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Assistant Professor Ian Dobson at the University of Wisconsin-Madison

This thesis investigates nonlinear dynamics, harmonic distortions and
bifurcation instabilities in thyristor switching circuits. The analysis is
directed towards- the study of a Thyristor Controlled Reactor (TCR)
which consists of a fixed reactor and two oppositely poled thyristors.
The dependence of the thyristor switching times on the system states
causes the circuit nonlinearities and is the focus of much of the thesis.
New concepts for instability, dynamic response and damping for TCR
circuits are introduced. These concepts are general and can be extended
to other switching circuits. Useful TCR circuit examples such as the 230
kV Kayenta advanced series compensator and the 230 kV Rimouski static
Var system are used to numerically verify these concepts. We have
found new instabilities in both the Kayenta and the Rimouski systems in
which switching times change suddenly, or bifurcate as a system
parameter varies slowly. Switching time bifurcations are associated with
large distortions of the TCR current or voltage waveforms leading toa

new earlier TCR current zero, the disappearance of a current zero, or a
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Chapter 1

Introduction

Over the last couple of years there has been significant activity in the
development of Flexible AC Transmission Systems (FACTS). Much of
this work has been directed towards advanced series compensation (ASC)
systems based on a thyristor controlled reactor connected in parallel with
a fixed capacitor [8,9,17,18,28]. This resu_lts in a controllable series
impedance element for use in transmission systems. As static switching
circuits such as FACTS proliferate, there is an increasing need to analyze
and understand these circuits and their interactions with power systems.
However, because of the dependence of the thyristor turn on and off
times on the system states, thyristor switching circuits are nonlinear and

very awkward to analyze using standard mathematical techniques [17,25].

L,

T 5 £

Figure 1.1. Basic single phase TCR

This thesis will use the Thyristor Controlled Reactor (TCR) circuit
shown in the Figure 1.1 as an illustrative example for study. This circuit
is a good choice for developing new techniques of analysis since the

number of switching elements is small. Two useful TCR circuits are the
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associated with the thyristor switching times, it is still one of the most
common methods of computing eigenvalues [11,16,23,33]. We have
found the average inductor model very useful in approximately

predicting potential resonance points.

4) The dynamics of a switching circuits may be studied using state space /
averaging. It can be shown that averaging the state space equations is a
good approximation for the pulse-width modulated convertors [34]. On
the other hand, it can give incorrect results for the naturally commutated
circuits such as the .resonant link converters or the TCR circuits. Sanders
in [39] extends this method to study the convertors which switch at lower
frequencies by adding higher order correction terms to the classical
formulation. However, it is not clear how this method can be used to
study circuits with discontinuous modes of operation such as the thyristor

controlled reactor.

5) The nonlinear dynamics of a TCR circuit were studied using the
Poincare mapping from the dynamical systems theory [20,46]. In this
approach, the system state is strobed at discrete times which are spaced
by one period of the fundamental frequency, T and the system is studied
by means of the Poincare map. The Poincare map advances the system
state from one discrete time to the system state at the next discrete time.
If the circuit has a steady state solution of period T, then the Poincare
map has a fixed point. Except for marginal cases, the Poincare map can
be differentiated and a formula for its Jacobian can be obtained. The

Jacobian of the Poincare map evaluated at the fixed point can be used to
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6) The harmonics of a power system which include a three phase
thyristor bridge may be computed using the harmonic power flow
method [51,52]. In this method, the AC current flowing into the
converter terminal is solved in terms of the convertor AC voltage. One
of the drawbacks is that the DC load is assumed to be a series
combination of a resistor, inductor and a DC source. Another drawback
is that the harmonic interactions of the converter and power system can

not be studied when ambient even harmonics are present.

7) Peter Wood in [50] introduced the switching function method to
compute the harmonics generated by converters which have fixed
switching times. Bohmann and Lasseter extended this method to TCR
circuits [7]. By expressing the TCR voltage and current as a Fourier
series, a TCR harmonic admittance matrix is constructed. The admittance
matrix is then incorporated into a power system providing a quick and
general method to compute the power system harmonics. This method is
explained in detail in chapter 3 and is used in chapter 5 to compute the

harmonics of TCR circuits.

Classical analysis is often applicable, but can as demonstrated in this
thesis and in [7,9] fail for certain circuit parameters and operating
conditions. Under these conditions, both the voltage and the current
waveforms become greatly distorted with large harmonic components.
This phenomena is due to the circuit operating close to its resonance
point and can be detected by the eigenvalues of the half wave Poincare

map being -1.
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coupling matrix which illustrates the coupling between the convertor
voltage and current harmonics is developed. It is shown how this matrix
can be incorporated into a power system and how the power system
harmonics can be accurately calculated. In addition, an example system
which exhibits large harmonic distortions and switching time bifurcation
is also presented. In particular, it is shows that there may be two steady
state solutions and/or no solutions over the regions for which the classical

method predicts both the existence and the uniqueness of the solution.

Tac
» %x %
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X X #

Figure 1.2 Single phase line commutated converter




Chapter 2

Thyristor Controlled Reactor (TCR)

Thyristor controlled reactors are typically composed of back to back
thyristors used to vary the duty cycle of an inductor. In periodic steady
state, the effect of the 60 Hz fundamental is to absorb varying amounts of
reactive power from a power system network. Figure 2.1 shows a basic
~ single phase Thyristor Controlled Reactor (TCR). It consists of a fixed
reactor of inductance L (usually air core) and two oppositely poled

thyristors which conduct on alternate half cycles of the supply frequency.

L,
° o\

‘14“) L ¥

Figure 2.1. Basic single phase TCR

A thyristor conducts current only in the forward direction, can block
voltage in both directions, turns on when a firing signal is provided and
turns off after a current zero. The currently available thyristors can
block a voltage range between 4000 to 6000 volts and can carry a current
ranging from 2000 to 4000 amperes. In general, between 10 to 40
thyristor valves are connected in series to meet the required blocking

voltage levels [21].
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2.1 Two circuit examples using TCR

To illustrate some of the potential problems associated with the operation
of TCR switching circuits and methods developed in this report, this
section introduces two commonly used TCR circuits. These circuits are a
single phase static VAR compensator and a single phase advanced series

compensator.
The Static Var Compensator (SVC)

Figure 2.3 shows a SVC consisting of a thyristor controlled reactor
(TCR) and a parallel capacitor. This system is connected to an infinite
bus behind a power system impedance of an inductance L and a
resistance R; in series. The controlled reactor is modelled as a series
combination of an inductor L; and R,.

Ry L R, L
—ANT0 AN—F™

@ ] o E3R

Figure 2.3. Single phase static VAR system

The above circuit can provide leading to lagging reactive power to the
AC system. This characteristic behavior of the 60 Hz fundamental is
approximately equivalent to an ideal system voltage source at the point of
connection except that it has a limited range in which the voltage can be

controlled.
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been directed towards advanced series compensation (ASC) systems based
on a thyristor controlled reactor connected in parallel with a fixed
capacitor. This results in a controllable series impedance element for use

in transmission systems.

Currently there are three such systems in various stages of
commercialization. The Kanayna River system, West Virginia, is a joint
R&D effort by American Electric Power Service Corporation and Asea
Brown Boveri. This FACTS controller has been recently commissioned
[32]. The system was planned to have 788 Mvar of series capacitance or
60% compensation. In the first phase of the project a prototype thyristor
control module has been installed across one phase of 131 Mvar of
compensation to create an ASC system. The remaining two phases will be

installed following successful testing of this unit.

Western Area Power Administration is installing a 230 kV, 330 Mvar
ASC system in northeastern Arizona at Kayenta Substation [8]. This
system is supplied by Siemens AG. This scheme is comprised of 285
Mvar of conventional series capacitor banks with the remaining 45 Mvar
of capacitance controlled by a parallel thyristor controlled reactor.
Implementation of this FACTS scheme has progressed through the

equipment development phases and currently is been installed at the site.

A third scheme is a major Electric Power Research Institute project with
General Electric to develop a thyristor controlled series capacitor. A
second phase of this project is to install such a system on a 500 kV

transmission line in the Bonneville Power Administration region. This
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2.2 Control methods and firing strategies

This section discusses the basic control issues and various firing schemes

which are used to operate the TCR circuits.
Basic control scheme

Figure 2.5 shows a basic TCR control scheme with three function blocks.
The first is the interface block which computes the root mean square of
the TCR voltage. The second block is the regulator block. The input to
this block is the difference between the reference quantities Ver and the
measured quantities Vs and the output is a request value for either the
thyristor conduction time ¢ or the firing delay a. The third block, the
gate pulse generator, generates the firing pulses for the thyristors. The
gate pulse generator usually uses one of the synchronization schemes

described below so as to achieve the requested G or .

o

Compute RMS
o—/J0\ P

| | Ve

Regulator [ Vief

v, ® r

*GOI'(X

' <— G.P.G

Figure 2.5. Control scheme for the TCR
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parameter V.. The phase of the equally spaced firing pulses has some
arbitrary value with respect to the voltage across the TCR. In practice,
this phase would drift relative to the TCR voltage. This is usually

corrected by an external negative feedback loop.

An alternative to the phase locked loop scheme is shown in Figure 2.6
[4]. In this method, the firing pulses are sent whenever the integrator
function V¢ intersects the controller output voltage V.. At this point,
the integrator V¢ is reset and the integration process starts again. The
integrator function and the controller output voltage are chosen such that
the firing pulses are spaced by 180 electrical degrees so that there are

two firing pulses per cycle.

Figure 2.6. Firing pulses using the equidistant firing scheme

Figure 2.6 illustrates how the relative phase of the firing pulses can be
changed by temporarily varying the control signal V.. Let us assume that
the firing pulses have initially a delay angle a with respect to the actual

system. As long as the controller output voltage is fixed, o is also fixed
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conduction and 1.0 when conduction. Integrating this signal results in an
output which exhibits a slope change at the point where conduction stops.
The output of the integrator is negatively biased by a constant value of 2%
as shown in the Figure 2.7c. This signal is input to a zero plus detector
which issues the firing pulses whenever the signal becomes positive. The

resulting firing pulses are shown in the Figure 2.7d.

The main advantage of this scheme is that there is no need for accurate

measurement of either voltage or current.

NC—> :
@) Constant sigma controller =3 Firing pulses
Sp —>
N>
blasT , :
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@

ﬂ

Figure 2.7. The constant sigma controller
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Chapter 3

Tools to Study the Thyristor Controlled Reactor

A thyristor controlled reactor (TCR) is a thyristor based compensator
which is capable of absorbing reactive power from a power system
network. In chapter 2, issues associated with the control and operation
and firing strategies for two useful TCR circuits were studied. These
two TCR circuits are, fhe Static Var Compensator (SVC) and the

Advanced Series Compensator (ASC) shown in Figures 1 and 2.

RS Ls Rr Lr
— AN AN—FON

@u}o v ER

Figure 3.1. Single phase static VAR compensator

L,

v® R, L, C C. ()

IHY)—A-m—¢ Ic )

Figure 3.2. Advanced series compensator

In section 3.1, the classical method of computing the system harmonics is
explained. Section 3.2 introduces a simple average inductor model

useful in approximately predicting potential problems with the operation
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shown by the gray line in the Figure 3.3. In the classical analysis, the
two variables ¢ and o are commonly used in explaining the TCR
operation. G denotes the conduction time of a thyristor while o is the
firing point relative to the voltage across the thyristor. These two
variables are related by 2o + 6 = 2r. Therefore, if the thyristors are
fired at the point where the TCR voltage is at a peak, (o0 = 7/2), full
conduction results (¢ =mx). If the firing is delayed from the peak
voltage, the current becomes discontinuous with a reduced fundamental
component of reactive current. This partial conduction is obtained with

firing angles between 90 and 180 electrical degrees.

......................................

Figure 3.3. Classical operation of a TCR

The classical analysis provides a two step process by which the power

system harmonics can be computed as described below.
Harmonics in a static VAR compensator

First the TCR is modelled as an equivalent harmonic current source:

N=oo

L (0t,0) = ) I, (c)ei™
=l (3.1)
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N=oo

Vi (@,0)= Y V,(6)e™
a1 (3.2)

where V,(0) is the nth harmonic of V. (wt,5). To compute V. (wt,G),
the AC system as seen from the TCR terminals is replaced by a Thevenin

current source Ijy(mt) in parallel with a Thevenin capacitance Cy, as

shown in the Figure 3.7 [8,9].
L,

f g0)
I, (ot) T Cq Vtcr(;x’o-) {_}r

Figure 3.6. Classical method of computing Vi.{ @t,c) in an ASC

w(w) Ry Ly G Vi, (oto) Ly u'(@)
HO—v——je——O—— O

Figure 3.7. Classical method of computing harmonics in an ASC

Power system harmonics are then calculated by replacing the TCR and C;
with Vi (wt,6) as shown in the Figure 3.5. This method ignores the

important harmonic interaction between the TCR and the power system.

3.2 Average inductor model

The average inductor model is a simple and useful method in
approximately predicting potential problems with the operation of a

TCR. In this model, the TCR is represented as a variable inductance
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The harmonic resonant frequency of the system can be computed from

the above equivalent model as:

1 1 1
fres = 2t \/ CL, ¥ ClLego) (3.4

Equation (3.4) implies that the static var system harmonic resonance
frequency depends on the conduction time, o, of the TCR and the
inductive and capacitive components. For example, typical values of
system inductance, fixed capacitor and variable inductance can have
resonance at the 5th harmonic. In this case, this model predicts that the

system experiences large harmonic voltages and currents.
Advanced series compensator

Figure 3.9 shows the application of the average inductor model to the
advanced series compensator example with all the circuit resistances are

ignored.

Ly(0) 4 V,

n

u'(ot) L. C, C, L

HD——w™—¢ € O

Figure 3.9. Modelling the ASC with an average inductor model

The resonant frequency of this system can be computed from the above

equivalent model and is given by:

1 SR
= 2m \/A e C.CLLei(©) )
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The switching function, H(wt), shown in Figure 3.11 has a value of one
whenever a thyristor is on and zero when the thyristors are off. Since a
thyristor turns off when its current goes through zero, the conduction
time, ¢ depends on the turn on time ¢, the terminal voltage V(wt) and
the TCR reactance L,. Therefore the switching function is dependent on

the terminal voltage through the turn on/off time of the thyristors.

L3 ¢,
d
- v e
O T o1t ot
il —l——
Gy P

Figure 3.11. The switching function, H(wt)

The voltage across the TCR inductance V (wt) is the product of the
switching function H(wt) by the terminal voltage V(®t). Assuming
periodicity, the Fourier components of H(wt), Vi(wt) and V(wt) are

related by the matrix equation (for details see the appendix A ):

V-3 hy h, h, Vi-3
V2 | & h; hy h, Vi-2
Via h, h; hy Vi1
L - . . . . T | IR (36)

where h, is a function of ¢4,9;,0, and ¢,. The above matrix equation

illustrates the coupling between the harmonics which is an important
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bus connecting the TCR to the external system as shown in Figure 3.12.
Without the TCR connected, the resulting linear system has a harmonic

Zth matrix.

Yicr

O

‘<—.~<—>’

Figure 3.12. The reduced equivalent system

The equivalent system impedance is the diagonal element of the Zy
matrix corresponding to the TCR bus. In the equivalent system shown

the voltage across the terminals is:
Vi=Vyu-Zy I, (3.10)

Using I, given in equation (3.9) allows an expression for V, to be

written. (I is the identity matrix)
Vo=[I+ZpY(01,01,01,01) ] Ve (3.11)

The zero thyristor current at the switching times (¢;+01) and (¢,+G37)
define two relationships between the times G, ¢, 62 and ¢, and the

terminal voltage harmonics as derived in the appendix A. These are:

0=v,0; + i Vi [ o-im(@i+07) —e‘jm¢‘]
jm for i=12  (3.12)

m=-oo
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Rewriting the above equations yields the following two relationships

between the thyristor switching times.

01+ 02

Oreq = 5 = (3.16)
01-0
02- 01 =7 + 54 (3.17)

The control parameter Greq takes a value from O to T where Greq is a given
control point. Equations (3.11) and (3.12) together with (3.16) and
(3.17) give us a complete set of equations to solve for the periodic
solutions of the system under the constant sigma controller. Note that if
the periodic solution is half wave symmetric we have 01=02=C¢q
otherwise, Oreq represents the average of the two conduction lengths. The
suggested solution algorithm is to use the Newton’s method as was done
earlier for the equidistant firing controller. For initial guess, one may

solve (3.11) for V by choosing ©1=02=0req, $2=0¢1+% and

¢r=m - 5 (3.18)

Computation with the infinite harmonic system vectors and matrices are
made by assuming the higher harmonic terms can be neglected. From the -
details in the appendix, it is seen that the elements in the switching matrix
H, which defines Y fall off as 1/n. The harmonics in power systems
will generally do the same. This allows the higher harmonics to be
ignored. The vectors and matrices can therefore be truncated at a

harmonic number above the harmonics of interest.
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A thyristor conducts current only in the forward direction, can block
voltage in both directions, turns on when a firing signal is provided and
turns off after a current zero. The thyristors are assumed ideal so that
the nonlinearity of the circuit only arises from the dependence of the

switch on and off times of the thyristors on the system state.

During the thyristor conduction time, the system state vector x(t)
specifies the TCR current, voltage, the line current and the ﬁxéd series
capacitor voltage:

L]
V. (t)
L (t)
LVs(0)] (3.19)

x(t) =

The system input u(t)=u'(t)-u"(t) is the net source voltage which is
assumed to be periodic with period T and the system dynamics are

described by the following set of linear differential equations:

x(t) = Ax(t) + Bu(t) (3.20)
where
T 0 1/L, 0 0 "0 ]
I B T S VL I DO B
| 0 -1/L, -R,/L, -1/Lg | |1/L,
0 0o 1/Cc, 0 | L0 ] aan

During the off time of each thyristor, the circuit state is constrained to lie

~in the plane ;=0 of zero thyristor current. In this mode, the system
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ON OFF ON OFF ON
(A,B) (PAP'PB
| i | : | l o
% | T % ¢ w2 & 1T
.to t t;=to+T

Figure 3.14. ASC system dynamics from time ¢g to 1;.

The thyristor turn on times at ¢1/2 and ¢; depend on the firing scheme
and the closed loop control. We study the open loop system when
operated with one of the four common firing schemes. These are
equidistant firing, constant sigma controller and synchronization on the

ASC voltage or the ASC line current.

(a) In equidistant firing the thyristor turn on pulses are supplied
periodically and the system is controlled by varying the phase of the
firing pulses, ¢. Since the relationship between ¢ and the TCR firing
angle o depends on the line impedance, a negative feed back loop
modifying ¢ is usually used to ensure a requested o. In this section, we
restrict our analysis to an equidistant firing with no feed back control
i.e., the thyristor turn on times are computed using a requested phase

delay Qreq as follows:

T
0172 = 5 + req (3.25)

$1 =T + ¢req (3.26)
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d1 = Olreqe + Tc1/2 (3.32)

The state at the switch on time ¢ is denoted either by the vector y(¢o) or
by the vector x(¢o). These representations of the state at the switch on

time are related by

x(¢o)=Pt y(¢o) (3.33)

Equation (3.33) expresses the fact that the state in x coordinates at a
switch on is computed from the y coordinates by adding a first
component which has value zero. The state at the switch off time Tp is

similarly denoted either by x(tg) or y(tg) and these are related by
y(T0)=P x(70) (3.34)

The matrix P in equation (3.34) may be thought of as projecting the
vector x onto the hyperplane of zero thyristor current. Given a time
interval [sy,s;], it is convenient to write f(.,s;,s2) for the map which
advances the state at s; to the state at s;. For example, a Poincare map
which advances the state by one period T starting at time ty may be
written f(x,to,to+T). For convenience, we adopt the notation that when
the thyristor is on during all of the time interval [s;,s2], we write
f(x,51,82) as fon(X,81,82). Similarly, if the thyristor is off during [sj,s2],
we write f(y,s1,82) as forr(y,S1,82). fon Or forf can be computed by
integrating the linear system (3.20) or (3.23) over the corresponding

time intervals.
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f(x0,t0,t1/2)=fon(Pt fore(P fon(X0,t0,70),T0,01/2),91/2,t1/2) (3.39)

The Poincare map may now be written by composing two successive half

cycle maps and then neglecting the gory details of the time arguments:
f(xo,to,to+T) = fon Pt foge P fon Pt foge P fon x(to) (3.40)

We assume that gradient of the thyristor current as it turns off is negative

so that the Poincare map is smooth and differentiable.
Important Simplification

Let [s1, s2] be a fixed time interval including a thyristor turn off at time 7
and no other switchings. For convenience, let x; express the state at time

s1. Define H(x1,7) as:

H(x1,7) = forr(P fon(x1,81,7),7,82) = (3.41)
t t %2 t
= ePAP (2 DpeATsiy 4 J'eA‘Sl‘”Bu(a)da] + j e"AP 52=0pBy (o )dat
Sy T

Note that H expresses y(sz) as a function of x; and the switch off time 7.
T is a function of x; which is determined by the constraint of zero
thyristor current at time t. The map f(x;,51,52) which advances the state

X1 to the state y(sz) is equal to:
f(x1,81,82) = H(x1,7(x1)) (3.42)

The chain rule gives:
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Despite the simplification, it is sometimes necessary to compute Dt. The
equation which determines the thyristor turn off time T is the first
positive root of:

T
0=cx(t)= ceA(T_S‘)[xl + jeA(s‘_a)Bu(a)da]

51 (3.47)

where ¢=(1,0,0,0). Differentiation with respect to s; and solving for Dt
yields:

_CeA(T_sl) _CeA(T—Sl)

T A+ Bu(r) | k(1) (3.48)

Note that cx(t—) (the limit of cx(t) as t approaches T from below) is the

gradient of the thyristor current as it turns off at 7.
Jacobian and stability

When the ASC is in steady state with a periodic trajectory of period T,

the Poincare map has a corresponding fixed point. That is,

f(x(to),to,to+ T)=x(to) (3.49)

The stability of a periodic orbit is the same as the stability of the
corresponding fixed point of the Poincare map [6,7]. That is, the
stability of the periodic orbit can be computed from the Jacobian of the
Poincare map evaluated at the fixed point. In particular, the periodic
orbit is exponentially stable if the eigenvalues of the Jacobian lie inside

the unit circle. Since the thyristor turn off time and the Poincare map
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aH0 - _e(l1/2—¢1/2)ctc)-((¢1/2 +)
9012 | (3.55)

where ¢X(¢1,+) is the gradient of the TCR current as it turns on at ¢ 5.
In (3.53), the row vector D¢y,; is the gradient of the turn on time ¢ /2

with respect to xg. This term depends on the firing scheme as follows:

a) In an equidistant firing, ¢,,=(T/2)+¢.eq as given in (3.25). Hence
D¢1,=0. This is the simplest firing scheme i.e. the turn on time does not |

depend on the system state.

b) In the constant sigma controller, ¢12=(do+ To+ 2T~ Oreq)/2 as given in
(3.27). ¢o and 1¢ are the previous turn on and turn off times. Both are

dependent on x¢. Differentiation yields:

D¢g+D7
Doy = 22T (3.56)
where D¢o and Do represent the gradient of the turn on time ¢ and
turn off time To with respect to xo. By analogy with (3.48), Dtp and

D¢g are equal to:

_ A(To-[o)

DTO = _Pi_____
cx(To—) | (3.57)

Do, = _ceA(%—to)
°7 ck(@o+) (3.58)

where ¢=(1,0,0,0), and the terms in the denominator denote the gradients

of the TCR current as it turns on at ¢ and turns off at To.
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Note that Hy/; expresses x(t;) as a function of xj/2, the turn off time T/,
and the turn on time ¢;. Ty/2 is a function of xj/2 which is determined by
the constraint of zero thyristor current at time Tj/2. The turn on time ¢;
may or may not depend on. x1,2 depending on the firing strategy. Then

the second half cycle map f(xys, ti2, t1) is equal to:

f(x12,t172:t1) = Hin(x12,T12(X12),01(X1/2)) (3.62)

Using the chain rule and the simplification, the Df(xy3, ti/2, t1) is equal

to:

aH1/2 + aH1/2 D¢1

Df(x /z,t / ’t )=
Ve oxyy  Ofy (3.63)

where each term in the right hand side can directly be written from its
corresponding term as defined in the equations (3.53) to (3.60) by
replacing all the subscripts "1/2" by "1" and the subscripts "0" by "1/2".

Next, using the chain rule, the Jacobian of the Poincare map is given by:

Df(xo,to,t1) = Df(x1/2,t1/2,t1) Df(x0,t0,t1/2) (3.64)
where Df(x1/2,t1/2,t1) and Df(xp,to,t1/2) are given by (3.53) and (3.63).
Simplifications for symmetric periodic orbits

It is convenient to take advantage of symmetry when the periodic orbits
are half wave symmetric. Half wave symmetry of a periodic orbit means

that the system states are equal in magnitude and opposite in sign to the




48

quantitative method which provides little understanding of the important

interactions.

Lasseter has shown how the ElectroMagnetic Transient Program (EMTP)
[10] can be used to simulate TCR switching circuits using different firing
strategies. In particular, it is shown how the constant sigma controller
firing strategy can be modelled through the EMTP. All of the time
domain simuiations in this report are done using the EMTP as the

simulation program.
3.6 Summary

Both conventional and novel tools for studying TCR circuits were
discussed. Frequency plane analysis suffers from the simplification
required to achieve a solution. Section 3.3 describes how Fourier
techniques can be used to construct a TCR harmonic admittance matrix.
The admittance matrix can then be incorporated into a power system
providing a quick method to calculate system harmonics. Section 3.4
studies the nonlinear circuit dynamics of an advanced series compensator
using the Poincare mapping from dynamical systems theory. It is shown
how the thyristor turn off time may be regarded as a fixed turn off time
when deriving the system Jacobian. This fact results in a simple and
useful formula for the Jacobian matrix of the Poincare map when the
TCR is operating with an equidistant firing. It is also shown how
correction terms may be added to the simple formula to compute the

Jacobian matrix when the TCR is operating with other firing schemes.
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Chapter 4

Bifurcations, Harmonic Distortions and Resonance

The classical analysis is often applicable, but can fail for certain circuit
parameters and operating conditions. Under these conditions, the TCR
current and voltage waveforms can become highly distorted. These large
harmonic distortions are associated with the natural frequencies of the
circuit, from when the reactor is fully on to when it is fully off, spanning
an odd harmonic number. Section 4.1, discusses the large harmonic
distortions to the circuit operating close to its resonance point. It is -
shown how this resonance point may be predicted through the
computation of the eigenvalues. The large harmonic distortions can lead
to instabilities associated with either a new earlier TCR current zero, the
disappearance of the TCR current zero or a thyristor misfire (section
4.2). These instabilities, called switching time bifurcations, are very
different from conventional bifurcations in that they are not detected by
the eigenvalues the Jacobian matrix crossing the unit circle. However,
different firing schemes can introduce conventional bifurcations just

before a switching time bifurcation (section 4.4).

4.1 Resonance and harmonic distortions

Lasseter and Bohmann showed that a single phase SVC circuit can exhibit
behavior much like resonance in a linear circuit for certain parameter
values [7]. In particular, resonance is expected when the resonant

frequency of the circuit from when the TCR is fully on to when it is fully
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34). g()isa bounded function with terms involving the integration of

the input over the period. Rewriting (4.3) as:

-(I+DH) 1 g(c.90) = yo (4.4)

shows that yo becomes unbounded as an eigenvalue of DH approaches -1.
Chapter 5 shows four TCR circuit examples in which DH has eigenvalue

approaching -1 for different values of G.

4.2 Switching time Bifurcations

When the harmonic components of the TCR current and voltage become
very large, the current and voltage waveforms become highly distorted.
These distortions can lead to instabilities as switching times suddenly

change or bifurcate as follows:

Instability when a new TCR current zero appears

l w time
(b)T /\ Start of a transient

I time

Figure 4.1. A new earlier TCR current zero appears

(a) p< ¢*, (b) p=9¢*




53
A

@

ime

i U time
A
©
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Figure 4.2. Disappearance of two TCR current zeros

(a) < ¢*,(b) ¢ =0"(c)¢>0*

A
®)

time

Instability due to a thyristor misfire

Figure 4.3 explains the onset of instability due to a thyristor misfire
[26,38]. The TCR current is denoted with the solid line in the Figure
4.3a and starts conducting, as expected, when a firing pulse is applied.
The gray lines in Figure 4.3 are used to show the thyristor current that
would have obtained if we would have integrated the system backwards
in time with the thyristor on and with the initial TCR current of zero at
the firing time. As the firing pulses are moved towards the zero
crossings of the TCR voltage, the TCR voltage blocked by the thyristors
at the firing time decreases. Assuming thyristors are ideal, the critical
phase ¢* occurs when the turn on firing pulse is sent at the zero
crossings of the TCR voltage as shown in the Figure 4.3b. As the phase
¢ slightly increases from ¢*, one of the thyristors misfires as the voltage

across it is negative when the firing pulse arrives. In practice, the
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map crosses the unit circle. (We assume that the system is initially
operating in a stable periodic fashion before the bifurcation occurs.) The
stable periodic orbit can disappear (saddle-node bifurcation) by
coalescing with an unstable periodic orbit as an eigenvalue crosses the
unit circle at 1. The stable periodic orbit can become modulated with
another frequency or become unstable (Niemark or secondary Hopf
bifurcation) as a complex conjugate pair of eigenvalues crosses the unit
circle. Finally, the stable periodic orbit can double in period as an

eigenvalue crosses the unit circle at -1 [46].

The importance of bifurcation theory as applied to the nonlinear circuits
of power electronics is that it provides a short list of well known, typical
ways in which the circuit can go unstable and some associated
computational techniques to guide investigations. Several authors (e.g.
[12,36,45]) have investigated instabilities such as Hopf and period
doubling bifurcations in averaged models of fast switching power
electronic circuits. One of the difficulties in applying bifurcation theory
to the naturally commutated circuits which switch at a lower frequency
lies in analytically or numerically computing the Jacobian of the Poincare
map. One of the contributions of this thesis is to solve this problem for

various circuit models.

4.4 Instabilities

We expect that switching time and conventional bifurcations as discussed
in the sections 4.2 and 4.3 describe typical ways in which a TCR circuits

become unstable. The following shows how conventional bifurcations
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The constant sigma controller

In all the firing schemes except the equidistant firing, the thyristor turn
on time depend on the system state. For example, the constant sigma
controller computes the thyristor turn on time based on the previous turn
on and turn off times. In the constant sigma controller case, correction
terms should be added to the Jacobian matrix Jequidistant given by (1), to
obtain the Jacobian matrix Jsigma (for details refer to section 3.4.) In
particular, Jsigma for the periodic solutions which are halfwave symmetric

is given by:

. t
cx cle
(9) teeho 4 £ Cy2

Jsigma =(Jequidistant + 2cx(0 +0'—)C )

(4.6)

In this formula, A is the linear system matrix when the thyristor is on, ©
is the conduction time of thyristors and P is a non square constant
projection matrix. The vector constant vector ¢ is chosen such that cx(t)
represents the TCR current at time t. cx(¢+) and cx(¢ +0—) denote the
gradient of the TCR current as it turns on at time ¢ and turns off at time
¢+0. It is clear from the Figure 4.2b that as a thyristor turn off time
disappears, the gradient of the TCR current as it turns off approaches
zero and 1/cx(¢ +06-) in (4.6) approaches infinity. Indeed, some of the
eigenvalues of Jsigma for the circuit examples in chapter 5 cross the unit
circle just before instability due to the disappearance of a thyristor

current zero.
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Chapter 5

Four TCR Circuit Examples Illustrating
Bifurcation Instabilities

The classical analysis is often applicable, but can as described in chapter
4, fail for certain circuit parameters and operating conditions. Under
these conditions, both the voltage and the current waveforms become
greatly distorted with large harmonic components. The large harmonic
distortions can lead to either switching time bifurcations or conventional
bifurcations. This chapter gives four examples of such instabilities. The
first example illustrates switching time bifurcation by the simulation of a
SVC with realistic parameters. Simulation is used to show how the
distortion of current waveforms can cause a thyristor turn off time to
disappear or a new thyristor turn off time to suddenly appear. The
second example shows switching time bifurcation in the Rimouski SVC

using a hardware model.

During the early design phase of 230KV, 330 Mvar Advanced Series
Compensator (ASC) system in northeastern Arizona at Kayenta an
unexpected "second resonance" was observed [9]. Section 5.3 studies this
example when the firing pulses are sent based on the constant sigma
controller. In this case, the eigenvalues of the Jacobian matrix detect a
conventional bifurcation just before a thyristor turn off time disappears.
Upon loss of stability, the system converges to a nearby periodic solution
which is no longer halfwave symmetric. The initial design was modified

by doubling the size of the thyristor control reactor to remove this
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Analysis

In this example, the natural frequencies of the circuit from when the
reactor is fully on to when it is fully off span the fifth harmonic. This
crossing of an odd harmonic is an indication that the overall system odd
harmonics can be large and that the voltage and current wave forms can

be significantly distorted.

The half cycle Jacobian matrix has an eigenvalue at -.97 when the TCR
conduction time 6=50°. This is the resonance condition discussed in the
chapter 4. Figure 5.2 shows the TCR current sampled at the center of

the conduction time versus 6. This Figure illustrate resonance at c=50°.
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Figure 5.2. TCR current sampled at 0/2 versus ¢

Figure 5.3 shows © versus the firing phase ¢. Only periodic orbits

which are half wave symmetric are computed. Figure 5.3 may be
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Simulation Results

The periodic orbits labelled 1 through 6 in the Figure 5.2 are chosen so
as to study in detail how the harmonic distortion can cause periodic
solutions to disappear in switching time bifurcations as the phase delay
varies. The loss of a stable periodic solution at 6=91° is a switching time
bifurcation in which a new TCR current zero appears. The simulation in
Figures 5.4 show periodic solutions of the TCR current at periodic orbits
1, 2 and 3 respectively. Note that as we move towards the third periodic
orbit, the harmonic distortion produces a dip in the TCR current.
Figure 5.3c shows that as the phase delay of the firing pulses is slightly
increased so as to pass the third periodic orbit, the dip in the TCR
current lowers and a new, earlier zero of the TCR current is produced.
The switch off time of the thyristor has suddenly decreased and the stable
operation of the system at the previous periodic orbit has been lost in a

switching time bifurcation and a transient starts.

Even though many systems enforce equidistant firing in steady state
operation, the firing pulses may or may not be equidistant during
transients. Therefore, the detail of the transient depends heavily on the
assumptions used in modelling the control of the TCR firing pulses. The
intent of time domain simulation is to show the existence of the transient
as a consequence of the switching time bifurcation rather than the detail
of the transient. However, computations of steady state periodic orbits
as in Figure 5.3 are valid for any firing control scheme that enforces

equidistant firings in steady state.
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The loss of a stable periodic solution at 6=56° is a switching time
bifurcation in which a TCR current zero disappears. Figure 5.5 shows
how the periodic solutions behave as the switching time bifurcation is
approached. The plots are on an expanded time scale so as to closely
observe the zero current turn off behavior of the thyristors. The dotted
lines show the current in thyristors that would have occurred if the
thyristors did not turn off as the current decreased through zero. This
part of the current is referred to as the virtual part of the current. The
virtual current does not occur in the circuit operation but it is important

in understanding how the TCR current zero disappears.
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Figure 5.5. Periodic orbits 4,5 and 6
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5.2 The Rimouski static VAR compensator

The static VAR compensator installed near Rimouski, Quebec is shown in
the Figure 5.7 [35]. This compensator is a three phase delta connected
TCR and ungrounded wye-connected capacitor banks interfaced to a 230

kV system through a step down transformer.

230 kV
Xs
100 MVA Y
230/24 kV A X=11%
6.6 mH
431yF 7~
6.6 mH
Y |

Figure 5.7. Rimouski static VAR compensator
Experimental setup

An experiment was used to confirm the theoretical computations. This
setup used a 115 V, 60 Hz AC line which was assumed to be a stiff and
harmonic free source. The circuit components were scaled as shown in
Table 5.1. The reactance to resistance ratio was measured as
approximately 20 for the inductors and approximately 70 for the
capacitor. The control circuit used a zero voltage detector synchronized

directly across the AC line and a firing pulse generator to build a train of
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system converges to a new steady state at the point B+. This instability
occurs when the thyristor turn off time is suddenly increased due to the

disappearance of the thyristor current zero.

‘@ _ " |—  Theory
a 160 A Experimental
o [
8 [
b r
120}
80
40F 1_ T "\ ]
- B
A+
100 120 140 160

¢ (Degrees)
Figure 5.8. ¢ versus o

The bifurcation instabilities are associated with the two natural
frequencies of the circuit (the TCR fully on and fully off) spanning the
3rd harmonic number. For example, when the short circuit MVA of the
system is infinite (X =0), the two natural frequencies do not span the 3rd
harmonic and the bifurcation instabilities are absent. The half cycle
Jacobian matrix has an eigenvalue at -1 for the circuit operating at the
conduction time 6=40° (ignoring the circuit resistances.) This is the

resonance condition discussed in the chapter 4.
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Analysis

Figure 5.10 shows the predicted resonance points using the average
inductor model (chapter 3.2) as ¢ varies from zero to 180° for three
possible values of L;, namely 1.7 mH, 3.4 mH (initial design) and 6.8 mH
(finial design). This model predicts potential problems at the 3rd

harmonic resonance point for 6=158° when L,=3.4 mH.

.7 mH

3.4 mH

6.8 mH

Harmonic resonance number

45 90 135
¢ (Degrees)

Figure 5.10. Resonance predictions using the average inductor model

The half cycle Jacobian has an eigenvalue close to -1 for the circuit
operating at the conduction times 6=49.5° and 6=156.9°. These two
points correspond to the expected fundamental resonance and the
unexpected "second resonance" observed in [8]. The fundamental and the
3rd component of the TCR current versus the control parameter G, are
shown in the Figure 5.11. The solid lines denote the periodic solutions
which are halfwave symmetric. The circles denote the periodic solutions

which are T periodic but nor halfwave symmetric.
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attempts to find another nearby periodic solution but is not successful.

T

210,=164" [ c,=160° .

TCR current
<

1
(%]

0.51 0.55
Figure 5.12. 6, steps down from 164° to 160°

Figure 5.13 shows the transient which occurs as 6, steps up from 115° to
120°. A transient starts when the TCR current misses the first current
zero and the system converges to another periodic solution which is no

longer half wave symmetric.

20 U T
2|

TCR current (p.u.)

5.58 572 586
Figure 5.13. o), steps up from 115° to 120°
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Figure 5.14. The fundamental and the 2nd component of the TCR current

Simulation results

The transients as ©p steps up from 140° to 1449 is studied. The system is
initially in steady state as shown in the Figure 5.15. Figure 5.16 shows
the transient in the TCR current as Op is increased by 4°. Figure 5.16
shows the ASC voltage across the TCR and the firing pulses sent to the
back to back thyristors. As the system drifts towards the new steady state
solution, the ambient 2nd harmonic voltage across the TCR magnifies.
This produces an increasing asymmetry in the ASC voltage waveforms
which eventually results in a thyristor misfire and thus the loss of

previous periodic solution.
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5.5 Summary

This chapter studied examples of resonance, harmonic distortions and
bifurcations using four different TCR circuits. Switching time
bifurcation instabilities in which switching times suddenly change and the
system stability is lost were illustrated by both simulation and
experiment. The first two sections studied a static VAR compensator
with realistic system parameters. The last two sections focused on the
initial and the final design of the advanced series compensator installed
near the Kayenta substation. It was shown how the initial design suffered
from large harmonic distortions in the TCR current and bifurcation
instabilities. In addition, it was shown that the final design contains a
resonance point which can lead to the bifurcation of the periodic

solutions when stimulated with ambient even harmonics.
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Chapter 6

Nonlinear Dynamics and Damping

The dynamics of a Thyristor Controlled Reactor (TCR) circuit are
nonlinear since the thyristor turn off time depends on the system state via
the TCR current. The thyristor turn on time may also depend on the
system state via the firing scheme. The nonlinear dynamics of a TCR
circuit can be studied by'means of a Poincare map which advances the
system state by one period of the fundamental frequency. When the
circuit is in steady state, the Poincare map has a corresponding fixed
point. When the TCR circuit is transient (diverging away or converging
towards a periodic trajectory), the Poincare map also has a
corresponding transient (diverging away or converging towards a fixed

point.)

Chapter 3 derived the Jacobian of the Poincare map for four different
firing schemes. The Jacobian evaluated at the fixed point approximates
the nonlinear dynamics of the Poincare map close to the fixed point by a

discrete time linear map.

One of the useful contributions of this thesis is to use the Jacobian to
illustrate the concept of attenuation or damping. Damping exists even
when the circuit resistances are ignored and the thyristors are assumed
ideal (short circuit when they are conducting, and open circuit when off).
Presently, one of the most common techniques for the study of damping

is to compute the eigenvalues of the system by replacing the TCR with a
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Write F for the Poincare map which advances the state by one period of
the fundamental frequency T. F can be computed by integrating the
system equations and taking into account the switching between the on
and off systems. In particular we choose F to advance the state y(¢o) at
turn on to the state y(¢o+T) one period later. Assume that the circuit is
in stéady state and the firing pulses are delayed by ¢¢. If the periodic

orbit passes through yp at time ¢, then yg is a fixed point of the map F

and F(yo)=yo.

To illustrate the concept of damping, add a small perturbation of €y to yo
just before the thyristor firing pulse arrives at time ¢o. The circuit
propagates €p as time passes. The map F can be used to compute €, the

deviation from yg one period later as follows:
€1 = F(yo+€o)-yo
F(yo+€0) can be expanded about yy as:
€1 = DF g + higher order terms

Hence, the eigenvalues of DF can be used to check if €9 damps or not.
For example, when the eigenvalues are inside the unit circle, the periodic
orbit is asymptotically stable and the system damps out small
perturbations. Assuming half wave symmetry for the periodic solutions,
DF is (see chapter 4.3)

DF = (ePAPt(T/Z—G)PeAO'Pt)Z (6 1)

Much insight into the properties of the Jacobian formula can be obtained
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resistance in the circuit.) At the switch off time, Eo decreases by the
energy stored in the reactor L, at time ¢o+0c which is a nonnegative
quantity. Since Ey is a Liapunov function for the discrete time system
dx+1=DF &k, k=0,1,2,..., DF must be stable. If the circuit resistance are
included, then Ey is strictly decreasing when the switch is on or off and

Ey is strictly Liapunov function and DF is asymptotically stable.

It is the switch off which projects the TCR current to zero at time ¢ and
damps the perturbations. Although the circuit model for the Jacobian is
very useful in undefstanding the nature of DF, we caution that the sudden
loss of energy at the switch off for the Jacobian model is nonphysical and
does not describe the gradual damping of a perturbation by dissipation in

the source of the SVC circuit.

6.2 Numerical examples

The following are three examples illustrating the nonlinear dynamics and

damping in TCR circuits.

Example 1
L)

O £3

Figure 6.3. The simplest TCR circuit which illustrates damping (R=0)

Figure 6.3 is the simplest TCR circuit which illustrates damping when the
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Figure 6.5a shows the eigenvalues of DF in (6.1) inside the unit circle as
o ranges from 0° to 59° and from 90° to 180°. For ¢ between 59° and
900, stability is lost due to a switching time bifurcation (chapters 4.2 or
5.1). Figure 6.5b shows the eigenvalues when the circuit resistances are

ignored.

139
0

/

170 90

60

(a) (b)

Figure 6.5 The eigenvalues of DF (0°<o0< 59 & 90°<0<180°)
(a) circuit resistance included (b) circuit resistances set to zero

The circuit model developed for the Jacobian (see Figure 6.2) can be
used to explain and predict 6=139°, the ¢ at which the eigenvalues touch

the unit circle (case with no resistances). The energy associated with
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Example 3

The circuit diagram shown in Figure 6.8 is the Advanced Series
compensator(ASC) installed near the Kayenta substation. The system
parameters are L¢'+Ls"=405.8 mH, R=19.89 Q, C=177. uF, C=27.9

UF and L;=6.8 mH.
L,

u® R, L, G C. LY u'(t)

O e L

Figure 6.8. The ASC installed near Kayenta

The research group at Siemens use the EMTP to study the open loop
response of Kayenta system to 4°step changes in the TCR conduction
time ¢ when the firing is synchronized on the zeros of the voltage [17].
This study is reproduced in the Figure 6.9 for 6=40°, 50° and 60°.

EMTP Simulation
i Synchronization on the zeros of the volttage

~ 157
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(a) 40-44 20.0 (2%)
(b) 50-54 60.0 (5%)

-0.5¢ (c) 60-64 400. (29%) |

1.1 1.2 1.3
Time (seconds)

Figure 6.9. ASC response to 2° step change in a, (from EMTP)
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large perturbation as compared to 2% and 5% for the cases (a) and (b).
Hence, discrepancy between the Jacobian predictions and the actual
Poincare map simulation for the case (c) is not unexpected. We can
immediately observe from Figures 6.9 and 6.10 that the firing scheme
and the operating point of the TCR has a significant impact on the

dynamic response of the Kayenta advanced series compensator.

6.3 Summary

The dynamic response of a TCR circuit is nonlinear and can be studied
using the Poincare map. The Poincare map of a TCR circuit is a smooth
and differentiable function of the system state except at switching time
bifurcations. This map advances the system state by one period of the
fundamental frequency. If the system state is a periodic trajectory, then
the state is a fixed point of the map. The Jacobian of the map evaluated
at the fixed point can be used to approximate the nonlinear dynamics of

the Poincare map close to the fixed point by a discrete time linear map.

The eigenvalues of the Jacobian were used to show that a TCR circuit can
damp small perturbations even when the circuit resistances are ignored
and the thyristors of the TCR are assumed ideal. This concept of
damping can not be explained by the classical method which models the
TCR with an variable linear inductor. Three numerical examples were
used to illustrate the concept. In particular, it was shown that the
dynamic response of TCR circuit can heavily depend on the TCR firing

scheme and conduction time.
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Chapter 7

Single Phase Thyristor Bridge

This chapter extends some of the tools and the thinking developed for the
single phase TCR to a single phase line commutated bridge. To illustrate

some of the potential problems and the tools developed in this chapter,

we will use the system in Figure 7.1.

Idc de
o
C AC
impedance Rd ¢
C.-) emf
B
’

Figure 7.1. Basic System

This circuit has a thyristor bridge with a dc load in series with a dc
source. The ac system is a general linear, frequency dependent irﬁpedance
with ac filters located at the terminals of the converter. The thyristors
are assumed ideal so that nonlinearities in the turn on/off of the

thyristors are neglected.




93

Solving the equations (7.1) and (7.2) for Vdc,_g and p allows us to
construct the steady state waveforms of the inverter AC current and DC
voltage at a given operating point. For this operating point, the inverter
AC current harmonics, 12¢, and DC voltage harmonics, Vi<, can now be

calculated by doing a Fourier analysis on the corresponding inverter

steady state waveforms.
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Figure 7.2. Classical model for calculating the Idc, and Vac,

To calculate I9¢, and V3¢, the converter is replaced by an equivalent AC
harmonic current source, I2¢, and an equivalent DC harmonic voltage
source, Vd¢,; as shown in Figure 7.2. Section 7.3 provides an example in

which the classical solution method is not correct.
7.2 Harmonic Coupling Matrix Solution Method

This section develops a harmonic coupling matrix for the single phase
convertor shown in the Figure 7.3. This matrix shows the coupling
between the convertor harmonics which is an important characteristics of
all naturally commutated thyristor switching circuits. Moreover, we will

show how this matrix can be incorporated into a power system network
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equivalents as seen from the converter terminals allows us to write the

following general equation for Vacand Ide,
F* I+Z*A Z*B || V*
[Beme - I: C D _ ch }{ Idc ] (74)
where the matrices Zac and Zd¢ are diagonal and of infinite dimensions
denoting the Thevenin AC and DC impedances. I is the identity matrix

and Fac and Bemf are vectors of infinite dimension representing the

Thevenin AC and DC sources.

In appendix A, we use the switching function technique to derive the
A,...D matrices. The basic idea was first introduced in [21] for
switching circuits with fixed switching times. In [7], Bohmann and
Lasseter extend this method to circuits which include one naturally
commutated switching elements. The switching functions used to derive
the harmonic coupling matrix are shown in the Figure 7.4. In this
Figure, the switching functions H!(wt) and H3(wt) carry the on/off
information of the thyristor pairs (S1,S2) and (S3,S4) respectively. For
example, Hl(wt) has a value of one when the thyristor pair (S;,S2) is

conducting and zero when they are off.

The two switching functions H13(wt) and H31(wt) uniquely define the
commutation process from one thyristor pair to another. For example,
the application of a firing pulse at time ¢; to the thyristor pair (S1,S7)
starts a commutation process from the éwitches (83,S4) to (S1,S2). This

commutation process is defined by the switching function H31(wt) with a




97
Tac(da+12) = =1d¢(do+12) (7.6)

We refer to the equations (7.5) and (7.6) as constraint equations since
they constrain the commutation times [; and ;. Using the formalism
developed in the appendix A, the constraint equations can be written in
terms of the Fourier components of the converter AC voltage and DC

current as follows:

5: Vi jmé; r, jmy, = So dc, jmoy r , jmpy

j_m_oEe [e -1]= Ime (e +1] (7.7)
m=6°° m=—oco
m#

[--]

v . . ks . :
2 jmcrgL gmé2 eimuz _ 1]=- Zldmcejm‘bz [ei™2 4 1] (7.8)

m=-—oo

m=0

m=—oo

where Vac denotes the mth harmonic component of the AC bus voltage,

® is the operating frequency and L is the commutating. inductance.
Equations (7.3), (7.4) are infinite matrices and the constraint equations
(7.7) and (7.8) are infinite sums. Assuming that the higher harmonics
can be neglected, these infinite matrices and sums can be approximated
with finite matrices and sums by truncating them at a reasonably high
harmonic. Trial and error has shown that truncating above the 20th

harmonic is reasonable.

The solution algorithms of the harmonic coupling equations are slightly
different for different control schemes. This is because each control

scheme impose a different constraint on the thyristor firing angles, ¢,
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Figure 7.5 The impedance of the AC system

This example has a short circuit ratio of 5.0 where this ratio is defined as
the AC short circuit MVA divided by the rated DC power. A short
circuit ratio of 5.0 was used to demonstrate the nonlinear harmonic
interaction problems with a high impedance AC voltage source. Trial
and error has shown that even a very strong AC system will show such
problems if the AC systems resonance .point is close enough to an odd
harmonic number. For example, an AC system with a short circuit ratio
of 25.0 shows harmonic resonance problems when the resonant point is

4.85 times the fundamental frequency.
Periodic solutions and stability

An equidistant firing pulse scheme in which a train of equally spacéd
firing pulses 180° are sent to convertor is assumed. For each phase of the

firing pulses, the circuit is solved using both the classical and the
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(7.2). The point Idc=0 corresponds to the largest phase of the firing
pulses, 0max=60°. At this point, the average inverter DC voltage is equal
to the DC side Be™f, As o is decreased, the average inverter DC voltage
and the DC current increase. The larger the DC current, the longer it
takes to commutate the current from one thyristor pair to another, and
the larger the u. The maximum values of the DC current and p,

correspond to Olmin=20° and pu=58°.

While the classical method predicts a smooth mapping between the DC
current and [, the harmonic coupling method predicts a discontinuous
map made up of three separate regions. These three regions are labelled

region A, region B and the shaded region.

In the region A, the DC current decreases as i decreases. This region
exists for [ ranging between 49° and 58°. The consequence of moving
the system operating point from region A into the shaded region is a
transient due to the appearance of a new earlier current zero in the
commutating thyristor pair. This new earlier zero results in the
switching off time of the thyristor to be suddenly decreased and the stable
operation of the system at the previous periodic orbit to be lost. The
loss of a stable periodic solution is due to a switching time bifurcation in
which the thyristor turn off time is suddenly decreased. For an
equidistant firing, the absolute value of all of the eigenvalues of the
Jacobian are less than 1 as the system moves towards the shaded region
[13]. This implies that no conventional bifurcation precedes the switchihg

time bifurcation.
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that the measured value of u at C- is the predicted value of | as the
boundary of region A with the shaded region. Measurement of |1 at the
boundary of (C- ,C+) show that the value of | has a step drop from 49°
before C- to 14°after C+. After time C+, the value of pu oscillates
between 14°and 7° and gradually converges to 10°. This is the same

value of | predicted by the harmonic coupling matrix solution method.

Idc - DC current (p.u.), transition from A to B
1.3k

Point A Event occurs Point B
1.1</ \\ ;

0.9

0.7

&

¥ Y [
1.087 1.425 1.762
Time (Seconds)

Figure 7.7. Inverter DC current ( from A to B)

To look at the commutation times more closely, only one cycle of the DC
current in the Figure 7.7 is plotted in the next two Figures. The Figure
7.8 shows the steady state operation at the point A and the Figure 7.9
shows the steady state operation at the point B. It is clear from these
Figures that the example system has two periodic solutions with DC

currents close to 1.0 p.u. but two | and harmonic contents.
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7.4 Summary

For the regions where periodic solutions exists, we can use Fourier
techniques to accurately determine the harmonic contents of the steady
state solutions. In this method, the voltage and switching functions are
broken into Fourier series and a harmonic coupling matrix model of a
single phase line commutated converter is constructed. This coupling
matrix can be incorporated into a power system and the system
harmonics can be accurately calculated. An example system which
exhibits highly nonlinear and unexpected behavior was used to illustrate
the effectiveness of this method. This example showed that classical
solution method fails to correctly compute the harmonics of this example.
On the other hand, the harmonic coupling matrix solution method can

accurately compute the steady state solutions of this system.
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Poincare map for different TCR firing schemes. The Jacobian formulas
are used to show how the circuit dynamicé depend on the TCR operating
point and the TCR firing scheme. In particular, it is shown that a TCR
circuit can damp small perturbations even when the circuit resistances are
ignored and the thyristors are assumed ideal. This information about the

circuit dynamics has not been explained or exploited by others.

2) Another contribution of this thesis is the concept of switching time
bifurcations. It is shown that large distortions of the TCR current or
voltage waveforms can lead to switching time bifurcations associated with
either a new earlier TCR current zero, the disappearance of the TCR
current zero, or a thyristor misfire. The switching time bifurcations are
not explained by the classical analysis of TCR circuits, which assumes no
distortion of voltage and current waveforms. Nor are the switching time
bifurcations explained by the conventional theory of bifurcations in
which stability is lost when eigenvalues of a Jacobian matrix cross the
unit circle. However, it is possible to lose stability in a conventional

bifurcation just before a thyristor turn off time disappears.
The following describes various aspects of these concepts in more detail.
Jacobian of the Poincare map

Except for marginal cases, the Poincare map can be differentiated and a
formula for its Jacobian can be obtained. Several authors have derived
procedures for the Jacobian of various switching circuits [29,47,48]. A

simple formula for the Jacobian when the firing pulses are equidistant is
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the Kayenta substation. Using the Jacobian formulas and simulation, this
thesis demonstrated that the TCR firing scheme and its operating point
must be taken into account when studying the dynamics of the advanced

series compensators (cf. chapter 6.2).
Resonance

Bohmann and Lasseter show that for certain circuit parameters and
operating conditions the TCR current and voltage waveforms can become
highly distorted. This thesis relates the large harmonic distortions to the
circuit operating close to its resonance point. The circuit has resonance
when one of the eigenvalues of a particular matrix is -1. This matrix is
equal to the Jacobian of the half wave map of the circuit when the firing

is equidistant.
TCR circuit examples illustrating switching time bifurcations

The EMTP simulation of a static VAR example with realistic circuit
components were used to illustrate switching time bifurcations. In
particular, it was shown how the distortion of the voltage and current
waveforms could cause a thyristor switch off time to disappear or a new
thyristor switch off time to suddenly appear. As a consequence of
switching time bifurcations, the stable periodic operation of the circuit is
lost and a transient starts. Switching time bifurcations were also
illustrated using experiment for the single phase equivalent of the

Rimouski static VAR compensator.
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illustrate that the tools and the thinking developed for a TCR should be

extended to naturally commutated converters.

8.2 Future work directions

Our main objective was to develop new ways of understanding and
computing instabilities of general switching circuits. The following is a

list of options for future work.
Generalizing the harmonic admittance methods

The harmonic coupling matrix solution method has been a key tool in
allowing us to quickly solve for the periodic solutions of the system.
Therefore, it is reasonable to extend this method to arbitrary switching
circuits. Combining a harmonic coupling matrix method with the
existing power flow program will give a single useful and powerful
program. This program could be used to study examples which contain

more than just one converter connected to a power system network.
Better understanding of the conventional bifurcations

This thesis showed that a circuit can lose stability in a conventional

bifurcation when it is operating close to a switching time bifurcation, but

how close is close? Using linear techniques and classical equations,.

Ainsworth showed that synchronizing the firing on the zeros of the
voltage can introduce voltage instabilities. Is this voltage instability a
conventional bifurcation which can be explained through the eigenvalues

of Jacobian? What happens when the firing is synchronized on the TCR
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this thesis does not take into account the detailed generator models. Since
advanced series compensators are used to damp SSR, it is necessary to

extend the Jacobian formulation to include generator models.
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Appendix A

Harmonic Admittance of a TCR

The derivation of the harmonic admittance for the TCR is the same as [7]
except for a slight modification. Consider the single phase TCR shown in
Figure A.1. The thyristors are gated once each half cycle allowing
control of the current in the reactor and thus allowing control of the

reactive current drawn by the circuit.

L,

s
- w |E3

Figure A.1. Thyristor controlled reactor

The switching function, H(wt), shown in Figure A.2 has a value of one
whenever a thyristor is on and zero when the thyristors are off. Since a
thyristor turns off when its current goes through zero, the conduction
time ¢ depends on the turn on time ¢, the terminal voltage V(wt) and
the TCR reactance, L. Therefore the switching function is dependent on

the terminal voltage through the turn on/off time of the thyristors.
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Equation (2) shows the time domain relationship among the terminal
voltage, reactor curfent and the switching function. The constraint
equations in (1) show how the switching function is dependent on the

terminal voltage through the thyristor switching times ¢ and ¢.

Assuming periodicity, H(wt) can be represented by their complex

Fourier series:

H(ot) = Y hu(o1,01,62,92) einot 3)
Te=-c0
where
1
h0=§E (o1 +02) 4)
ol i o
o hp =5 — [ei™1(ed01 _1) + ein®2(eino2.1)] )
/',-,,¢ S hg nw
oo € (f;__:l)
" )N A h

Similarly, representing V(wt) and V (wt) by their complex Fourier

series:
Viot) = 3, vy eimot (6)
mM=-c0
Viwt) = Y vy eikot ()
k=-co

where vy is the mth, and v is the kth Fourier component of the
terminal voltage and the voltage across the reactor. Note that for steady
state operation, equal volt-seconds is always maintained across the reactor

L, so that the DC component of V(t) is equal to zero.
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The following relationship between the Fourier components of the

reactor current and the reactor voltage can be obtained from (14):

. .1 o o

Il’—l _‘](DLr . Vr—]
e“1¢1 el¢1

IrO = . 0 . 0
—joL, joL,

Lal | 0 o LS
joL,

L. ' L.

B . . . . . . (15)
Rewriting (15) in short matrix form we obtain:
Ir = Yr Vr

V(1) is the terminal voltage, Vi(wt), multiplied by the TCR switching
function H(wt):

Vi(wt) = Vi(ot) H(mt) (16)

Vi(wt) can be thought of as an infinite vector of harmonic voltages, one
for each harmonic frequency. Equation (16) can be expressed in matrix
form as shown in (17). It is made up of an infinite dimensional switching

function matrix H, multiplied by the terminal voltage vector.
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Appendix B

Harmonic Matrix of a Single Phase Bridge

This appendix derives the harmonic coupling matrix of the single phase
bridge shown in the Figure B.1. The method is based on the switching

functions shown in the Figure B.2.
de
I (wt)
S S +
ey 3! % 3
T

\Y4 aC((,t)t) L/2

B

Figure B.1. Single phase line commutated converter

With the converter operating in the continuous mode, I2(wt) is
essentially the sum of four separate current vectors corresponding to

four different switching functions:
I¢(wt) = IN(wt) + B(wt) + I3(wt) + Bl(wnt) (1)
Where:

INwt) =(HYwt) - H3(wt) - H3(wt) ) Ia¢(wt),
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I(wt)=( j —dmt) 1“(¢,) o

where I9¢(wt=¢) is the current in the circuit at the start of commutation.

Therefore, Bl(wt) is given by:
Bl(wt) = H3!(wt) I(wt) 3)

Assuming periodic operation, equation (3) can be written as:

[= =]

Z I3 ejmot = 2 h3 w1 .60) * Iy, e J(n+mat
o e (@)

Where,

h I“LI
C2m (5)

31
h —_J_ e Jnd; Jnul
nz0 nm C | 1] 6)

The harmonic matrix form of equation (4) is shown in (7) and (8). It is
made up of an infinite dimensional switching function H3! multiplied by

the AC current vector I.

B! = H3I )
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-~ r - F -
ac ac
I, |V 0 00 14, V.
-jal -JoL
I ol= 0 -] s o éjq)l 1 J q)l Idoc
ac ac
Vv 1 IdC Vv 1
I - .. .o +
N Ga 000 L7 oL
. ] I . J ] . 1L . | (12)

The short matrix form of equation (12) can be written as:
I=Y Vvac. G(¢;) [I9¢ + Y Vac] (13)

Note that the presence of the term {-G(¢;) [I9¢ + Y Vac]} in (13)
ensures the current vector (Y V2¢) is initialized to the DC current just
before the start of the commutation process. Equation (7) for I31 now

can be written as;
[31 = H31 [Y Vac. G(¢q) [I9¢ + Y Vae]] (14)

A similar argument can be used to find the AC current in the

commutation time frame of H3! as:
13 = 13 [Y Vac- G(d2) [Idc - Y Vac]] (15)

Inspection of the circuit shown in Figure B.1 allows us to compute the

time functions I'(wt) and B(wt) as follows:

INwt) + B(wt) = ( H(wt) - H3(wt) ) I9(mt) (16)
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Appendix C

TCR Current Harmonics of the Example 5.3

During the early design phase of the 230KV, 330 Mvar ASC system near
the Kayenta substation a "second resonance” was found which resulted in
doubling the size of the thyristor control reactor to remove this
"resonance”. In chapters 5.3 and 5.4, both the initial and the final design
of the Kayenta system were analyzed. This appendix shows the TCR
current harmonics for the three possible values of the thyristor control
reactor, namely 1.7 mH, 3.4 mH (initial design) and 6.8 mH (final
design).

Figures C.l1a, C.1c and C.le show the fundamental component of the
TCR. Similarly, Figures C.1b, C.1d and C.1f show the 3rd component
of the TCR current. These harmonic currents are plotted as a function of
the requested value for the thyristor conduction time op. Only the
periodic orbits which are half wave symmetric are shown so that
01=0,=0Cp. All the plots are normalized to the fundamental component
0,=180°. In addition to the expected fundamental resonance, the system
with the L values 1.7 mH or 3.4 mH also predict the unexpected “second
resonance” region. This region does not have any half wave symmetric
periodic solutions. Moreover, as G, is decreased from 1800 towards this
region, a rapid 3rd harmonic current build up as seen. Note that the
previously predicted 3rd harmonic resonance points from the average

inductor model fall within the shaded regions for both cases.
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Appendix D

DC and AC Harmonics of the Example 7.3

This appendix presents the results of the classical method versus the
harmonic coupling approach for the example system described in chapter
7.3. The results are plotted versus the commutation time p and

correspond to the inverter DC and AC harmonic currents and voltages.

Figure D.1a shows harmonic contents of the inverter AC current. All of
the current harmonics are normalized to the fundamental current when
u=58°. In region B, as p increases, all the odd harmonics become very

large.

Figure D.1b shows harmonic contents of the inverter AC voltage. The
AC voltage harmonics are normalized to the no load AC bus voltage. The
3rd harmonic is very small due to the presence of the passive tuned filter

in the example system.

Figure D.2a shows harmonic contents of the inverter DC current. The
DC side harmonic currents are normalized to the average of the DC

current when p=58°,

Figure D.2b shows harmonic contents of the inverter DC voltage. All of
the plots are normalized to the average of the DC voltage when pu=58°.
The region B shows a peculiar drop of the 2nd harmonic voltage on the
DC side. However, both of the regions show large harmonics as periodic

solutions of the system approach the shaded regibn.
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Figure D.2. DC harmonics of the example 7.3 (a) current (b) voltage
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