components based on the

influence graph. [15,16,21,27] form their specific measures based on their own

influence/interaction graph. Ma [21] uses a modified page-rank algorithm to find critical lines.

Nakarmi [24] forms the influence graph using methods of both [16] and [22], and proposes a

community-based measure to identify critical components. [24] compares its measure with other

centrality measures based on network theory, and concludes that its method performs better than

other methods in most cases. In this work, the new influence graph is a rigorous Markov chain,

and the identification of critical lines is based on the asymptotic quasi-stationary distribution.

The quasi-stationary distribution has a clear interpretation of specifying the probabilities that

each of the lines is involved in large cascades.

The graph of interactions also provides useful information about mitigation actions in power

system operation. Ju [25] extends the interaction graph to a multi-layer graph, in which the three

layers reflect the number of line outages, load shed, and electrical distance of the cascade spread,

respectively. This multi-layer graph is suggested to mitigate cascades in system operation by

providing the critical lines at different states of cascades. Chen [26] proposes a dynamic

interaction graph to better support online mitigation actions than a static interaction graph.
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During the propagation of a specific cascade, this dynamic interaction graph removes the

interactions involving already outaged lines, and optimal power flow controls the power flow on

the critical lines indicated by the dynamic interaction graph. The dynamic interaction graph

model reduces the risk of large cascades more than the static interaction graph.

As expected, the graph of interactions and any conclusions drawn depend on the outage data

from which the graph is formed. If the outage data is simulated, the selection of initial system

states matters. For example, Nakarami [24] shows that different system states lead to different

influence graphs. This work forms our influence graph from fourteen years of public outage data

of a specific area, so that our influence graph reflects the initial faults and states encountered over

that period of time in that power system area. The textbook [28] includes material on both

influence and interaction graphs.

Another related line of research is fault chains. A fault chain as described in [29] is one

cascading sequence of line outages. Each initial line fault gives a fault chain of lines most stressed

at each step until outage or instability. Usually only the most stressed or most likely next line

outage is selected to form fault chains. By taking each line in the system as the initial outage of

each fault chain, Wei [27] obtains a set of fault chains using a branch loading index to select the

most stressed next line to outage. Each fault chain is expressed as a subgraph whose nodes are

transmission lines, and directed edges are branch loading assessment indexes, and the union of the

subgraphs forms a cascading faults graph. The edge weights depend on the sum of the branch

loading indices, each scaled by the length of the fault they are in. Then critical lines are identified

according to the in- or out-degree of the cascading faults graph. Luo [30] also forms a cascading

faults graph with weights depending on load loss in the chain, and then uses hypertext-induced

topic search to select critical lines. The edge weights of [27,30] differ from those in influence

graphs because they are not based on conditional probabilities. Li and Wu [31] combine simulated

fault chains into a network and use reinforcement learning to explore, evaluate, and find chains

most critical to load shed. In further work, Li and Wu [32] combine simulated fault chains into a

state-failure network from which expected load shed can be computed for each state and failure
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by propagating load shed backwards accounting for the transition probabilities of the edges. The

transition probabilities are estimated similarly to an influence graph by the relative frequency of

that transition at that stage of the data. However, in contrast to the practice in influence graphs,

the state transition data for the later stages is not combined together to get better estimates.

Moreover, fault chains differ from this work in only considering single line outages one after

another.

There are also approaches to modeling cascading with continuous-time Markov processes.

Wang [33] drives line loadings with generator and load power fluctuations to determine overloads

and outages that change the Markov state and hence simulate the cascading.

Rahnamay-Naeini [34] constructs, using simulated cascading data and fitted functional forms, a

Markov process with states highly aggregated into 3 quantities, namely the number of failed lines,

the maximum of the capacities of all of the preceding failed lines, and a cascade stopping index.

The aggregated Markov process can model the time evolution of the cascade and the distribution

of cascade size. In further work, Rahnamay-Naeini reduces the aggregated model to a discrete

time Markov chain and generalizes it to model cyber and power interdependent network cascading

interactions in [35] and to model operator actions interacting with cascading in [36].

For another, independent perspective on the literature, Nakarmi’s review paper [37] surveys

various methods of constructing interaction graphs and the reliability analysis based on

interaction graphs.

2.2 Simulation of cascading outages

There is a large literature on model-based simulation of cascading (reviewed in [2, 38]), and

substantial literature on influence or interaction graphs and fault chains driven by simulated data

that is discussed above (also reviewed in [37,39]). To our knowledge, the only previous work on

influence graphs driven by real data is [17,39,40].

The need for higher-level statistical simulation of cascading arose from broader studies of the

multiple phases of resilience. For example, Romero [41] optimized investments to improve
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resilience to earthquakes, and discussed but did not model the cascading phase of resilience.

Recently Kelly-Gorham [42,43] proposed a high-level statistical method driven largely by

observed statistics called CRISP to quantify power transmission system overall resilience in all its

phases. CRISP models the cascading phase of resilience by sampling from a probability

distribution of the total number of lines out based on historical data. Then, in [43], given the

number of lines out, the lines outaged in a cascade are chosen in accordance with an observed

probability distribution [1] of network distance between cascaded line outages.

2.3 Estimation of individual transmission line outage rates

Bayesian approaches encode uncertainty in uncertain parameters such as outage rates as

random variables. The Bayesian analysis aims to estimate a probability distribution for the

uncertain parameters by incorporating all of our knowledge and accurately reflecting the

uncertainty. Bayes’ theorem is used to combine data with prior distributions that describe the

initial knowledge of uncertainty. The prior distributions are updated with available data to give a

posterior distribution that describes the uncertainty in the parameter values given all the

available data. The mean or mode of the posterior distribution can be used to give a point

estimate of the parameter. For further detail explaining Bayesian methods we suggest [44] as an

introduction and [45] as a reference.

Bayesian methods are ideal for problems with limited data (such as the estimation of outage

rates), where it is necessary to use all the information available. Studies in ecology and social

science have shown that when data are limited, Bayesian methods have less bias and are more

robust than frequentist methods that consider parameters as fixed values [46,47]. When lots of

data are available, the data outweighs any effect of the prior distributions and a Bayesian method

is less advantageous.

There is previous research predicting outage rates using Bayesian methods. Li [48],

Iešmantis [49], and Moradkhani [50] present three Bayesian hierarchical models. All three

hierarchical models have a Poisson distribution for outage counts, but how the outages are
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counted and lower levels of the model are different. Li [48] develops a hierarchical model to

predict outage counts in a substation district given weather conditions, in which the log of the

outage rate is a linear combination of weather factors. Iešmantis [49] presents a Poisson-Gamma

random field model to estimate 230 kV transmission lines outage rates in a specified rectangular

cell. The grid cells are introduced to model spatial dependence by constructing a correlation

matrix in the Gamma field. The hierarchical model in Moradkhani [50] estimates failure rates of

individual overhead distribution feeders, which are assumed to be independent of each other. To

have an analytical form for the posterior distribution, conjugate priors are used, which results in a

Gamma posterior distribution. Bayesian networks are also applied to estimate outage rates.

Zhou [51] proposes a simple Bayesian network to predict weather-related outage rates given

lightning and wind conditions over the whole system. Zhou compares the Bayesian network with

a Poisson regression model and concludes that the Bayesian network is preferable. Yang [52] gives

interval estimates of outage rates of individual transmission lines given weather conditions using a

credal network with imprecise priors, which is an extension of Bayesian networks. Dunn [53]

formulates a Bayesian hierarchical model for the total outage counts in a system. All components

share the same failure rate derived from a fragility curve. In contrast to all the references above,

this work estimates outage rates of individual transmission lines using a Bayesian hierarchical

model considering line dependencies.

Transmission line outages are correlated with each other in several ways. Lines in the power

grid interconnect at substations, and some faults or substation arrangements may trip several

lines simultaneously. Multiple line outages also occur due to protection schemes such as control

protection groups and remedial action schemes. Moreover, lines in the same area experience

similar weather conditions. There is some previous work on these dependencies. Li [48] uses the

network adjacency matrix to model district dependencies. Similarly, Dokic [54] uses the weighted

adjacency matrix to model substation dependencies. The difference between them is that [48]

models the dependencies as a covariance matrix from the Bayesian perspective, while [54] uses an

embedding method by learning vector representations of dependencies from a frequentist
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perspective. Iešmantas [49] models geographical dependencies between the outage rate per

kilometer of 230 kV lines by making a rectangular grid of the area. Portions of lines in the same

rectangle are assumed to have the same geographical influence, and the correlation between lines

in different rectangles is assumed and modeled in the Gamma field. The main conclusion of [49] is

that geographical correlation between line outage rates is present but weak. However, our method

captures partial similarities between lines, including proximity, length, and rated voltage as a

layer in the Bayesian hierarchical model.

Many researchers focus on predicting outage probabilities in a short term according to the

weather condition [48,51,52,54–57]. [50, 52,57] consider the data deficiency when building the

outage rate model.

2.4 Application of network motifs in power systems

Network motifs are first introduced by U. Alon, R. Milo and their group in gene regulation

networks [58,59]. They are recurrent and statistically significant subgraphs of a network. The

network motif is widely used in gene regulation networks in systems biology and successfully used

in ecological, sociological, and epidemiological networks [60]. There are also several studies on the

utility of the network motif in the power system context. Ren et. al. have proposed using the

network motif as an indicator of the cascading outage risk [61]. They show that cascading outages

exhibit three phases as the load level increases, and the phases correspond to the decrease of the

frequency of network motifs. The frequency of motifs reflects the connectivity of power grid,

hence, it can be a warning sign of the cascading outage risk [61]. Other researchers have studied

the network motif as an indicator of power grid robustness and reliability [62–65]. The work uses

techniques in network science. Specifically, they carry out attacks on the power grid by removing

nodes according to some order and monitor changes of network motif properties such as

concentration, z-score and lifetime. Then, they determine the robustness and reliability of the

network based on the idea that the robust network tends to preserve longer its motif-based

measurements.
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Previous work on network motif applications in power systems uses the definition of motifs by

Milo. Milo defines network motifs as connected subgraphs in a network that occur in significant

higher number than in randomized networks. However, this definition is not well fitted to

contingency selection because the power network is fixed and known, and multiple contingencies

could also be disconnected subgraphs 1. Specifically, we represent multiple contingencies as

subgraphs of the power network. Some subgraphs appear significantly more frequently than their

random occurrence in the specific power network. We define them as contingency motifs.

Furthermore, some subgraphs are disconnected subgraphs, and to what extent their components

are separated varies from subgraphs to subgraphs and follows a certain distribution.

1A subgraph is disconnected if at least two nodes are not connected by a sequence of lines
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CHAPTER 3. A MARKOVIAN INFLUENCE GRAPH FORMED FROM

OUTAGE DATA

This chapter forms a Markovian influence graph from historical outage data. This Markovian

influence graph is a rigorously defined Markov chain. The transition probabilities describe the

influences between generations in cascades. This Markov chain reproduces the distribution of

cascade sizes and estimates the probabilities of small, medium, and large cascades. The

asymptotic property of the Markov chain indicates critical lines in propagation of cascades. The

mitigation effect of upgrading these critical lines can be readily tested by the Markovian influence

graph.

This chapter is developed with assistance from Arka P. Ghosh, the Department of Statistics,

Iowa State University, and Alexander Roitershtein, Texas A&M University. The material in this

chapter is published in [39].

3.1 Introduction

There are two main approaches to evaluating cascading risk: simulation and analyzing

historical utility data. Cascading simulations can predict some likely and plausible cascading

sequences [2, 66]. However, only a subset of cascading mechanisms can be approximated, and

simulations are only starting to be benchmarked and validated for estimating blackout risk [9, 10].

Historical outage data can be used to estimate blackout risk [4] and detailed outage data can be

used to identify critical lines [67]. However it is clear that proposed mitigation cannot be tested

and evaluated with historical data. This work processes historical line outage data to form a

Markovian influence graph that statistically describes the interactions between the observed

outages. The Markovian influence graph can quantify the probability of different sizes of cascades,
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identify critical lines, and assess the impact of mitigation on the probability of different sizes of

cascades.

3.2 Forming the Markovian influence graph from historical outage data

We use detailed historical line outage data consisting of records of individual automatic

transmission line outages that specify the lines outaged and the outage times to the nearest

minute. We emphasize that this data is routinely recorded by utilities worldwide, for example in

the North American Transmission Availability Data System.

The first step in building an influence graph is to take many cascading sequences of

transmission line outages and divide each cascade1 into generations of outages as detailed in [68].

Each cascade starts with initial line outages in generation 0, and continues with subsequent

generations of line outages 1,2,3,... until the cascade stops. Each generation of line outages is a

set of line outages that occur together on a fast time scale of less than one minute. Often there is

only one line outage in a generation, but protection actions can act quickly to cause several line

outages in the same generation. (Sometimes in a cascading sequence an outaged line recloses and

outages in a subsequent generation. In contrast to [17,68], here we neglect the repeats of these

outages.)

The influence graph represents cascading as a Markov chain X0, X1, ..., in which Xk is the set

of line outages in generation k of the cascade. We first illustrate the formation of the influence

graph from artificial cascading data with the simple example of four observed cascades involving

three lines shown in Fig. 3.1. The first cascade has line 1 outaged in generation 0, line 3 outaged

in generation 1, line 2 outaged in generation 2, and then the cascade stops with no lines

(indicated by the empty set {}) outaged in generation 3. All cascades eventually stop by

transitioning to and remaining in the state {} for all future generations. The five states observed

in the data are {}, {line 1}, {line 2}, {line 3}, and {line 1, line 3}, where this last state is lines 1

1The grouping of line outages into cascades uses the simple method of [68]: The grouping is done by looking at
the gaps in start time between successive line outages. If successive outages have a gap of one hour or more, then
the outage after the gap starts a new cascade. More elaborate methods of grouping real line outages into cascades
could be developed and applied.
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Figure 3.1: Simple example forming influence graph from artificial data (the influence graph formed
from real utility data is shown in Fig. 3.2).

and 3 outaging together in the same generation, as in generation 1 of cascade 2. Introducing the

state {line 1, line 3} with two line outages avoids the problems in previous work in accounting for

transitions to and from the simultaneous outages of line 1 and line 3.

We can estimate the probabilities of transitioning from state i to state j in the next generation

by counting the number of those transitions in all the cascades and dividing by the number of

occurrences of state i. For example, the probability of transitioning from state {line 1} to state

{line 3} is 1/3 and the probability of transitioning from state {line 2} to state {line 1, line 3} is

1/2. The probability of transitioning from state {line 1} to {}; that is, stopping after the single

outage of line 1, is 2/3. The probabilities of the edges out of each state sum to 1. By working out

all the transition probabilities, we can make the network graph of the Markov chain as shown in

Fig. 3.1. The transitions between states with higher probability are shown with thicker lines. In

this generalized influence graph, nodes are sets of line outages and edges indicate transitions or

interactions between sets of line outages in successive generations of cascading. The influence

graph is different than the physical grid network and cascades are generated in the influence

graph by moving along successive edges, selecting them according to their transition probabilities.
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In the general case, there are many states s0, s1, ... , and we describe the transitions between

them. Let Pk be the Markov chain transition matrix for generation k. The Pk matrix entry

Pk[i, j] is the conditional probability that the set of outaged lines is sj in generation k + 1, given

that the set of outaged lines is si in generation k; that is,

Pk[i, j] = P[Xk+1 = sj | Xk = si]. (3.1)

The key task of forming the Markov chain is to estimate the transition probabilities in the

matrix Pk from the cascading data. If one supposed that Pk does not depend on k, a

straightforward way to do this would first construct a counting matrix N whose entry N [i, j] is

the number of transitions from si to sj among all generations in all cascades. Then Pk would be

estimated as

Pk[i, j] =
N [i, j]∑
j N [i, j]

. (3.2)

However, we find that Pk must depend on k in order to reproduce the increasing propagation of

outages observed in the data [68]. On the other hand, there is not enough data to accurately

estimate Pk individually for each k > 0. Our solution to this problem involves both grouping

together data for higher generations and having Pk varying with k, as well as using empirical

Bayesian methods to improve the required estimates of cascade stopping probabilities. The

detailed explanation of this solution is postponed to section 3.6, and until section 3.6 we assume

that Pk has already been estimated for each generation k from the utility data. Forming the

Markov chain transition matrix from the data in this way makes the Markovian assumption that

the statistics of the lines outaged in a generation only depend on the lines outaged in the

preceding generation. This is a pragmatic assumption that yields a tractable data-driven

probabilistic model of cascading.

One way to visualize the influence graph interactions between line outages in Pk is to restrict

attention to the interactions between single line states, and show these as the red network in

Fig. 3.2. The gray network is the actual grid topology, and the gray transmission lines are joined

by a red line of the thickness proportional to the probability of being in successive generations, if
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Figure 3.2: The gray network is the system network and the red network is the influence graph
showing the main influences between lines. The red edge thickness indicates the strength of the
influence.

that probability is sufficiently large. The interactions in Fig. 3.2 reflect a very wide range of

mechanisms. The longer-range mechanisms include redistributions of power due to line and

generator outages, remedial action schemes, and bad weather across the grid.

Let the row vector πk be the probability distribution of states in generation k. The πk entry

πk[i] is the probability that the set of outaged lines is si in generation k; that is,

πk[i] = P[Xk = si]. (3.3)

Then the propagation of sets of line outages from generation k to generation k + 1 is given by

πk+1 = πkPk (3.4)

and, using (3.4), the distribution of states in generation k depends on the initial distribution of

states π0 according to

πk = π0P0P1...Pk−2Pk−1. (3.5)
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3.3 Illustrative historical outage data

While our method applies generally to the detailed outage data routinely collected by utilities,

we illustrate our method with a specific publicly available data set, which is the automatic

transmission line outages recorded by a large North American utility over 14 years starting in

1999 [7]. We group the 9,741 line outages into 6,687 cascades [68]. Most of the cascades (87%)

have one generation because initial outages often do not propagate further. There are 614 lines

and the observed cascades have 1094 subsets of these lines that form the 1094 states s0, s1, ... ,

s1093. Among these 1094 states, 50% have multi-line outages. And among these multi-line outage

states, about 20% are comprised of lines sharing no common buses. While in theory there are 2614

subsets of 614 lines, giving an impractically large number of states, we find in practice with our

data that the number of states is less than twice the number of lines. Note that our statistical

modeling approximates the power grid as unchanging over the time span of the data [1]. In

practice a utility would have the records of changes to partially mitigate the effects of this

approximation.

3.4 Computing the distribution of cascade sizes and its confidence interval

We compute the distribution of cascade sizes from the Markov chain and check that it

reproduces the empirical distribution of cascade sizes, and estimate its confidence interval with a

bootstrap.

We can measure the cascade size by its number of generations. Define the survival function of

the number of generations in a cascade as

S(k) = P[number of cascade generations > k] (3.6)

πk[0] is the probability that a cascade is in state s0 = {} in generation k and also the probability

that the cascade stops at or before generation k. Hence, 1− πk[0] is the probability that a cascade
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has at least k generations. That is,

S(k) = 1− πk[0] = πk(1− e0)

= π0P0P1...Pk−2Pk−1(1− e0), (3.7)

where 1 is the column vector (1, 1, 1, ..., 1)′, and e0 is the column vector (1, 0, 0, 0, ..., 0)′. The

initial state distribution π0 can be estimated directly from the cascading data.

Then we can confirm that the influence graph reproduces the statistics of the cascade size in

the cascading data by comparing the survival function S(k) computed from (3.7) with the

empirical survival function computed directly from the cascading data as shown in Fig. 3.3. The

Markov chain reproduces the statistics of the cascade size closely, with a Pearson χ2

goodness-of-fit test p-value of 0.99.
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Figure 3.3: Survival functions of the number of generations from real data and from the Markov
chain.

We use bootstrap resampling [69] to estimate the variance of our estimates of probabilities of

cascade sizes. A bootstrap sample resamples the observed cascades with replacement,

reconstructs the Markov chain, and recomputes the probabilities of cascade sizes. Note that each

bootstrap resampling amounts to a different selection of the cascades observed in the data. The

variance of the probabilities of cascade sizes is then obtained as the empirical variance of the
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bootstrap samples. We use 500 bootstrap samples to ensure a sufficiently accurate estimate of the

variance of the probabilities.

The risk of a given size of blackout is estimated as risk = (estimated probability p̂ of that size

of blackout) × (cost of that size of blackout). Knowing the multiplicative uncertainty in p̂ is

useful. For example, if we know p̂ varies within a factor of 2, then this contributes a factor of 2 to

the uncertainty of the risk. Therefore, it is appropriate to use a multiplicative form of confidence

interval for p̂ specified by a parameter κ. A 95% multiplicative confidence interval for an

estimated probability p̂ means that the probability p satisfies P[p̂/κ ≤ p ≤ p̂ κ] = 0.95. The

confidence interval for the estimated survival function is shown in Fig. 3.4. Since larger cascades

are rarer than small cascades, the variation increases as the number of generations increases.
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Figure 3.4: Survival function of cascade sizes. Red crosses are from Markov chain, and blue lines
indicate the 95% confidence interval estimated by bootstrap.

To apply and communicate the probability distribution of cascade size, it is convenient to

combine sizes together to get the probabilities of small, medium, and large cascades, where a

small cascade has 1 or 2 generations, a medium cascade has 3 to 9 generations, and a large

cascade has 10 or more generations. (The respective probabilities are calculated as 1− S(2),

S(2)− S(9), and S(9)). The 95% confidence intervals of the estimated probabilities of small,

medium, and large cascades are shown in Table 3.1. The probability of large cascades is estimated
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within a factor of 1.5, which is adequate for the purposes of estimating large cascade risk, since

the cost of large cascades is so poorly known: estimates of the direct costs of cascading blackouts

vary by more than a factor of 2.

Table 3.1: 95% Confidence intervals using bootstrap

cascade size probability κ

small (1 or 2 generations) 0.9606 1.005

medium (3 to 9 generations) 0.0372 1.132

large (10 or more generations) 0.0022 1.440

We now discuss tracking cascades by their number of generations. The number of generations

is the same concept as the number of tiers in commercial cascading software [38]. Basic to

cascading analysis is the grouping of line outages into successive generations within each cascade.

This grouping is usually done by outage timing as in this work, or by simulation loops naturally

producing generations of outages. This influence graph is structured in terms of these

generations, so that propagation is determined by the probability of a next generation (i.e. the

cascade not stopping at the current generation), and cascade size is measured by number of

cascade generations. In contrast, some previous papers [16,17,67,68] are structured in terms of

the line outages in the generations, so that, according to the branching process model [68], each

line outage in each generation propagates independently to form line outages in the next

generation. Then the propagation is determined by the number of line outages per line outage in

the previous generation, and it is natural to use the total number of lines outaged as a measure of

cascade size. While it is not yet clear which approach is better, there may be some advantages to

tracking cascades by generations rather than line outages. Generations are simpler and more

general than line outages, and can more easily encompass other outages significant in cascading

such as transformer outages. Also, it may be that the statistics of the number of generations is

more simply described, as in the Zipf distribution observed in utility data in [70].
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3.5 Critical lines and cascade mitigation

3.5.1 The transmission lines involved in large cascades

The lines eventually most involved in large cascades can be calculated from the asymptotic

properties of the Markov chain. While all cascades eventually stop, we can consider at each

generation those propagating cascades that are not stopped at that generation. The probability

distribution of states involved in these propagating cascades converges to a probability

distribution d∞, which is called the quasi-stationary distribution. d∞ can be computed directly

from the transition matrices (as explained in Appendix A, d∞ is the left eigenvector corresponding

to the dominant eigenvalue of the transition submatrix Q̄1+). That is, except for a transient that

dies out after some initial generations, the participation of states in the cascading that continues

past these initial generations is well approximated by d∞. Thus the high probability states

corresponding to the highest probability entries in d∞ are the critical states most involved in the

latter portion of large cascades. Since d∞ does not depend on the initial outages, the Markov

chain is supplying information about the eventual cascading for all initial outages.

We now find the critical lines corresponding to these critical states by projecting the states

onto the lines in those states. Let `k be the row vector whose entry `k[j] is the probability that

line j outages in generation k. Then

`k[j] =
∑
i:j∈si

πk[i] or `k = πkR, (3.8)

where the matrix R projects states to lines according to

R[i, j] =

 1; line j ∈ si

0; line j /∈ si
(3.9)

Then the probability distribution of lines eventually involved in the propagating cascades that are

not stopped is c∞ = d∞R and the critical lines most involved in the latter portion of large

cascades correspond to the highest probability entries in c∞. Fig. 3.5 shows the probabilities in

c∞ in order of decreasing probability. We identify the top ten lines as critical and as candidates

for upgrading to decrease the probability of large cascades.
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Figure 3.5: Quasi-stationary distribution of transmission lines eventually involved in propagating
cascades. Red dots are ten critical lines.

3.5.2 Modeling and testing mitigation in the Markov chain

A transmission line is less likely to fail due to other line outages after the line is upgraded, its

protection is improved, or its operating limit is increased. These mitigations have the effect of

decreasing the probability of transition to states containing the upgraded line, and are an

adjustment of the columns of the transition matrix corresponding to these states. The mitigation

is represented in the Markov chain by reducing the probability of transition to the state s

containing the upgraded line by (r/|s|)%, where |s| is the number of lines in the state. The

reduction is r% if the state contains only the upgraded line, and the reduction is less if the state

contains multiple lines.

We demonstrate using the Markov chain to quantify the impact of mitigation by upgrading

ten lines critical for large cascades identified in section 3.5.1 with r = 80%. The effect of this

mitigation on cascade probabilities is shown in Fig. 3.6. It shows that upgrading the critical lines

reduces the probability of large cascades by 45%, while the probability of medium cascades is

slightly decreased and the probability of small cascades is slightly increased.



25

0.9606

0.001

0.005
0.010

0.050
0.100

0.500
1

Cascade size (number of generations)

Pr
ob

ab
ilit

y

Before
After

0.9644

0.0372 0.0344

0.0022
0.0012

Small Medium Large

Figure 3.6: Cascade size distribution before (red) and after (light green) mitigating lines critical in
propagating large cascades.

To show the effectiveness of the method of identifying critical lines, we compare the

mitigation effect of upgrading critical lines and upgrading ten random lines. Randomly upgrading

ten lines only decreases the probability of large cascades by 11% on average.

So far we have only considered upgrading the lines critical for propagating large cascades.

Now, in order to discuss this mitigation of large cascades in a larger context, we briefly consider

and contrast a different mitigation tactic of upgrading lines that are critical for initial outages.

Since initial outages are caused by external causes such as storm, lightning, or misoperation, they

often have different mechanisms and different mitigations than for propagating outages. A

straightforward method to identify lines critical for initial outages selects ten lines in the data

with the highest frequencies of initial outage [17]. Upgrading these ten lines will reduce their

initial outage frequencies and hence reduce the overall cascade frequency. In the Markov chain,

this upgrading is represented by reducing in the first generation the frequency of states s that

contain the critical lines for initial outages by r/|s|%, where r = 80%. The main effect is that by

reducing the initial outage frequencies of the critical lines by 80%, we reduce the frequency of all

cascades by 19%. In addition, this mitigation will change the probabilities of states π0 after
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renormalizing the frequencies of states. It turns out for our case that there is no overlap between

critical lines for initial outages and for propagation.

Changing the initial state distribution π0 has no effect on the distribution of cascade sizes in

the long-term. However, it directly reduces the frequency of all cascades. In contrast, mitigating

the lines critical for propagating large cascades reduces the probability of large cascades relative

to all cascades but has no effect on the frequency of all cascades. (Note that Fig. 3.6 shows the

distribution of cascade sizes assuming that there is a cascade, but gives no information about the

frequency of all cascades.)

In practice, a given mitigation measure can affect both the initial outages and the propagation

of outages into large cascades. The combined mitigation effects can also be represented in the

influence graph by changing both the initial state distribution and the transition matrix, but here

it is convenient to discuss them separately.

This work aims to select the lines critical for large cascades and quantify the impact on

cascade probability of generic upgrades to these lines. Once the critical lines are selected, an

engineering process of much wider scope is required to determine the possible approaches to

upgrade each of the lines, quantify the benefits other than reducing large cascades and balance

the costs and feasibilities of the upgrading approaches against the total benefits of upgrading.

One part of this process is that for each line, the percentage reduction in outage probability for

the best approach to line upgrade is estimated and the Markov chain is used to quantify the

corresponding reduction in large, medium, and small cascade probabilities. However, cascade

mitigation is only one of the many factors to be considered in justifying upgrade. Evaluating and

costing specific upgrading approaches for specific lines requires utility expertise, including details

of the line construction and right of way, maintenance history, and operation.
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3.6 Estimating the transition matrix

The Markov chain has an absorbing first state s0 = {}, indicating no lines outaged as the

cascade stops and after the cascade stops. Therefore the transition matrix has the structure

Pk =



1 0 · · · 0

uk Qk


(3.10)

where uk is a column vector of stopping probabilities; that is, uk[i] = Pk[i, 0]. Qk is a submatrix

of transition probabilities between transient states which contains the non-stopping probabilities.

The first row of Pk is always e′0, so the transition probabilities to be estimated are uk and Qk for

each generation k. The rows and columns of Pk are indexed from 0 to |S| − 1 and the rows and

columns of Qk are indexed from 1 to |S| − 1, where |S| is the number of states.

As summarized in section 3.2 after (3.1), we need to both group together multiple generations

to get sufficient data and account for variation with generation k. The statistics of the transition

from generation 0 to generation 1 are different than the statistics of the transitions between the

subsequent generations. For example, stopping probabilities for generation 0 are usually larger

than stopping probabilities for subsequent generations [17]. Also, the data for the subsequent

generations is sparser. Therefore, we construct from counts of the number of transitions from

generation 0 to generation 1 a probability transition matrix P̄0, and construct from the total

counts of the number of transitions from all the subsequent generations a probability transition

matrix P̄1+. Specifically, we first use the right-hand side of (3.2) to construct two corresponding

empirical transition matrices, and then we update stopping probabilities by the empirical Bayes

method and adjust non-stopping probabilities to obtain P̄0 and P̄1+. Finally, we adjust P̄0 and

P̄1+ to match the observed propagation rates to obtain Pk for each generation k.
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3.6.1 Bayesian update of stopping probabilities

The empirical stopping probabilities are improved by an empirical Bayes method [71,72] to

help mitigate the sparse data for some of these probabilities. Since the method is applied to both

P̄0 and P̄1+, we simplify notation by writing P̄ for either P̄0 or P̄1+.

The matrix of empirical probabilities obtained from the transition counts N [i, j] is

P̄ counts[i, j] =
N [i, j]∑
j N [i, j]

(3.11)

We construct P̄ from P̄ counts in two steps. First, Bayesian updating is used to better estimate

stopping probabilities and form a matrix P̄ bayes. Second, the non-stopping probabilities in P̄ bayes

are adjusted to form the matrix P̄ to account for the fact that some independent outages are

grouped into cascading outages when we group outage data into cascades.

We need to estimate the probability of the cascade stopping at the next generation for each

state encountered in the cascade. For some of the states, the stopping counts are low, and cannot

give good estimates of the stopping probability. However, by pooling the data for all the states we

can get a good estimate of the mean probability of stopping over all the states. We use this mean

probability to adjust the sparse counts in a conservative way. In particular, we form a prior that

maximizes its entropy subject to the mean of the prior being the mean of the pooled data. This

maximum entropy prior can be interpreted as the prior distribution that makes the least possible

further assumptions about the data [73] [74].

Finding a maximum entropy prior Assuming the stopping counts are independent with

a common probability, the stopping counts follow a binomial distribution. Its conjugate prior

distribution is the beta distribution, whose parameters are estimated using the maximum entropy

method.

Let stopping counts Ci be the observed number of transitions from state si to s0

(i = 1, ..., |S| − 1). Then Ci = N [i, 0]. Let ni =
∑|S|−1

j=0 N [i, j] be the row sum of the counting

matrix N . The stopping counts Ci follow a binomial distribution with parameter Ui, with
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probability mass function

fCi|Ui(ci|ui) =
ni!

ci!(ni − ci)!
ucii (1− ui)ni−ci (3.12)

The conjugate prior distribution for the binomial distribution is the beta distribution.

Accordingly, we use the beta distribution with hyperparameters β1, β2 for the stopping

probability Ui:

fUi(ui) = B(β1, β2)uβ1−1
i (1− ui)β2−1 (3.13)

where B(β1, β2) = Γ(β1+β2)
Γ(β1)Γ(β2) . Alternative parameters for the beta distribution are its precision

m = β1 + β2 and its mean µ = β1
β1+β2

. The entropy of the beta distribution is

Ent(m,µ) = lnB(mµ,m(1− µ))− (mµ− 1)ψ(mµ)

− (m(1− µ)− 1)ψ(m(1− µ)) + (m− 2)ψ(m) (3.14)

where ψ(x) is the digamma function.

We want to estimate hyperparameters β1, β2 to make the beta distribution have maximum

entropy subject to the mean being the average stopping probability of the pooled data

û = (
∑|S|−1

i=1 ci)/(
∑|S|−1

i=1 ni). Then we can obtain hyperparameters β1, β2 by finding the m > 0

that maximizes Ent(m, û) and evaluating β1 = mû and β2 = m(1− û). The hyperparameters used

for P̄ bayes
0 are (β1, β2) = (2.18, 0.32), and the hyperparameters for P̄ bayes

1+ are

(β1, β2) = (1.10, 0.93).

Updating the observed data using the prior The posterior distribution of the stopping

probability Ui is a beta distribution with parameters ci + β1, ni − ci + β2. We use the mean of the

posterior distribution as a point estimate of the stopping probability:

P̄ bayes[i, 0] = E(Ui|Ci = ci) =
ci + β1

ni + β1 + β2
(3.15)

Fig. 3.7 shows a comparison between the empirical stopping probabilities and the updated

stopping probabilities. Black dots are the empirical probabilities sorted in ascending order (if two
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probabilities are equal, they are sorted according to the total counts observed). Red dots are the

updated stopping probabilities. As expected, the empirical probabilities with the fewest counts

move towards the mean the most when updated. As the counts increase, the effect of the prior

decreases and the updated probabilities tend to the empirical probabilities.

Equation (3.15) forms the first column of P̄ bayes. Then the nonstopping probabilities in the

rest of the columns of the P̄ counts matrix are scaled so that they sum to one minus the stopping

probabilities of (3.15) to complete the matrix P̄ bayes:

P̄ bayes[i, j] =
1− P̄ bayes[i, 0]∑|S|−1
r=1 P̄ counts[i, r]

P̄ counts[i, j], j > 0 (3.16)

This Bayesian updating is applied to form P̄ bayes
0 for the first transition and P̄ bayes

1+ for the

subsequent transitions.

3.6.2 Adjust nonstopping probabilities for independent outages

The method explained in section 3.2 that groups outages into cascades has an estimated 6%

chance that it groups independent outages into cascading outages [1]. These 6% of outages occur

independently while the cascading of other outages proceeds and do not arise from interactions

with other outages. The empirical data for the nonstopping probabilities includes these 6% of

outages, and we want to correct this. Therefore, the non-stopping probabilities are modified by

shrinking the probabilities in transition matrix by 6%, and sharing this equally among all the

states. That is,

P̄ [i, j] = 0.94P̄ bayes[i, j] +
0.06

|S| − 1
(1− P̄ bayes[i, 0]) (3.17)

where P̄ bayes indicates the transition matrices after the Bayesian update of section 3.6.1. Notice

that P̄ is a probability matrix since
∑

j P̄ (i, j) = 1 for each i. A benefit is that this adjustment

makes the submatrix Qk have non-zero off-diagonal entries, making P̄ irreducible.
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3.6.3 Adjustments to match propagation

The average propagation ρk for generation k [68] is estimated from the data using

ρ̂k =
Number of cascades with > k + 1 generations

Number of cascades with > k generations

=
S(k + 1)

S(k)
=
πk+1(1− e0)

πk(1− e0)
(3.18)

An important feature of the cascading data is that average propagation ρk increases with

generation k as shown in Table 3.2. To do this, we need to form transition matrices for each of

these generations that reproduce this propagation. We define a matrix Ak to adjust P̄0 and

Table 3.2: Propagations of generations k = 0 to 17

k 0 1 2 3 4 5 6 7 8

ρ̂k 0.13 0.31 0.44 0.61 0.73 0.70 0.78 0.75 0.71

k 9 10 11 12 13 14 15 16 17

ρ̂k 0.73 0.91 1.00 1.00 0.80 0.75 0.83 0.60 0.67

P̄1+ so that the propagation in Pk matches the empirical propagation for each generation up to

generation 8. For generation 9 and above, the empirical propagation for each generation is too

noisy to use individually and we combine those generations to obtain a constant transition

matrix. That is, P0 = P̄0A0, P1 = P̄1+A1, ... , P8 = P̄1+A8, P9+ = P̄1+A9+. Then the

transition matrices for all the generations are P0,P1,P2,P3,P4,P5,P6,P7,P8,P9+,P9+,P9+, ....

The matrix Ak has the effect of transferring a fraction of probability from the transient to

stopping transitions and has the following form:

Ak =



1 0 ... 0

ak 1− ak ... 0

...
. . .

ak 0 ... 1− ak


(3.19)

ak is determined from the estimated propagation rate ρ̂k as follows. Using (3.18), we have

ρ̂k =
πkP̄Ak(1− e0)

πk(1− e0)
= (1− ak)

1− πkP̄ e0

1− πke0
(3.20)

and we solve (3.20) to obtain ak for each generation k.
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3.7 Conclusion and discussion

We process observed transmission line outage utility data to form a generalized influence

graph and the associated Markov chain that statistically describe cascading outages in the data.

Successive line outages, or, more precisely, successive sets of near simultaneous line outages in the

cascading data correspond to transitions between nodes of the influence graph and transitions in

the Markov chain. The more frequently occurring successive line outages in the cascading data

give a stronger influence between nodes and higher transition probabilities. The generalized

influence graph introduces additional states corresponding to multiple line outages that occur

nearly simultaneously. This innovation adds a manageable number of additional states and solves

some problems with previous influence graphs, making the formation of the Markov chain clearer

and more rigorous.

One of the inherent challenges of cascading is the sparse data for large cascades. We have

used several methods to partially alleviate this when estimating the Markov chain transition

matrices, including combining data for several generations, conservatively improving estimates of

stopping probabilities with an empirical Bayes method, accounting for independent outages

during the cascade, and matching the observed propagation for each generation. The combined

effect of these methods is to improve estimates of the Markov chain transition matrices. Although

some individual elements of these transition matrices are nevertheless still poorly estimated, what

matters is the variability of the results from the Markov chain, which are the probabilities of

small, medium and large cascades. We assess the variability of these estimated probabilities with

a bootstrap and find them to be estimated to a useful accuracy. This assessment of variability is

necessary for getting useful estimates of large cascade probability because large cascades are rare,

and probability estimates for rare events have the potential to be so wildly variable that they are

useless.

The Markov chain only models the statistics of successive transitions in the observed data.

Also, there is an inherent limitation of not being able to account for transitions and states not

present in the observed data. That is, the common transitions and states and some of the rarer
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transitions and states will be present in the data and will be represented in the Markov model,

while the rarer transitions and states not present in the data will be neglected. However, the

Markov chain can produce, in addition to the observed cascades, combinations of the observed

transitions that are different than and much more extensive than the observed cascades. The

Markov chain approximates the statistics of cascading rather than reproducing only the observed

cascades.

We exploit the asymptotic properties of the Markov chain to calculate the transmission lines

most involved in the propagation of larger cascades, and we show with the Markov chain that

upgrading these lines can significantly reduce the probability of large cascades. Since a large

cascade of line outages with many generations is very likely to shed substantial load, mitigating

large cascades will also mitigate blackouts with large amounts of load shed.

A Markov chain driven by real data incorporates all the causes, mechanisms, and conditions

of the cascading that occurred, but does not distinguish particular causes of the interactions.

However, once the lines critical to large cascades have been identified with the influence graph,

the causes related to outage of those particular lines can be identified by analyzing event logs and

cause codes. Also, the overall impact on cascading of factors such as loading and weather can be

studied by dividing the data into low and high loading or good and bad weather and forming

influence graphs for each case.

While the Markov model is driven by historical data in this work, the Markov model is not

limited to historical data. The Markov model could be driven by simulated cascades or a

combination of simulated and historical cascades. Moreover, if the probabilities of specific

cascading interactions between line outages are available, these probabilities could be combined

into the entries of the Markov transition matrices. The Markov chain is applied here to cascading

transmission line outages, but the formulation would apply generally to process real or simulated

data for the cascading outage of components within or between networked infrastructures.

We show how to estimate the Markov chain from detailed outage data that is routinely

collected by utilities. Being driven by observed data has some significant advantages of realism.
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In particular, and in contrast with simulation approaches, no assumptions about the detailed

mechanisms of cascading need to made. Since the Markov chain driven by utility data has

different assumptions than simulation, we regard the Markov chain and simulation approaches as

complementary. The Markov chain driven by observed data offers another way to find critical

lines and to test proposed mitigations of cascading by predicting the effect of the mitigation on

the probabilities of small, medium, and large cascades.



35

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Before probability rank 

Before probability rank
0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Before
After

Before
After

Figure 3.7: Stopping probabilities before and after Bayesian updating
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CHAPTER 4. SIMULATING CASCADING RESILIENCE FROM

HISTORICAL DATA USING THE MARKOVIAN INFLUENCE GRAPH

Extreme events can damage power system components and then cause cascading outages.

Methods are needed to evaluate the cascading phase of resilience. The Markovian influence graph

is a discrete Markov chain with variant transition matrices. It is straightforward to sample

cascades from it starting with some initial outages. However, large cascades are rare and the

Markovian influence graph produces limited large cascade samples. This chapter proposes an

improveed sampling method to encompass the rare, large cascades that contribute greatly to the

blackout risk. Then, the load shed distribution is estimated from the samples of cascaded lines

and hence the risk of a widespread blackout caused by extreme events and cascading.

This chapter uses OPA cascading failure simulation results. We thank Benjamin Carreras of

BACV Solutions, Oak Ridge TN, David E. Newman of University of Alaska-Fairbanks, and

José-Miguel Reynolds-Baredo of Universidad Carlos III de Madrid for producing OPA simulation

results. The material in this chapter is published in [75].

4.1 Introduction

The processed historical cascades are the observational bedrock for the study of cascading

failure, since they occurred in practice. However, if one assumes some initial outages and seeks to

predict the probabilistic extent of further cascading, ranging from no further outages to blackouts,

the historical cascades are limiting: the particular initial outages may not occur in the historical

cascades, and even if they do occur once or twice, it is only one or two samples of the possible

cascading outcomes. To address this problem, we propose using the Markovian influence graph to

describe the statistics of the historical outage data, and then sample from the Markovian

influence graph to simulate the consequences of some assumed initial outages. This gives a
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high-level and flexible statistical model of cascading that can be driven by standard utility data.

In suggesting this approach, we are motivated by the resilience problem of estimating the

cascading that can follow damage to the power transmission system in an extreme event [41–43].

Extreme events such as storm, fire, or earthquake can damage multiple power system

components. Then further power system components can outage in a cascade. Usually the

cascading only outages components without damaging them, but the cascading does make the

blackout more widespread and impactful, and can seriously hinder the subsequent recovery from

the event. There is considerable expertise modeling probabilistic power system component failure

under extreme conditions of wind, flooding, icing, earthquake and fire. However, the cascading

phase of resilience is much less well characterized. Given the initially damaged components, one

can simulate the cascading using a model-based simulation. While useful, simulation only

captures a limited subset of approximated cascading mechanisms. The alternative that we suggest

and explore in this work uses a Markovian influence graph driven by historical utility data to

generate samples of the cascaded transmission lines. Throughout this chapter we are interested in

properly sampling from the largest cascades since these dominate the risk [4], because

straightforward sampling does not work well for the larger cascades.

4.2 Sampling cascades with the influence graph

Let Y0 be the set of initially failed lines that are damaged by the extreme event. We express

Y0 as a disjoint union of m Markov chain states:

Y0 = x
(1)
0 ∪ x

(2)
0 ∪ ... ∪ x

(m)
0 (4.1)

Consider the state x
(r)
0 in Y0 with 1 ≤ r ≤ m. Let the rth Markov chain starting from state

x
(r)
0 but subsequently avoiding any initially failed states be X

(r)
0 , X

(r)
1 , .... That is,

P[X
(r)
0 = x

(r)
0 ] = 1 and P[X

(r)
k ∈ Y0] = 0 for k > 0. (The transition matrix for the Markov chain

X
(r)
0 , X

(r)
1 , ... is easily obtained by preventing transitions to states in Y0 by deleting the columns

of the transition matrix corresponding to states in Y0 and renormalizing.)
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We write |x| for the number of line outages in state x. The number of lines out in the rth

chain is

N (r) =
∞∑
k=0

|X(r)
k | (4.2)

and the total number of lines out is

N =
m∑
r=1

N (r) (4.3)

Note that (4.2) and (4.3) neglect any repeats of lines out within or between chains.

4.2.1 Simulating the influence graph

We first describe a straightforward but inferior way to do the simulation. For the rth chain we

need to simulate X
(r)
0 , X

(r)
1 , ... from its starting state x

(r)
0 until it stops. That is, the simulation

produces a series of states x
(r)
0 , x

(r)
1 , x

(r)
2 , ... until it stops by transitioning to the empty state { }.

Suppose state x
(r)
j is produced at step j. Then the next state is produced as follows: Let e

(r)
j be

the row vector with a one at the index of state x
(r)
j and zeros elsewhere. Let Pk be the transition

matrix from generation k to k + 1. Then e
(r)
j Pk is a probability distribution over the states not in

Y0
1. Sample from this probability distribution to obtain the state x

(r)
k+1. Thus x

(r)
0 , x

(r)
1 , x

(r)
2 , ...

are produced.

The problem with this straightforward way to do the simulation is that it will mainly sample

the frequent short cascades with few line outages, so that a huge number of samples is needed to

accurately estimate the longer cascades. An advantage of the influence graph is that it can be

easily modified to sample more uniformly over the range of the possible cascades by manipulating

the cascade stopping probabilities. Instead of allowing chains to stop by themselves, the stopping

is inhibited until a maximum number of cascade generations gmax is simulated, and then the chain

stops. At each generation before gmax, the line outages are recorded, and, although the chain does

not stop, the probability that the state would have stopped is recorded. This gives many samples

1During the simulation, however, we allow lines not in Y0 to outage again in successive generations except the
next generation.
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of the number of line outages for each of the generations 0, 1, 2, .., gmax, and these samples range

from a small to a large number of line outages. And the probability of stopping at each

intermediate length cascade can be calculated.

We now give the details of this improved simulation. Suppose the rth chain is simulated and

is at state x
(r)
k at generation k < gmax. When the simulation samples from the probability

distribution to obtain the next state x
(r)
k+1, it is easy to prohibit the choice x

(r)
k+1 = { } that would

stop the chain. (This is equivalent to zeroing the probability of transition to { } and renormalizing

the probabilities of the other transitions.) It is also straightforward to record x
(r)
k (which contains

the lines outaged in generation k), and the probability σ
(r)
k = P[transition from x

(r)
k to { }] that

the chain stops when the state is x
(r)
k . σ

(r)
k is the entry in the first column of the transition matrix

Pk corresponding to x
(r)
k . The probability that the rth chain has exactly k generations is

q
(r)
k = (1− σ(r)

0 )(1− σ(r)
1 )...(1− σ(r)

k−1)σ
(r)
k (4.4)

More precisely, we have simulated (realized) one particular sequence of states x
(r)
1 , x

(r)
2 , ..., x

(r)
k

that avoid stopping. Now, conditioned on the states that do happen occurring in this sequence,

we compute in the Markov chain that does not avoid stopping the probability of stopping at

generation k with (4.4).

We indicate the first simulation of the rth chain by the superscript (r; 1). We perform the

first simulation of the rth chain up to generation gmax and extract results for each generation

k ≤ gmax. For generation k, the total number of lines out is

n
(r;1)
k =

k∑
j=0

|x(r;1)
j | (4.5)

and the probability of n
(r;1)
k lines out is equal to q

(r;1)
k , since the number of lines out increases at

each non-stopping generation. Repeating the simulation of the rth chain t times for the same

initial state x
(r)
0 gives different sequences x

(r;s)
0 , x

(r;s)
1 , x

(r;s)
2 , ... for s = 1, 2, , ..., t, generating many

samples of the number of line outages n
(r;s)
k and their probabilities q

(r;s)
k for s = 1, 2, ..., t and

k = 0, 1, ..., gmax. All these results are combined to give the distribution of the number of line
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outages N (r) in the simulations of the rth chain:

P[N (r) = v] =
1

t

gmax∑
k=0

t∑
s=1

I[n
(r;s)
k = v]q

(r;s)
k (4.6)

where the indicator function I[·] limits the sums in (4.6) to the results giving v line outages. Thus

(4.6) is the average of all the probabilities corresponding to the t possible occurrences of v line

outages in the simulations of the rth chain.

Then, according to (4.3) and assuming the chains are independent, we evaluate the

distribution of the total number of lines out N by convolving the distributions

N (1), N (2), ..., N (m). The convolution is done by multiplying probability generating functions:

E[zN ] = E[z(
∑m
r=1N

(r))] =

m∏
r=1

E[zN
(r)

] (4.7)

The coefficient of zv in E[zN ] is the probability P[N = v].

4.3 Probability distribution of load shed

The load shedding of a cascade is denoted as L. We want to estimate fL, the probability

distribution of load shed. We do this by conditioning on the number of line outages.

The number of line outages N ranges from `0 to `max, where `0 is number of lines in Y0. We

partition the range of N into K disjoint bins B1, B2, ..., BK so that

{`0, `0 + 1, `0 + 2, ..., `max} = B1 ∪B2 ∪ .... ∪BK (4.8)

We use the following subsections to obtain fL|N∈Bκ , the distribution of load shed given that the

number of lines out are in bin Bκ. The bins (4.8) are chosen large enough so that there is

sufficient data in each bin to be able to approximate fL|N∈Bκ .

From the distribution of N provided in section 4.2, we can easily evaluate the bin probabilities:

bκ = P[N ∈ Bκ] =
∑
v∈Bκ

P[N = v] (4.9)
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The idea is to evaluate the distribution of load shed fL by conditioning on the number of lines in

the bins:

fL =
K∑
κ=1

bκfL|N∈Bκ (4.10)

We now use the OPA simulation to approximate fL|N∈Bκ .

4.3.1 Load shed given the number of lines out

Given that the number of lines N outaged after cascading are in bin Bκ, we want to obtain

the distribution of load shed fL|N∈Bκ . We use a probability distribution of load shed because we

are trying to estimate the risk of a future extreme event, and the power system loading condition,

generator dispatch and maintenance status for a future event are uncertain and variable. This

variability will produces different load sheds for the same line outages, or the same number of line

outages.

The OPA model [76–79] has been validated to approximate well the observed bulk statistics of

blackouts of WECC [80,81]. Here, noting that our historical data is from part of WECC, we use

the OPA results on a 1553 bus model of WECC to generate the conditional distributions of load

shed fL|N∈Bκ , κ = 1, 2, 3, ..., 12. Note that OPA is a long-term simulation that samples from a

variety of grid loading conditions. The OPA results consist of 58 903 cascades. Each cascade

yields the load shed and the number of lines out.

The OPA results are easily sorted into the bins B1, B2, ..., B12 according to the number of

lines outaged in each cascade. Bin Bκ has κ line outages for 1 ≤ κ ≤ 11, and bin B12 has 12 or

more line outages. Each bin has at least 83 data points. The empirical distribution for load shed

in bin Bκ is fitted with the lognormal distribution fL|N∈Bκ . Figure 4.1 shows three of these fits.

The data points that have a fraction of load shed less than 0.01 are excluded. The mean µ and

standard deviation σ of the lognormal distributions for the 12 bins are shown in Table 4.1. The

mean and standard deviation increase as the number of line outages in cascades increase, as

expected. Moreover, the Kolmogorov-Smirnov test for each bin’s fitting has a p-value at least 0.1,

so these fits are statistically significant.
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Figure 4.1: The survival functions of the distribution of fraction of load shed for cascades with 1,
7, or 11 line outages.

Table 4.1: Parameters of the lognormal distributions of the load shed given the number of line
outages in the κth bin

κ 1 2 3 4 5 6 7 8 9 10 11 12

µ -4.29 -4.26 -4.27 -4.22 -4.21 -4.18 -4.12 -4.18 -4.05 -3.99 -3.89 -3.75

σ 0.19 0.22 0.23 0.26 0.30 0.32 0.33 0.31 0.32 0.33 0.41 0.42

4.4 Results

4.4.1 Simulation of line outages

We use the improved sampling of section 4.2.1 to sample cascades from the Markovian

influence graph formed from the utility data. Specifically, starting with assumed 3 initial outages,

we simulate 100 cascades up to gmax = 100 generations. Since the simulation also records data for

each cascade stopping at any generation before 100 generations, this is equivalent to simulating

10 000 cascades, in which 100 cascades have 1 generation, 100 have 2 generations, and so on.
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To contrast the improved sampling with straightforward sampling, we also simulate 10 000

cascades with the same initial outages using the straightforward sampling method of simply

simulating until the cascade stops, with no special control of the stopping. The two simulations

have close execution times. Figure 4.2 shows that the survival functions match except for some

variability in the tail due to limited samples from the straightforward sampling. With the same

simulation time, the improved sampling has two benefits: it has smaller standard deviations and

generates more large cascade samples. For example, the standard deviation of the probability

that cascades have more than 30 line outages is 0.00004 for improved sampling, and 0.0004 for

straightforward sampling. As the number of line outages increases, this advantage is even more

significant. The straightforward sampling focuses on the small cascades and does not sample

enough large cascades to accurately estimate the large cascades. In contrast, the improved

sampling samples uniformly across a full range of cascade sizes to better estimate a longer tail.

The Markovian influence graph flexibly allows this improved sampling, addressing the

straightforward sampling problem common in the literature of inherently undersampling large

cascades.

Although in this work we only estimate the distribution of the number of lines out, there is a

wealth of detailed information in the simulated cascades that could be useful.

4.4.2 Distribution of load shed

After estimating distribution of the number of line outages N , we proceed to estimate the

distribution of load shed using the method described in Section 4.3. Subsection 4.3.1 calculates

the conditional lognormal load shed distributions fL|N∈B1
, fL|N∈B2

, ..., fL|N∈B12
. The distribution

of N gives the bin weights b1, b2, ..., b12 according to (4.9). Then the distribution of load shed fL

is the mixture of fL|N∈B1
, fL|N∈B2

, ..., fL|N∈B12
weighted by b1, b2, ..., b12 as described by (4.10).

Figure 4.3 shows the survival function of the distribution of load shed fL given 3 initial

outages (red solid curve). In Figure 4.3, we also vary the number of initial outages to simulate
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Figure 4.2: The survival function of the number of line outages N given 3 initial outages using the
improved sampling (red crosses) and the straightforward sampling (black dots).

different initial line damage scenarios. As the number of initial outages increases, the probability

of large load shed increases.

4.5 Comparing simulation driven by historical data with model-based

simulation

This section describes and contrasts the strengths and weaknesses of model-based simulation

and simulation of the Markovian influence graph driven by historical data.

Realism: A major limitation is that model-based simulations are practically constrained to

approximate a limited subset of cascading mechanisms. The Markovian influence graph driven by

historical data uses the statistics of real cascades, which encompass all the cascading mechanisms

encountered in the historical period. It produces many cascades not observed in the real cascades.

However, the Markovian influence graph does not describe the pairwise interactions between

outages that could happen but that did not happen in the historical period. The power grid
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Figure 4.3: Survival functions of load shed with 1, 3, 6, or 11 initial outages.

slowly changes over the historical period as components age and upgrades to the grid and

operational procedures are made. The Markovian influence graph pools together all the

interactions in the power system over the historical period. For example, if an interaction was

mitigated half way during the historical period, it still contributes a possible interaction to the

Markovian influence graph.

Validation: When used to predict cascades, model-based simulation can produce cascades that

are often judged to be credible, but most model-based simulations are not yet validated against

historical cascade data. (One of the exceptions is the OPA simulation used in subsection 4.3.1,

which is validated with WECC data in [80,81].) An appropriate validation is reproducing the

form of cascade statistics, and there is notable progress towards this goal [9, 10]. On the other

hand, the Markovian influence graph describes the historical statistics of successive line outages,

and reproduces the statistics of numbers of lines out [39], so important aspects of validation are

inherent or already checked. There are additional assumptions in the processing of the historical

data and the influence graph formulation, and some of these issues are discussed below. However,
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the more subtle validations of the Markovian influence graph would seem to require more

elaborate approaches to statistical validation.

Sampling of grid conditions: Another requirement, which is not always satisfied in the

literature, is that model-based simulations should sample appropriately from a range of grid

operating conditions [82]. Historical data inherently samples all the actual grid conditions

encountered over the observed time, and this is often an appropriate sampling.

Sampling of cascades: Predicted cascading is inherently probabilistic due to the many

interactions and protection actions that involve thresholding in an uncertain environment. Note

that even “deterministic” model-based simulations can sample from cascade possibilities by

randomizing the grid conditions. As regards sampling technique, the Markovian influence graph

easily allows computing the rarer but riskier long cascades while tracking the outcomes and

probabilities of all the truncations of the long cascades, as explained in subsection 4.2.1. A

corresponding advantage in computing the largest cascades can be achieved for model-based

simulation using splitting [83] or other methods.

Markov assumption: The Markovian influence graph only describes the statistics of successive

Markov states in the historical cascades. Each Markov state is a specific line outage or set of line

outages. The issue is the extent to which one can assume that knowing the state in a cascade

generation is sufficient to approximate the statistics of which state is in the next generation. This

is a pragmatic but fairly strong assumption.

Limited data: The Markovian influence graph is formed from historical data, which is limited in

extent, especially for the higher cascade generations. This limitation can be partially

mitigated [39], but not eliminated. In practice the higher generations are combined together in

some ways to get sufficient data. Model-based simulations can, if not too detailed, produce larger

amounts of cascading data.

Commonality between cascades: The Markovian influence graph describes the statistics of

all types of cascades, but some of these may not be the cascades of interest. That is, there is an

assumption that the same set of probabilistic cascading interactions tend to occur for all cascades.
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In particular, statistical patterns in small cascades are to some extent extrapolated to large

cascades. It is certainly possible to restrict the historical data to the subset of cascades of interest

if the subset is large enough, but there is the tradeoff that as data set becomes smaller, estimation

becomes more uncertain. In model-based simulation it seems easier to restrict the cascades

simulated, but the challenges of validation for the restricted subset of cascades remain.

4.6 Conclusion

This chapter suggests a new form of cascading simulation driven by the detailed transmission

line outage data that is routinely collected by utilities. This historical outage data is first

processed into cascades and generations within cascades, and then used to form the Markovian

influence graph that describes the statistics of outages in successive cascade generations as a

Markov chain. Some initial line outages are assumed, and in this chapter these are the lines

damaged by some extreme events, such as weather, fire, icing, or earthquake. Our immediate aim

is to simulate and quantify the cascading of line outages after the initial damage. The Markovian

influence graph is sampled to produce the simulated cascades. The simulated cascades are

statistically similar to but more variable than the cascades in the historical data. The Markovian

influence graph easily allows improved sampling that is more uniform across all sizes of cascades,

and this gives better estimates of the large cascades that are rare but significant for cascade risk.

The Markovian influence graph produces cascades of specific line outages but no direct

estimates of load shed. We show one way to estimate load shed by using a model-based

simulation, OPA, to evaluate the probability distribution of load shed conditioned on the number

of line outages. The distribution of load shed is then a weighted sum of these conditional

distributions, with the weights determined by the line outage statistics produced by the

Markovian influence graph. Other methods of estimating load shed can be developed and

compared in future work. The combined result of the Markovian influence graph cascading

simulation and the load shed estimation is the probability distribution of load shed for choices of

specific initial lines damaged by the extreme event.
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CHAPTER 5. TESTING THE MARKOVIAN INFLUENCE GRAPH

5.1 Testing large cascade mitigation by the Markovian influence graph on

simulations

Chapter 3 forms a Markovian influence graph that models cascades statistically from

historical outage data and mitigates long cascades by upgrading several critical lines [39]. The

cascade length is defined as the number of cascade generations. When the mitigation is expressed

in the Markovian influence graph, it does roughly halve the frequency of long cascades. Thus the

mitigation is self-consistent, but one obviously cannot do any further testing on the real system.

And load shed has not been considered because this information is not available in the historical

outage data.

Simulation is indicated to further test the mitigation. This section aims to test the Markovian

influence graph by applying the Markovian influence graph to simulated cascades, calculating the

mitigation, and testing the effectiveness of the mitigation by simulation. It uses several different

cascading simulations [15,16,81] on several different power systems. Using several simulations and

systems is more thorough and tends to mitigate arguments against the modeling in individual

simulations. The simulation of the IEEE 118-bus system is prepared by Junjian Qi, Stevens

Institute of Technology, the simulation of the Polish 2383-bus system is prepared by Paul D.H.

Hines and Molly Rose Kelly-Gorham, University of Vermont, and the simulation of the WECC

1553-bus system is prepared by Benjamin A. Carreras, BACV Solutions Inc.

5.1.1 Cascading outage models

This section briefly summarizes the cascading models used in the study.

The cascade model used in Polish 2383-bus system case, which is proposed in [84], is based on

the DC power flow and simulates cascading caused by overload. It incorporates an overcurrent
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relay at each transmission line to determine if a line outages due to overload. As shown in

Figure 5.8, the cascade model is initialized by calculating pre-contingency power flow on the

N − 1 secure Polish power system; then, a multiple contingency is applied by modifying system

susceptance matrix to reflect the remove of failed lines; if no system failure, where system failure

is defined as as a state in which at least 10% of the buses are no longer connected to the largest

island, the cascading model re-dispatches generators and re-calculate power flow by considering

possible islanding; next, the model updates the time-delayed overcurrent relay at each

transmission line to determine whether and when a line trips because of overload; if some lines are

outaged, the model updates the system susceptance matrix, and repeats the process until no line

outages or a system failure is detected.

Closed-loop OPA, which is described in [85–87], models the complex dynamical evolution of a

power system. It contains two timescales: a fast timescale modeling the cascading outages, which

corresponds the inner loop in Figure 5.9; and a slow timescale modeling the evolution of the

power system, which corresponds to the outer loop in Figure 5.9. The fast timescale has the same

function as the cascade model for Polish 2383-bus system case; however, OPA uses optimal DC

power flow to re-dispatch generators and determine overload of transmission lines. An overloaded

line outages with a specified probability. In the slow timescale, the power system has a slowly

increasing electricity demand, and the reliability of transmission lines are increased through

updating after a blackout. Specifically, at the beginning of each day, the load is increased at a

rate of 2% per year, and the max generation increases when the capacity margin decreases below

a given critical level ∆P/P . After a blackout, lines involved in it have their flow limit increased

slightly by multiplying a parameter b.

Open-loop ACOPA is the inner loop of the flowchart in Figure 5.9, and it uses AC optimal

power flow instead of DC optimal power flow [88]. ACOPA is “open-loop” because it uses a fixed

power system and does not represent any evolution of the power system in respond to blackouts.
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5.1.2 Procedure of testing the influence graph mitigation on simulated data

The steps of testing the influence graph mitigation on simulated data are:

1. Generate cascade data by simulation.

Each of the simulations generates a large sample of cascades recording the specific lines

outaged and load shed at each cascade generation.

2. Form the influence graph for each case and suggest critical lines to be mitigated.

Form an influence graph from the simulated cascade data in terms of number of generations

using the method in [39]. Use the influence graph to identify ten critical lines for mitigating

long cascades as in [39]. Then upgrade these critical lines statistically in the influence

graph, and estimate using the influence graph the mitigation amount in terms of reduction

of long cascades. This list of critical lines and how much impact they can have on is what to

be tested.

3. Upgrade critical lines in simulation and resimulating.

After critical lines are upgraded, these lines are less likely to outage due to other outaged

lines and it is represented in the simulations. To decrease the probability that this line

outages due to other outaged lines, we increase the flow limit of a line [16], or decrease the

probability that an overloaded line will outage [81] [15]. Then the case is resimulated with

the mitigation in place.

4. Compare mitigation results of the influence graph and resimulation.

Compare the distribution of cascade size in terms of the number of generations and load

shed using the influence graph and resimulation after mitigation. This aims to find out to

what extent the influence graph mitigation works in each simulation in terms of cascade

length and load shed and risk reduction. The overall correlation between cascade length and

load shed is also determined.

The outage data is organized as a matrix. Each row is a record of a line outage which includes

X1=line ID, X2=cascade ID, X3=generation/iteration number, X4=(load shed)/(power demand)
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in this iteration. If there is a multi-line outage, then X4 should be the same for each line in this

multi-line outage.

An example of the outage data is:

Table 5.1: An example of outage data

line ID cascade ID generation (load shed)/(power demand)

1 1 1 0

2 1 1 0

3 1 2 0.3

6 1 3 0.1

2 2 1 0.2

4 2 1 0.2

3 2 2 0

In this example, there are two cascades. The first cascade has line 1, 2, 3, 6 outaged. Line 1

and line 2 outaged in the first generation which are initial outages. There is no load shed in the

first generation. Then line 3 outaged in the second generation, associated with a 30% percent

load shed of the total power demand. Finally, line 6 outaged in the third generation. When line 6

outaged, 10% percent load shed occurred. The first cascade has 40% load shed in the end. The

second cascade has line 2,3,4 outaged. Line 2 and line 4 outaged simultaneously. They caused

20% load shed. The second cascade has 20% load shed in the end.

5.1.3 IEEE 118-bus system

5.1.3.1 Statistics of simulated cascades

The IEEE 118-bus system has 118 buses and 186 lines. The open-loop ACOPA model

simulates cascading outages and produces 20,000 cascades and 48,546 outages. All lines have

outaged at least once. The largest cascade has 6 generations. The smallest cascade has 1

generation, and 60% of cascades only have one generation. The simulated data have single line

outages and simultaneous outages with multiple lines. The proportion of distinct sets of

simultaneous outages is 97%.
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5.1.3.2 Influence graph identifies critical lines

This section forms the influence graph based on the simulated cascade data. The influence

graph can capture the distribution of cascade size distribution, as shown in Figure 5.1. For the

convenience of communication, this study groups cascades into small, medium, and large cascade

such that the log probabilities are roughly sitting on a line.
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Figure 5.1: Comparing probabilities of small, medium and large cascades from the open-loop
ACOPA simulation and the influence graph (IG) before and after mitigation (IEEE 118-bus system
case).

The influence graph is an absorbing Markov chain. The transition matrix is

P =



1 0 · · · 0

u Q


(5.1)

The submatrix Q corresponds to transient states. By the Perron-Frobenius theorem [89], it

has a unique largest eigenvalue µ which is positive and simple. The corresponding eigenvector’s

elements are all real and positive. P has a unique largest eigenvalue 1, and the second largest
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eigenvalue is the same as the largest eigenvalue of Q. let λi be the i-th eigenvalue of P , then

λ1 = 1, λ2 = µ, and 1 > µ > λ3 ≥ λ4 ≥ · · · . Let wi be the right eigenvector corresponding to λi,

and v′i be the left eigenvector. Define

W =

 w1 w2 · · · wn

 (5.2)

V =



v′1

v′2
...

v′n


(5.3)

Assume P is diagonalizable, then P = WΛV , where Λ is a diagonal matrix with eigenvalues as

entries. Note wi and vi are normalized accordingly so that WV = I. Then, the state distribution

at step t is

πt = π0P
t = π0WΛtV

= π0

(
λt1w1v

′
1 + λt2w2v

′
2 + λt3w3v

′
3 + · · ·

)
= π0

(
1 [1 1 · · · 1]′ [1 0 · · · 0] + µtw2v

′
2 + λt3w3v

′
3 + · · ·

)
= [1 0 · · · 0] + π0

(
µtw2v

′
2 + λt3w3v

′
3 + · · ·

)
(5.4)

(5.4) shows that the Markov chain eventually goes to absorption. The convergence speed

depends on the eigenvalue µ. We have shown in [39] that the state distribution conditional on the

chain not going to absorption is asymptotically distributed according to the left eigenvector v′2

corresponding to the largest eigenvalue µ of Q. The convergence speed depends on the difference

between µ and λ3. (5.4) also shows that the state distribution has some dependence on the initial

state distribution π0 and the value of µ. However, note that the quasi-stationary distribution

does not depend on the initial state distribution.

In the IEEE 118-bus system case, the first three eigenvalues of Q are λ1 = 1,

λ2 = µ = 0.10471, λ3 = −0.10466. As µ is far from 1, this system would go to absorption very
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fast. The difference between µ and λ3 is less than 0.0001, so the system would take a long time

before converging to the quasi-stationary distribution. That is, we are unlikely to observe only

the quasi-stationary distribution if we sample this Markov chain.

Furthermore, the fourth eigenvalue λ4 equals to 0.0591. There is a large enough gap between

λ3 and λ4, hence, in a short time, the quasi-stationary distribution can be approximated by the

second and third left eigenvectors.

We consider a cascade is long enough when the second component π0µ
tw2v

′
2 is nine times

greater than the third component π0λ
t
3w3v

′
3. The time at which this occurs can be approximated

by (5.5). (
µ

|λ3|

)tl
≥ 10 (5.5)

In IEEE 118-bus system case, tl ≥ 4821. Considering µ = 0.10471, a cascade stops in several

generations, so we never see long cascades.

Comparing to the BPA case, the top three eigenvalues are λ1 = 1, λ2 = µ = 0.502, λ3 = 0.381.

Using the same criteria as in (5.5), after tl = 9 generations, the conditional distribution converges

to the quasi-stationary distribution.

The left eigenvector v′2 corresponding to the dominant eigenvalue µ of Q is the asymptotic

probability distribution that lines involved in large cascades. We take the top ten lines as critical

lines. In the IEEE 118-bus system, they are:

critical lines: 101, 46, 102, 100, 10, 72, 121, 124, 45, 142

5.1.3.3 Upgrading critical lines in simulation and influence graph

Cascading outage risk is mitigated by upgrading critical lines. The simulation models the

upgrading by reducing the probability that an overloaded line outages, which is called the

triggering probability. This will affect the transition probabilities to the states that include

critical lines. An example is used to discuss the relationship between triggering probabilities in

OPA and transition probabilities in IG.
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Suppose a state s1 contains multiple line outages and a stop state ∅ represents the cascade

stopping. We want to figure out the transition probability from s1 to other states s2 = {j} and

s3 = {j, k}, which represent line j outaged and line j, k outaged in the same generation,

respectively. We can represent this transition by the diagram in Figure 5.2. Whatever s1 is, we

can define a overload probability poverload and an outage probability poutage. poverload is the

probability that lines overload in a generation given another state in previous generation; poutage

is the probability that lines outage given these lines overloaded. Then, the transition probability

is the product of the overload probability and the outage probability. In Figure 5.2,

ps1,j = poverload,j × poutage,j ; assuming outage probabilities are independent for different lines, then

ps1,jk = poverload,jk × poutage,j × poutage,k.

In OPA simulation, modeling is represented by reducing the outage probability. Suppose j is

a critical line, and k is not. Consider an extreme case, in which poutage,j is reduced to 0. Then

s1 → j becomes s1 → ∅, and s1 → {j, k} becomes s1 → {k}.

s1 j j
poverload,j poutage,j

ps1,j

s1 j,k

k

poverload,jk

poutage,j

ps1,jk

j

poutage,k

s1 js1 j

s1 j,ks1 j,k

s1 ∅ s1 ∅ 

s1 ∅ s1 ∅ 

s1 ∅ s1 ∅ 

s1s1 k

before mitigation after mitigation

Figure 5.2: A simple diagram that illustrates the relation between triggering probabilities in OPA
and transition probabilities in IG (the IEEE 118-bus system case).

Therefore, the relation between triggering probabilities poutage in OPA and transition

probabilities in IG is that reducing the triggering probability will reduce the transition probability

to states including critical lines. The reduction of the probability to states only including critical
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lines is equivalent to the increase of the transition probability to the stop state, while the

reduction of the probability to states including critical lines and other lines is equivalent to the

increase of the transition probability to states only including other lines.

The above discussion shows the general changing trend of transition probabilities when

transmission lines are upgraded. However, it is still too complicated to quantify the change of each

specific transition probability. This study uses a simple method by comparing overall changes of

transition probabilities to critical lines before and after upgrading critical lines in simulation.

We first define the average aggregated transition probability to critical states γ. Critical

states are those states in the influence graph that contain any critical lines. Then,

γ =

∑n
i=2

∑n
j∈critical statesP1+[i, j]

n− 1
(5.6)

where n is the number of states. As discussed in Chapter 3, two matrices, corresponding to the

initial generation and dependent generations, respectively, are the foundation for constructing the

transition matrices. Therefore, we inspect the reduction of transition probabilities in these two

matrices. It turns out that the average aggregated transition probability to critical states is 0.24

before mitigation and 0.05 after mitigation, which is decreased by 78% for the first matrix; while

there is no reduction for the second matrix.

Then, the study updates the transition matrices of the influence graph to represent the

mitigation according to the aforementioned relation. Specifically, this study decreases the

transition probabilities to critical lines by 78% in the matrix corresponding to the initial

generation and adjusts the stopping probabilities and other non-stopping probabilities accordingly

to make the matrix still a transition matrix.

Finally, we compare the computed cascade size distribution with the simulation result with

the same initial outages as shown in Figure 5.1.

5.1.3.4 Mitigation effect

This study evaluates the mitigation effect by the reduction in cascade sizes after mitigation.

Cascade sizes are measured by number of generations, number of line outages, and load shed.
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Number of generations is a simple and mathematically convenient measurement. Number of line

outages is a straightforward measurement. And load shed is a directly related to the cascading

impact to customers. Figure 5.1 and 5.3 show the mitigation effect in three measurements.

The probability of large cascades in terms of number of line outages is decreased, and the

number of cascade with more than one generation is reduced by 50%. . However, the probability

of large cascades in terms of number of generations are increased, and there is almost no

mitigation effect in terms of load shed. That the mitigation is not achieved in terms of number of

generations and load shed is a result of the modeling of upgrading. Specifically, the upgrading is

modeled by reducing the triggering probability, however, it cannot alleviate the stress of the

overloaded system. For example, a generation has three line outages {46, 102, 154} in a

simulation. If lines 46 and 154 are upgraded by using a reduced triggering probability, in the new

simulation, lines 46 and 154 do not outage in that generation. However, this cascade does not

stop because the system condition is still stressful and line 46 is selected to be disconnected due

to overloading in a subsequent generation.

However, it does not mean there is no mitigation. In terms of line outages, the probabilities of

large and medium cascades are both reduced. And this mitigation also reduced the probability

that initial outages propagate further.

before
after

small(1-3) medium(4-6) large(>6)

10-4

0.001

0.010

0.100

1

Cascade size (in number of line outages)

P
ro
ba
bi
lit
y

(a) Cascade size measured in line outages.
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(b) Cascade size measured in fraction of load shed
(load shed / total demand).

Figure 5.3: Comparing empirical cascade size distribution before and after mitigation with the
same initial outages in simulation (IEEE 118-bus system case).
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5.1.4 Polish 2383-bus system

5.1.4.1 Statistics of simulated cascades

The Polish system has 2383 buses and 2896 lines. The simulated data has 7,692 cascades and

525,041 outages. 632 lines have outaged at least once. The largest cascade has 149 generations.

The smallest cascade has 19 generations. The simulated data have single line outages as

dependent outages and simultaneous outages as initial outages, in which the proportion of

different sets of simultaneous outages is 50%.

5.1.4.2 Influence graph identifies critical lines

This section forms the influence graph based on the simulated cascade data. The influence

graph can capture the distribution of cascade size distribution, as shown in 5.4. As we did in

IEEE 118-bus system case, we group the cascades into small, medium and large cascades.
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Figure 5.4: Comparing probabilities of small, medium and large cascades from simulation and the
influence graph before and after mitigation (Polish 2383-bus system case).

Then, we analyze the eigenvalues and eigenvectors of matrix Q to identify the critical lines.

The largest and the second largest eigenvalues of submatrix Q are 0.983 and 0.809, respectively.
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There is a gap between the two eigenvalues, so the left eigenvector corresponding to the dominant

eigenvalue is the asymptotic probability distribution that lines involved in large cascades. We

take the top ten lines as critical lines. They are:

critical lines: 169, 2309, 1833, 617, 543, 168, 476, 455, 24, 2109

The Polish 2383-bus system case has tl ≥ 12 by formula 5.5. Therefore, simulated cascades

are long cascades. This result is consistent with the purpose of the cascading model, as the

Random Chemistry algorithm generates initial outages that lead to long cascades [84].

5.1.4.3 Upgrading critical lines in simulation and influence graph

Cascading outage risk is mitigated by upgrading critical lines. The simulation models the

upgrading by doubling the line flow limits and rerunning with the same initial outages. This will

reduce the transition probabilities to the states that include critical lines. When a line flow limit

is increased, this line is less likely to overload. In some cases, this line outaged simultaneously

with other lines before upgrading; while after upgrading, this line may not outage due to

overloading. Thus, the transition probability to states including this line becomes smaller. This

modeling of upgrading is different from that in the IEEE 118-bus system case: the Polish

2383-bus system system case reduces the probability that a line overloads, while the IEEE

118-bus system case does not reduce the probability of overloading but the probability that an

overloaded line outages. It turns out that the average aggregated transition probability to critical

states γ is decreased by 0.9% for the first matrix and 23% for the second matrix.

As in IEEE 118-bus system case, we decrease the transition probabilities to critical lines by

0.9% in the matrix corresponding to the initial generation and 23% for the second matrix, and

adjust the stopping probabilities and other non-stopping probabilities accordingly to make the

two matrices still transition matrices. Finally, we compare the computed cascade size distribution

to the simulation result with the same initial outages as shown in Figure 5.4.
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5.1.4.4 Mitigation effects

The mitigation effect is tested by simulation. Figure 5.4 shows the cascade size distribution

before and after mitigation in terms of number of generations, and Figure 5.5 shows the

mitigation effect in terms of the other two measurements.
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(a) Cascade size measured in line outages.
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(b) Cascade size measured in fraction of load shed
(load shed / total demand).

Figure 5.5: Comparing empirical cascade size distribution before and after mitigation with the
same initial outages in simulation (Polish 2383-bus system case).

The probabilities of the middle and large cascades are both reduced. The criteria of grouping

cascades into three categories in terms of number of generations and number of line outages are

the same because most of the dependent outages are single-line outages.

5.1.5 WECC 1553-bus system

The WECC 1553-bus system has 1553 buses and 2114 lines. The simulated data has 29,365

cascades and 44,877 outages. The largest cascade has 15 generations. The smallest cascade has 1

generation.

Figure 5.6 shows that the influence graph can reproduce the statistics of the cascading model.

The influence graph indicates that the mitigation effect is small. Specifically, if we reduce the

transition probabilities to critical lines, which is identified by the quasi-stationary distribution of

the Markovian influence graph, the probability of large cascades is slightly decreased. This can be

explained by the probability that a line involves in large cascades, which is the value of the
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Figure 5.6: Survival functions of the number of generations from real data and from the Markov
chain (WECC 1553-bus case).

quasi-stationary distribution of the Markovian influence graph. The probabilities for critical lines

quantifies the criticality of these lines and determines the amount of mitigation. Figure 5.7 shows

quasi-stationary distributions for two systems: the WECC 1553-bus system and the BPA system.

The Markovian influence graph for the BPA system is formed from 14 years of historical outage

data in Chapter 3. The BPA system is contained within WECC, but the netowrk models have

some differences where they overlap, and the largest cascades for WECC will differ from the

largest cascades restricted to BPA. Moreover, OPA computes the complex system “steady state”

cascading after network evolution whereas the BPA system describes cascading over a historical

period. The probabilities for BPA system have a wider range than WECC 1553-bus system. This

shows that lines in WECC 1553-bus system are more similar in terms of cascading criticality to

the system than in BPA system. Moreover, large probabilities in BPA system are much greater

than that in WECC 1553-bus system, which shows that critical lines in WECC 1553-bus system

is less critical to WECC system than critical lines in BPA system to their own system. The

difference is due to the characteristic of the closed-loop OPA model for WECC 1553-bus system.
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The closed-loop OPA involves a slow timescale describing the evolution of the grid, especially

lines are upgraded after their failure. Therefore, lines in closed-loop OPA model tends to be

similar in cascading criticality to the system.
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Figure 5.7: Quasi-stationary distributions for WECC 1553-bus system and BPA system.

5.1.6 Conclusion and discussion

This section tests the influence graph on three different cascade simulations. The simulations

use different cascade models on three power systems. The results confirm that the Markovian

influence graph reproduces the probabilities of small, medium, and large cascades. Moreover, the

simple modeling method of upgrading in influence graph captures the mitigation effect in

simulations. The upgrading in simulations includes reducing the overloaded line triggering

probability and increasing line flow limit. Both of them have complex effect on propagation of

cascading outages. The influence graph represents the upgrading by adjusting transition

probabilities to upgraded lines. This simple method models the mitigation effect on the

probability of different size cascades.

However, the mitigation effect is dependent on the modeling of cascades and the measurement

of cascade sizes. The closed-loop OPA continuously increases line flow limits involved in previous
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cascades, hence, the influence graph indicates that only a small mitigation amount can be

achieved by upgrading critical lines.

Open-loop ACOPA simulating the IEEE 118-bus system models the upgrading by decreasing

the triggering probability, which mimics blocking a zone 2 or zone 3 relay. The probability of

large cascade size measured in number of generations becomes larger than before after mitigation.

The reason is complicated. First, cascades with 5 or more generations are rare (less than 0.5% of

total cascades). Second, close inspection of each cascade shows that the upgrading does not

mitigate the power system stress in some cascades but makes multiple simultaneous outages

become a sequence of single outages, which increases the number of generations of these cascades

but actually does not make the situation severe. However, the overall mitigation is effective, and

it is more obvious when the cascade size is measured in number of line outages.

The mitigation effect is more obvious when the cascade size is measured in number of line

outages. However, the cascading failure simulator on the Polish 2383-bus system simulates long

cascades; the mitigation effect is shown in medium and large cascades, and the load shed of large

cascades is reduced most.
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Figure 5.8: Flowchart of cascading failure simulator used in Polish 2383-bus system case.
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to the open-loop OPA model.
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5.2 Testing the assumption of the influence graph

A big assumption of the Markovian influence graph is that current line outages depend only

on preceding line outages. Although all line outages determine the state of the power system, the

history before the preceding line outage is lost in the influence graph. This chapter tests this

assumption by comparing the influence graph with the kinetic monte carlo (KMC) cascading

simulation proposed by Argonne National Lab [90], which is also a Markov chain but depends on

all line outages before current line outages. The KMC simulation runs on the IEEE 118-bus

system in this chapter and was prepared by Mihai Anitescu, Albert Lam, and Jake Roth at

Argonne National Lab.

5.2.1 Overview of DAG generated by KMC

The KMC model describes line failure rates and organizes them into a directed acyclic graph

(DAG). DAG enumerates all possible failure paths between the fully operational network

topology (where no lines have failed) and the fully-degraded network topology (where all lines

have failed). Each node of the DAG is a set of outaged lines, and the edge connects two nodes in

which the end node has one and only one more line outage than the starting node. An example of

the DAG is shown in Figure 5.10. Each edge is weighted with the transition rate from the starting

node to the end node, which is also the failure rate of the new line in the end node given the

starting node. In principle, the DAG enumerates all possible line outages combinations. That is,

there are 2n nodes in the DAG for a n-line system.

5.2.2 The relationship between DAG and the influence graph

The influence graph takes single line outages in one generation as nodes and the conditional

probabilities of the end node given the starting node as edges. It defines a rigorous Markov chain

and has nice properties. We can use the influence graph to compute the distribution of small,

medium, and large cascades, with cascade size measured in terms of number of generations or

number of lines. Moreover, a quasi-stationary distribution of the influence graph can identify the
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Figure 5.10: DAG of a four-line system. The light blue box is the outaged line in the current
generation. Stop nodes represent the cascade stopping at the current state.

lines most critical in propagating long cascades. The influence graph can then evaluate the effect

of upgrading these critical lines on the distribution of cascade size [39].

Figure 5.10 illustrates the relationship between the edges in DAG and the vertices in the

influence graph using a 4-line system. The DAG is organized hierarchically. Ellipses are vertices,

and there are 24 = 16 vertices plus 1 stop vertex 1. Layer Λ−1 represents the initial state of the

system. Layer Λ0 contains initial outages, which are single line outages. Layer Λ1 contains cases

when two lines have outaged. Layer Λ2 contains cases when three lines have outages. And Layer

Λ3 presents the case when the whole system is done. The layers are joined by edges. An edge

1Figure 5.10 shows three stop vertices just in order to plot a clear graph. Otherwise, every vertex connects to the
stop vertex, which causes many edges and vertices to overlap.
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between two vertices represents the failure rate of the new outaged line in head vertex given the

line outages in tail vertex. For example, the edge from vertex {1} to vertex {1, 2} represents the

failure rate of line 2 given that line 1 has outaged. Dashed edges indicate the stop rates; that is,

the rate at which cascades stop at given vertices.

There is a correspondence between edges of DAG and vertices of the influence graph. Vertices

of the influence graph are light blue boxes in Figure 5.10. A light blue vertex is the new outaged

line in the head ellipse given the tail ellipse. It also corresponds to the failure rate of that new

outaged line given the tail vertex in DAG. According to edges connected to layer Λ0 (including

edges from Λ−1 to Λ0 and from Λ0 to Λ1), we can derive the transition matrix from generation 0

to generation 1. The failure probability that is product of failure rate and time of DAG is

equivalent the transition probability from generation 0 to generation 1 in the influence graph. It

is complicated for transition matrix from generation 1 to generation 2 of the influence graph

because failure probabilities are conditioned on two line outages and they are from two paths. For

example, edge from vertex {1, 3} to {1, 2, 3} indicates the new outaged line is line 2, but there are

two possibilities, which are line 1 outaged in previous step or line 2 outaged in previous step. If

we want to find the transition probability from line 1 to line 2, we must distribute the probability

of from vertex {1, 3} to {1, 2, 3} to the path that line 1 outaged in previous step. It is even more

complicated for transition matrix from generation 2 to generation 3. A rigorous derivation is

shown in Section 5.2.3.

The DAG defines a Markov chain between all the possible states 2n of the power grid with n

lines. While it might be feasible to somehow eliminate the most unlikely of these states, it would

seem that there would remain many likely states to be considered, and this is unwieldy for power

systems of practical size for cascading analysis (n of order hundreds or more).2 This problem of

the scaling of the number of states is probably the most important motivation for translating the

DAG to an influence graph, which has n+ 1 states (the n lines together with the empty set

2Note that small systems cannot accommodate more than a few generations of outages without hitting the edge of
the system. If the small system is actually part of a larger interconnection, this means that the edge effects dominate
and the cascading effects across the interconnection (which are the cascades of highest risk) cannot be addressed in
the small system.
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indicating stopping). The DAG states (nodes) record all the lines that have previously outaged,

whereas the influence graph states record only the last outaged line.

5.2.3 Method of translating DAG into an influence graph

The weight of an edge in DAG is the probability that a line fails given all the outaged lines

that have outaged. The weight of an edge in the influence graph is the probability that a line fails

given the line that outaged in the current generation.3

Lines are numbered 1,2,3,... and the generations are indexed 0,1,2,... Write 12 for the event

lines {1, 2} outaged in generation 1. Write 12→ 123 for {1, 2} in generation 1 transitioning to

{1, 2, 3} in generation 2. This type of transition is in DAG.

Write 11 → 22 for the outage of line 1 in the transition to generation 1 transitioning to the

outage of line 2 in generation 2. This type of transition is in the influence graph from generation

1 to generation 2.

Given a state xy with x, y 6= 2, the probability of it having 2 in the next transition is

P [xy → xy2]. Given a state x1 the probability of it having 1 in the preceding transition is

P [x]P [x→1]
P [1]P [1→x]+P [x]P [x→1] . These two transitions are independent by assumption. So given a specific

state x1 with x 6= 2, the probability of it having 1 in the preceding transition and 2 in the next

transition is

P [11 → 22|via x1] =
P [x]P [x→ 1]

P [1]P [1→ x] + P [x]P [x→ 1]
P [x1→ x12] (5.7)

and since the passages through the various x1 are disjoint:

P [11 → 22] =
∑
x 6=1

P [x]P [x→ 1]

P [1]P [1→ x] + P [x]P [x→ 1]
P [x1→ x12] (5.8)

More generally, we want to calculate the probability of line i in the preceding transition and

line j in the following transition when we are in generation k. First suppose this happens via

state xi = x1x2...xki. Given the state xi = x1x2...xki with j /∈ x , the probability of

3As DAG only considers single-line outages, the states in the influence graph are all single-line outages.



70

xi = x1x2...xki having i in the preceding transition is

P [x]P [x→ xi]∑k+1
r=1 P [(xi)(−r)]P [(xi)(−r) → xi]

(5.9)

where (y1, y2, ..., yk+1)(−r) = (y1, y2, ..., yr−1, yr+1, yr+2, ..., yk+1, ); that is, (−r) removes the rth

element. The probability of xi = x1x2...xki with j /∈ x having i in the preceding transition and j

in the following transition is

P [x]P [x→ xi]∑k+1
r=1 P [(xi)(−r)]P [(xi)(−r) → xi]

P [xi→ xij] (5.10)

Then the probability of generation k having i in the preceding transition and j in the following

transition is

P [ik−1 → jk] =
∑
x;i,j /∈x

P [x]P [x→ xi]∑k+1
r=1 P [(xi)(−r)]P [(xi)(−r) → xi]

P [xi→ xij] (5.11)

First, the absolute probabilities P [x] can be computed recursively using

P [x] =
∑
r∈x

P [x(−r)]P [x(−r) → x] (5.12)

The transition probabilities for the first generation in the influence graph are the same as the

failure probabilities for the first generation in DAG. So we go through the DAG and apply (5.11)

to compute the transition probabilities for the influence graph.

DAG models the failure time for a line as an exponential distribution. The failure probability

in DAG is the cumulative density function (CDF). We need to assign the simulation time interval

to calculate the failure probability from the exponential distribution of the failure time. The

longer the simulation time interval, the larger the failure probability. As the simulation time

interval is assigned freely, the corresponding transition probability in the influence graph varies.

Thus, the row sum in the transition matrix in the influence graph is not always one. Therefore,

we assume that (1) each line outage possibly propagates to any other line outage with a small

probability; (2) a cascade either propagates further or stops at a generation. Thus we adjust the

transition matrix of the influence graph by (1) adding a small number to all the transition

probabilities; and (2) adjusting the stopping probabilities to make the total of each row be one.
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5.2.4 Case study

We use the method in Section 5.2.3 to translate DAG into an influence graph and verify the

influence graph by comparing the cascade size distribution computed from the influence graph

with the distribution of cascade size generated by DAG. The IEEE 118-bus system is used as a

test system.

5.2.4.1 An overview of 118-bus system

The IEEE 118-bus system represents a portion of the power system in Midwestern of U.S. as

of December 1962. This test model contains 186 branches (177 lines and 9 transformers), 19

generators, 35 synchronous condensers. Figure 5.11 shows the single line diagram of IEEE

118-bus system.

Figure 5.11: Single line diagram of the IEEE 118-bus system
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5.2.4.2 DAG and cascade data

A full DAG of the IEEE 118-bus system has 2186 vertices theoretically, which is practically

impossible to be formed. Therefore, fifty cascading sequences are simulated to prune the full

DAG. Cascading sequences are divided into cascades according to the timing of outages. The

outage time difference in a cascade is less than 1 hour. In other words, if the time difference

between two outages are greater than 1 hour, these two outages belong to different cascades.

Based on this principle, 50 sequences are divided into 109 cascades. They have a distribution of

cascade size in terms of number of line outages shown in Table 5.2.

Table 5.2: Cascade sizes of cascade data

size 3 4 5 6 7 8 9 10 11 12 13

count 95 4 2 1 1 3 1 0 0 1 0

size 14 15 16 17 18 19 20 21 22 23 24

count 0 0 0 0 0 0 0 0 0 1 0

The initial outages are two-line outages. They are sampled according to the distance

distribution between lines in multiple-line outages. Specifically, the first line is drawn randomly

from all lines; then, a distance d is sampled according to the distance distribution; finally, a

second line is drawn randomly from all lines that are distance d from the first line.

This DAG has 20,395 vertices and 40,759 edges. 152 out of 186 lines have outaged at least

once. Let the top layer of DAG be layer 0, the second layer be layer 1, etc. Initial outages are

2-line outages, so that layer 0 are vertices with two line outages. If there are mk vertices in layer

k and mk+1 vertices in layer k + 1, then theoretically there are mkmk+1 edges between layer k

and layer k + 1.

5.2.4.3 Translate DAG into an influence graph

The influence graph is denoted by IG(π0, P0, P1, P2, ...), where π0 is the state distribution for

initial outages, P0 is the matrix for transition from generation 0 to generation 1, and Pi is the

transition matrix from generation k to k + 1. Figure 5.13(b) illustrate the influence graph
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structure. P0 has a special structure because initial outages are two-line outages and dependent

outages are single-line outages. P0 has dimension s0 × nline+1 (there are nline lines and one stop

state). Pk(k > 0) is derived based on P+, which is the average of the transition matrices P̂k

derived directly from layer k to layer k + 1 by method in Section 5.2.3. The reason that P̂ks are

lumped together is that they are sparse. The rest of this section describes the detail of forming

the influence graph.

Layer 0 in DAG includes size-2 vertices, and layer 1 is a set of size-3 vertices. We assume

vertices in layer 0 are uniformly distributed. That is, the probability of any vertex in layer 0 is

1/s0, where s0 = 49 is the number of vertices in layer 0. We form a transition matrix P0 from

layer 0 to layer 1, which is a s0 by nline+1 matrix. 1 is the number of the stop state.

P0[i, j](j > 1) is the transition probability that line j + 1 (j = 1 is the stop state) is outaged given

2 lines outaged that are represented by i-th vertex in layer 0.

We form a transition matrix P̂k from layer k to layer k + 1 (k > 0). P̂k is an n by n matrix.

n = nline + 1, in which 1 corresponds to the stop state. Pk[1, 1] = 1 because if a cascade stops, it

stays in stop state. Pk[i, 1](i > 1) is the transition probability that a cascade stops given line i− 1

outaged in previous generation. Pk[i, j](i, j > 1) is the transition probability that line j − 1

outaged given line i− 1 outaged in previous generation. P̂k is a sparse matrix. If a row in P̂k are

all zeros, it means we do not observe the corresponding state transitioning to other states. At

least 110 states out of 187 do not have interactions with other states from layer 0 to layer 12.

That is why we lump P̂k together and form P+ . That is

P+ =
1

12

12∑
k=1

P̂k (5.13)

Besides layer 0 to layer 12, there are layer 19 to layer 25. We do not consider layer 19 to layer 25

because there is only one cascade that has 23 line outages.

Introducing P+ can mitigate this problem to some extent, but P+ still has 108 rows that are

all zeros. Therefore, it is necessary to adjust the stopping probability (first column of P+). This

adjustment is done by assuming stopping counts follow binomial distribution with Beta prior. For

the details, refer to Section VI-A of [39].
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We cannot use P+ because it implies a constant propagation rate. However, the propagation

rate is increasing as the cascade propagates. The average propagation ρk for generation k is

estimated from the data using

ρ̂k =
Number of cascades with > k + 1 generations

Number of cascades with > k generations

=
πk+1(1− e0)

πk(1− e0)
(5.14)

where πk is the state distribution for generation k, 1 is a column vector whose all elements are 1,

and e0 is a column vector with the first element 1 and the rest element 0. An important feature of

the cascading data is that average propagation ρk increases with generation k as shown in

Table 5.3. There are only several cascades with 5 or more generations, which makes the

Table 5.3: Propagations of generations k = 1 to 5

k 1 2 3 4 5

ρ̂k 0.11 0.67 0.75 0.83 0.80

estimation of ρ̂ less unreliable for 5 or more generations. So we use the ρ̂5 as an estimation for

k > 5, and we write ρ̂5+.

P+ is adjusted according to ρ̂ by a matrix Ak that has structure as in (5.15). Specifically,

P1 = P+A1, P2 = P+A2, P3 = P+A3 , P4 = P+A4, P5+ = P+A5. Values of Ak are determined by

solving (5.16). πk is the state distribution for generation k, which is πk = πk−1Pk−1. We obtain

πk and Pk in an alternating fashion. That is, we obtain them in order of π1, P1, π2, P2, ....

Ak =



1 0 ... 0

ak 1− ak ... 0

...
. . .

ak 0 ... 1− ak


(5.15)

ρ̂k =
πkP+Ak(1− e0)

πk(1− e0)
= (1− ak)

1− πkP+e0

1− πke0
(5.16)
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5.2.4.4 Comparison of DAG and the influence graph

The DAG describes the probability that a line outages given all previous outaged lines, while

the influence graph describes the probability that a line outages given outaged lines in previous

generation by assuming the Markov property. Figure 5.13 shows an illustration of the two graph

models. DAG has 20395 states in all layers, while the influence graph only has 236 = 49 + 187

states. As more cascades are explored, DAG may include more states, while the influence graph

does not add new states but estimation of transition probabilities is more reliable.

The influence graph is used to compute the cascade size distribution in terms of generations.

Let S(k) be the probability that a cascade has more than k generations, which is the survival

function of number of generations. Then, S(k) = 1− πk[0] because πk[0] is the probability that a

cascade propagates to the next generation. More generally,

S(k) = 1− πk[0] = πk(1− e0)

= π0P0P1...Pk−2Pk−1(1− e0), (5.17)

For this specific influence graph, the number of line outages equals to the number of generations

plus one because only initial outages are two-line outages and all the subsequent generations are

one-line outages.

The DAG is associated with a data set of cascades. To verify that the influence graph

produces the same statistics of cascades, we compare the cascade size distribution estimated from

cascade data and computed based on the influence graph. Figure 5.12 shows the survival function

of the cascade size. S(1) = S(2) = 1, where S is the cascade size because all cascades have at

least 2 line outages. It also shows that the cascade size distribution computed from the influence

graph matches the empirical cascade size distribution estimated from cascade data. However, this

result may have a high variance. That is because cascade data as shown in Table 5.2 are limited,

and the transition matrix of the influence graph is sparse.
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Figure 5.12: The distribution of cascade size calculated using the influence graph (red cross) and
estimated from cascade data associated with DAG (gray circle).

5.2.5 Conclusion

The influence graph assumes line outages only depend on the preceding line outage. To test

this assumption, this chapter compares the influence graph with the DAG, which is also a Markov

chain but considers all failed line outages. We make the test on the IEEE 118-bus system and the

influence graph produces the same statistics as cascade data associated with DAG.

An advantage of the influence graph is that the size of the influence graph is fixed, while the

size of DAG is increasing as more cascades are simulated. The number of states of the influence

graph is the number of transmission lines in the system. The DAG would have more vertices and

edges as more cascades are simulated, as failure rate of a line is conditional on all previously

outaged lines. The DAG has much more detailed and numerous Markov states, but the cost is

that the size of DAG is huge.
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Figure 5.13: An illustration of DAG without stop state (a) and influence graph (b). In (a) , the
number in parentheses is the number of vertices in this layer, a star represents a line outage, a solid
line is a group of edges, and a dashed line is an edge from layer 9 to layer 19. In (b), 49 * 187 is
the dimension of P0.
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CHAPTER 6. BAYESIAN ESTIMATES OF TRANSMISSION LINE

OUTAGE RATES

Transmission line outage rates are foundation for many reliability calculations. However, line

outages are infrequent, so outage data is limited. This chapter proposes a Bayesian hierarchical

model that leverages line dependencies to better estimate outage rates of individual transmission

lines. The Bayesian hierarchical model produces more accurate estimates of individual line outage

rates and the uncertainty of these estimates.

This chapter’s work is done in collaboration with L. Wehenkel, University of Liège, Belgium,

J. R. Cruise, Riverlane Research, UK, C. J. Dent and A. Wilson, University of Edinburgh,

Scotland. L. Wehenkel and J. R. Cruise particularly helped with the formulation of the problem.

The material in this chapter is published in [91].

6.1 Introduction

Transmission lines are partially similar in several ways, such as their length, rating,

geographical location, and their proximity. We leverage these partial similarities with a Bayesian

hierarchical model to improve the estimation of line outage rates from historical data.

The conventional method of estimating annual line outage rates divides the number of outages

by the number of years of data. However, these estimates have a high variance when the data are

insufficient. Indeed, many lines either do not fail or only fail once in a year.

One pragmatic approach to mitigate the problem of limited outage counts is to group or pool

similar lines together to get an estimate for the outage rate of that group. The lines can be

grouped by areas [48,51,54], or by line voltage ratings. Lines in the same area experience similar

weather conditions, and lines of the same rating have similar construction. However, the
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similarity between lines in these groups is only partial, variations of outage rates within the

groups can be neglected, and it is unwieldy to group lines according to multiple characteristics.

Transmission line outage rates are often supposed to be proportional to line length, and they

are often quoted as rates per unit length [49,50]. However, a line’s outage rate is not strictly

proportional to the line length because of substation and other effects, making the dependence on

line length only a partial dependence. Indeed, our historical line outage data show only a limited

dependence on line length.

There is a middle ground between pooling lines in groups assuming perfect line dependencies

within the group, and completely neglecting dependencies between lines by computing individual

line outage rates in isolation. To exploit the partial dependencies of transmission line outage

rates, this chapter proposes a Bayesian hierarchical model to estimate outage rates of individual

transmission lines. In particular, our method can leverage the multiple partial dependencies in

line length, rating, network proximity, and geographical area to give better outage rates of

individual lines. This is done by explicitly modeling the dependence of outage rates on line length

and rating and by using covariance kernels to model the dependencies between lines in close

proximity. Our method can, therefore, learn about the outage rates of individual lines from lines

close-by and with similar lengths and ratings. This means that where there is little data

associated with a line (because the outage rate is small), our method can still estimate an outage

rate for that line and its uncertainty. Also, by borrowing information from other lines, we can

expect smaller uncertainties associated with estimates of outage rates, without assuming that all

lines within a group have the same outage rate (as would be the case if we pooled the data).

6.2 Exploring historical outage data and modeling line dependencies

Utilities routinely collect detailed outage data. For example, NERC’s Transmission

Availability Data System (TADS) collects outage data from North American utilities. Here, to

illustrate our method, we use a publicly available historical line outage data [7].
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Table 6.1: Annual Outage Counts, Line attributes, and Bayesian estimates of outage rates after
1st, 7th and 14th years for 4 lines

Line Outage counts in different years Line attributes Annual outage rate

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Voltage(kV)Length(mile)District 1st after 7th after 14th

29 0 0 0 0 0 0 0 0 3 2 0 0 0 0 230 8.3 P 0.32 0.17 0.37

11 0 0 1 0 0 1 0 0 1 0 0 0 0 1 500 22.65 N 0.36 0.33 0.34

2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 230 7.62 A 0.73 0.48 0.28

8 1 2 4 2 1 2 2 2 2 1 3 8 6 2 500 148.86 E 0.93 1.85 2.56

6.2.1 Historical outage data

The historical line outage data we use consists of transmission line outages recorded by a

North American utility [7] for 14 years since 1999. The data record forced and scheduled line

outages, including the sending and receiving bus names of outaged lines, outage start and end

times and dates, line attributes such as lengths, voltage ratings, districts in which a line is, and

outage causes. Some lines cross several districts. There are 549 lines outaged in the data with

rated voltages of 69, 115, 230, 287, 345, and 500 kV.

We neglect the scheduled outages and only consider the forced line outages. We also exclude

two 1000 kV HVDC lines, and momentary outages (outage duration does not exceed one minute).

There are lines that failed once or twice in most of years but suddenly failed, for example, ten

times in one year. One common reason that a line could fail several times in a day is outages and

reclosures for the same cause. So if a line fails several times in a day, we only count it once. Table

6.1 shows an example of the outage data.

6.2.2 Data exploration

We initially explore the line outage data using the conventional method of estimating annual

line outage rates by dividing the number of outages by the number of years. We first pool all the

line data together (i.e. treat as one homogeneous data set) to calculate the overall mean and

standard deviation of outage rates, which are 0.6 and 0.7 outages per year, respectively. Next, we
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examine the individual conventional line outage rates. The mean variance-to-mean ratio of outage

counts for each line is 1.2, which indicates that the outage counts show some overdispersion1.

The power system network can be deduced directly from the outage data using the method

in [1], and we show the conventional outage rates on the network in Figure 6.1 to visualize the

spatial correlation. Close lines tend to have close colors, which indicates line dependencies from

network proximity.

0 1
outages per year

Figure 6.1: The number of average annual forced outages over 14 years on network indicated by
different colors (network layout is not geographic).

1Overdispersion means that the variance is larger than the mean. The Poisson distribution commonly used for
count data does not apply when there is overdispersion because the Poisson mean and variance are equal.
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6.2.3 Scaling line lengths and voltage ratings

The line lengths and voltage ratings are transformed and scaled so that their magnitudes and

variations are scale-free and comparable. We do this in ways suggested by Gelman [92] for generic

priors.

The line lengths in the vector L are first transformed by the natural logarithm to make the

range of values less extreme, and then divided by the scale so that their variations are order of

magnitude one:

xL =
lnL

scale(lnL)
(6.1)

Here the scale of the sample in a vector z is estimated by the Mean Absolute Deviation, which is

scale(z) = median(z −median(z)). Note that we use bold variables for vectors, and functions

such as ln are applied element-wise so that lnL = [lnL1, ..., lnLN ]′.

Similarly, the line voltage ratings V are first scaled by SD(V ), the standard deviation of V ,

and then divided by the scale:

xV =
V /SD(V )

scale(V /SD(V ))
(6.2)

It is usually considered that the line length and voltage rating have a positive correlation.

Indeed, the BPA data show this correlation, but it is a weak correlation: the Pearson correlation

coefficient is 0.34 (0.12 for transformed lengths and voltage ratings).

6.2.4 Line proximity

The proximity of lines is quantified by the weighted sum of two kernels, which reflect two

aspects of proximity. The first kernel is based on districts. Lines in the same district are more

likely to experience the same weather conditions. Another kernel is based on network distance in

terms of line length, which, to some extent, reflects both geographic proximity and the physical

and engineering interactions in the power grid. We fit a linear regression model with correlated

lines (described below) to support the form of the Bayesian hierarchical model and give guidance

on setting priors.
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6.2.4.1 Districts

There are twelve districts (Figure 6.2). The mean number of automatic outages per line per

year in each district are shown in Table 6.2. Lines with two or more districts are excluded from

this computation. The difference in rates makes it plausible that district information can inform

the rates.

Table 6.2: The mean number of automatic outages per line per year in each district

COV EUG KAL LGV OLY RED SAL SNO SPK TDA TRI WEN

3.84 8.33 18.81 7.05 9.08 12.96 10.11 5.55 7.65 12.89 6.82 9.22

Figure 6.2: BPA districts
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The districts for each line are represented by a feature vector φdis ∈ {0, 1}12 whose

coordinates correspond to the districts and are set to 1 for the district crossed by that line, and to

0 otherwise. The scalar product in this feature space thus counts the number of common districts

crossed by two lines.

We define the district kernel as:

Σ1 = exp
(
−||φdis(i)− φdis(j)||22 − Ii 6=j

)
(6.3)

where || · ||2 stands for the two-norm2, and Ii 6=j is the indicator function. The reason why Ii 6=j is

included is that a line is most similar to itself. The kernel Σ1 has the form of a correlation matrix

since it is positive definite.

6.2.4.2 Network distance

The network distance between lines Li and Lj along the network lines is defined as

dij = d(Li, Lj) =minimum length in miles of a network path

joining midpoint of Li to midpoint of Lj .

For example, the distance of a line to itself is zero and the distance of a line to a neighboring line

with at least one bus in common is half of the total length of the two lines.

Then we use the exponential kernel Σ2 which is

Σ2 = exp[−2d(Li, Lj)] (6.4)

As d(Li, Li) = 0, the diagonal elements of Σ2 are one.

6.2.4.3 Combining the two kernels

The network proximity matrix Σ is the weighted sum of above two kernels:

Σ = wΣ1 + (1− w)Σ2, (6.5)

2Since the vectors only have entries 0 or ±1, the one-norm is the same as the two-norm in this context.
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where 0 < w < 1. For example, if the two kernels are equally important, then w = 0.5.

We find the weight by fitting a linear regression model for the logarithm of average outage

counts with β0 following a multivariate normal distribution to model the correlation:

ln
N

t
= β0 + βLxL + βV xV , (6.6)

β0 ∼ N (m1, σ2Σ), (6.7)

where N is a column vector whose entry Ni is the total number of counts in t years for line i, 1 is

a column vector of ones, m,βL, βV are scalars, and

σ2Σ = σ2(wΣ1 + (1− w)Σ2) = σ2
1Σ1 + σ2

2Σ2. (6.8)

For computation convenience, we decouple the dependencies between different lines in (6.8) by

a coordinate transformation to diagonalize the covariance matrix σ2Σ. This transforms the

multivariate normal random vector β0 in (6.7) into independent univariate normal random

variables in the vector β′0. This decoupling facilitates the maximum likelihood calculation below.

In particular, by simultaneous diagonalization [93, p.286], we find a matrix Q such that

QTΣ1Q = I and QTΣ2Q = Λ, where Λ is a diagonal matrix. Define β′0 = QTβ0, then

β′0 ∼ N (mQT1,QT (σ2
1Σ1 + σ2

2Σ2)Q)

∼ N (mQT1, σ2
1I + σ2

2Λ). (6.9)

We use Maximum Likelihood Estimation to estimate the parameters σ2
1, σ

2
2,m, βL, βV from

the utility data. The log likelihood logL is

y = QT (ln
N

t
− βLxL − βV xV )

logL =
∑
i

ln f(yi|m(QT1)i, σ
2
1 + σ2

2Λi) (6.10)

where y is a column vector with ith entry yi, f(·|µ, σ2) is the PDF of a normal distribution with

mean µ and variance σ2, (QT1)i is the ith entry of QT1, and Λi stands for the ith diagonal entry

of Λ.
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The maximum of logL in (6.10) is attained when σ2
1 = 0.45, σ2

2 = 0.42, m = −1.5 and

(βL, βV ) = (0.13, 0.12). By normalizing σ2
1 and σ2

2, we have w = σ2
1/(σ

2
1 + σ2

2) = 0.52. The positive

values of βL and βV indicate that longer lines or higher voltage lines tend to have higher outage

rates, which is reasonable. These values shall give guidance on setting priors in Section 6.3.

We check the model assumptions by using the residual plot and QQ-plot as shown in Figure

6.3. β′0 has no correlation, so we focus on the transformed linear model, and Pearson residuals are

used here as β′0 has heterogeneous variance. The Pearson residual is estimated by

ε′i = εi/
√
σ2

1 + σ2
2Λi, where the raw residuals are ε = QT (lnN/t− βLxL − βV xV −m1). There is

no noticeable trend in the residual plot, and the QQ-plot shows that the Pearson residual follows

the normal distribution.
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Figure 6.3: Residual plot (left) and QQ-plot (right) for Pearson residuals.

6.3 The Bayesian hierarchical model with line dependencies

We propose a Bayesian hierarchical model of outage counts incorporating line dependencies.
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We assume that outage counts follow a Poisson distribution:

Ni ∼ Poisson(λiti), i = 1, ..., n (6.11)

where Ni is the outage count for line i over ti years, λi is the annual outage rate, and n is the

number of lines.

We assume that the outage rates λi follow a Gamma distribution:

λi ∼ Gamma(α, α/µi), i = 1, ..., n (6.12)

The Gamma distribution is chosen for two reasons. First, it is a conjugate prior for the Poisson

distribution. Second, the Gamma distribution mean is µi and its variance is µ2
i /α; the variance of

the Gamma distribution increases quadratically as the mean increases, which allows for the

overdispersion observed in Section 6.2.2.

The mean outage rate µi is modeled via a linear regression model with correlated lines. The

linear regression model assumes the predicted variable is normally distributed, but µi is positive

and may have a large range of values, so µi is transformed by a log function [94, Sec. 3.6]:

lnµ = β0 + βLxL + βV xV (6.13)

where µ, β0 are column vectors.

β0 follows a multivariate normal distribution:

β0 ∼ N (m1, σ2(wΣ1 + (1− w)Σ2)) (6.14)

the line proximity dependency is captured by the covariance matrix of this multivariate normal

distribution, σ2 is a scalar which controls the magnitude of the covariance and w controls the

weights of the two kernels. The parameters α, βV , βV , m, σ2 and w will be estimated using prior

distributions in combination with the data as described below.

The prior distributions are:

α ∼ Half Normal(0.7, 82)

m ∼ Normal(−1.5, 52)

σ2 ∼ Half Normal(0, 0.52)

βL ∼ Normal(0.13, 52)

βV ∼ Normal(0.12, 52)

w ∼ Beta(1, 1)

(6.15)
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These priors are set to ensure that the parameters have a reasonable range and/or mean 3

when compared to our knowledge about the system and the model tested in Section 6.2.2. As

there is not much information about the standard deviations about these priors, we make these

priors weakly informative. The detail is as follows.

The prior for α is a half-normal distribution with α > 0. As discussed in Section 6.2.2, the

mean annual outage rate is 0.6, and the standard deviation is 0.7. This suggests the expected

value of µ is 0.6, so the expected value of α would be 0.62/0.72 = 0.7 (as µ2
i /α = Varλi). The

standard deviation of α is (0.6+2×0.7)2

0.72
− 0.6 ≈ 8 (the numerator is the maximum of µ in a typical

range estimated by two times the standard deviation, (0.6+2×0.7)2

0.72
is the maximum of α).

The priors for m,βL, βV are normal distributions. The linear regression model in Section 6.2.4

suggests expected values for these parameters. xL and xV have range [−10, 10] after scaling using

method described in Section 6.2.3, and we observe that the range of lnN/t is [−10, 10]

conservatively. Therefore, we set the standard deviations of m,βL, βV to 5 so that 95% of the

values lie in [−10, 10] and they vary mostly in the same magnitude, which produces weakly

informative priors.

σ2 functions as a variance. The inverse-gamma prior is usually preferred since it is a

conditional conjugate distribution. Gelman [95], however, does not recommend the

inverse-gamma prior as the estimation of σ2 would be sensitive to the parameters of

inverse-gamma distribution when σ2 is near zero. Thus, we let σ2 have a half-normal prior.

Section 6.2.4 shows that σ2
1, σ2

2 are about 0.5, so we set the standard deviation of σ2 to 0.5 to

make at least 95% of the values of σ2 to lie in [0, 1].

We give w a uniform prior as we know that w lies in [0, 1] and the expectation of w is

0.52 ≈ 0.5 from Section 6.2.4.

We now summarize the Bayesian hierarchical model. The Bayesian hierarchical model is

specified by (6.11,6.12,6.13,6.14) together with the prior distributions of the parameters (6.15).

Note that the partial dependencies between lines are expressed in (6.13,6.14).

3By saying that a range or mean is reasonable, we mean that the distribution of the prior has mean or range that
is consistent with our prior knowledge, and it does not incorporate any further information.
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The model parameters, including the outage rates λ, are

θ = (λ,µ,β0, α, βL, βV ,m,w) (6.16)

The objective is to estimate the posterior distribution of the parameters p(θ|N) that is informed

by the line outage counts N . By Bayes’ theorem, the posterior distribution is

p(θ|N) =
p(N |θ)p(θ)

p(N)
(6.17)

Because normalization can be applied later, it is sufficient to calculate the unnormalized

numerator of (6.17). We can exploit the dependencies in the hierarchical model (12,13,14) to get

p(N |θ) = p(N |λ) =
∏
i

p(Ni|λi) (6.18)

p(θ) =
∏
i

p(λi|α, µi)p(µ|β0, βL, βV )p(β0|m,w)

× p(α)p(βL)p(βV )p(m)p(w) (6.19)

so that

p(θ|N) ∝ p(N |θ)p(θ)

∝
∏
i

p(Ni|λi)
∏
i

p(λi|α, µi)p(µ|β0, βL, βV )

× p(β0|m,w)p(α)p(βL)p(βV )p(m)p(w) (6.20)

6.4 Bayesian Processing of real data

The Bayesian hierarchical model described in the previous section is applied to the historical

outage data.

6.4.1 Sampling posterior distributions using Stan

The posterior distributions (6.20) of the parameters (6.16) can be evaluated numerically by

repeated sampling from the distribution with a Monte Carlo Markov Chain (MCMC) algorithm.

MCMC is a class of algorithms for sampling from a probability distribution. We use the software
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Stan, which implements MCMC as Hamiltonian Monte Carlo (HMC) [96] with the algorithm

adaptively tuned by the No-U-Turn Sampler (NUTS) [97]. Appendix C reproduces the algorithm

of HMC with some explanatory comments and gives a detailed guide to the introductory and

advanced literature on HMC.

We sample 2000 times, and the first 1000 samples are burn-in. Appendix D discusses technical

details of model diagnostics and algorithm convergence. In this section, we focus on the result of

the sampling.

6.4.2 Results of Bayesian estimates

We use the posterior mean as the point estimate of a line outage rate because the posterior

mean minimizes the Bayes risk in terms of squared error loss. Figure 6.4 shows the point

estimates of line outage rates and their 95% credible intervals4. The mean outage rate of all lines

is 0.74 outages per year, and 82% of lines have rates less than 1 outage per year. There are two

lines with very high outage rates. By inspecting the cause codes of these outages, one line outaged

mainly because of foreign trouble (which is an external cause outside the power system, such as

vehicles striking towers), while the other outaged mainly because of a remedial action scheme.

The values of βL and βV reveal the relationship between line lengths, voltage ratings, and

outage rates. Figure 6.5 shows the posterior distributions of βL and βV and their correlation. The

means of βL and βV are both 0.1. So the logarithm of the outage rate has a weakly positive

correlation with transformed line length and transformed voltage rating. βL and βV have a very

weak correlation, which is reasonable as xL and xV have a very weak correlation.

We use weakly informative priors in the Bayesian model. If we had access to previous studies

in the region, or outage rates for other similar regions then these could be used to refine the

priors. In this case we would expect the uncertainty in the outage rate estimates to be reduced.

We also test the sensitivity of the Bayesian model to the priors using 14-year data using two

different sets of priors. The first case uses somewhat stronger informative priors. We reduce the

4The credible interval is described by the multiplicative factor κ within which the outage rate λi can vary from
the point estimate λ̂i with 95% probability; that is, P [λ̂i/κ ≤ λi ≤ λ̂iκ] = 95%.
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Figure 6.4: Point estimates (black dots) and 95% credible intervals (blue bars) of annual outage
rates. Lines are ordered by point estimates.

standard deviation of the prior distributions of m,βL, βV from 5 to 1 and redo the calculations.

In the second case, we randomly set parameters of priors by sampling from uniform distributions;

then, we run the MCMC to estimate the posterior distributions. We compare the posterior mean

and standard deviation of outage rates λ calculated using different priors, and find there is not

much difference.

6.4.3 Comparing the standard deviations of Bayesian and conventional estimates

The Bayesian method produces the distribution of the outage rate, and it is straightforward

to compute the standard deviation of this distribution. The conventional method estimates the

outage rate with the sample mean. The standard deviation of the sample mean can be estimated

as s/
√
n, where s is the sample standard deviation, and n is the sample size.

Figure 6.6 shows the ratio of the standard deviations of the Bayesian and conventional

estimators. It shows that the standard deviation of the Bayesian estimator is typically smaller

than the conventional estimator, especially when the data is limited to one year. The median

ratio of standard deviations is 0.66 for one year of data, while the median ratio is 0.93 for 14 years
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Figure 6.5: Distributions of βL and βV (top) and their scatter plot and correlation (bottom).

of data. Thus the Bayesian estimator typically achieves a lower standard deviation than the

conventional estimator for limited data. Another way to present this finding is that given the

same acceptable precision, the Bayesian method requires fewer data. Since the standard deviation

is proportional to the square root of sample size, the Bayes estimator using one year of data

achieves the same standard deviation as the conventional estimator using 2.30 years of data

(1/(0.662) = 2.30). Similarly, the Bayesian estimator using 14 years of data achieves the same

standard deviation as the conventional estimator using 16.2 years of data (14/(0.932) = 16.2).

6.4.4 Performance on rarely outaged lines

One advantage of the Bayesian method is that it provides a principled way of making line

outage rates with no observed outages. The conventional estimate of outage rate is zero if a line

has no outage in a year. However, it is more reasonable that the underlying outage rate of this

line is a small value.

Table 6.1 calculates 4 line outage rates with the data available after the 1st year, after the 7th

year, and after the 14th year. In Table 6.1, line 29 has no outage except in the 9th and 10th year.

The Bayesian estimate of the outage rate of line 29 for the 1st year is 0.32, which is informed by
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Figure 6.6: Distributions of ratios of standard deviations of Bayesian estimator and conventional
estimator using 1-year and 14-year data respectively. The ratio is SD(Bayesian)/SD(conventional).

correlations with other lines. By the 7th year, more years with no outages have been observed, so

that the estimated outage rate decreases to 0.17. Line 29 outages several times in the 9th and

10th years, so its estimated rate over 14 years increases. There are also many zeros for lines 11

and 2, but the two outage rates vary differently as the distribution of zeros has different patterns.

Most counts for line 11 are zeros, and single outages appear every several years. So we believe

that the outage rate is roughly constant and small, which is captured by the Bayesian estimator.

At the beginning, line 2 had several outages, and then it stops having outages. So this line has a

decreasing outage rate. Line 8 is an example of a line with a high and increasing outage rate.

6.4.5 Validation of the Bayesian hierarchical model

Section 6.2.4 fits a linear regression model to the data, and Figure 6.3 shows that the

assumptions for this regression model hold. This validates that the form of the Bayesian

hierarchical model (particularly for (6.13), (6.14)) is reasonable.
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As we do not know the true outage rates using real data, we generate synthetic data to further

validate the Bayesian model in Section 6.5. That is, assuming that the real outage data follow the

model detailed in 6.2.4, we test that the Bayesian model accurately estimates the outage rates.

As we have checked in Figure 6.3 that the model in 6.2.4 is a good fit to the real outage data, this

is a reasonable method for validating the model when we do not have the true outage rates.

6.5 Test Bayesian estimates on synthetic data

We build a generative model for synthetic datasets of arbitrary size, so the data are not

limited in size, and the ground truth values are known. Then we test the Bayesian hierarchical

model and the conventional estimates on the synthetic data. It turns out that the Bayesian

hierarchical model predicts the outage rates well, and the Bayesian estimates compare favorably

with the conventional method.

We also construct and test with synthetic data sets a Bayesian hierarchical model without

correlations between the lines to evaluate the effect of line dependencies, which shows that

modeling the dependencies reduces the variation of estimates.

6.5.1 The generative model for the synthetic data

In Section 6.2.4, we fit a linear regression model with correlated lines. Based on this model,

we generate outage counts according to the following model:

Ni ∼ Poisson(λiG) (6.21)

G ∼ Gamma(a, a) (6.22)

lnλ ∼ N (m1 + βLxL + βV xV ,Σ) (6.23)

The parameters in (6.21–6.23) are assigned values according to the linear regression model with

correlated lines. That is, m = −1.5, βL = 0.13, βV = 0.12, and Σ = 0.52Σ1 + 0.48Σ2, which

models the line dependencies.
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Once we draw a sample from (6.23), the failure rate is known and fixed. So the variation of

outage counts comes from the Poisson and Gamma distributions. In particular, using EG = 1, we

derive from (6.21), (6.22) that the mean of Ni is the same as only using a Poisson distribution

and that a controls the overdispersion:

ENi = E[E[Ni|G]] = λi (6.24)

VarNi = E[Var[Ni|G]] + Var[E[Ni|G]] = λi + λ2
i /a (6.25)

The value of a is chosen so that the variance of the model matches the empirical variance

calculated from the data. In particular, we find the quadratic that best fits the relationship

between the empirical variance and mean to be σ2 = 0.14 + 0.54µ+ 0.53µ2 (where σ2 is the

variance, µ is the mean). Since the coefficients of µ and µ2 are close, we choose a = 1.

We generate three datasets with different sizes so that we have the equivalents of 1-year,

5-year, and 100-year data:

1) draw a sample of lnλ from the multivariate normal distribution (6.23); 2) draw a sample of

G from the Gamma distribution (6.22); 3) draw samples of Ni from the Poisson distribution

(6.21) n times (n ∈ {1, 5, 100}). Thus, we obtain n annual outage counts for each line, and we

know the true values of the outage rates λ.

6.5.2 Comparing to the conventional estimates

The conventional estimates of outage rates are average outage counts per year. The

conventional estimates and their standard deviations are obtained using Monte Carlo simulation:

draw B = 1000 samples according to model (6.21), calculate the average count of each sample,

and then calculate the standard deviation of the estimates.

We apply the Bayesian hierarchical model to synthetic datasets using MCMC with the same

configuration as in Section 6.3, and use the mean of the posterior distribution as a point estimate.
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6.5.2.1 Errors of point estimates

Figure 6.7 shows the distribution of errors of the Bayesian estimates and the conventional

estimates (the estimation errors of the Bayesian method and conventional method have the same

distribution for 100-year data, so that the plot is not shown). In general, the less the data, the

wider the histogram. The error of the conventional estimates has two modes, and the probability

of error near zero is lower for 1-year data. As the data size increases, the two modes merge into

one. Moreover, for 1-year data, the standard deviation of the error is 0.6 for Bayesian estimates

and 0.9 for conventional estimates; for 5-year data, the standard deviation is 0.3 for Bayesian

estimates and 0.4 for conventional estimates. Therefore, the Bayesian estimates have a high

chance of obtaining more accurate point estimates, especially when data is limited.

On the other hand, there is not much difference in the bias. Specifically, the bias is −0.007 for

Bayesian estimates and −0.004 for conventional estimates using 1-year data, and the bias is 0.003

for both Bayesian estimates and conventional estimates using 5-year data.

6.5.2.2 Standard deviation

Figure 6.8 shows the distribution of the ratio of the standard deviation of the Bayesian

estimator to that of the conventional estimator. The Bayesian estimator has a lower standard

deviation when the data set is smaller. Specifically, the median of the ratio is 0.74 for 1-year data,

0.90 for 5-year data, and 0.99 for 100-year data.

6.5.2.3 Interval estimates

Figure 6.9 shows 95% credible intervals of the Bayes estimator using 1-year, 5-year, and

100-year data respectively. As the size of the dataset increases, we gain more information, and the

width of the credible intervals decreases. Figure 6.9 also shows the true values of the outage rates

as black dots. As expected with a 95% credible interval, approximately 5% of the true values lie

outside the credible interval. The Bayesian point estimates (not indicated in Figure 6.9) lie in the

center of the credible intervals and tend to be larger than the true values for low outage rates and
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smaller than the true values for high outage rates. This can be explained as the shrinkage towards

the mean expected with Bayesian methods; see [44, Sec. 1.5].

6.5.3 Comparing to the Bayesian hierarchical model with independent lines

Previous work does not compute individual line outage rates while considering spatial

dependencies between lines. We test the effect of the spatial dependence by removing it. The

Bayesian hierarchical model with independent lines is:

Ni ∼ Poisson(λiti) (6.26)

λi ∼ Gamma(α, α/µi) (6.27)

lnµi = β0 + βLxLi + βV xV i (6.28)

The prior distributions are:

α ∼ Half Normal(0.7, 82)

β0 ∼ Normal(0, 1)

βL ∼ Normal(0.13, 52)

βV ∼ Normal(0.12, 52)

(6.29)

We apply this restricted model to synthetic datasets using MCMC with the same

configurations as in Section IV. The standard deviation when considering line dependencies is

smaller than that without considering line dependencies. The medians of standard deviation

ratios of this model to the conventional estimator for 100-year, 5-year, and 1-year data are 0.99,

0.93, and 0.89, which are greater than standard deviation ratios of the Bayesian model with line

dependencies to the conventional estimator.

6.6 Conclusion and discussion

We use a Bayesian hierarchical model to improve the estimation of annual outage rates for

individual transmission lines. This Bayesian method incorporates several types of dependencies

between lines and is applied to real outage data and tested with synthetic data. Particularly for

the shorter observation periods with the lower outage counts, the Bayesian estimates perform
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better than the conventional estimates that simply divide the number of outages by the

observation time: estimates of the individual line outage rates are more accurate, and the

uncertainty of the estimates is reduced. Moreover, the comparison with a Bayesian model

assuming spatially independent lines shows modeling line spatial dependencies reduces the

standard deviation of estimates.

Our Bayesian hierarchical model offers an improvement over the conventional estimates for

two reasons. Firstly, the Bayesian method can appropriately capture our prior knowledge of the

parameter uncertainties with prior distributions. Secondly, because the model is hierarchical and

models the dependence between lines, information about multiple partial commonalities can be

appropriately shared across similar lines. These reasons imply that estimates can be improved for

lines with no (or a small number of) outages.

Geographically close and neighboring lines experience similar weather conditions, may have a

similar design, and share some physical and engineering interactions through the network. We

model these line dependencies as a covariance matrix in the Bayesian hierarchical model. The

covariance matrix is the weighted sum of two kernels that represent geographic district

commonalities and network line proximity, respectively. The Bayesian model learns the weights of

the two kernels from the outage data. Our modeling of these dependencies can be realized from a

single utility outage dataset that is routinely collected, since the line district is recorded in the

dataset, and the network can be readily deduced from the dataset [1]. Using only one dataset is

advantageous since coordinating and combining different datasets is often arduous. However, it is

conceivable that further advantage could be gained by including other factors such as average

wind speed or altitude.

Previous work has often assumed that transmission line outage rates are proportional to line

length [49] or grouped together lines of the same area [48,51,54]. We model these dependencies

by linear factors in the outage rate, and the Bayesian model learns the weights for these factors.

The results for our data are that individual line outage rates are only partially correlated with the
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line length or the voltage rating. Therefore, it is more reasonable to consider the outage rate for a

whole line instead of the rate per mile.

The Bayesian method estimates the distribution of individual line outage rates. This is an

advantage compared to methods that return point estimates, as a complete picture of the

uncertainty around estimates is needed to make robust decisions about risk and maintenance. For

example, if a line has a high point estimate outage rate that is very uncertain, it may be

beneficial to wait to gather more information. If desired, any point or interval estimates can be

easily obtained from the distribution, depending on the desired application of the outage rates.

The quantification of the uncertainty of estimates is useful when the outage rates are used in

other models and simulations. For example, a Monte Carlo simulation of transmission reliability

can easily be modified to sample from the outage rate distribution to better capture the

uncertainty in the estimated reliability.

We focus on overall line outage rates without considering different outage causes in work.

However, the proposed Bayesian method can naturally be extended to investigate line outage

rates for specific causes.

When data is limited, which is generally true for power system outage data, Bayesian

estimates have smaller uncertainty than conventional estimates. Equivalently, with a specific

acceptable standard deviation, the proposed Bayesian method needs less data than the

conventional method. Thus, utilities can monitor individual line outage rates with fewer years of

recording outages. There is a potential to more quickly identify lines with increasing outage rates

and aging problems so that maintenance can be scheduled. For example, if utilities need two

years of data using the conventional method to estimate line outage rates with a given

uncertainty, they typically only need one year of data using the proposed Bayesian method to

obtain an outage rate estimate that meets the same uncertainty requirement.

The general advantages of the hierarchical Bayesian method discussed above suggest benefits

for various applications of line outage rates. We apply the hierarchical Bayesian method to start

to explore and quantify these benefits in [75], which shows improved performance in detecting



100

deterioration in line outage rates, quantifying the effect of storms, and a system reliability

calculation.
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Figure 6.9: 95% credible intervals of Bayesian estimates using 1-year, 5-year and 100-year data.
Lines are ordered by outage rates (black dots).
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CHAPTER 7. APPLYING BAYESIAN ESTIMATES OF INDIVIDUAL

TRANSMISSION LINE OUTAGE RATES

It is a straightforward application of estimating individual transmission line outage rates to

identify critical lines in initial outages. As transmission line outage rates are fundamental to

power system reliability calculations, it is worth exploring other benefits of better estimates of

line outage rates. This chapter explores what can be achieved with this new Bayesian hierarchical

model using real utility data. In particular, we assess the capability to detect increases in line

outage rates over time, quantify the influence of bad weather on outage rates, and discuss the

effect of outage rate uncertainty on a simple availability calculation.

This chapter is developed with assistance from L. Wehenkel, University of Liège, Belgium, J.

R. Cruise, Riverlane Research, UK, C. J. Dent and A. Wilson, University of Edinburgh, Scotland.

The material in this chapter is published in [98].

7.1 Introduction

Chapter 6 shows that the Bayesian hierarchical model can leverage multiple partial

similarities to get better estimates of individual line outage rates from utility data. Typical

results are that, for the lines with less frequent outages and using one year of data, the annual

outage rates estimated with Bayesian methods have less than half the standard deviation of the

conventional estimates. Another way to state this typical result is that the Bayesian hierarchical

model for one year of data gives the same accuracy as the conventional estimator for two years of

data. Thus, the Bayesian hierarchical model mitigates to some extent the problem of estimating

individual line outage rates. This chapter explores how much advantage can be gained from

applying our method to give these improved line annual outage rates from utility data. In the

following sections, we consider three problems:
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7.1.0.1 Detecting lines with reduced reliability

We determine with statistical validity which lines have deteriorated reliability over time to

better discriminate which lines should be considered for further analysis and maintenance or

upgrade.

7.1.0.2 Storm and no storm data

We often want to partition the data set to get more specific information, and we illustrate the

capability of our proposed method in this regard by comparing line outage rates during storms

with line outage rates when there is no storm.

7.1.0.3 Effects on reliability calculations

The Bayesian hierarchical model not only gives better estimates of individual line outage rates

but also gives the uncertainty of these estimates. We discuss a simple example of an availability

calculation to illustrate the impact of these advantages on a system reliability calculation.

7.2 Detecting lines with increased outage rates

It is desirable to examine historical transmission line outages and judge whether the outage

rate has increased and the reliability of the line has deteriorated. If there is a high chance that

the outage rate has increased significantly, then the condition of this line should be evaluated and

decisions about its maintenance, operational limits, or upgrade could be considered1. This section

applies Bayesian estimates to this problem.

We divide the 14 years of utility data into the first 7 years and the last 7 years. Applying the

Bayesian method for each line k, we obtain an outage rate probability distribution λ
(1)
k for the

first 7 years and an outage rate probability distribution λ
(2)
k for the last 7 years. An example is

shown in Figure 7.1.

1Similarly, we note that detecting significantly decreased outage rates could be used to verify previous reliability
investments.
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Figure 7.1: The distribution of outage rates for one line in the first 7 years and in the second 7
years.

We are interested in the probability

pk = P[λ
(2)
k > κλ

(1)
k ] (7.1)

of the line k outage rate increasing by more than some factor κ. We will show results for κ = 1,

κ = 1.5, and κ = 2. If λ
(2)
k > κλ

(1)
k , a larger value of κ indicates a more significant increase in the

outage rate.

We evaluate the probability (7.1) empirically by sampling 10 000 times from the probability

distributions λ
(1)
k and λ

(2)
k , which are assumed to be independent. That is,

pk ∼=
1

10 000
[number of samples with λ

(2)
k > κλ

(1)
k ] (7.2)

Figure 7.2 shows the probability pk for each line k. We choose a significance level 0.05; that is,

if pk > 0.95, λ
(2)
k is significantly greater than κλ

(1)
k , and we conclude that the outage rate for line

k increases significantly in the last 7 years. According to this rule, we identify 31 lines with

increased outage rates for κ = 1, 8 lines for κ = 1.5, and 1 line for κ = 2.

After identifying those lines with significant increases in outage rates, it is worthwhile checking

the outage records to find out more about the possible specific causes of the increases, such as the
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Figure 7.2: The probability pk that the outage rate increases by at least a factor of κ in the
second half time period from the first time period for each line k. Lines are ordered by the κ = 1
probabilities.

cause codes for each outage. Utilities have much richer information about the outage and the grid

conditions and can investigate much further. To illustrate this, we check the top three lines with

the highest probability of outage rate increases. Table 7.1 shows the observed counts for these

three lines, and there is an obvious increase in counts during the last 7 years. Outage causes for

line 151 are mainly recorded as foreign utility and foreign trouble. Given the lack of outages in

years 1 through 6, it should also be checked whether the line was newly installed in year 7. Line

138 has various cause codes during the last 7 years, such as tree blown, line material failure,

foreign trouble, and vegetable management. Line upgrade or tree-trimming may help lower the

outage rate. Most of the causes for line 539 are wind related, so weather variations have a big

influence on this line, and the line spacers, damping, and icing could also be reviewed.

We compare the results with the conventional method, which estimates mean annual outage

rates of individual lines by simply evaluating the average outage counts in a year. The standard

deviation of the annual counts is also estimated. Then we fit a Gamma distribution for each line

in each 7-year period using the method of moments. (Here we prefer the method of moments to

maximum likelihood estimation because there are only 7 data points, and several of them are
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Table 7.1: Observed outage counts of the top three lines with highest probability of increases in
annual outage rates

Line Outage counts in different years

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

151 0 0 0 0 0 0 0 1 2 9 0 1 2 0

138 0 0 0 1 2 1 2 2 5 5 2 0 3 6

539 0 0 0 1 0 0 0 2 2 2 1 1 1 1

zeros; maximum likelihood estimation would exclude the zero observations, which reduces the

information further and the optimization to find the maximum likelihood may fail.)

Note that the conventional method cannot deal with the lines with all zero counts in a 7-year

period, while the Bayesian hierarchical model can solve this case. So we compare the two methods

for lines with at least one nonzero count.

For each line in each 7-year period, we sample from the fitted Gamma distribution and use

the same sampling method described at the beginning of this section to estimate the probability

pk. We call this procedure the “basic method” (the mean estimation is conventional, but we are

not sure to what extent industry computes uncertainty of the conventional mean estimate). This

basic method identifies 2 lines with increased outage rates for κ = 1, 1 lines for κ = 1.5, and no

lines for κ = 2. Thus the increased uncertainty for the basic method detects significantly fewer

lines with statistically verified increased outage rates.

The two lines identified by the basic method are line 539 and line 32. Line 539 is also

identified in the above Bayesian method. The basic method does not identify line 151 because

this line has no outage in the first 7 years. Line 138 is not identified by the basic method but is

identified by the Bayesian method. The posterior distribution of the outage rate for line 138 has

mean 0.81 and standard deviation 0.29 in the first 7 years, and mean 2.93 and standard deviation

0.62 in the second 7 years. Whereas in the basic method for line 138, the Gamma distribution has

mean 0.86 and standard deviation 0.90 in the first 7 years, and mean 3.29 and standard deviation

2.14 in the second 7 years. The standard deviation of the posterior distribution is obviously lower

than the standard deviation of the Gamma distribution. This low standard deviation makes the
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distributions in the two 7-year periods sufficiently different, while the two Gamma distributions

overlap due to their larger standard deviation.

Figure 7.3 compares the means and standard deviations of the posterior distribution in the

Bayesian method and the Gamma distribution in the basic method. Although the two methods

have close means, the posterior distribution has a smaller standard deviation. This observation

confirms the result in our journal paper [91] that hierarchical Bayesian estimates of outage rates

have a lower standard deviation than the conventional estimates. The lower uncertainty of the

Bayesian estimates explains why the Bayesian method more effectively detects lines with

significant outage rate increases.
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Figure 7.3: Comparing means (left panel) and standard deviations (right panel) of the posterior
distribution and the Gamma distribution in two methods.

7.3 Effect of storms on outage rates

Since the proposed Bayesian hierarchical method mitigates the limited data problem in

estimating individual outage rates, we can study further by investigating a subset of the outage

data. For example, we can evaluate the effect of weather on outage rates.
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We define a line outage as a storm outage if it occurs during a storm, otherwise it is called a

non-storm outage. Then the annual storm outage rate is the number of storm outages divided by

the total storm time in a year; similarly, the annual non-storm outage rate is the number of

non-storm outages divided by the total non-storm time in a year. (Note that the Bayesian model

does not directly produce the storm/non-storm outage rate. It outputs the average

storm/non-storm outages over a year without considering the storm/non-storm time. So we need

to divide the average storm/non-storm outages over a year by the storm/non-storm probability,

which is the storm/non-storm time divided by the total time.)

The weather data is from the USA National Oceanic and Atmospheric Administration

(NOAA) which includes storm events and other significant weather phenomena [99]. Using the

method described in [100], we classify outages as storm outages and non-storm outages.

Figure 7.4 compares the storm and non-storm outage rates estimated using the Bayesian

hierarchical model. 93% of lines have storm outage rates greater than non-storm outage rates

(using the posterior mean as point estimation). The average storm outage rate is 4.5 per year

which is nine times greater than the average non-storm outage rate 0.5 per year. This result

confirms the finding in [100] and provides more information due to the lower uncertainty of the

Bayesian estimates.

The BPA data records the cause code reported for each outage. Table 7.3 tallies the frequency

of each dispatcher cause code in the recorded outage data. We now summarize how storms affect

the cause codes. The proportion of cause codes “tree blown”, “wind”, “weather”, “ice”, “power

system condition”, ”SCADA”, and “galloping conductors” for storm outages are at least one

order of magnitude greater than that for non-storm outages; while the proportion of causes

“equipment/miscellaneous”, “RAS initiated”, “human element”, “foreign utility”, “fire”,

“smoke”, and “maintenance” for non-storm outages are at least one order of magnitude greater

than that for storm outages. Fewer human errors are reported during storms, as “human

element” is a cause for 0.08% of storm outages, compared to 1% for non-storm outages, and the

proportions of “dispatcher” are about the same. Storms increase the outages caused by “SCADA”
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Figure 7.4: 95% credible intervals of outage rates and posterior means (sorted according to the
upper bound of storm outage rates). Orange crosses are storm outage rates, and black dots are
non-storm outage rates.

and “galloping conductors”, but do not increase other equipment causes such as “improper

relaying”, “terminal equipment failure”, and “arc while switching”.

7.4 Effect of outage rate variation on a simple unavailability calculation

This section shows how variation and uncertainty in outage rates affect an elementary

transmission system reliability calculation. One of the simplest idealized availability calculations

has 3 lines that minimally satisfy the N–1 criterion; that is, the system is available if all lines or 2

out of 3 lines are operating, and unavailable otherwise. The 3 lines are independent with

exponential failure rates λ1, λ2, λ3 and exponential repair rate µ. State 1 is no lines out, states

2,3,4 are one line out, states 5,6,7 are two lines out, and state 8 is three lines out. The Markovian
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transition rate matrix Q is

−λ1−λ2−λ3 λ1 λ2 λ3 0 0 0 0

µ −λ2−λ3−µ 0 0 λ2 0 λ3 0

µ 0 −λ1−λ3−µ 0 λ1 λ3 0 0

µ 0 0 −λ1−λ2−µ 0 λ2 λ1 0

0 µ µ 0 −λ3−2µ 0 0 λ3

0 0 µ µ 0 −λ1−2µ 0 λ1

0 µ 0 µ 0 0 −λ2−2µ λ2

0 0 0 0 µ µ µ −3µ


The steady state probability distribution of states is given by the row vector π, where πQ = 0 and

the entries of π add to one. The probability of unavailability is the sum of the last 4 entries of π.

It is convenient to express the unavailability as the expected number of minutes of unavailability

in a year by multiplying the probability of unavailability by 525 600, the number of minutes in a

year.

In our raw line data, the mean outage rate is λ = 0.6 per year, and the standard deviation is

0.7. The mean restoration time is 907 minutes [101], which corresponds to the restoration rate of

µ = 579 per year that we use throughout this section.

We consider the effect of using an average outage rate for all three lines when their outage

rates differ. A parameter α is used to control the variation of the line outage rates while keeping

the mean outage rate constant. The outage rates in Table 7.2 satisfy λ2 = αλ1, λ3 = λ1/α, and

Mean{λ1, λ2, λ3} = 0.6 for several values of α. α = 5 gives a plausible variation of outage rates

(one standard deviation from the mean is 0.6± 0.7) and approximately half the unavailability.

That is, if the outage rates do vary according to α = 5, then using an average outage rate for all

three lines approximately doubles the unavailability.

We consider the effect of uncertainty in the estimated line outage rates on the unavailability.

We model the uncertainty in estimates of λ1, λ2, λ3 by three independent Gamma distributions,

each with mean 0.6 and standard deviation σ. The resulting probability distributions in the
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Table 7.2: System unavailability for several annual outage rates

α λ1 λ2 λ3 unavailability

1 0.6 0.6 0.6 1.7 min

2 0.51 1.03 0.26 1.4 min

5 0.29 1.45 0.06 0.8 min

unavailability are shown in Figure 7.5 for σ = 0.7 and σ = 0.17. σ = 0.7 is the average of the

standard deviations of individual transmission lines used in the basic estimation in section 7.2.

σ = 0.17 is the average of the standard deviations of individual transmission lines in the Bayesian

estimation.

If we neglect the uncertainty in the estimated outage rates, the deterministic calculation with

λ1 = λ2 = λ3 = 0.6 gives an unavailability of 1.69 minutes. If we use the average uncertainty

σ = 0.17 that is typical of the Bayesian estimates, the 95% probability interval for the

unavailability is {1.25, 3.01}. If we use the average uncertainty σ = 0.7 that is typical of that used

in the basic method of section 7.2, the 95% probability interval for the unavailability is

{0.24, 8.63}. For this example, a typical uncertainty in the line outage rates appreciably affects

the unavailability. The smaller uncertainty provided by the Bayesian estimates is clearly

advantageous compared to the uncertainty provided by the basic method in section 7.2.

We note that either the Bayesian or basic method considered above of estimating the

standard deviation of individual line outage rates is better than conventionally estimating the

outage rates of all the lines and computing the mean and standard deviation of this combined

data. This procedure gives a standard deviation of 1.14, which is larger because it includes not

only the uncertainty of individual line estimates but also the variation in individual line outage

rates from their combined mean. In the unavailability calculation, the larger standard deviation

σ = 1.14 gives unacceptably large variation in the calculated unavailability, with a 95%

probability interval {0.02, 14.27}.
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Figure 7.5: Probability distributions of calculated unavailability for several values of standard
deviation σ for the estimated line outage rate. The distribution of unavailability has standard
deviation 2.6 for σ = 0.7 and standard deviation 0.56 for σ = 0.17. The mean unavailability is 1.69
minutes per year.

7.5 Conclusion

The Bayesian hierarchical model can process standard transmission line outage data routinely

collected by utilities to give improved estimates of individual line outage rates [91]. When the

outage counts are low, the Bayesian hierarchical model estimates have lower variance than the

conventional calculation of outage rate that simply divides counts of outages by the observation

time elapsed. The Bayesian model does this by combining line data with data from other lines

with partial similarities in rating, length, and proximity. This work uses real utility data to

explore several ways in which the improved performance of the Bayesian outage rates for

individual lines can be exploited.

It is useful to be able to detect deterioration in line outage rates so that corrective action can

be taken. We use the Bayesian outage rates to calculate the probability that an individual line

outage rate has increased in a second 7-year period compared to a first 7-year period. Since the

Bayesian outage rates have lower uncertainty, they can better detect significant outage rates

increases in more lines than a basic conventional method. The significant increase in outage rate
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can be used to select lines that are likely to have deteriorated reliability in a principled way, so

that these lines can be further investigated to inform upgrade, maintenance, modification, or

derating decisions.

It is useful to split historical data sets for separate analyses to investigate the effect of factors

such as storms. We illustrate the performance of the Bayesian method in distinguishing storm

and no-storm outage rates. For our utility data, the average storm line outage rate is 4.5 per year,

which is nine times the average non-storm line outage rate of 0.5 per year.

Bayesian methods calculate probability distributions of line outage rates, so that the mean

gives a point estimate of the outage rate and the standard deviation indicates the uncertainty of

the point estimate. It is desirable to account for the uncertainty of outage line rate estimates in

transmission system reliability calculations, and the Bayesian uncertainties are smaller than the

conventional uncertainties. To start to discuss and quantify the effect of this on system reliability

calculations, we contrast Bayesian hierarchical models and conventional methods for an

elementary availability computation for a 3-line system. For this computation, using individual

line outage rates as opposed to average outage rates for pooled data can halve the unavailability.

Moreover, the reduced uncertainty of the Bayesian outage rates compared to conventional

uncertainties gives significantly smaller probability intervals for the unavailability.

Overall, our results indicate that the reduced uncertainty in individual line outage rates

enabled by the Bayesian hierarchical model can be useful. We also expect that routinely

quantifying the uncertainty in individual line outage rates will help to better justify decisions

based on reliability calculations that depend on these outage rates.
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Table 7.3: Dispatcher cause code frequency in BPA outage data during 1999 to 2012

CAUSE CODE ALL >20 min

Foreign Trouble 3163 1285

Unknown 2433 181

Lightning 2296 124

Terminal Equipment Failure 298 123

Forced (Configuration) 242 87

Wind 238 80

Tree blown 226 198

RAS Initiated 202 32

Weather 194 55

Equipment/Miscellaneous 187 51

Line Material Failure 175 119

Fire 129 37

Improper Relaying 115 35

Foreign Utility 114 33

Human Element 114 15

Ice 76 39

Maintenance 73 16

Smoke 72 18

Malicious 66 61

Substation Operations 58 5

Tree 57 52

Tree cut 49 39

Construction 47 6

Staged Test 41 2

Imp Install/Design/Applica 40 8

Arc while switching 34 11

Bird droppings 30 7

Sympathetic 26 7

Dispatcher 20 3

Machinery, Construction 15 8

Machinery, Logging 15 9

Bird or Animal 15 10

TT Noise 14 2

Earthquake 11 9

Vehicle 9 8

Foreign Object 6 3

Aircraft 6 3

Voltage 5 3

Machinery, Farming 5 3

Galloping Conductors 5 3

Power System Condition 5 1

Earth slide 4 3

Contamination 4 2

Tree growth 3 1

Industrial 2 2

Agricultural 1 1

SCADA 1 0

Frequency 1 1
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CHAPTER 8. N-k CONTINGENCY SELECTION USING NETWORK

MOTIFS AND SPATIAL STATISTICS OBSERVED IN OUTAGE DATA

8.1 Motivation

Selecting contingencies or initial outages according to their probability is significant to

accurately evaluate the power system resilience and cascading risk. If N-k contingencies are

chosen to initiate cascading outages, such as using the Random Chemistry algorithm in [84], we

would overestimate the cascading risk or underestimate the system resilience. Indeed, if we

identify contingencies that cause severe impact and then take corresponding preventive/

corrective actions, the system would be more resilient. However, with limited resources, it is more

effective to identify high-risk contingencies instead of only high-impact contingencies. The risk

measurement usually has two dimensions: impact and frequency. Simulations using power system

models with various levels of details can estimate the impact of certain contingencies, however, it

is difficult to model and simulate all the rare contingencies so here we pursue the estimation of

contingency frequency through real outage data. Therefore, this chapter studies the contingency

probability exploiting network theory.

Another more important motivation is that the contingency analysis, especially for multiple

contingencies, has been a challenge for many years. Contingency analysis is one of the three main

functions of power system security that includes system monitoring, contingency analysis, and

security-constrained optimal power flow. Contingency analysis aims to detect system problems in

advance and take necessary preventive and corrective actions so that the system can withstand

the impact of an contingency and operate normally without violations in line thermal limits, bus

voltages, and dynamic stability. It requires operators to test all possible credible contingencies.

This is a challenging problem because theoretically there are
(
N
k

)
contingencies for k-component

contingencies in a N -component system, which is a huge number even for k = 2 in interconnected
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power systems. Contingency analysis must be analyzed quickly so that the results are useful for

operators. An observation is that not all contingencies would cause violations in power systems.

Therefore, we can select contingencies that could cause problems, and only study these limited

credible contingencies in detail. This is contingency selection, which produces a list of credible

contingencies. Many researches have studied the multiple contingency selection based on

model-based methods, graph theory, statistical sampling, and optimization methods. This study,

however, selects multiple contingencies based on the observed probability of their graphical

patterns that occurred historically in the power network.

8.2 Multiple contingencies occur frequently in contingency motifs

We represent multiple contingencies as subgraphs of the power network. Some patterns are

frequently recurrent, and we adapt and apply a concept, network motifs, to represent those

patterns. The presence of motifs reflects the basic structure of power systems. Thus, they give a

general and practical guidance on contingency selection.

Before we give the formal definition of contingency motifs, it is necessary to describe the

statistics of random patterns of the power network and statistics of patterns appeared in outage

data.

8.2.1 Subgraphs of the power network

The power transmission grid is comprised of substations and transmission lines. It is

represented by a graph/network as shown in Figure 8.9, which is a utility in the Northwest of the

US. Substations correspond to nodes and transmission lines correspond to edges/lines. The power

grid sometimes has multiple transmission lines between two substations, and they are represented

by one line in the power network in this study.

A k-edge subgraph sk,i is an edge-induced subgraph, which is a subset of edges of a graph

together with vertices that are their endpoints. Figure 8.1 illustrates a 2-edge subgraph

{1− 3, 1− 6}.



119

Two subgraphs are isomorphic when there exists a mapping between their vertices such that

two vertices are adjacent in one subgraph implies that the two corresponding vertices in the other

subgraph are also adjacent. We say two subgraphs are the same when their nodes and edges are

exactly the same. For example, in Figure 8.1, subgraph {1− 3, 1− 6} and {1− 5, 4− 5} are

isomorphic, but they are different subgraphs.
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Figure 8.1: Example of different subgraphs. (A) 2-edge subgraph. (B) Orange subgraph and green
subgraph are isomorphic subgraphs.

A pattern is a set of isomorphic subgraphs in the network. Sk,i denotes a pattern that is a set

of sk,i, where k is the number of edges and i is the ID of that pattern. The exception is S4,∗,

which is the set of 4-edge subgraphs that are not the members of S4,i for i = 1, 2, 3, 4. Figure 8.2

shows some patterns of the power network and the number of all distinct subgraphs in each

pattern, which is also the size |Sk,i| of the pattern.

8.2.2 Statistics of multiple contingencies

When a N − k contingency occurs, we can imagine the k outaged lines in the power network

are highlighted and we have a subgraph. These subgraphs are called contingency subgraphs.

Thus, each multiple contingency corresponds to a subgraph sk,i. As multiple contingencies are

always grouped as N − k contingencies, the corresponding contingency subgraphs are also

grouped according to the number of edges k. Figure 8.3 shows the statistics of the contingency

subgraphs observed in outage data.

If no other information is available, it is natural to assume all contingency subgraphs occur

uniformly in all k-edge subgraphs. We call this the uniform assumption. Let puni
sk,i

be the
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Sk,i |Sk,i| pk,i
uni nk nk,i p


k,i
obs

S2,1 2116 0.015209 392 317 0.808673

S2,2 137 012 0.984791 392 75 0.191327

S3,1 4653 0.000191 127 74 0.582677

S3,2 1 083 833 0.044431 127 31 0.244094

S3,3 7519 0.000308 127 18 0.141732

S3,4 62 3. × 10-6 127 3 0.023622

S3,5 23 297 709 0.955068 127 1 0.007874

S4,1 9799 3. × 10-6 23 9 0.391304

S4,2 2 354 215 0.000735 23 5 0.217391

S4,3 48 581 0.000015 23 5 0.217391

S4,4 26 028 8. × 10-6 23 2 0.086957

others S4,* 3 199 244 477 0.999238 23 2 0.086957

Figure 8.2: Probabilities of patterns in outage data and in random subgraphs. S4,∗ is the set of
4-edge subgraphs that are not the members of S4,i for i = 1, 2, 3, 4.

probability of sk,i under the uniform distribution, where “uni” indicates the uniform assumption.

Then,

puni
sk,i

=
1(
n
k

) (8.1)

where n is the number of lines in the power network, which is also equal to N as in N − k

contingencies. And the probability of a pattern puni
k,i given k under the uniform assumption is

puni
k,i =

|Sk,i|(
n
k

) (8.2)
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Sk,i frequency frequency(%) Sk,i frequency frequency(%)

S2,1 317 58.5 S2,2 75 13.8

S3,1 74 13.7 S3,2 31 5.7

S3,3 18 3.3 S3,4 3 0.6

S3,5 1 0.2

S4,1 9 1.7 S4,2 5 0.9

S4,3 5 0.9 S4,4 2 0.4

others S4,* 2 0.4

Figure 8.3: Statistics of contingency subgraphs in outage data.

Figure 8.2 shows the probabilities of patterns under the uniform assumption.

However, the observations from historical outage data differ greatly from the uniform

assumption. For example, puni
3,1 is greater than puni

3,2 , while the frequency of S3,1 is comparable with

that of S3,2 in outage data. This observation implies that some patterns recur much more

frequently than under the uniform assumption. For those significantly recurrent patterns in

contingency subgraphs, we can define them as motifs, which is discussed in detail in the next

section. Before that, we estimate the probabilities of different patterns based on outage data.

The probability of Sk,i is estimated from the outage data by

p̂obs
k,i =

nk,i
nk

(8.3)

where “obs” indicates the probability of a pattern is estimated from outage data, nk,i is the

number of contingency subgraphs sk,i appearing in the outage data, and nk is the number of

k-edge contingency subgraphs sk in the outage data. Note
∑

i nk,i = nk.
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Assuming contingency subgraphs sk,i are uniformly distributed in Sk,i, then the probability of

a contingency subgraph sk,i based on the outage data is

p̂obs
sk,i

=
p̂obs
k,i

|Sk,i|
(8.4)

At the same time, the standard error of the estimate is

σ
(
p̂obs
sk,i

)
=

1

|Sk,i|
σ
(
p̂obs
k,i

)
=

1

|Sk,i|

√√√√ p̂obs
k,i

(
1− p̂obs

k,i

)
nk

(8.5)

In summary, we define a probability pk,i that a pattern Sk,i appears in contingency subgraphs.

Two methods are proposed to estimate pk,i: the uniform assumption as (8.2) and the other is

based on observed outage data as (8.3). Figure 8.2 shows puni
k,i and p̂obs

k,i for different patterns.

Moreover, in the set Sk,i, all contingency subgraphs sk,i are assumed uniformly distributed so that

their probability psk,i is given by either (8.1) or (8.4).

8.2.3 Definition of contingency motifs

The conventional definition of the motif introduced by Milo considers connected subgraphs

with a specific number of nodes. For example, possible size-3 motifs are the subgraphs

{1− 3, 1− 6, 3− 6} and {1− 2, 1− 5} in Figure 8.1. The detection algorithm computes the

relative frequency of each pattern and compares it with the frequency of the pattern in random

graphs that has the same global property (eg. degree distribution) as the original

network [59,102]. However, contingency subgraphs are naturally grouped based on the number of

edges, not the number of nodes, and they could be disconnected subgraphs. Moreover, the power

network is fixed and known. Therefore, the conventional detection of the motif cannot be directly

applied, and needs to be adapted to our application to power network contingencies.

Instead of comparing the frequency of a pattern in the network to that in random graphs, we

compare the frequency of the contingency pattern in outage data to that in subgraphs sampled

randomly from the original network. Therefore, we define a k-edge contingency motif in a power

network as a k-edge pattern whose probability of occurrence is significantly greater than that
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when all k-edge subgraphs in the network have the same probability of occurrence. For example,

to determine 3-edge motifs, we estimate the probability of S3,i for all i from outage data, and

then compute the probability of S3,i in the network under uniform assumption. If the probability

of a pattern in outage data is significantly greater than that under uniform assumption, we say

this patter is a contingency motif. That is, we define Sk,i as a contingency motif when

pk,i > apuni
k,i (8.6)

where a ≥ 1 is large enough so that it is a conservative comparison. We let a = 10 in this study.

8.2.4 Detecting contingency motifs

To detect a contingency motif, we need to compare the probability of the contingency pattern

observed in outage data and the probability of that pattern in random subgraphs under the

uniform assumption. This problem can be formulated as a hypothesis test:

H0 : pk,i ≤ 10puni
k,i versus H1 : pk,i > 10puni

k,i (8.7)

8.2.4.1 Statistical model of multiple contingencies

Let X be the number of sk,i in a total of nk N − k contingencies. X follows a binomial

distribution:

PSk,i(X = x) =

(
nk
x

)
pxk,i (1− pk,i)nk−x (8.8)

8.2.4.2 Frequentist hypothesis test

Under H0, the likelihood of obtaining nk,i or more sk,i is

L (pk,i|nk,i) =

nk∑
j=nk,i

(
nk
j

)
(10puni

k,i )j(1− 10puni
k,i )(nk−j) (8.9)

When the likelihood is less than significance level 0.01, we reject H0, which means that the

probability that H0 is true but we reject it is less than 0.01.
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8.2.4.3 Bayesian hypothesis test

We compare the posterior probability P (H0|nk,i) with P (H1|nk,i). If P (H0|nk,i) ≥ P (H1|nk,i),

we accept H0; otherwise, we reject H0 and accept H1.

P (H0|nk,i) =
P (nk,i|H0)P (H0)

P (nk,i)

=
P (nk,i|H0)P (H0)

P (nk,i|H0)P (H0) + P (nk,i|H1)P (H1)

=
1

1 +
P (nk,i|H1)P (H1)
P (nk,i|H0)P (H0)

(8.10)

where P (H0) is the prior probability and

P (nk,i|H0) =

∫ 10punik,i

0
P (nk,i|pk,i)f(pk,i|H0)dpk,i (8.11)

is the marginal likelihood under H0. f(pk,i|H0) is the prior for parameter pk,i when H0 is true,

which is assumed to be a uniform distribution.

The Bayes Factor for H1 relative to H0 is defined by

BF (H1 : H0) =
P (nk,i|H1)

P (nk,i|H0)
(8.12)

Assume P (H0) = P (H1) = 0.5, and pk,i|H0 and pk,i|H1 both follow uniform distributions.

Then, the posterior probability of H0 turns out to be

P (H0|nk,i) =
1

1 +BF
=

1

1 +
1−F (10punik,i )

F (10punik,i )

(8.13)

where F (x) is the cumulative density function of a beta distribution with parameters nk,i + 1 and

nk − nk,i + 1. Formula (8.14) shows the derivation, where B(a, b) is the beta function with

parameter a, b, B(x; a, b) is the incomplete beta function, and Ix(a, b) is the regularized

incomplete beta function. Ix(a, b) is also the cumulative distribution function of the beta

distribution F (x; a, b).

BF (H1 : H0)

=
P (nk,i|H1)

P (nk,i|H0)
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=

∫ 1
10punik,i

P (nk,i|pk,i)f(pk,i|H1)dpk,i∫ 10punik,i

0 P (nk,i|pk,i)f(pk,i|H0)dpk,i

=

∫ 1
10punik,i

(
nk
nk,i

)
p
nk,i
k,i (1− pk,i)nk−nk,i · 1dpk,i∫ 10punik,i

0

(
nk
nk,i

)
p
nk,i
k,i (1− pk,i)nk−nk,i · 1dpk,i

=

∫ 1
10punik,i

p
nk,i
k,i (1− pk,i)nk−nk,i dpk,i∫ 10punik,i

0 p
nk,i
k,i (1− pk,i)nk−nk,i dpk,i

=
B(nk,i + 1, nk − nk,i + 1)−B(10puni

k,i ; nk,i + 1, nk − nk,i + 1)

B(10puni
k,i ; nk,i + 1, nk − nk,i + 1)

=
1− B(10punik,i ; nk,i+1,nk−nk,i+1)

B(nk,i+1,nk−nk,i+1)

B(10punik,i ; nk,i+1,nk−nk,i+1)

B(nk,i+1,nk−nk,i+1)

=
1− I10punik,i

(nk,i + 1, nk − nk,i + 1)

I10punik,i
(nk,i + 1, nk − nk,i + 1)

=
1− F (10puni

k,i ; nk,i + 1, nk − nk,i + 1)

F (10puni
k,i ; nk,i + 1, nk − nk,i + 1)

(8.14)

8.2.4.4 Results and discussion

The likelihood and posterior of the null hypothesis are shown in Figure 8.4. The results of the

frequentist and Bayesian hypothesis test are the same. It turns out that S2,1 is a 2-edge

contingency motif, S3,1, S3,3 and S3,4 are 3-edge contingency motifs, and S4,1, S4,2, S4,3 and S4,4

are 4-edge contingency motifs. pH0 is probability of a pattern not being a motif. The lower the

probability, the more unlikely that a pattern is not a motif. It shows that stars (S2,1, S3,1, and

S4,1) are the most significant motifs.

In the graph representation of the power system, only lines are considered as elements of

multiple contingencies, and node outages (mainly generators and transformer outages) are not

considered. However, line outages usually accompany node outages, and they have equivalent

effect on the power flow model. As for physical elements in power systems, multiple contingencies

involve primary devices (generators, lines, transformers, compensators, circuit breakers, bus-bar

sections) and secondary devices (protections and telecommunication equipment). Outages of

these devices would result in multiple contingencies of transmission lines. NERC standard [103]
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Sk,i p-value pH0 motif

S2,1 0. 0. True

S2,2 1 1. False

S3,1 0. 0. True

S3,2 1 1. False

S3,3 0. 3. × 10-26 True

S3,4 0. 4. × 10-12 True

S3,5 1 1. False

S4,1 0. 1. × 10-39 True

S4,2 0. 2. × 10-8 True

S4,3 0. 2. × 10-18 True

S4,4 0. 1. × 10-9 True

others S4,* 1 1. False

Figure 8.4: Contingency motifs.

suggests seven categories of contingencies related to various devices, and they can be further

grouped into three types: N − 1, N − 1− 1, N − 2 and N − k. For example, category P3 is

single-phase short circuit to ground of a bus-bar section. If the bus-bar section connects k lines,

then a N − k contingency occurs.

Multiple contingencies can be divided into dependent contingencies and independent

contingencies. Dependent multiple contingencies are closely related to bus configurations and

protective relay design . It needs a lot of effort to build a detailed power system model including

the relays [104]. Scheduled maintenance, planned and forced outages change the topology of the
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power network, and hidden failures in protective relay system are inevitable. There are also

common environment multiple contingencies that are caused by extreme weather or other

external factors. Network motifs are used successfully in biology as a technique to identify

functionally important local structures in gene transcription regulation networks; we show that

contingency motifs in power systems can assist engineer by indicating multiple contingencies with

high probabilities. The existence of the motif is a result of complex physical dependencies in

power systems. Given motifs in a power network, engineers with field knowledge can better

identify vulnerable sites in the network.

Two-edge stars could be two transmission lines connected on the same bus-bar section faulted

simultaneously by coincidence, primary protection fails and zone 2 protection is activated, a

bus-bar section connecting two transmission lines faults, a circuit breaker or a tie break stuck in a

Breaker and Half substation, hidden failures of relay systems, etc. In the first cause, the two line

outages are independent because one line outage does not necessarily cause the other line outage;

while for the rest of the causes, the two line outages are dependent via physical or engineered

structure. On the other hand, S2,1 exist in common mode contingencies. A common mode

contingency is a multiple contingency caused by a single event where outages are not

consequences of each other [105]. For example, a single lightning stroke can cause two line outages

on a common tower. Thus, S2,1 as a motif usually reflects some inherent dependence of two lines.

The causes for three-edge and four-edge stars could include faults of transmission lines

connected on the same bus-bar section, faults of bus-bar sections, transformers outages, and

breaker stuck, etc. S3,3 is composed of three lines in a row. A possible cause is that these three

lines are in a protection control group. S3,4 is a triangle, which is a special local structure in the

power network that is limited in number.

The exactly inherent physical dependence for a specific motif is not clear without detailed

knowledge of a system, but their existence implies a direction to study multiple contingency

mechanisms in detail, such as protection groups, remedial action schemes, or common mode

contingencies.
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8.3 Diameter distribution of multiple contingencies

Multiple contingencies not only form connected subgraphs but also disconnected subgraphs.

This section inspects the spatial extent of connected and disconnected subgraphs of multiple

contingencies.

Multiple contingencies have different frequencies when they have different extent in the

network. For example, in Figure 8.1 the subgraph with lines 1− 3 and 4− 5 has larger extent

than the subgraph with lines 1− 3 and 1− 6. To quantify the extent of a subgraph, we define a

diameter for the subgraph. The diameter of a subgraph is the longest distance between any two

lines in the subgraph, in which the distance is the minimum number of nodes of a network path

joining two lines.

The distance of any two lines li, lj is defined as [1, 106]:

d(li, lj) = minimum number of nodes of a network path joining li to lj (8.15)

and the diameter of a k-edge subgraph sk,i = (ll, ..., lm) with some pattern Sk,i is:

d(sk,i = (ll, ..., lm)) = max
i,j

d(li, lj) (8.16)

For example, the distance between line 1-2, 1-6 in Figure 8.1 is d(1− 2, 1− 6) = 1,

d(1− 2, 4− 6) = 2, and the diameter of 3-edge subgraph d(s3,3 = (1− 2, 1− 6, 4− 6)) = 2.

Figure 8.5 shows the histogram of the diameters of contingency subgraphs formed from outage

data. It also shows the diameter distribution when we randomly select k-edge subgraphs under

the uniform assumption. The diameter distribution of N − k is not the same as that of randomly

selected k-edge subgraphs. Therefore, the diameter distribution of outages is not a result of the

power network topology.

We fit the diameters of contingency subgraphs into a Zipf distribution. Figure 8.5 shows that

the PDF of the fitted Zipf distribution matches the empirical diameter distribution. Also, the

Kolmogorov–Smirnov goodness-of-fit test has a p-value 0.99.
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Figure 8.5: Histogram of diameters of subgraphs form by multiple contingencies (yellow bars), the
fitted Zipf distribution (red dots), and histogram of diameters of random k-edge subgraphs drawn
from the power network (gray bars).

The PDF of the fitted Zipf distribution is

P (d(sk,i = (ll, ..., lm)) = x) =
x−ρ

H(r, ρ)
, x = 1, ..., r (8.17)

where H(z) =
∑r

x=1 x
−ρ is the generalized harmonic number. r is the range of x because the

diameter of the power network is limited. The maximum likelihood estimations [107] of

parameters are r̂ = 10 and ρ̂ = 2.37.

8.4 Estimating probabilities of multiple contingencies

Since multiple contingencies occur much frequently in contingency motifs, and multiple

contingencies with large diameters do occur. Thus, we can partition the whole contingency space

according to different patterns and their diameters. The idea of the partition is illustrated in

Figure 8.6. The ellipse represents the space of multiple contingency subgraphs, which include

N − 2, N − 3, and N − 4. According to different patterns, N − k are further divided into groups

Sk,i. Furthermore, disconnected Sk,i are divided into subgroups according to their diameters.
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Each cell represents a Sk,i with a specific diameter d, and multiple contingencies sk,i in each cell

are assumed to be uniformly distributed.

Figure 8.6: Partition of multiple contingency subgraphs. Each cell represents a pattern Sk,i with a
specific diameter d, and multiple contingencies sk,i in each cell are uniformly distributed.

We build a probabilistic model for estimating the probability of the multiple contingency sk,i

with k lines ll, ..., lm based on statistics of outage data. That is,

P (sk,i = (ll, ..., lm))

=P (k, Sk,i, d, sk,i)

=P (k)P (Sk,i, d, sk,i|k)

=P (k)P (Sk,i|k)P (sk,i, d|k, Sk,i)

=P (k)P (Sk,i|k)P (d|k, Sk,i)P (sk,i|k, Sk,i, d)

=P (k)P (Sk,i|k)P (d|Sk,i)P (sk,i|Sk,i, d) (8.18)

where P (k) is the probability of the number of line outages, P (Sk,i|k) is the probability of

pattern Sk,i given k line outages, P (d|Sk,i) is the probability that pattern Sk,i has diameter d, and

P (sk,i|d, Sk,i) is the probability of a specific multiple contingency given its pattern and diameter.
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8.4.1 Probability of the number of line outages

It is natural to estimate the probability P (k) by

P (k) =
nk∑4
k=2 nk

(8.19)

The distribution of k is shown in Table 8.1.

Table 8.1: Distribution of the number of line outages in a contingency.

k 2 3 4

P (k) 0.72 0.23 0.04

8.4.2 Probability of a pattern given the number of line outages

Then, we determine the probability P (Sk,i|k), which is also pk,i. The probability of patterns

are estimated during the detection process. That is P (Sk,i|k) = pobs
k,i as shown in Table 8.2.

Table 8.2: Distribution of patterns P (Sk,i|k)

Sk,i S2,1 S2,2 S3,1 S3,2 S3,3 S3,4 S3,5 S4,1 S4,2 S4,3 S4,4 S4,∗
P (Sk,i|k) 0.809 0.191 0.583 0.244 0.141 0.024 0.008 0.391 0.217 0.217 0.087 0.087

8.4.3 Probability of the diameter of a contingency given its pattern

Section 8.3 actually gives the marginal distribution of the diameter. Here, we estimate the

conditional distribution of the diameter given a pattern Sk,i for the probabilistic model.

For a connected contingency subgraph sk,i, the diameter provides no new information or

negligible information. Connected sk,i for k = 2, 3, 4 except s4,4 have a constant diameter.

Diameters of s2,1, s3,1, s3,4, and s4,1 are all 1; diameters of s3,3 and s4,3 are both 2. Although the

diameter of s4,4 is 2 or 3, 98% of s4,4 have diameter 3 in the BPA network. Therefore, the

diameter distributions of different connected contingency patterns (for k = 2, 3, 4) can be modeled

as degenerate distributions with probability 1 at a constant diameter. Since Sk,∗ has a small

probability but contains many different patterns, it is convenient to assume subgraphs in Sk,∗ are

uniformly distributed.
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For a disconnected contingency subgraph sk,i, the diameter is always greater than 1. For

example, the minimum diameter of s2,2 is 2. Given a disconnected pattern Sk,i, the diameters

observed in outage data are distributed according to some distribution. Let

P (d (sk,i = (ll, ..., lm)) |Sk,i) (or P (d|Sk,i) for simplicity) denote the conditional diameter

distribution given a disconnected pattern Sk,i. It can be estimated from the outage data.

However, due to limited outage data, we assume diameter distributions P (d|Sk,i) for disconnected

Sk,i are the same and we estimate it by lumping all disconnected contingency subgraphs together.

That is, P (d|Sk,i) = P (d| all disconnected Sk,i), and it is represented by the empirical

distribution estimated from the outage data.

In summary, the diameter distribution conditional on pattern Sk,i is computed by

P (d|Sk,i) =


1 Sk,i ∈ C

P (d|Cc) Sk,i ∈ Cc
(8.20)

where C is the union of connected patterns and S4,∗,

C = S2,1 ∪ S3,1 ∪ S3,3 ∪ S3,4 ∪ S4,1 ∪ S4,3 ∪ S4,4 ∪ S4,∗; and Cc is the complement of C, the union of

disconnected patterns, Cc = S2,2 ∪ S3,2 ∪ S3,5 ∪ S4,2.

8.4.4 Probability of a contingency given its pattern and diameter

Finally, assume that subgraphs of a pattern Sk,i with diameter d are uniformly distributed.

That is, P (sk,i|Sk,i, d) is a discrete uniform distribution as shown in (8.21). |Sdk,i| denotes the

number of subgraphs in Sk,i with diameter d. It is approximated by sampling a large number of

sk,i and computing their diameters, which is shown in Table 8.3.

P (sk,i|Sk,i, d)) =
1

|Sdk,i|
(8.21)

Thus, given a specific multiple contingency sk,i = (l1, ..., lm), we can estimate its probability

through formula (8.18) by substituting values in Table 8.1 and 8.2, and computing probabilities

by (8.20) and (8.21).
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Table 8.3: Number of distinct subgraphs with different diameters in Sk,i

d |Sd2,2| |Sd3,2| |Sd3,5| |Sd4,2|
2 6592 47035 10129 110725

3 14330 133813 333798 232684

4 22607 203860 1442182 414143

5 27069 231926 3395950 522119

6 25360 201685 5041582 475201

7 18777 133339 5069585 318717

8 11653 73988 3781098 160323

9 6283 36730 2327380 75294

10 2897 15178 1213277 34563

8.5 Contingency selection scheme

Contingency selection aims to select a list of credible contingencies sorted by their probability

and/or impact for detailed analysis. There is no well-established scheme for multiple contingency

selection. The practice is to select N − k according to expert knowledge or operator’s experience.

We aim to augment the engineering judgement with an objective method driven by observed data.

By analyzing outage data, we find that multiple contingencies occur more frequently in

contingency motifs and that close lines tend to fail simultaneously more frequently than far away

lines. Based on these, we propose a probabilistic model to estimate the probability of a multiple

contingency. However, it is not practical to compute probabilities for all multiple contingencies

because of the enormous number of possible contingencies. Therefore, we propose a systematic

scheme to select multiple contingencies by sampling according to the probabilities of multiple

contingencies. Formula (8.18) implies the systematic scheme of sampling a multiple contingency.

This scheme is comprised of four steps: (1) sample k according to P (k); (2) sample Sk,i according

to P (Sk,i|k); (3) sample diameter d according to P (d|Sk,i); (4) sample a sk,i uniformly from all

subgraphs in pattern Sk,i with diameter d. The first three steps are straightforward as the

random variables are represented by integers. However, the fourth step is tricky because there is

not an effective way to find all subgraphs sk,i with pattern Sk,i and diameter d and randomly

draw one from these subgraphs. Instead, we sample a sk,i by drawing lines sequentially. For
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N − 2, we first draw a line randomly; then we find all lines that are distance d from the first line;

finally, we randomly draw a second line to form a N − 2 together with the first line. For N − 3,

we draw the first line randomly and draw the second line that is distance d from the first line, as

we do for N − 2; then, we randomly draw the third line from lines that have a distance not

greater than d from either the first or the second line and forms the desired pattern together with

the previous two lines. For connected N − 4, the distance is fixed. We first sample a 3-edge

subgraph, which is a subsubgraph of the desired pattern, and then sample the last line randomly

from lines that can form the desired pattern. For s4,2, we first draw a 3-edge star s3,1 and then

draw a line that is maximum distance d from any of the three lines in the star. For s4,∗, we

randomly sample 4 lines; if they do not form s4,∗, we sample again until they form a s4,∗.

8.6 Case study

We use 19 years of historical outage data recorded by a utility and publicly available at [7] to

test the contingency selection scheme. The network topology is deduced from the data using [1].

The first 14 years of data is used to estimate the probabilistic model and then sample a

contingency list; then, we evaluate the percentage of contingencies in the last 5 years that are

covered by the contingency list.

To evaluate the performance of the proposed contingency selection scheme, we compare the

contingency list to a same size list produced by a random scheme based on the uniform

assumption. The random scheme randomly selects multiple contingencies with equal probability.

Specifically, it samples the number of line outages k according to P (k) and then randomly

samples a N − k contingency by draw k lines randomly from all lines.

Using the systematic scheme, we draw 10,000 contingency samples that form a contingency

list. Contingencies with high probabilities generally appear in the top of the list, but we can

compute their probabilities and sort contingencies in descending order of the probability. Table

8.4 shows the top three contingencies and their probabilities. They have the same probability
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because they all belong to S2,1. We also show the probabilities of all contingencies in the list in

Figure 8.7.

Table 8.4: The three most probable contingencies.

ID Sk,i outaged lines probability

1 S2,1 {348− 365, 348− 385} 1 0.0003

2 S2,1 {342− 378, 350− 378} 0.0003

3 S2,1 {340− 353, 340− 354} 0.0003
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Figure 8.7: Probabilities of contingencies in descending order.

Let M(r) be the percentage of actual contingencies in test data that are predicted by the

contingency list that contains r contingencies. Figure 8.8 shows how M(r) increases as r

increases. It is obvious that the systematic scheme is much more efficient than the random

scheme. Since the systematic scheme is a sampling method, we draw ten groups of samples with

size r to estimate the mean and standard deviation of M(r). For the systematic scheme, the

average M(10000) is 82%, and the standard deviation is 2%; for the random scheme, the average

of M(10000) is only 10%.

1{348− 365, 348− 385} stands for a N − 2. 348− 365 is a line with bus 348 and bus 365.
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Figure 8.8: Percentage M(r) of contingencies in test data that is predicted in the contingency list
with r samples for the proposed systematic scheme (blue) and the random scheme (orange). The
blue line does not start at 0 because we compute M(r) for r = 500, 1000, 1500, ...

There is a correspondence between Figure 8.7 and Figure 8.8. Even though we draw samples

randomly, the contingencies with high probabilities are more likely to be drawn at the early stage.

Therefore, the curve in Figure 8.8 has a high derivative at the beginning and then the curve

becomes nearly flat. The first 3000 contingencies covers about 75% of contingencies in the test

data. On the other hand, the first 3000 random contingencies covers only 4%.

8.7 Conclusion and discussion

This study analyzes the spatial patterns of multiple contingencies using historical outage data.

Some patterns occur significantly more frequently than others in outage data, and we define them

as contingency motifs. The existence of these motifs in the power network reveals the physical

dependencies of the power network. Contingency motifs indicate the basic functional groups as a

result of bus configurations and protection systems in the power grid. They point out an

objective way of selecting contingencies for detailed analysis based on historical outages.
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Some patterns are disconnected subgraphs. The network diameters of contingency subgraphs

follow a Zipf distribution. The Zipf distribution has a heavy tail, which implies multiple

contingencies that contains far away components do occur.

Based on the above two findings, this study formulates a probabilistic model to estimate

probabilities of multiple contingencies. The probabilistic model implies a systematic scheme to

sample contingencies to form a contingency list with the most likely contingencies appearing first.

The study tests the effectiveness of the systematic scheme by training the probabilistic model on

the first 14-year outage data and testing it on the last 5-year outage data. It turns out that the

systematic scheme is much more efficient than the random scheme: 10,000 sampled contingencies

produced by the systematic scheme contain 82% of the multiple outages in test data, while 10,000

sampled contingencies produced by the random scheme only contain 10%. As the systematic

scheme is a sampling method, more likely contingencies are sampled first. For example, the first

3,000 samples cover 75% of contingencies, in contrast to 6% for the random scheme.

We can sample multiple contingencies according to the systematic scheme and estimate the

probabilities of these contingencies. This approach based on observed contingencies is

complementary to methods of determining multiple contingencies by engineering knowledge of

specific mechanisms. One advantage of contingency motifs is that their probability is estimated

from routinely collected outage data. It is often difficult to get data on the probability of specific

engineering mechanisms for multiple contingencies. Then, for industry, detailed analysis can be

conducted to evaluate the severity/impact of different contingencies. As the risk is the product of

the probability and severity, this would lead to a risk-based contingency analysis. The systematic

scheme is a sampling method that can be flexibly used in planning or on-line analysis. Moreover,

instead of selecting initial outages randomly, this systematic scheme gives a practical method of

selecting initial outages for cascading study and resilience evaluation.
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Figure 8.9: Power network of a utility derived from outage data [1]. Highlighted subgraphs with
different colors are five multiple contingencies.



139

CHAPTER 9. CONCLUSION AND CONTRIBUTION

9.1 Conclusions

Outage data are routinely collected by utilities. Data-driven methods are needed to extract

useful information from real outage data.

To study the cascading phenomena, line outages are grouped into cascades and generations

within a cascade. Then, a Markovian influence graph is formed from the cascade data. The

Markovian influence graph describes the probabilistic interactions between generations. It is a

rigorous Markov chain and reproduces the distribution of cascade sizes in the cascade data. The

quasi-stationary distribution of the Markov chain gives the probabilities of lines involved in long

cascades. This distribution indicates critical lines in the propagation of cascading outages.

The Markovian influence graph driven by historical data can be used to simulate cascades,

assuming some initial outages. Sampling of the Markovian influence graph is easily improved to

allow sample size uniformly distributed across all sizes of cascades. This produces more samples

than straightforward sampling from a Markov chain. Therefore, we can better estimate the risk of

large cascades that are rare but significant. The cascade samples are comprised of specific line

outages. The probability distribution of the load shed is estimated by a model-based simulation

OPA. We estimate the conditional distribution of load shed given the number of line outages, and

then the load shed of cascades is the weighted sum of the conditional distribution of load shed.

There are strengths and limitations of the Markovian influence graph based on historical data

versus model-based simulation. The two simulation approaches are complementary.

The Markovian influence graph is validated by two tests. The first test shows that the

influence graph captures the mitigation effect produced by different upgrading measures. The

mitigation is simply modeled by adjusting the transition probabilities to critical lines. However,

the mitigation effect is dependent on the modeling of cascades and the measurement of cascade
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sizes. The second test shows that the assumption that line outages only depend on the preceding

line outage is reasonable. The result of the Markovian influence graph and another Markov

model, in which the current line outages depend on all previous line outages, is consistent.

One essential and fundamental reliability is calculating the individual transmission line outage

rates. As the line outages are infrequent, the outage data is limited. To better estimate the

individual line outage rates, the study proposes a Bayesian hierarchical model that leverages line

dependencies. This Bayesian hierarchical model produces estimates that have a lower standard

deviation than simply dividing the number of outages by the time period. It estimates the

distribution of individual line outage rates, which is an advantage compared to methods that only

produce point estimates. The Bayesian estimates of individual line outage rates benefit the

reliability calculations. This thesis demonstrates this by three applications: detecting lines with

reduced reliability, estimates outage rates for specific causes, and testing the effect on the system

unavailability calculation.

Contingency selection is one of the key functions of power system operation and planning.

Analysis of the historical outage data shows that multiple contingencies occur frequently in

contingency motifs of the power network, and that the diameter of contingency subgraphs follows

a Zipf distribution. Based on these two findings, a probabilistic model of multiple contingencies

and the corresponding contingency selection scheme are proposed. The systematic sampling

scheme is more efficient than random sampling contingencies.



141

9.2 Contributions

The Markovian influence graph

• uses real data observed and routinely collected by utilities.

• obtains a clearly defined influence graph that solves the problem of multiple simultaneous

outages by using additional states with multiple outages. This generalized influence graph

rigorously defines a Markov chain.

• mitigates the problems of limited cascading data with several new methods; in particular, it

combines Bayesian methods of estimation with elaborate methods of distinguishing and

combining different events. This better estimates the transition matrices of the influence

graph while matching the increasing cascade propagation and retaining possibilities of

analysis.

• computes the probabilities of small, medium and large cascades, and these match the

historical data statistics.

• makes innovative use of the bootstrap to estimate the standard deviation of the

probabilities of small, medium and large cascades. This allows checking that the estimated

probabilities of small, medium and large cascades are accurate enough to be useful.

• identifies critical lines most involved in large cascades directly from the Markov chain as the

quasi-stationary distribution contains the probability of lines involved in large cascades.

• is validated on simulations for mitigation modeling and KMC model for the assumption

that outages only depend on preceding outages.

• simulates cascade samples that encompass rare large cascades assuming some initial

damages by extreme events.
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The Bayesian hierarchical model

• estimates annual outage rates for individual transmission lines more accurately by

leveraging partial similarities between lines, including proximity, length, and rated voltage,

especially when the annual outage counts are low or the data is limited.

• has performance better than the conventional method of simply dividing the number of

outages by the number of years observed, especially when the data is limited. The estimates

have a lower standard deviation for given data, or the same standard deviation for less data.

For one-year data, the standard deviation halves comparing to the conventional estimates.

• instead of pooling lines with one characteristic in common, gives a way to combine multiple

partial similarities between lines.

• provides not only point estimates of line outage rates, but also the uncertainty.

• shows that line length and rated voltage correlate with line outage rate, but the correlation

is not strong.

• works using a single standard line outage dataset routinely collected by transmission

utilities worldwide.

• benefits for reliability evaluation. Applications are detecting lines with deteriorated

reliability, estimating rates for specific causes, and computing more accurate system

availability.

The analysis of spatial characteristics of initial outages

• finds that multiple contingencies occur much more frequently in contingency motifs of the

power network.

• finds that the network diameter of multiple contingencies follows a Zipf distribution.

• helps to construct a probabilistic model to estimate the probability of multiple contingencies.
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• produces a systematic scheme for multiple contingency selection, which is much more

efficient than random sampling. Specifically, 10,000 samples cover 82% contingencies, in

contrast to 10% using random scheme; furthermore, the first 3,000 samples cover 75%

contingencies, in contrast to 6% using random scheme.

9.3 Future work

• The Markovian influence graph driven by historical data and model-based simulation are

complementary. We can combine the two approaches through the influence graph by forming

the Markovian influence graph from historical data and simulation data for the same

system, then taking the weighted sum of the two transition matrices. Combining different

data sources into the same influence graph would be particularly useful when extending the

influence graph to interactions between the power grid and other critical infrastructures.

• Study a standard and easy-to-use cascading outages simulation environment considering

uncertain renewable energy. Chapter 5 uses different cascade simulations to test the

influence graph. We find that the modeling methods of cascading outages have different

mitigation results of blackouts. This makes it difficult for researchers to test and compare

different mitigation measures. Therefore, there is a need to make a standard and easy-to-use

cascading simulation environment. Moreover, as more renewables are integrated into the

power system, the uncertainty of high-penetration renewables should be considered in the

cascading simulation.

• Study operational actions to mitigate cascading outages. Mitigation strategies are needed

for both planning and operation. This work studied the mitigation in planning by

upgrading critical components. [108] shows that cascading outages have a slow phase before

blackouts, which justifies that mitigation actions can be taken during the propagation of

cascading outages. Therefore, more research can be conducted on blackout mitigation

strategies for operation.
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9.4 Publications

Journal

1. K. Zhou, I. Dobson, Z. Wang, A. Roitershtein, A. P. Ghosh, “A Markovian influence graph

formed from utility line outage data to mitigate large cascades,” IEEE Transactions on

Power Systems, vol. 35, no. 4, pp. 3224-3235, Jul. 2020.

This paper corresponds to the material in Chapter 3.

2. K. Zhou, J. R. Cruise, C. J. Dent, I. Dobson, L. Wehenkel, Z. Wang, A. Wilson, “Bayesian

estimates of transmission line outage rates that consider line dependencies,” IEEE

Transactions on Power Systems, vol. 36, no. 2, pp. 1095-1106, Mar. 2021.

This paper corresponds to the material in Chapter 6.

Conference

1. K. Zhou, I. Dobson, P. D. H. Hines, Z. Wang, “Can an influence graph driven by outage

data determine transmission line upgrades that mitigate cascading blackouts?,” in IEEE

International Conference on Probabilistic Methods Applied to Power Systems (PMAPS),

Boise, ID, USA, Jun. 2018.

This paper is not included in this thesis as Chapter 3 describes a better solution to the

problem.

2. K. Zhou, I. Dobson, Z. Wang, “Can the Markovian influence graph simulate cascading

resilience from historical outage data?,” in IEEE International Conference on Probabilistic

Methods Applied to Power Systems (PMAPS), Liege, Belgium, Aug. 2020.

This paper corresponds to the material in Chapter 4.

3. K. Zhou, J. R. Cruise, C. J. Dent, I. Dobson, L. Wehenkel, Z. Wang, A. Wilson, “Applying

Bayesian estimates of individual transmission line outage rates,” in IEEE International
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Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Liege, Belgium,

Aug. 2020.

This paper corresponds to the material in Chapter 7.
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APPENDIX A. Deriving the quasi-stationary distribution

The quasi-stationary distribution can be derived in a standard way [109,110]. Let dk be a

vector with entry dk[i] which is the probability that a cascade is in nonempty state si at

generation k given that the cascade is propagating, that is

dk[i] =
P[Xk = si]

P[Xk 6= s0]
=

πk[i]

1− πk[0]
, i = 1, ..., |S|

Then the quasi-stationary distribution is d∞ = limk→∞ dk.

Diagonal entries of Q̄1+ corresponding to P̄1+ are all zero and all other entries are positive.

According to the Perron-Frobenius theorem [111], Q̄1+ has a unique maximum modulus

eigenvalue µ, which is real, positive and simple with left eigenvector v′. By normalizing v′, we

make v′ a probability vector. We write w for the corresponding right eigenvector. Moreover,

0 < µ < 1 and µ is strictly greater than the modulus of the other eigenvalues of Q̄1+. Suppose the

cascade starts with probability distribution π0 (note that π0[0] = 0). According to (3.5), the

probability of being in state i at generation k is πk[i] = (π0P0P1...Pk−2Pk−1)[i] = (π0P
(k−1))[i].

In particular, the probability that the cascade terminates by generation k is

πk[0] = π0P
(k)[0] = π0P

(k)e0. Then for i = 1, ..., |S|,

dk+1[i] =
πk+1[i]

1− πk+1[0]
=

(π0P
(k))[i]

1− π0P (k)e0
=

(π0P
(k))[i]

π0P (k)(1− e0)

The first row of Pk is always [1 0 ... 0]. Since π0[0] = 0, let π0 = [0 π̄0]. Then

π0P
(k)(1− e0) = π̄0Q

(k)1 and (π0P
(k))[i] = (π̄0Q

(k))[i] for i = 1, ..., |S|. And

Q(k) = Q̄0Q̄
k−1
1+

∏k
m=0(1− αm), so that d∞ = limk→∞ dk+1 is

d∞ = lim
k→∞

p̄0Q
(k)

p̄0Q(k)1
= lim

k→∞

p̄0Q̄0Q̄
k−1
1+

∏k
m=0(1− αm)

p̄0Q̄0Q̄
k−1
1+

∏k
m=0(1− αm)1

=
p̄0Q̄0µ

k−1wv′

p̄0Q̄0µk−1wv′1
= v′

where Q̄(k−1) → µk−1wv′ as k →∞. Therefore, the dominant left eigenvector of Q̄1+ is d∞.
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For our data, the top three eigenvalues

in modulus are µ = 0.502 and −0.136± 0.122 i with corresponding moduli 0.502 and 0.381.
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APPENDIX B. Why use varying transition matrices?

The propagation rate increases as the generation increases because the situation is worse as

more outages occur. If the transition matrix is constant, however, the propagation rate converges

to a constant fast. Therefore, we need to use a variant transition matrix to capture this

characteristic.

Suppose P is a constant matrix. Then from (3.18), the propagation rate for generation k is

ρk =
π0P

k(1− e0)

π0P k−1(1− e0)
(B.1)

Since the model is an absorbing Markov chain, the stationary distribution is

e′0 = [1 0 ... 0]. As k →∞, π0P
k → e′0 + µk2c2v2, where µ2 is the second largest eigenvalue of

P and v2 is the corresponding left eigenvector, c2 is a constant depending on π0. The

convergence rate depends on the third largest eigenvalue µ3. The gap between the true value and

the limit is proportional to ‖|µ3|k‖ as ‖π0P
k(1− e0)− µk2c2v2(1− e0)‖ = o(‖|µ3|k‖). Then,

lim
k→∞

ρk =
µk2c2v2(1− e0)

µk−1
2 c2v2(1− e0)

= µ2 (B.2)

The four largest eigenvalues are: 1, 0.50, − 0.36 + i0.12, − 0.36− i0.12

(| − 0.36− i0.12| = 0.38). After five generations, the gap to the limit is below 0.01. So the

propagation rate is nearly constant after five generations. This is verified in the data by

calculating the propagation rate for each generation.

Therefore, if the Markov chain has a constant transition matrix, ρk is not increasing. So we

need variant P for different generations to have increasing generation propagation rates.
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APPENDIX C. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a sophisticated sampling algorithm combining ideas from

Markov chains, rejection sampling, differential geometry, and numerical integration of

Hamiltonian dynamics. This appendix reproduces the HMC Algorithm 1 from [97], briefly

outlines how the algorithm works differently than other Markov chain Monte Carlo (MCMC)

methods, and then recommends both tutorial and advanced references to HMC. Some general

familiarity with MCMC is assumed.

Algorithm 1 Hamiltonian Monte Carlo

Given θ0, ε, L,L,M :

for m = 1 to M do

Sample r0 ∼ N (0, I).

Set θm ← θm−1, θ̃ ← θm−1, r̃ ← r0.

for i = 1 to L do

Set θ̃, r̃ ← Leapfrog(θ̃, r̃, ε).

end for

With probability α = min{1, exp {L(θ̃)−0.5r̃·r̃}
exp {L(θm−1)−0.5r0·r0}},

set θm ← θ̃, rm ← −r̃.
end for

function Leapfrog(θ, r, ε)

r̃ ← r + (ε/2)∇θL(θ).

θ̃ ← θ + εr̃.

r̃ ← r + (ε/2)∇θL(θ̃).

return θ̃, r̃

HMC has similar overall form as other Metropolis-Hastings Monte Carlo methods in that it

proposes and probabilistically accepts successive samples of parameters to sample effectively from

the posterior probability density. The successive samples are transitions in an ergodic Markov

chain designed so that its final steady state distribution is the posterior probability density.

However, HMC samples differently than other methods in an enlarged space. In the notation of

Algorithm 1, the parameter vector θ of “position” variables is augmented with a vector of
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“momentum” variables r to form an enlarged space of twice the dimension in which the successive

samples are taken. The enlarged space enables Hamiltonian dynamics, where the “potential

energy” L is the negative logarithm of the joint pdf of θ, and the “kinetic energy” is 1
2r · r.

Suppose the sampler is at (θ0, r0) in Algorithm 1. To propose a new sample at (θ̃, r̃), the

initial momentum r0 is sampled from a Gaussian distribution, and then the Hamiltonian

dynamics is integrated for L integration steps with integration step size ε. A symplectic leap-frog

integrator that interleaves integration steps is used in order to preserve the Hamiltonian

structure. Then the proposed sample is probabilistically accepted or rejected in a way similar to

the Metropolis algorithm. Hoffman [97] proposed the No-U-Turn Sampler to avoid hand tuning

the parameters L and ε controlling the integration.

To understand why HMC works, we refer readers to the approachable and intuitive

expositions in [96] and [112, Cha.15] for expert explanations of the algorithm and to [97,113–115]

for further technical analysis. In particular, Betancourt discusses how HMC is “uniquely suited to

the high-dimensional problems of applied interest.” [96] and how HMC can tackle the correlations

induced by hierarchical models [113]. The No-U-Turn Sampler has at least the same efficiency as

a well-tuned HMC algorithm [113]. The convergence is usually checked by empirical diagnostic

tools [115]. Also, we carefully set the initial values of the parameters to make the convergence

faster by exploring the outage data in Section III.
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APPENDIX D. Convergence of sampling algorithm

This appendix uses four methods to check the convergence of the Hamiltionian Monte Carlo

algorithm used to sample the posterior distributions, including potential scale reduction factors,

effective sample size diagnostics, trace plots, and autocorrelation plots. In addition, we check that

the algorithm is not getting stuck in a local mode in the posterior distributions.

The Gelman-Rubin potential scale reduction factor diagnostic R̂ is often used to check

Markov chain Monte Carlo convergence [115]. R̂ is defined as the ratio of the estimated pooled

variance to the estimated within-chain variance (see [45, Sec. 11.4] for the equations of R̂). Figure

D.1 plots the iterates of R̂ for all parameters at increments of 20 iterations from four parallel

Markov chains. Figure D.1 shows that all R̂s converge and are less than 1.1 after 400 iterations.
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Figure D.1: Iterates of R̂ for all parameters computed from four parallel Markov chains at incre-
ments of 20 iterations.
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As suggested by Gelman [45], we also compute the effective sample size n̂eff , which is the

equivalent number of independent samples that have the same standard error of the sample mean

of the parameter as the Markov chain samples (see [45, Sec. 11.4] for the equations of n̂eff ). It

turns out that n̂eff s for all λs are greater than 100 per chain after 300 iterations, which shows

that the estimates are reliable.

Graphical methods provide another way to check convergence. We make trace plots and

autocorrelation function plots for each variable to check whether the chains are mixing and have

large autocorrelation. It is not practical to show all the plots here. Instead, we randomly select

four parameters to show the trace plots (Figure D.2) and autocorrelation function plots (Figure

D.3). The two chains have mixed, and the autocorrelation decreases quickly and tends to zero.
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Figure D.2: Trace plots of two chains of four randomly selected λs.
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Figure D.3: Autocorrelation function plots of four randomly selected λs.

Based on the results of the four methods of checking convergence, we conclude that there is

no evidence of nonconvergence.

To check that the algorithm is not getting stuck in a local mode in the posterior probability

distribution, we simulate two additional Markov Chains with random initial values sampled from

a uniform distribution over the support of parameters. Each of these additional Markov Chains

has 3000 iterations in which the first 2500 samples are burn-in and are thrown away. We compare

the posterior distributions of all parameters estimated from the additional chains and the original

chain with the initial values in the body of the paper, and we find no convergence issues.

Moreover, as we are most interested in the outage rates λ, we implement a Kolmogorov-Smirnoff

test on the corresponding distributions of outage rates of the two chains that start with random

values. All the λs except two are judged to be from the same distribution with a significance level
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0.01. And these two λs have close means (0.32 and 0.33, 0.14 and 0.15) and close standard

deviations (0.14 and 0.13, 0.08 and 0.08).
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