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How long 1s a resilience event in a transmission
system?: Metrics and models driven by utility data

Ian Dobson, Iowa State University

Abstract—We discuss ways to measure duration in a power
transmission system resilience event by modeling outage and
restore processes from utility data. We introduce novel Poisson
process models that describe how resilience events progress and
verify that they are typical using extensive outage data collected
across North America. Some usual duration metrics show
impractically high statistical variability, and we recommend
new duration metrics that perform better. Moreover, the Poisson
process models have parameters that can be estimated from
observed network data under different weather conditions, and
are promising new models of typical resilience events.

Index Terms—power transmission system, resilience, reliability,
restoration, metrics, stochastic process, utility data, weather.

I. INTRODUCTION

Much of the analysis of electric power system resilience
relies on describing the duration and magnitude of resilience
events with quantitative metrics [1]-[9]. The resilience events
correspond to conditions of unusually high stress such as
extreme weather or cascading and are either simulated [3]-
[5] or extracted from historical data [6]-[9]. The metrics of
duration and extent describe the performance of the power
system as it responds to the high stress and, sometimes indi-
rectly, the impact of the event on our society. The metrics are
broadly useful in improving the engineering of power system
resilience, as evidenced by all the engineering references of
this paper. This paper addresses electric power transmission
system metrics for the duration of resilience events and the
durations of the outage and restore processes occurring within
resilience events. Here “outage” refers to a component being
removed from service, and “restore” refers to re-energizing a
component to return it to service.

The duration of a resilience event would appear to be
straightforward: The event starts with the first transmission
outage at time o; and the event ends with the last restore
at time r,, so that the event duration metric is simply
Dg = r, — 01. However, we will show that the timing r,, of
the last restore is so highly statistically variable that it is not
meaningfully representative of the power system restoration.
(A metric is highly statistically variable if it is likely that its
value can be much different than its estimated value, and we
quantify this by the size of a confidence interval containing
the estimate.) Moreover, given the redundancy that is designed
into power transmission systems, the last restore may have
little or no impact on the power flowing to the distribution
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system and then to the customers. Therefore we analyze a
variety of duration metrics to find new metrics which are less
variable and more representative.

Our main approach is to develop new Poisson process mod-
els for the outage and restore processes. The new models are
driven by seven years of automatic outage data collected across
North America by the North American Electric Reliability
Corporation (NERC) in its Transmission Availability Data
System (TADS). These statistical models enable the variability
of the metrics to be quantified. Moreover, parameters of the
new models are closely related to some of the duration metrics.

This paper addresses the durations associated with transmis-
sion system resilience events in which there are substantial
outages of transmission system elements. In particular, the
paper does not address resilience events in which there are
no outages or minimal outages, such as an extended heat
wave that significantly limits transmission flows but causes
no outages. More generally, the paper is driven by outage and
restore data for transmission system elements, and therefore
does not address outages of generation, distribution system
elements, and loads.

A. Literature review

Much of the previous work on statistical models of power
system resilience events addresses distribution systems. Zapata
[10] models distribution system reliability with outages as a
power-law Poisson process arriving at a queue that is serviced
by a power-law repair process to produce a restore process.
Wei and Ji [7] analyze distribution system resilience to partic-
ular severe hurricanes with a Poisson outage process arriving
at a queue that repairs the outages to produce a restore process.
Both the outage process rate and the repair time distribution
vary in time as the hurricane progresses. Carrington [9] shows
how to extract outage and restore processes from standard
distribution utility data.

Both [7] and [10] statistically model the outage process
and the component repair process, and then calculate the
restore process with a first-in-first-out queue model, whereas
we follow the insight of [9] in extracting and directly model-
ing the outage and restore processes. Modeling the restore
process directly from the data avoids the complexities in
queuing models of explicitly modeling the component repair
and assuming an order of component repair. While [9] fits
the mean and standard deviation of the distribution system
outage and restore processes to give a gamma distribution of
restore times, it does not give statistical process models as
we do in this paper. Moreover, the forms of the outage and
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restore processes are quite different: for transmission systems
the restore process dramatically slows over time and typically
extends well beyond the end of the outage process, whereas in
distribution systems the outage and restore processes overlap
during most of the event [7], [9].

Previous work also estimates individual component repair
times from distribution utility data. For example, Jaech [11]
predicts a gamma distribution of individual component outage
restoration times and customer hours lost with a neural net-
work, and Liu [12] fits generalized additive accelerated failure
time models to hurricane and ice storm data.

There is a continuing and very useful tradition of reliability
analysis of bulk transmission systems that directly analyzes
the average annual reliability of classes of components from
observed data [13]-[17], or applies steady state Markov anal-
ysis to calculate the average reliability [18]. The steady state
Markov analysis has a huge literature with ingenious formu-
lations to encompass different types of outage dependencies.
The contribution of extreme weather to the average reliability
is modeled by having sets of Markov states corresponding to
the extreme weather [19], [20]. [21] calculates the average
steady state occurrence of compound outages from detailed
outage data. The present paper is different than steady state
reliability approaches in that it analyzes transient systems-level
processes of outage and restore rather than tracking individual
components, and analyzes events of various sizes rather than
reliability averaged over a year.

Most research on transmission system resilience uses con-
ceptual frameworks and simulates physics-based models [1],
[3], [4], [8], [22], [23]. With the exception of [8], in which the
simulation samples from empirically obtained distributions,
these approaches are not directly driven by observed data as
in the present paper.

Cascading outages of transmission systems, which on an
annual time scale' are rarer transient events involving a series
of dependent outages, can be studied by extracting cascading
events from outage data. The outage dependencies are diverse
and can be caused by a common environment such as extreme
weather as well as by interactions within the transmission
system. The statistics of cascading events can be studied
by first extracting from observed outage data the events in
which outages bunch up and overlap. For example, [24], [25]
extracted events in the Northwest USA in which outages
occurred in quick succession, and modeled the propagation
and number of outages using a branching process, and how
event outages spread in the network. [26] extracted events in
Britain in which outages occurred in quick succession and
analyzed their sizes and causes. [27] extracted events from
North American data with a quick succession of overlapping
outages and analyzed their sizes and causes. The present
paper uses the further refined event processing developed for
processing and analyzing North American data in [28], [29]
and applied in the NERC State of reliability reports [30], [31].

'On a longer time scale, complex system feedbacks produce a “statistical
steady state” with the observed power law distribution of blackout size [32],
[33].

B. Summary of paper contributions
This paper:

1) proposes new statistical models of outage and restore
processes in transmission systems, and shows that the
new models describe typical North American data.

2) analyzes statistical variability and interpretation of a
variety of duration metrics.

3) recommends novel and more useful duration metrics.

4) reports typical values for model parameters and duration
metrics for North America transmission resilience events.

The previous conference papers and NERC reports [28]—[31]
extract resilience events from transmission system outage data
and report the two duration metrics D925% and D,, for the
larger or largest events. The fruitful previous applications of
these duration metrics motivate in this paper the extensive new
analysis of a range of duration metrics and the recommenda-
tions backed by this analysis of better performing duration
metrics. The extraction of the transmission system resilience
events developed in [28], [29] is not the subject of this paper,
but since it is used in the data processing of this paper, we
specify in section II the precise version of the event extraction
used. Section II also summarizes the outage data used in the
paper and states and briefly comments on the definitions of
the outage and restore processes [9] since this paper uses these
processes.

The duration of resilience events has clear importance to
the public, engineers, regulators, and policy makers. This
motivates our consideration of the performance of a range
of duration metrics. We are not aware of another paper
addressing the question of how duration metrics perform, and
we approach the question with novel methods. In particular,
the stochastic models of typical transmission system resilience
processes proposed and validated with extensive data in the
paper are novel, and we expect that these new models will
be useful well beyond this paper’s more immediate goal of
proposing and analyzing better duration metrics.

II. RESILIENCE EVENTS AND PROCESSES

To obtain resilience metrics from utility outage data, we first
need to automatically extract resilience events and the outage
and restore processes for each event. This section explains
how to do this based on previous work [9], [28], [29] and
establishes the notation needed for the paper.

A. Utility data and extracting resilience events

NERC’s TADS collects outage and inventory data for the
following four types of transmission elements: AC circuits,
transformers, AC/DC back-to-back converters, and DC circuits
[34] which are part of the North American Bulk Power System
(i.e. operated at 100 kV or higher) [35]. The detailed automatic
outage data include the outage and restore time to the nearest
minute, the initiating cause code for each outage, and the
sustaining cause code for sustained outages. In this paper we
analyze the approximately 62 000 automatic outages for all
elements reported in TADS from 2015 to 2021 for the Eastern,
Western, and ERCOT interconnections.



A key step in resilience analysis of real data is automatically
extracting resilience events. For each interconnection, the
automatic outages are grouped together into resilience events
based on the bunching and overlaps of their starting times and
durations. We quote from [29] the algorithm used: “Every
outage in an event has to either start within five minutes of a
previous outage in the event or overlap in duration with at least
one previous outage in the event that has a difference in start-
ing time not exceeding one hour. In applying this algorithm,
repeated momentary outages of the same element are neglected
if they occur within 5 minutes of each other.” We use this
algorithm to automatically group outages into resilience events
(their sizes vary from 1 to 352 outages) and then analyze all
the resilience events with 10 or more outages. An event that
contains at least one outage with a weather-related initiating
or sustained cause code is defined as a weather-related event.
The weather-related TADS cause codes are lightning, weather
excluding lightning, fire, and environmental. This procedure
identified 352 transmission events with 10 or more outages,
329 of which are weather-related. Note that events are defined
so that if an outage is included in an event, then so is its
corresponding restore. Therefore the number of outages in an
event is equal to the number of restores.

B. Outage, restore, and performance processes

Suppose that the resilience event has n outages at times
01 <oy <...<o0, and n restores at times r; < 19 < ... < 1,.
Note that the outages are sorted into the order in which the
outages occur, and the restore times are sorted into the order
in which the restores occur. This sorting implies that the kth
restore time 7y, is not usually the restore of the kth outage oy.

For each event, the outage process O(t) is the cumulative
number of outages at time ¢ and the restore process R(t) is
the cumulative number of restores at time ¢:

O(t) = number of outages o; with o; <t (D)
R(t) = number of restores r with r <t )

Both processes start at zero at the beginning of the event and
increase to the total number of outages n, as can be seen in
the example in Fig. 1.
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Fig. 1. Processes for a transmission system resilience event with 12 outages.

Resilience studies [1], [3]-[5] often define for each event a
performance (or resilience) curve P(t), which is the negative
of the number of unrestored outages at time ¢. The perfor-
mance curve decrements for each outage and increments for
each restore as shown in Fig. 1. Indeed, the performance curve
is related to the outage and restore processes by P(t) = R(t)—
O(t). The performance curve can be uniquely decomposed
into its outage and restore processes, and it contains the same
information as the outage and restore processes [9].

The outage and restore processes, while straightforward,
are fundamental to analyzing real outage data, and they have
several distinctive features [9]: (a) The outage and restore
processes routinely overlap in time in real data; this differs
from the customary idealized outage and restore phases of
resilience that are separated in time [1], [3]-[5], [8]. (b) The
analysis is at a systems level and is not focused on tracking
individual elements: it only counts the numbers of outages and
restores and it does not track which outaged element restored
when or the order in which elements restore. (¢) The forms
of the outage and restore processes and performance curve
readily lead to resilience metrics that describe each process;
in particular, it is useful to have separate metrics describing
the outage process and the restore process.

III. POISSON PROCESS MODELS OF OUTAGE AND RESTORE

This section introduces new Poisson process models
that describe typical outage and restore processes in our
transmission system data. Fig. 2 shows examples. The mean
values of these Poisson processes are a useful approximation
of the outage and restore processes. Moreover, parameters
of the Poisson process models yield resilience metrics, and
section VIII uses the Poisson process models to quantify the
variability of the metrics. We consider two different Poisson
models for the restore process, based on lognormal and
exponential rates respectively. The fit of the Poisson models
with the data is discussed in section VII, where it is shown
that the model with a lognormal rate typically fits the restore
process better than the model with an exponential rate.

A. Poisson process of outage times with constant rate

The data for each event specifies that there are n outages
in the event and that the outages start at time o; and end
at time o,,. Given this information, and assuming a constant
rate Poisson process, we model the outage times as occurring
randomly and at a constant rate Ao in the time interval
(01,05,). In particular, given that there are n outages in
(01,0n), the n — 2 outage times 09, ..., 0,1 are independent
samples from a uniform distribution on (01,0,) sorted into
ascending order?.

20One well known property of a constant rate Poisson process is that, if
there are a given number of outages in an interval, then these outage times are
uniformly distributed in that interval [37, Thm. 4A, Ex. 4A], [38, Thm. 5.2].
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Fig. 2. Examples of outage processes (dark blue) and restore processes (red) for events. Red dashed line is lognormal restore approximation, gray dashed
line is exponential restore approximation. p-value is from Anderson Darling test on lognormal fit to restore process.
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Fig. 3. Horizontal axes ticks show eight outage times 01,02,...,08 produced by
a Poisson process with constant rate Ap. The resulting outage process O(t)
is the dark blue stepped line. O(t) is approximated by the average outage
process O(t), which is the dashed line of slope Ao.

A metric characterizing the outages is their rate Ao, which
is estimated for each event as®

n—1

Ao = 3)

Op — 01
The average or expected cumulative number of outages O(t)
at time ¢ is

Ot)=E[0O®)]=1+Xo(t—01), o1<t<o, @
O(t) approximates the outage process O(t) as shown in
Fig. 3. We see in Fig. 2 some typical examples in which
the cumulative number of outage increases in the linear way
given by (4). The total number of outages is O(o,) = n.
For each event, Ap can be estimated from (3), and then the
averaged outage process (4) approximates and describes the
outage process O(t).

3Since there are n— 1 time differences between the n outages, the estimated
average time difference between successive outages is (0, —01)/(n—1), and
then the estimated rate Ao is the reciprocal of the average time difference.
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Fig. 4. Horizontal axes ticks show eight restore times r1,r2,...,rg produced
by a Poisson process with lognormal rate. The resulting restore process R(t)
is the red stepped line. R(t) is approximated by the average restore process
R(t), which is the dashed curve. R(t) is proportional to the CDF of the
lognormal distribution and its slope is the Poisson process rate.

B. Poisson process of restore times with lognormal rate

The data for each event specifies that there are n restores in
the event and that the restores start at time ;. We work with
the restore times relative to ry; that is, r; — 7, 7 = 1,2, .., n.
The first restore time relative to r1, and any other simultaneous
restores at 71, become r; — r1; = 0. Suppose that first restore
that occurs at a time > 7y iS 7,41. Usually 7o > 7; and z = 1.

The restore times typically happen with a rate that varies,
as can be seen in the examples in Fig. 2. In particular,
the rate of restores typically slows dramatically for the final
restores. We model the n— z positive restore times r; — 71,
j=z4+1,242,...,n as occurring randomly in a nonhomo-
geneous Poisson process at a rate proportional to a lognormal
distribution. In particular, given that there are n — z outages
in the time interval (r1,00) = {¢ | t > r1}, the n — z restore
times 7,41 —71,...,7, — 71 are independent samples from a
lognormal distribution on (71, c0) sorted into ascending order.
There are some extremely long restore times 7,, in the data
(up to a year is recorded), and this is reflected in the modeling




of the process as unbounded in (1, 00).

Let the lognormal distribution have parameters ;o and o and
probability density function f, ,(t). Then the Poisson process
rate is proportional to the probability density function:

Ar(t) =(n—2)fuot—11), t>r (5)

By definition of the lognormal distribution, since the restore
times 7,41 —71,7,42—71, ..., 7, — 71 are independent samples
from a lognormal distribution, the natural logarithms of the
restore times In(r,41 — 1), In(r,q40 —71), ..., In(r, — 1) are
independent samples from a normal distribution. The standard
parameters characterizing the lognormal distribution are the
mean g and standard deviation o of the normal distribution.
Therefore we estimate p and o for each event by

1 n
Z In(ry —r1) (6)

H= n—z
k=z+1
1 n
2 _ _ 2
0° = — Z (In(rg —r1) — p) @)
k=z+1

The Poisson process restore rate Ag(t) is proportional to
the lognormal distribution as shown in (5).Ihen the average
or expected cumulative number of restores R(t) is

R(t) =E[R(#)] =2+ /t Ar(T)dT

T1

t
=z+(n-— z)/ Juo(T —r1)dr )
r1
ln(t—’!'l) y—p 2
=2+ (n—2) ! / e 5 dy
oV21 J_x
:z—i—(n—z)@{ln(t_rl)_u}, t>r 9
o

where @ is the CDF of the standard normal distribution.
Equation (8) shows that R(¢)— z is proportional to the CDF of
the lognormal distribution, and (9) expresses R(t) in terms of
the parameters y and o. R(t) approximates the restore process
R(t) as shown in Fig. 4.

The lognormal model has parameters u, o, 2z, and n. For
each event, u and o can be estimated from (6) and (7) and
then the averaged outage process R(t) (9) approximates and
describes the restore process R(t). Examples of the approxi-
mating restore curves are shown by red dashed lines in Fig. 2.

C. Poisson process of restore times with exponential rate

We can substitute the exponential distribution for the lognor-
mal distribution of subsection III-B to obtain a Poisson restore
process with exponential rate. That is, given that there are n—z
outages in (11, 00), the n — z restore times 7,171, ..., 'n—"1
are independent samples from an exponential distribution on
(r1,00) sorted into ascending order. We analyze the exponen-
tial restore rate because it is an analytically convenient choice
to try to describe the slowing rate of restores.

Let the exponential distribution have time constant 7 and
probability density function 7' e~*/7 for t > 0. Then the
Poisson process rate is

ARexp(t) = (n — Z)Til ef(tfrl)/T, t>ry (10)

and the expected cumulative number of restores is

t
Rexp(t) =2+ (n— 2) / e (mm)/ s (11)
1
—z4+n—2)1—e /T t>r 0 (12)
We estimate the exponential time constant by
1 n
= - 13
T=—" > (—m) (13)

k=z+1

7 is the arithmetic mean of the positive restore times relative to
r1. The exponential model has parameters 7, z, and n. For each
event, 7 can be estimated from (13), and then the averaged
outage process Rexp in (12) approximates and describes the
restore process R(t). Examples of the approximating restore
curves are shown by gray dashed lines in Fig. 2.

IV. DURATION METRICS

There are many possible metrics describing durations in
resilience events. This section defines and describes a variety
of these metrics.

A. Straightforward duration metrics

outage duration Do = 0, — 01
time to first restore D, =r; — 01
restore duration D, =1, —
restore time to kth restore D, = rp — rq
event duration Dp =r, — 01

The outage process starts at the first outage o; and ends
at o, so that the outage duration Do = o0, — 0. The first
restore is at time r; and the time to the first restore is D, =
r1 — o1. That is, D,; quantifies how much the start of the
restore process is delayed. The restore process starts at r;
and ends at the last restore r,, so that the restore duration
D,, = r,, — r1. The event starts at time o; and ends at time
rn. The event duration Dy = r, — 01 can be split into the
time to the first restore and the restore duration:

Dg=rp,—01=(r1—o01)+ (rn,—r1) =Dp + D, (14)

This section discusses restore duration, but the correspond-
ing metrics describing event duration are easily obtained from
the metrics for restore duration by adding the time to first
restore D, as in (14). The outage duration Do and time to
first restore D,.; are useful metrics, but section V explains that
the restore duration D,, and the event duration D suffer from
high variability.

B. Restore metrics based on quantiles

It is of interest to quantify the time to reach a given percent-
age x of restoration, or, equivalently, the /100 quantile of the
restore times 0,72 — r1,73 — 71, ...,7y, — 71. There are many
different definitions of quantiles ( [36] analyzes 10 definitions
used in statistics), and correspondingly many ways to define
restore metrics based on quantiles. This subsection discusses
two metrics of restore duration based on quantiles; the first
metric quantizes to a restore time while the second metric
interpolates between restore times.



time to first restore with at least % restoration

Dgz‘;% = T[nz/100] — 71 (15)

The ceiling function [u] is the smallest integer > w. For
example, D§5% is the time between the first restore r; and
the first restore 7(g.95,,7 at which at least 95% of the restores
are completed. It follows that D§5% = D, for n < 20,
Dgyop = Dy for 20 < n < 40, and Dy, = D, for
40 < n < 60. For example, for n = 16, [0.95n] = [15.2] =
16 and DQZS% = D16. These quantum jumps in D§5% as n
varies, and which also occur as x varies, are unsatisfactory
when analyzing a range of events. This can be fixed with the

following more elaborate quantile definition.

restore time to % of restoration

Doy = (1= (u— [u]))riu) + (u— [u])rpg —m1
= (1= (u—[u]))Dyu) + (u— [u])Dry
here u:min{l—i— (n—&—l)i n}
v 3 37100’
The ceiling function [w] is the smallest integer > u, the floor
function |u] is the largest integer < u, and w — |u] is the
fractional part of w.

Eqn. (16) shows that Do linearly interpolates between
restore times D), 4J and Dr,y. D,y uses the median-based
quantile definition® recommended by [36], but also limits u to
a maximum of n in (17). When limiting applies, D o = D,,.

In contrast to Df% , D,o changes continuously as z varies
and with much smaller jumps as n varies. For this reason, we
strongly prefer Do, to Df% .

Dxgo, evaluated with (16) reduces to the usual median. That
is, letting £ = [n/2],

Te —T1
D509 =

1

s(re+repr) —m

(16)
a7)

,n=20—1=odd

18
,n = 2¢ =even (18)

C. Metrics related to restore process models

These metrics work with the positive restore times relative
to ry; thatis, r; —ry, j =2+ 1,2+ 2,..,n.5 Usually z =1
as explained in section III-B.
geometric mean of positive restore times

_1

Dom = [[Tieoyi(re =) 77 = e
arithmetic mean of log restore times

p= - [ZZZZ_H In[ry, — r1]] = In Dgm
standard deviation of log restore times

o= \/ﬁ ZZ:ZH(IH[?% - 7“1] - M)2
restore time to x% restoration assuming lognormal

D, satisfies nz/100 = R(D%, + r1) and

naz /100 — z = (n — 2)®[(In D%, — 1)/o] so that

nx /100 — 2)]

DIIH% :exp[u—i—U(I)_l( (19)

n—=z

1 ok
Note that D(go+502/n)% =e’ = Dam.

4implemented in R as quantile type 8, and in Mathematica by Quantile
with parameters {{1/3,1/3},{0,1}}

5The following metric definitions require a positive outage duration (o, >
01) so that z < n. If 0, = 01, we define the metric to be zero.

arithmetic mean of nonzero restore times
=37 (rk —m1)
 n—=z k=z+1\"k 1
restore time to 1% restoration assuming exponential
D7ep satisfies na/100 — z = Rexp(Dyer +71) and

x

n(1 - 2/100) = (n — z) exp[- D35 /7] so that

D&P — ] n—=z }
% = T (1 = 2/100)

The average restoring half life Dio, = 7In[2(%=2)] is the
average time for the number of unrestored outages to halve
averaged over the restore process assuming exponential decay.

There are variants of D, and DSP with slightly simpler
formulas that describe the time to restoration of x% of the
n — z nonzero restore times. For these variants, D;n% be-
comes exp|u+o0 ' (2/100)] and D5 becomes 7 In[1/(1—
2/100)]. We prefer the definitions of D, and DjP above
because the time to restoration of % of all n restore times
seems more straightforward.

All the duration metrics in the paper (labeled with D)
are given in hours so that the time unit ¢, = 1 hour. We
now discuss the units of x and 0. A more precise version
of o = IHDGM is n = hl(DGM/tu) (OI' DGM = tue“).
Dividing D¢y in hours by ¢, = 1 in hours gives the required
nondimensional argument of the logarithm [39]. Changing ¢,
will cause a change in the value of u. o does not depend on
the units used and gives the same value for any choice of ¢,,.

1
V. DISCUSSING RESTORE METRICS D,,, Dgm, Dosy, Dg‘g%

All duration metrics of the restore process are subject
to substantial statistical variability that can undermine their
usefulness, especially for smaller values of event size n. The
variabilities of the restore metrics are analyzed in section VIII
by calculating the size of their confidence interval, and only
the conclusions about their variability are stated here.

The restore duration metric D,, is straightforward, but it
is typically too highly variable to be a reliable estimate.
Moreover, D,, depends strongly on the last or last few restores,
preventing D,, from describing the performance throughout
the entire restore process. This dependence also makes D,
relate poorly to transmission performance because these last
restores may be unimportant for customers, or may be ex-
cessively delayed by factors out of the control of the utility,
such as the difficulty of repairing transmission lines in the
mountains in the winter or structural damage caused by
hurricane or tornado.

The geometric mean of the positive restore times Dgy iS
the best estimate of restore performance in terms of having the
least variability. It is also clear that Dgyr depends on all the
restores throughout the restore process. We now discuss how
Dgw also estimates a median of the restore process. Since the
normal distribution is symmetrical about its mean value, the
mean p also estimates the median of the normal distribution,
and therefore Doy = e# estimates the median of the
lognormal distribution®. In fact, Dy is a better estimate (less
variance) of the median than applying the standard formula

50nly the symmetry of the distribution of the logarithm of the nonzero
restore times relative to r1 is needed here.



TABLE I
SUMMARY OF METRICS, RECOMMENDATIONS, AND TYPICAL VALUES

metric recommend?  comment median

n number of outages/restores Yes useful measure of event size 13.5
Do outage duration Yes useful description of outage process 2.69
Ao outage rate Yes useful description of outage process 545
D1 time to first restore Yes useful description of delay in start of restores 0.52
Dg event duration No = Dy1 + Dy; extreme variability 69.8
Dy, restore duration (time to last restore) No extreme variability 69.1
Dy restore time to (n—1)th restore No Dg5o, preferred 314
D925% first restore time with > 95% restore No Dg5o preferred since continuous 554
Dgqgo;,  restore time to 90% quantile Yes 39.2
Dgso;  restore time to 95% quantile Yes Dgé% is an alternative 65.2
w mean of log restore times No ©=1In Dgn and Dgyy is recommended. 1.64
o standard deviation of log restore times - 1.56
Dgé% restore time to 95% with lognormal(u, o) - Dg5q, slightly preferred; lognormal fit only typical 67.7
T arithmetic mean of restores> 0; exp time constant ~ No exponential fit poorer; variable for small n 16.4
DgZt,  restore time to 95% with exponential(T) No exponential fit poorer 47.8
D59~ median restore time No Dgy preferred 4.27
DcwMm geometric mean of restore times Yes best, least variable restore performance metric; 5.15

also estimates median of restores> 0

(18) for the median. The detailed correspondence is that Dg
estimates the median of 7; — 7y, j = 2+ 1,2+2,...,n, which
is modestly greater than’ the median of all the restore times
r; — 11, J = 1,2,..,n calculated in (18). That is, under the
lognormal model, Dgyr is a good estimate of the median of
the positive restore times relative to r1, and approximates from
above the median Dsg, of all restore times relative to 7.

While Dgy is an informative metric with the lowest vari-
ability, Dgse, and Dgg% can be used as more representative
of the almost complete duration of the restore process, with
the compromise of higher variability than Dgy. Dgsy, is a
more smoothly varying quantile metric indicating the 95%
completion of the restore process. Dg%% is also smoothly
varying. Dgs is a bit more variable than ng,)%, particularly
for small n. Overall, we slightly prefer Dgso; to Dg%% because
the quantile approach is less model dependent, whereas Dlg%%
will work best in the typical lognormal restore case.

Table I summarizes the metrics and our recommendations.

VI. TYPICAL VALUES OF METRICS & MODEL PARAMETERS

Typical values of metrics and parameters are given for all
the data in Table I and for each interconnection in Table
II; these values are expected to be useful for modeling and
assessing interconnection-specific transmission events. Due to
the heavy tails in their distribution, some quantities in Table II
such as D,, have mean values that greatly exceed the median
and large standard deviations. In these cases, the estimated
mean has substantial statistical variation and poorly indicates
a typical value; the median is a better typical value. The
large standard deviations arise from both the metric statistical
variability and the metric variation between events.

On average, events in the Eastern interconnection are larger
than in the West and ERCOT. It can be explained by the fact
that the largest transmission events were caused by hurricanes,
and all of these events occurred in the East. For all inter-
connections, the mean and median outage process durations

"For z = 1, difference in the medians is (rg1 1 —7¢)/2, where £ = [n/2].

all durations in hours, Ao in per hour

TABLE II
TYPICAL VALUES OF METRICS BY INTERCONNECTION
Eastern ERCOT Western
Metric mean SD median mean SD median mean SD median
n 232 382 13 169 100 13 20.1 17.7 14

Do 35 36 28 26 21 23 28 23 25

Ao 73 86 5.1 65 37 52 240 990 6.4
Dy 078 1.07 053 128 134 095 0.65 0.80 043
Dr 379 1088 73 154 227 53 219 494 62
Dy 379 1088 72 153 228 50 218 494 6l

Dpq 126 332 32 75 81 36 81 210 26

Dgzs% 305 1000 62 128 204 49 170 438 46
Dggy, 151 471 44 78 83 39 103 262 32
Dgso, 294 945 67 122 182 49 180 442 48

m 1.68 117 176 148 1.62 219 123 1.11 1.10
o 1.64 057 159 156 059 1.67 157 0.65 1.46
Dgg% 397 2740 77 199 327 55 132 362 46
T 498 154 176 28.6 30.8 150 285 57.6 125
Dg’g% 145 449 52 84 90 44 83 167 37
D59, 153 653 4.8 18.1 288 5.3 56 61 26
Doy 128 51.6 0 5.8 100 95 89 58 56 3.0

all durations in hours, Ao in per hour

Do are similar, and very short compared to event durations
Dpg. The mean outage rate in the West is much higher due
to several events (wildfires and a lightning storm) for which
all outages started almost simultaneously. This extremely short
outage duration Dy results in huge outage rates (see (3)).

The restoration usually starts very quickly after the event
starts as the time to first restore D, indicates. In ERCOT the
average time to a first restore, 1 hour 17 minutes, is statistically
significantly larger than in the East and in the West, where
restoration typically starts within one hour. Overall, the time
to first restore is negligible compared to event duration;
this makes the event duration Dy and the restore process
duration D,, effectively equal. In contrast, the time between
the (n — 1)th and nth restores, D,, — D,,_1, is sizeable and
often comprises a substantial share (41% on average) of D,,.
This observation again underscores the impact of the last few
restores to the event and restore durations.

The geometric mean of the positive restore times, Dg,



is a simple and stable metric. Dgy is also an approximate
estimate for the time to one half of restores for the events with
log-normal restore times. The largest difference between these
metrics observed for the ERCOT events can be attributed to
the poorer log-normal fit for the ERCOT events. On average,
Dg is 12% of the entire restore process duration D,,.

It is interesting to compare in Table II the sample quan-
tile restore time Dgsy, with the lognormal and exponential
quantiles Do, and Db, Dglo often overestimates Dosg,
due to the heavy tail of the lognormal distribution, whereas
DgZt, often underestimates Dgsy, due to the light tail of the
exponential distribution.

The parameters p and o for fitted log-normal distributions
and 7 for fitted exponential are consistent in each intercon-
nection and across interconnections. Table V shows that p
increases and o decreases with event size n.

Only 23 of the 352 resilience events in the dataset are not
weather-related. These 23 events vary in size from 10 to 26
outages. Except for D,., the medians of the duration metrics
in Table III are statistically significantly higher® for weather-
related events than for non weather-related events. Table III
also shows for each weather type the median metrics for the
95 weather-related events with at least 18 outages. There are
some statistically significant differences® among the extreme
weather types: the medians of D,, and Dgsy for hurricanes
are greater than for other weather types, and Dgyr and p for
hurricanes and tornadoes are greater than for other weather
types. The mean of the times to first restore D, are similar
for all weather types except tornadoes; the mean D,; for
tornadoes is 1.7 hours, which is at least double the mean D,
for the other weather types.

TABLE III
MEDIAN VALUE OF METRICS BY TYPE OF WEATHER

Type (#cases) n Do Dr1 Dn Dgm Dosy p o
fire (4) 21 1.51 033 334 263 30.8 0.96 1.89
hurricane (17) 55 6.53 0.58 257 204 109  3.02 1.50
wind,thunder (36) 25 4.04 044 122 6.75 823 190 144
tornado (15) 245 5.04 096 174 127 934 254 147
winter (23) 32 437 0.60 495 473 415 155 1.32
all weather(329) 14 2.80 0.52 734 576 677 175 1.56
non-weather (23) 11  1.00 0.65 19.1 1.10 19.1 0.09 1.58

all durations in hours

Our analysis confirms a well-known fact that a type of
extreme weather can be more typical and impactful for one
interconnection than another. Among the 11 named hurricanes
that caused 17 transmission outage events shown in Table
IIT (the largest, longest and most impactful events in the
data set) all except one hit the Eastern Interconnection; the
exception was the hurricane Harvey (ERCOT, August 2017).
Wildfires causing large transmission events usually occur in
the West. These examples demonstrate a possible reason in
metric variability across the system and, more importantly, the
impractically of using duration metrics to compare resilience
of transmission system in different interconnections. These
metrics should be used to track differences in resilience
and restoration for the same grid (changes in time, between
different types of events etc.).

8confirmed with a nonparametric one-way ANOVA test for medians [40]

VII. FIT OF POISSON PROCESS MODELS TO UTILITY DATA

This section discusses the fit of the Poisson models to the
observed utility data by a goodness of fit test, which allows
for analysis of each of the 352 events, and by probability plots
for the combined normalized data, which also show where the
fit deviates. For the goodness of fit tests, there is some arbi-
trariness in the threshold amount of deviation corresponding
to the significance level, as well as some dependence on the
event size n, but they do give an indication of fit.

A. Outage process fit with uniform distribution

The Poisson process model with constant outage rate im-
plies that for