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For a given minimum cost of the electricity dispatch, multiple equivalent dispatch solutions may

exist. We explore the sensitivity of networks to these dispatch solutions and their impact on the

vulnerability of the network to cascading failure blackouts. It is shown that, depending on the

heterogeneity of the network structure, the blackout statistics can be sensitive to the dispatch solution

chosen, with the clustering coefficient of the network being a key ingredient. We also investigate

mechanisms or configurations that decrease discrepancies that can occur between the different

dispatch solutions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967736]

The OPA (ORNL-PSerc-Alaska) model has been used to

explore the power networks’ robustness as characterized

by the risk of large failures and temporal dynamics. In

this model, the power demand is increased at a constant

rate while the generation is periodically increased in

response to the demand. In doing so, the system keeps the

generation capacity margin above a given value. Each

day power is dispatched, and generation is selected and

optimized to exactly balance the load with minimum cost.

This optimization problem is degenerate (there can be

more than one optimal solution), so many different dis-

patch procedures are possible. As one might expect, even

if the dispatch solutions are exactly equivalent from the

optimization point of view (they reach the same optimal

value), it is found that the long term statistics of the prob-

lem (power law tails, risk of failures, etc.) can be quite

different. In this work, we try to understand how the

structure of the network affects the sensitivity of the long

term statistics to the dispatch solution chosen. We have

found that linked networks are more sensitive to the dis-

patch chosen than homogeneous networks. In other

words, in the case of linked networks, the simulation

results can strongly differ when the dispatch is modified.

Of particular note, the average clustering coefficient of

the network is found to be one of the key measures that

affect such sensitivity: the higher it is, the stronger the

sensitivity of the long term statistics to the dispatch cho-

sen. A possible explanation of such behavior is that a

small clustering coefficient reduces the degeneracy of the

problem. In addition, we study different ways of reducing

the sensitivity to the dispatch in the linked network.

From a practical standpoint, the results can be used to

properly apply the dispatch solution that is superior to

the others from the computational point of view.

I. INTRODUCTION

Power transmission networks as well as many other

critical infrastructure networks come in a wide variety of

shapes and sizes but share the characteristics that they are

responding to ever-changing demands and are being pushed

ever closer to their operational limits. This push toward their

operational limit, combined with the operational and engi-

neering responses when there are failures, gives the system

characteristics of a critical point, heavy tails (failure size

probability distribution functions that decay as a power law),

and long time correlations. Understanding these characteris-

tics is critical to both doing realistic risk analysis of cascad-

ing blackouts and to assessing the impact and risks of

changes to the system and mitigation schemes.

We use the OPA (ORNL-PSerc-Alaska) model to

explore the power networks’ robustness as characterized by

the risk of large failures and temporal dynamics. The OPA

model1–3 was developed to study the long-term patterns of

blackout of a power transmission system under the complex

system dynamics of an increasing power demand and the

engineering responses to failure. In this model, the power

demand is increased at a constant rate while also being mod-

ulated by random fluctuations. The generation capacity is

automatically increased when the capacity margin is below a

given critical level. From the numerical point of view, OPA

solves at least one optimization problem for the calculation

of the power generation-demand and transmission (the dis-

patch solution) per “day”. Each optimization problem is

solved using the Simplex algorithm.4–6

Using the OPA model, we have been able to study and

characterize the mechanisms behind the power law tails in

the distribution of the blackout size. These algebraic tails

obtained in the numerical calculations are consistent with

those observed in blackouts of real power systems.7–13 Most

importantly, the OPA model permits us to separate the

underlying causes for cascading blackouts from the triggers

that initiate them and therefore explore system characteris-

tics that enhance or degrade resilience and reliability of the

power transmission grid. One of these characteristics, the

one investigated here, is the network structure and the het-

erogeneity of the network induced by linking homogeneous

structures. With these different network structures, the issue

of multiple different “optimal” dispatch solutions in systems

of varying degrees of homogeneity can then be investigated.
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This is both relevant and important because many of the

real, large transmission grids are the result of linking smaller

networks, and understanding risk vulnerability from both

the network structure and dispatch operations is critical. A

major example is the Western region of North America (the

Western Electricity Coordinating Council or WECC) in

which the population dense areas have denser grids that are

interconnected by a smaller number of lines.14 The resultant

inhomogeneous grid looks like a loop of pearls (Fig. 1). The

aim of this paper is to show that this type of grid characteris-

tic may complicate the modeling of the dispatch of electric-

ity in order to properly analyze the propagation of the

cascading failures through the system. These issues will be

examined with the OPA model.

In more detail, to test the sensitivity of different net-

works to the electricity dispatch, we use three variants of the

Simplex algorithm in order to have different dispatch solu-

tions for the same minimum of the cost. The difference

between variants is in the pivot rule chosen. Under these dif-

ferent dispatch conditions, we will compare the dynamics of

three sequences of networks. Each sequence is composed by

a set of networks, each of them with a different number of

nodes (from 100 to 1600). The sequences differ in the topo-

logical properties of the networks.

In a recent related work, the letter by Liu and Li17 also

describes the multiplicity of different dispatch solutions

using OPA, some with similar generation cost, and shows

that the dispatch solutions that maximize or minimize the

number of overloaded lines during the cascade have differ-

ent total costs that are the sum of the generation and out-

age costs. They suggest that the worst case dispatch should

be considered in assessing cascading risk and that opera-

tors should be advised of the dispatch plans that best mini-

mize cascading. In our work, the emphasis is on the

relation between the structure of the network and the dis-

crepancies between the different dispatch solutions. Also

we study how such discrepancies can be minimized with a

slight modification of the model or the dispatch. If the dis-

crepancies between dispatches are small, there is an extra

benefit: the computationally most efficient dispatch can

be used, reducing the wallclock time required for the

simulations.

The rest of the paper is organized as follows. Sec. II

briefly describes the OPA model and Sec. III discusses the

type of networks used in this paper. Section IV discusses the

sensitivity to the dispatch solutions and looks for the origin

of the underlying differences. Sec. V shows modifications in

the dispatch in order to reduce the discrepancies between the

different solutions. Finally, Sec. VI summarizes the work.

II. THE OPA MODEL

To study the long time complex systems dynamics of

the power transmission system, we use the OPA model.1–3

The OPA model calculates the long time behavior of a power

transmission system under the forcing of an increasing power

demand and the engineering/operational responses to failure

in order to study the cascading failures in the system. In this

model, the network is composed of a set of nodes i ¼ 1;
…;N that can be generators or loads (or a mix of both).

The nodes are connected via a set of transmission lines

j ¼ 1;…;M. The power demand Pi in a load node i increases

at a constant rate k plus daily random fluctuations with vari-

ance c. There are two sorts of upgrades to meet the increase

in demand. Transmission lines are upgraded as engineering

responses to blackouts and maximum generator power is

increased in response to the increasing demand. The trans-

mission lines selected for upgrade are those overloaded

transmission lines involved in a blackout. The transmission

lines are upgraded by increasing their maximum flow Fmax
j

limits at rate l. On generator nodes, the maximum genera-

tion power Pmax
i increases automatically when the capacity

margin, DP=P, is below a given critical level. In the present

studies, this is done by increasing the power limit on all gen-

erators so we keep the same generation profiles as in the

existing situation.18,19

The OPA model for a given network represents trans-

mission lines, loads, and generators with the usual DC load

flow approximation. Starting from a solved base case, black-

outs are initiated by random line outages. Whenever a line

is outaged, the generation and load are redispatched using

standard linear programming methods. Since the generation

capacity of the grid is larger than the usual power demand,

it is necessary to determine which generator should be used

to balance the load in an optimal way that minimizes costs

FIG. 1. A 2504 node model of the

WECC. Color indicates the base case

voltage phasor angle.
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and satisfies the transmission constraints. If any lines were

overloaded in the minimization solution, then these lines are

outaged with probability p1. The process of redispatch and

testing for outages is iterated until there are no more out-

ages. Then, the total load shed is the power lost in the

blackout.

Because of its importance, the minimization process is

now described in detail. The cost function to be minimized

Zðp1;…; pNÞ ¼
X

generators

aipi þ
X
loads

100pi; (1)

where ai ¼ 1 (except in Sec. V) and pi is the power injected/

extracted on node i (depending if node i is a generator or

load). Note that pi > 0 for generator nodes and pi < 0 for

load nodes. The objective is to find the set of values for pi

that minimizes Z subject to the following constrains:

• Overall power balance:

XN

i¼1

pi ¼ 0

• Line flow limits:

�Fmax
j � fj � Fmax

j ; j ¼ 1;…;M

• Load limits:

�Pi � pi � 0; i load

• Generator limits:

0 < pi < Pmax
i ; i generator

Note that, because the weighting of the loads (100) is larger

than the weighting of the generators (ai), the priority in the

minimization process is to satisfy the loads demand when-

ever possible (this is, �pi ¼ Pi for i ¼ 1;N).

To solve the proposed minimization problem, we use

the Simplex method.4–6 There are two stages in the Simplex

algorithm. In the first stage, a “feasible” solution is found

that solves the problem but is not necessarily the optimal

solution. The second stage is a search procedure to find the

optimal solution by following paths in the solution space.

This search procedure requires formulating the problem in

the matrix form and carrying out a standard iterative algo-

rithm. In each iteration, a process called pivoting swaps one

of the variables associated with a column in the matrix with

one variable associated with a row in the matrix. We will not

go into more detail of pivoting here but rather refer the

reader to the specialized bibliography.15,16 The interesting

point is that the pivoting procedure can be understood as the

way in which the solver looks for the optimal solution. This

is in a sense the dispatch method so that different pivoting

rules can be thought of as different dispatch rules. The better

the solver is, the faster the optimal solution is found. There

are many ways of doing the pivoting called “pivot rules”. In

this work, we have chosen three different pivoting rules for

the three solvers that we use:

• Solver 1 uses one of the first pivot rules developed, the

Dantzig rule.4,15 Roughly speaking, in each iteration, the

solver just looks for the variable whose maximization

coefficient is larger.
• Solver 2 uses the Devex pivot rule,16 an approximation of

Steepest-edge rule (see solver 3).
• Solver 3 uses the Steepest-edge rule.20 This rule chooses

the variable for pivoting that, when modified, gives the

largest gradient of the maximization function in the solu-

tion space. This rule is generally thought to work very

well for many optimization problems.

From the computational point of view, Solver 1 is the

slowest of the three; it is about 10 times slower than the

Solver 3. Solver 2 is the fastest, being about a factor of four

faster than the Solver 3. One could expect that applying the

three solvers to the same network problem, the same optimal

solution would be found. However, in our problem, depend-

ing on the network, sometimes the three solvers find different

solutions.17 Despite the different solutions, the cost function

reached is the same for the three solvers. This indicates

degeneracy in the problem, something that might be

expected because many configurations of the generators can

supply the power to the loads and thus have the same cost.

This degeneracy is even more noticeable for the present cal-

culations because we have the same cost for all generators in

the networks.

We can interpret the three solvers as three different dis-

patch policies that have different effects depending on the

network structures. Thus, it is interesting to study the sensi-

tivity of our results to the “dispatch policy” used. It should

be noted that this study does not aspire to systematically

study the possible and potentially more intelligent ways of

doing a correct power dispatch. However as an initial inves-

tigation of possible effects of different dispatch rules, inter-

esting results are obtained, even with the simple selection of

solvers just described. Furthermore, techniques to reduce the

discrepancies between the solutions while preserving the

complex dynamics will allow us to use the computationally

most efficient solver.

Finally, the parameters that we use in the OPA model

are shown in Table I. Of the six basic parameters that control

the slow time evolution of the system in OPA,1,2 four (the

demand growth rate, the generation margin, the load vari-

ance, and the upgrade rate) have been estimated from the

data available for the US power transmission grid14,21 and

are shown in Table I. The other two model parameters,

which are very important in the determination of the dynam-

ics, are the probability p0 of failure of a component by a

daily random event and the probability p1 of a transmission

TABLE I. OPA parameters used.

Variable name Symbol Value

Daily rate of increase of the demand k 1.00005

Critical generation margin Dp=p 0.2

Variance of loads c 1.15

Upgrade rate l 1.07
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line overload becoming an outage. p0 represents the chances

of random accidental failures while p1 is a measure of the

reliability of system components and their interactions,

which impacts the propagation of failures through the sys-

tem. Ranges for p0 and p1 can be estimated from data though

with less certainty. Therefore, several values of p0 and p1

will be considered in what follows.

III. NETWORKS USED IN THE CALCULATIONS

Using the parameters discussed, the main additional

input to OPA is a model network. The OPA model has been

validated against the real WECC network using different

size network models and real grid models.14 In this work, we

use three sequences of artificial networks with realistic net-

work characteristics, each of them composed of networks

with 100, 200, 400, 800, and 1600 nodes.

• The first sequence is composed of homogeneous artificial

networks generated using the method of Wang et al.21 In a

first stage of the method, the N nodes of the network are

placed with a uniform random distribution in a square of

normalized area S¼ 1. In a second stage, a set of links are

found such that they follow a prescribed distribution for

the average node degree and the average line length. The

impedance of each line is obtained as a function of its

length. Let us name this sequence of networks H. Thus,

H100 will refer to the homogeneous network of N¼ 100

nodes, H200 to the homogeneous network of N¼ 200

nodes, and so on. Here, when we use the word homoge-

neous we refer to the topological and engineering proper-

ties of the network, not to the possible space distribution

of the network. We use the term homogeneous to contrast

with the linked networks that will be introduced later. By

increasing/decreasing the area while keeping the average

node degree and average line length constant, the sparsity

of the nodes increases/decreases and mean distance (in

hops) between nodes increases/decreases.
• The second sequence of networks is constructed by linking

a number of the homogeneous networks, each of which

contain a prescribed number of nodes. Each of the homo-

geneous networks, after the linkage, will be referred to as

a zone. Here, we use balanced linked networks, which are

networks with similar levels of power generation and

demand in each of the homogeneous zones. The resistivity

of the linking lines has been chosen following the distribu-

tion of resistivity in the homogeneous networks. The case

H100 is used as base for each zone. Let us name this

sequence of networks as L. Thus, a linked network com-

posed of 4 clusters of 100 nodes will be named as L4�100.

Two examples are shown in Fig. 2. For the whole L
sequence, the different zones are connected by a ring topol-

ogy. It is important to avoid confusions and make clear that

these networks are in reality networks formed from loosely

interconnected sub-networks, but we use the denomination

linked networks to be brief when referring to them.
• Finally, a third sequence will be used (named Hbig) also

composed with the same algorithm as sequence H. The

reason for introducing this sequence is to obtain a homo-

geneous sequence similar to L (the linked one) from the

point of view of the structure of the network. In particular,

we try to obtain a similar curve for the average node path

length and the average clustering coefficient to that of the L
sequence. These quantities are important to characterize the

structure of a network and will be introduced in detail later

in this section. As shown in Fig. 3, both the average node

path length and the average clustering coefficients have a

strong dependence on S, the area of the square used for

building the networks. Thus, this will be the parameter

used as a degree of freedom to build the sequence Hbig. In

particular, the networks in the sequence are built with

S ¼ N=100, this is, the area of the network grows linearly

with the number of nodes. For visual comparison, in Fig. 4,

the standard H800 homogeneous network is shown in the

left panel and Hbig
800 is shown in the right panel.

There is still an open issue. When building the sequence

L, we limited the number of links between zones to 2 (to

keep the non homogeneity of the network), but there are

many ways one can link the zones. One important criterion

we use in the linking process is to minimize the cost of trans-

ferring energy from one zone to another. If we choose the

nodes to be connected in such a way that the average path

length between nodes in the network hli has the lowest possi-

ble value, the transmission costs are minimized. In practice,

the minimization of hli or the average resistance hgi of the

lines between nodes leads to the same linked solutions

because the impedence is proportional to the line length. The

length hli is defined as the average value of li over all nodes:

FIG. 2. Examples of four (left) and

eight (right) 100 node linked networks:

L4�100 and L8�100, respectively. Each

zone is colored differently.
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hli ¼ 1

N

XN

i¼1

li; (2)

where li is the average path length of node i to all other

nodes:

li ¼
1

N

XN

j¼1

dij; (3)

where N is the number of nodes in the network and the dis-

tance dij between the node i and node j is defined as the mini-

mum number of lines traversed in going from one node to

another. A similar definition to that of hli can be used to

define hgi.
In the case of the sequences of the homogeneous net-

works H and Hbig, the average path length hli increases very

slowly with the number of nodes of the network, as shown in

Fig. 5. However, in the case of a linked network the value of

hli depends on how the network has been constructed. If we

just choose the nodes to be linked at random, the average

path length between each node and all the other nodes can be

very large compared with the homogeneous case, as shown

in Fig. 5. This is because in going from one node to any other

we have to move through the linking lines when we go from

one zone to the other and the position of the linking lines

may not be optimal to minimize this distance. On the other

hand if, as previously mentioned, hli is minimized in the

linking (and thus the cost), then the hli scaling is similar to

those of the homogeneous cases. This last option is the crite-

ria for the construction of the network sequences L used in

the rest of the paper. As a side note, it is interesting to notice

that using this linking criterion for the networks not only

minimizes transmission costs but also reduces the vulnerabil-

ity of the network to large size failures as we have shown in

Ref. 22.

The average path length between nodes is one of the

measures that are typically used when analyzing networks.

There is another important measure used less frequently, the

average clustering coefficient, which measures the degree to

which nodes in a network tend to cluster together. The aver-

age clustering coefficient �C can be defined as23

�C ¼ 1

N

XN

n¼1

Cn; (4)

where Cn is the local clustering coefficient of the node n:

FIG. 3. Average path length hli and averaged clustering coefficient �C for

networks of size N¼ 800 as a function of network area S. The algorithm

used to compose the networks is the same used when building sequences H
and Hbig but keeping N constant and modifying the value of S.

FIG. 4. Comparison of the homoge-

neous networks H800 (left) and Hbig
800

(right).

FIG. 5. Average path length in the network as a function of size for the dif-

ferent sequences of networks analyzed (H, L, Hbig) and random linked.
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Cn ¼
en

kn kn � 1ð Þ ; (5)

where kn is the number of neighbors of n and en is the num-

ber of connected pairs between all neighbors of n.

As explained, the homogeneous sequence Hbig was built

to emulate the structure of the linked sequence L. As seen in

Fig. 6, both network sequences show a large very constant
�C, when compared with the sequence H that decays with the

size of the grid. The constant �C associated with the sequence

Hbig makes sense when we realize that the area of the net-

works grows linearly with N as S ¼ N=100: if for example,

we duplicate the number of nodes of the network at the same

time as the area, the connectivity between nodes found by

the algorithm that built the networks will be, on average, the

same. And the value of S¼ 1 for the case N¼ 100 makes

that network equivalent to the H100, and this is because both

sequences converge in Fig. 6 at the point N¼ 100. Of course

at that point also the linked sequence will converge because

L1�100 is also equivalent to H100.

In Sec. IV, using the three sequences of networks just

described, we will analyze how important the differences are

between the simulations of the different solvers (dispatch

solutions), the underlying reasons for them in the model, and

what effect the network structure has on the differences.

IV. OPA RESULTS FOR THE NETWORK SIZE SCAN:
SENSITIVITY TO THE DETAILS OF THE DISPATCH

A. Homogeneous sequence H

Now we can start to investigate the effect of different

dispatch procedures on different network structures. First,

we use the OPA model with each of the three solvers intro-

duced in Sec. II to study the dynamical evolution of the

sequence of homogeneous networks H100, H200, H400, H800,

and H1600. Once again, the three solvers give different solu-

tions for dispatch, although the minimum cost is the same

for the three solvers. For a fixed set of parameters, we can

compare the failure statistics of the model systems with the

different dispatch procedures (really the different solvers).

For this sequence of networks, the statistical results are

remarkably virtually the same for the three solvers within the

expected statistical uncertainty due to the finite size of the

samples, as shown in Fig. 7. In this work, we will start by

focusing on two measures of the failure statistics important

for complex system dynamics. In Fig. 7(a), we compare the

frequency of blackouts for the solutions of the three solvers.

These results are for p1 ¼ 0:037 and p0 ¼ 0:00025, although

similar results are obtained for other values of the parame-

ters. We can see the similarity of the frequency curves for

the 3 solvers, although there is a systematic deviation, still

within error bars, for solver 2, giving slightly higher values

of the blackout frequency. It should be noted that the

increase in frequency with size in this figure comes from the

fixed p0 which causes p0N, the total probability of a trigger,

to grow with size. In Fig. 7(b), for the H1600 network we

have plotted the Rank function of the load shed during each

blackout normalized to the total power demand. The Rank

function measures the complementary cumulative distribu-

tion function (ccdf) and is a method for measuring the tail of

the distribution and therefore the probability of the large rare

events that can dominate the risk. Again, we can see that the

results obtained by the three solvers are very close. These

results from the OPA model seem to indicate that although

the dispatch solution is different for the three solvers, it does

not matter for the statistical results of the model for the

homogeneous networks of varying size.

B. Linked sequence L

Following the same reasoning, we now apply the same

analysis with the same OPA parameters to a sequence of linked

networks. Remember that each linked network is built by link-

ing several 100-node homogeneous networks. The particular

networks used are L1�100; L2�100; L4�100; L8�100, and L16�100,

and the results for this sequence are quite different from the

sequence of homogeneous networks. In Fig. 8(a), we have

again plotted the frequency of blackouts. The minimum costs

for the three solvers are, as with the homogeneous networks,

relatively close. However, the blackout size distributions are

completely different, as is shown in Fig. 8(b). The Rank func-

tions have very different tails for the three cases considered.

The tail for the first dispatch method, solver 1, is somewhat

heavier than that for the third, solver 3, while the distribution

for the second method, solver 2, has a very heavy tail.

Differences can also be studied as a function of one of

the most important metrics of the problem from a practical

point of view: the risk of blackout. There are many ways to

calculate Risk. One measure for the risk is proposed in Ref.

24. In brief, the measure is an integrated value for the risk

taking into account the size of the blackout into the cost. The

risk associated with failure i is then defined as:

RiskðiÞ ¼ ProbabilityðiÞ � CostðiÞ: (6)

The probability of an event Probability(i) is obtained from

the OPA simulations. The cost associated with the event

Cost(i) is more difficult to accurately determine, as discussed

in Ref. 24.

However, based on that reference and as a simple first

approach, the cost is set proportional to the product of energy

lost during the blackout,25 that is, the power lost times the
FIG. 6. Average clustering coefficient �C in the network as a function of size

for the three types of network sequences H and Hbig and L.
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duration of the blackout. The duration of the blackout we

assume to be proportional to the size of the blackout and

therefore to the energy lost is proportional to the square of

the blackout size. Then, for an event with load shed Lshed the

risk is

Risk Lshedð Þ ¼ BP2 � probability Lshedð Þ � Lshed

P

� �2

; (7)

where B is a constant and P is the total power demand and

Lshed=P is therefore the normalized load shed. Finally, the

total risk value is obtained by integrating Eq. (7) over all

possible load shed and using the load shed distribution

obtained from the OPA simulations. The interested reader

can find more details of the implementation on the reference.

Here, we only use the risk as an integrated measure of the

differences between dispatch solutions. In Fig. 9, we show

the risk as a function of the network size for the linked

sequence. The differences between solvers grow with the

system size N, probably due to the extra degrees of freedom

that allow the solvers to increase the divergence.

As previously discussed, the three solvers give the same

value for the minimum cost for the same initial condition of

the solver; however, the solutions are clearly not the same

and the probability of a large failure, and the tail, is greatly

different in the three cases. We can find some of the causes

of these differences by looking at the distribution of the frac-

tional loading of the lines, Mi, coming from the different

solvers with the same conditions of the network. The frac-

tional line loading for line i, Mi, is the ratio of the power

flow in line i, Fi, to the maximum power flow allowed in this

line, Fmax
i . Using identical initial conditions for the different

solvers after calculating the dispatch on a single iteration, we

can plot the distribution of the Mi for the two solvers that

give the maximum discrepancy. The results for solvers 2 and

3 are shown in Fig. 10(a) for the H1600 network and in Fig.

10(b) for the L16�100 network. The distribution has a peak

FIG. 7. (a) Frequency of blackouts as a

function of the size of the homoge-

neous network and (b) rank function of

the load shed for the particular case

H1600. They are obtained with the OPA

model for the three solvers.

FIG. 8. (a) Frequency of blackouts as a

function of the size of the linked net-

works and (b) rank function of the load

shed for the L16�100 network. They are

obtained with the OPA model for the

three solvers.

FIG. 9. Risk measure as a function of the nodes number N for the L
sequence of networks using the different solvers. The three sequences con-

verge on the case N¼ 100 because there is only one zone, so this case is

equivalent to the homogeneous H100.
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above Mi ¼ 0:8 because of the combination of two effects.

On one hand, the self-organization of the system drives the

lines to be close to their operational limits so lines move Mi

to be above 0.8. On the other hand, for Mi � 0:9, lines fail

with probability p1 so there are few lines with Mi above 0.9.

For the homogeneous network, the fractional line load-

ing given by the solvers to each line is not the same for all

lines; however, the overall distribution is very similar. Note

that solver 2 has a few more lines over the value of M¼ 0.9,

so this solution is slightly more vulnerable. For the linked

network, the difference between distributions is dramatic;

solver 3 gives a very much more conservative solution than

solver 2’s solution with lower values of M. Because the p1

gives the probability of failure of lines with M> 0.9, for the

same value of p1, the solution from solver 2 has a larger

chance of failure and the subsequent cascading process will

be a great deal longer. This is an indication that the linked

systems are more sensitive to a dispatch than the homoge-

neous ones, and the vulnerability of the system varies with

the details of the dispatch solutions.

The increased overloading of lines by solver 3 in the

linked network case may be a consequence of the selection of

generators from which the dispatched power is chosen. For

the same case shown in Fig. 10(b), we show in Fig. 11 the dis-

tribution of the generation power by the zones that have been

linked. The demand is practically the same in the 16 zones;

however, the power generation dispatch varies depending on

the solvers. Solver 3 gives a practically uniform dispatch by

zones; this is the solver with lower values of Mi and a less

heavy tail. However, the generation varies a great deal from

zone to zone for solver 2; this dispatch also has most of the

higher values of Mi and the heaviest tail. Solver 1 gives more

variation in the generation distribution than solver 3, but is

not as bad as solver 2 and hence has the tail which is in the

middle in terms of heaviness. Finally, note that any trend in

Fig. 11 is purely algorithmic: each node has associated an

ordering number when the network is build (with a ring topol-

ogy). The dispatch solver tends to pick up this order of the

nodes in beginning of the dispatch. For example, solver 2 tries

to dispatch starting from the lowest node number generator,

which is one of the roots of its problems (visible in Fig. 11 as

an unbalance in the generation).

Naturally, in real systems, the operators do the most

intelligent dispatch they can and some of the problems men-

tioned here might not be relevant in a real network; however,

they are important in the building of models for the net-

works’ dynamics in order to do the optimal dispatch. The

present results indicate that the Solver 3 does the best job. In

Sec. V, we will discuss methods to reduce the vulnerability

of the networks to the type of dispatch.

C. Homogeneous sequence Hbig

An important issue still left open is whether the sensitiv-

ity of the networks to the dispatch is only due to the fact that

they were linked networks or if there are other possible

parameters that could also be affecting their sensitivity to

dispatch. In this section, we investigate homogeneous net-

works where the parameter S (the area where the nodes of

the network are placed) is varied as S¼N/100. Remember

that the effect of this variation is to obtain similar structural

properties to the linked sequence, while keeping the homoge-

neous character. The corresponding sequence is composed of

the networks Hbig
100; Hbig

200; Hbig
400; Hbig

800, and Hbig
1600.

FIG. 10. Distribution of the fraction of

load of the lines after a single step

using solvers 1, 2 and 3 for: (a) H1600

network and (b) L16�100 network.

FIG. 11. Distribution of the generation power by the zones for the L16�100

network using the three solvers.
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We find that the Hbig sequence shows a similar sensitiv-

ity to the dispatch to that of the linked one. An example of

the size distributions is shown in Fig. 12. It is clear that the

big network with dispatch solver 2 has the heavier tail, very

similar to the linked networks. This result is not surprising

from the structural point of view, because both sequences are

similar. But from a modeling point of view, both sequences

have a very different origin, so it is important to be careful

and not suggest that the linking property is the only property

responsible for the enhanced discrepancies between the dif-

ferent solvers. The parameter S (area of the network) can

also have a similar effect as perhaps could other parameters.

D. Effect of hli and �C on the discrepancies

Up to this point, we have found that, due to the degener-

acy of the problem, the different solvers (the different dis-

patch solutions) can cause different results in the long term

complex system dynamics. The differences between the

results of the simulations can be enhanced or reduced depend-

ing on the structure of the network. It is important to empha-

size here that the dispatch solutions applied to each network

simulation are exactly the same, but the difference between

the simulations final results depends on the network structure.

In this section, we try to determine the correlations between

this difference and the structure of the network interpreted as

an undirected graph. Namely, is there any graph measure that

correlates with the discrepancy? There are many related

works studying the interplay between the power grid and its

topology (see, for example, Refs. 26 and 27) but here we par-

ticularize the analysis to the OPA model results. We do not

find large changes in the average path length hli curves

between the three sequences studied (Fig. 5), which suggests

that it is not a critical measure in distinguishing between the

networks sensitive to the solver and those which are insensi-

tive. However, the average clustering coefficient �C curves of

the different sequences (Fig. 6) show interesting differences.

Both network sequences L and Hbig that present the largest

differences between the different dispatch methods (espe-

cially for large N) also show a large �C, when compared with

the sequence H which is rather insensitive to the solver used.

This suggests a correlation between a high value of �C and

large differences between the different dispatch solutions.

The fact that the sequence Hbig is completely different from L
but is similar from the structural point of view and shows a

similar behaviour to that in the L cases also adds support to

this argument.

An interesting question opens up: why is a large value

of �C correlated with the differences? A possible explanation

is that a large clustering coefficient allows for many more

ways of dispatching the power to different nodes and regions

(see Fig. 13), giving extra degrees of freedom that increase

the degeneracy of the minimization problem. Thus, the dif-

ferences in the solutions between the different Simplex solv-

ers can be large. On the other hand, a small clustering

coefficient does not allow for many options of dispatch,

keeping the solutions of the different Simplex solvers close.

Finally, it is important to add that the parameter �C is not

the only ingredient, even if it is an important one. For exam-

ple, the linked sequence L shows a similar value for the �C in

all the network sizes. The discrepancy between solvers

increases with the number of nodes, so N is also an important

parameter.

V. OPA RESULTS FOR THE NETWORK SIZE SCAN:
REDUCING THE DISPATCH VARIABILITY

In this section, we will explore modifications in the dis-

patch solution required to reduce the discrepancy between

the different Simplex solvers. This helps in understanding

the underlying dynamics, understanding what makes a good

versus bad dispatch and also results in more robust dispatch

FIG. 12. Rank function of the load shed for the H
big
800 network for solvers 1, 2

and 3.

FIG. 13. Example of simple networks

with different clustering coefficients:

(a) �C ¼ 1, (b) �C ¼ 0:3, and (c) �C ¼ 0.

Clearly the network (c) will show less

possible dispatch solutions and thus

less degeneracy.
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solutions that are independent of the algorithm used for the

minimization. Also it allows the use of the Simplex solver

that is computationally more efficient. The results of Sec. IV

suggest three approaches to solving the discrepancies

between the solvers’ dispatches.

One simple approach considers the vulnerability of the

lines as arising from the distribution of the lines with

M> 0.9 combined with the value of p1. The value of p1 is

obtained by fitting the rank function curve for the load shed

in the real systems data. If our objective is modeling a realis-

tic network, we can use any of the three solvers and by

adjusting the value of p1, we obtain the desired overall vul-

nerability (load shed curve). This can be seen in Fig. 14 for

the L4�100 network. With systematic adjustment of p1, the

rank functions can be modified from showing a large dispar-

ity (the left panel) to very good agreement (right panel). Of

course, because the dispatch is different (each solver makes

different decisions), the obtained value for p1 will differ.

That is, since the dispatch has not been modified, the system

dynamics has to be modified in order to force the solutions

to converge. A possible application of this approach could be

to obtain the required p1 value for each of the dispatch solu-

tions, based on a prescribed load shed rank function. Based

on the results, because p1 is a measure of the reliability of

the lines in the network, the more reliable are the lines the

more robust is the system (load shed rank function pushed

down). In particular, solver 2 requires a smaller value of p1

in order to show the same performance as the other solvers,

which precludes it from the engineering point of view. The

preferred dispatch would be from solver 3, the least restric-

tive in terms of p1. Finally, these kinds of analyses have to

be done with care, because the fitting process accounts for

the risk discrepancy, but not necessarily the dynamical

differences.

A second approach consists of keeping the original p1,

but introducing modifications to the conditions of the dis-

patch to make them agree better, in particular, adding a small

random perturbation in the generator costs (values of ai in

the cost function Z, Eq. (1)). Thus, from the many possible

solutions due to the degeneracy of the problem, the random

perturbation in the generation costs favors one of them. We

cannot prove that there is only one solution so it could be

cases where degeneracy still persists even with the proposed

modification. However, the case studied shows an almost

complete destruction of the degeneracy. This is, the three

solvers converge to the same solution. The result is shown in

Fig. 15 for the L4�100 network (the same case studied in the

first approach). In that case, a perturbation of one part in a

thousand is applied to the generators costs and, as can be

noted, the three solvers’ results match almost perfectly.

However, even if this seems a good approach, there is some

risk behind its use. It could happen in some cases that the

results are very sensitive to the particular random perturba-

tion chosen. This can happen because the random cost per-

turbation forces the three solvers to make the same choice

between all the possible degenerated states, but there is no

guarantee that this choice models properly the desired dis-

patch. The solution of course is not to do a random perturba-

tion but an intelligent one, as we discuss in the third approach.

In the third approach, useful for the case of linked net-

works, we ensure a more efficient distribution of the genera-

tion of electricity in each of the subsystems that we have

FIG. 14. Rank function of the normal-

ized load shed for the L4�100 network

using the three solvers, (a) for a fixed

value of p1 and (b) for values of p1

leading to the same rank function.

FIG. 15. Rank function of the normalized load shed for the L4�100 network

using the three solvers but with a slight random perturbation (on part in a

thousand) on the generator costs.
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linked to avoid the kind of dispatch shown by solver 2 in

Fig. 11. In the OPA model, this can be achieved by lowering

some of the generator costs in each of the zones (modifying

their ai), which reduces transmission of electricity across

zones and forces more of the generation to be local. For the

sequence of linked networks L, we set half of the generators

in each 100 node subsystem to a lower cost and then recalcu-

late the dynamical evolution of the sequence of networks. In

Fig. 16, the results of using the solver 2 with this modifica-

tion of the cost function against the solver 1 are compared to

the original cost function. The analysis is done for the L8�100

and L16�100 networks. Fig. 16 shows a relatively good agree-

ment between both solvers on the blackout size distribution,

when compared with the results of the solver 2 without mod-

ification. Also the risk function shows a better convergence

with the modified solver, as shown in Fig. 17. The reason for

the convergence of the solvers in this approach can also be

understood in terms of what we learned on the second

approach: the variation in the generator costs reduces the

degeneracy of the problem. Even if this third approach does

not allow so good agreement between solvers as the second

one, it will be preferred because of the physical arguments

behind it.

Therefore, by having at least partial generation dispatch

from each of the regions of the linked networks, many of the

problems due to the sensitivity to dispatch solutions may dis-

appear. A similar analysis could be done for the sequence of

Hbig networks as Fig. 4(b) suggests (some clusters can be

found visually), but a more complicated procedure would be

required.

VI. CONCLUSIONS

Using the OPA model, we have been able to study and

characterize the mechanisms behind the power law tails in

the distribution of the blackout size. These algebraic tails

obtained in the numerical calculations are consistent with

those observed in the study of the blackouts for real power

systems. The OPA code uses the Simplex algorithm to calcu-

late the dispatch solutions for the same minimum of the cost

function. For this minimum cost, there may exist several dis-

patch solutions. We use three different solvers to model

some possible dispatch solutions and in this way evaluate the

sensitivity of the networks to the chosen dispatch solution.

These different solutions do not affect the minimum found in

the optimization problem through the Simplex algorithm

(because the solution is not unique) but when they are incor-

porated into the full dynamics of the system they may lead to

different levels of vulnerability.

To explore these effects, we have constructed different

sequences of networks of varying sizes. One is homogeneous

keeping the same distribution of distances between nodes as

we increase the size of the network; another is the same type

(homogeneous) but with the surface of the network increased

in a way proportional to the area. Finally, a third sequence is

obtained by linking smaller networks, using the connection

criteria of minimizing the transmission costs.

The results indicate that for a given network size, the

sensitivity to the dispatch increases when the network is built

from a linked set of smaller networks and also when the area

is increased. From the graph analysis point of view, there is

a strong suggestion that a high averaged cluster coefficient

together with a large size of the network causes increased

sensitivity to the dispatch method used.

FIG. 16. Rank function of the normal-

ized load shed using solvers 1 and 2

and solver 2 with modified generation

cost distribution as a function of the

number of nodes N, (a) for the L8�100

node network and (b) for the L16�100

node network.

FIG. 17. Risk using solvers 1 and 2 and solver2 with modified generation

cost distribution as a function of the number of nodes N.
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We have also explored how to decrease the sensitivity to

the dispatch method. Adding small discrepancies between

generation costs almost completely destroys the degeneracy

of the problem and thus eliminates the sensitivity. A disad-

vantage of that method is the lack of control about the particu-

lar solution at which the degeneracy converges, but an

intelligent non-random choice of the costs could constitute a

good approach. Based on this, another possibility for decreas-

ing the sensitivity consists of forcing the generation to be

partly local by distributing some low cost generation to the

clusters. With either of the two modifications both the rank

function of the load shed and the risk significantly reduce

their sensitivity to the dispatch solution used. This allows the

use of a computationally more efficient solver. In particular,

Solver 2 is computationally more efficient and, in those cases

where its solution is good enough, it should be the preferred

solver.

In future work, a more detailed analysis of the dispatch

solution and risk function in quantitative measures of the net-

work structure (radius of the network, average path length,

averaged clustering coefficient, and/or others) will be done.
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