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How long is a resilience event in a transmission
system?: Metrics and models driven by utility data

Ian Dobson, Iowa State University Svetlana Ekisheva, North American Electric Reliability Corporation

Abstract—We discuss ways to measure duration in a power
transmission system resilience event by modeling outage and
restore processes from utility data. We introduce novel Poisson
process models that describe how resilience events progress and
verify that they are typical using extensive outage data collected
across North America. Some usual duration metrics show
impractically high statistical variability, and we recommend
new duration metrics that perform better. Moreover, the Poisson
process models have parameters that can be estimated from
observed network data under different weather conditions, and
are promising new models of typical resilience events.

Index Terms—power transmission system, resilience, reliability,
restoration, metrics, stochastic process, utility data, weather.

I. INTRODUCTION

Much of the analysis of electric power system resilience
relies on describing the duration and magnitude of resilience
events with quantitative metrics [1]–[9]. The resilience events
correspond to conditions of unusually high stress such as
extreme weather or cascading and are either simulated [3]–
[5] or extracted from historical data [6]–[9]. The metrics of
duration and extent describe the performance of the power
system as it responds to the high stress and, sometimes indi-
rectly, the impact of the event on our society. The metrics are
broadly useful in improving the engineering of power system
resilience, as evidenced by all the engineering references of
this paper. This paper addresses electric power transmission
system metrics for the duration of resilience events and the
durations of the outage and restore processes occurring within
resilience events. Here “outage” refers to a component being
removed from service, and “restore” refers to re-energizing a
component to return it to service.

The duration of a resilience event would appear to be
straightforward: The event starts with the first transmission
outage at time o1 and the event ends with the last restore
at time rn, so that the event duration metric is simply
DE = rn − o1. However, we will show that the timing rn of
the last restore is so highly statistically variable that it is not
meaningfully representative of the power system restoration.
(A metric is highly statistically variable if it is likely that its
value can be much different than its estimated value, and we
quantify this by the size of a confidence interval containing
the estimate.) Moreover, given the redundancy that is designed
into power transmission systems, the last restore may have
little or no impact on the power flowing to the distribution
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system and then to the customers. Therefore we analyze a
variety of duration metrics to find new metrics which are less
variable and more representative.

Our main approach is to develop new Poisson process mod-
els for the outage and restore processes. The new models are
driven by seven years of automatic outage data collected across
North America by the North American Electric Reliability
Corporation (NERC) in its Transmission Availability Data
System (TADS). These statistical models enable the variability
of the metrics to be quantified. Moreover, parameters of the
new models are closely related to some of the duration metrics.

This paper addresses the durations associated with transmis-
sion system resilience events in which there are substantial
outages of transmission system elements. In particular, the
paper does not address resilience events in which there are
no outages or minimal outages, such as an extended heat
wave that significantly limits transmission flows but causes
no outages. More generally, the paper is driven by outage and
restore data for transmission system elements, and therefore
does not address outages of generation, distribution system
elements, and loads.

A. Literature review

Much of the previous work on statistical models of power
system resilience events addresses distribution systems. Zapata
[10] models distribution system reliability with outages as a
power-law Poisson process arriving at a queue that is serviced
by a power-law repair process to produce a restore process.
Wei and Ji [7] analyze distribution system resilience to partic-
ular severe hurricanes with a Poisson outage process arriving
at a queue that repairs the outages to produce a restore process.
Both the outage process rate and the repair time distribution
vary in time as the hurricane progresses. Carrington [9] shows
how to extract outage and restore processes from standard
distribution utility data.

Both [7] and [10] statistically model the outage process
and the component repair process, and then calculate the
restore process with a first-in-first-out queue model, whereas
we follow the insight of [9] in extracting and directly model-
ing the outage and restore processes. Modeling the restore
process directly from the data avoids the complexities in
queuing models of explicitly modeling the component repair
and assuming an order of component repair. While [9] fits
the mean and standard deviation of the distribution system
outage and restore processes to give a gamma distribution of
restore times, it does not give statistical process models as
we do in this paper. Moreover, the forms of the outage and
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restore processes are quite different: for transmission systems
the restore process dramatically slows over time and typically
extends well beyond the end of the outage process, whereas in
distribution systems the outage and restore processes overlap
during most of the event [7], [9].

Previous work also estimates individual component repair
times from distribution utility data. For example, Jaech [11]
predicts a gamma distribution of individual component outage
restoration times and customer hours lost with a neural net-
work, and Liu [12] fits generalized additive accelerated failure
time models to hurricane and ice storm data.

There is a continuing and very useful tradition of reliability
analysis of bulk transmission systems that directly analyzes
the average annual reliability of classes of components from
observed data [13]–[17], or applies steady state Markov anal-
ysis to calculate the average reliability [18]. The steady state
Markov analysis has a huge literature with ingenious formu-
lations to encompass different types of outage dependencies.
The contribution of extreme weather to the average reliability
is modeled by having sets of Markov states corresponding to
the extreme weather [19], [20]. [21] calculates the average
steady state occurrence of compound outages from detailed
outage data. The present paper is different than steady state
reliability approaches in that it analyzes transient systems-level
processes of outage and restore rather than tracking individual
components, and analyzes events of various sizes rather than
reliability averaged over a year.

Most research on transmission system resilience uses con-
ceptual frameworks and simulates physics-based models [1],
[3], [4], [8], [22], [23]. With the exception of [8], in which the
simulation samples from empirically obtained distributions,
these approaches are not directly driven by observed data as
in the present paper.

Cascading outages of transmission systems, which on an
annual time scale1 are rarer transient events involving a series
of dependent outages, can be studied by extracting cascading
events from outage data. The outage dependencies are diverse
and can be caused by a common environment such as extreme
weather as well as by interactions within the transmission
system. The statistics of cascading events can be studied
by first extracting from observed outage data the events in
which outages bunch up and overlap. For example, [24], [25]
extracted events in the Northwest USA in which outages
occurred in quick succession, and modeled the propagation
and number of outages using a branching process, and how
event outages spread in the network. [26] extracted events in
Britain in which outages occurred in quick succession and
analyzed their sizes and causes. [27] extracted events from
North American data with a quick succession of overlapping
outages and analyzed their sizes and causes. The present
paper uses the further refined event processing developed for
processing and analyzing North American data in [28], [29]
and applied in the NERC State of reliability reports [30], [31].

1On a longer time scale, complex system feedbacks produce a “statistical
steady state” with the observed power law distribution of blackout size [32],
[33].

B. Summary of paper contributions

This paper:
1) proposes new statistical models of outage and restore

processes in transmission systems, and shows that the
new models describe typical North American data.

2) analyzes statistical variability and interpretation of a
variety of duration metrics.

3) recommends novel and more useful duration metrics.
4) reports typical values for model parameters and duration

metrics for North America transmission resilience events.
The previous conference papers and NERC reports [28]–[31]
extract resilience events from transmission system outage data
and report the two duration metrics D≥95% and Dn for the
larger or largest events. The fruitful previous applications of
these duration metrics motivate in this paper the extensive new
analysis of a range of duration metrics and the recommenda-
tions backed by this analysis of better performing duration
metrics. The extraction of the transmission system resilience
events developed in [28], [29] is not the subject of this paper,
but since it is used in the data processing of this paper, we
specify in section II the precise version of the event extraction
used. Section II also summarizes the outage data used in the
paper and states and briefly comments on the definitions of
the outage and restore processes [9] since this paper uses these
processes.

The duration of resilience events has clear importance to
the public, engineers, regulators, and policy makers. This
motivates our consideration of the performance of a range
of duration metrics. We are not aware of another paper
addressing the question of how duration metrics perform, and
we approach the question with novel methods. In particular,
the stochastic models of typical transmission system resilience
processes proposed and validated with extensive data in the
paper are novel, and we expect that these new models will
be useful well beyond this paper’s more immediate goal of
proposing and analyzing better duration metrics.

II. RESILIENCE EVENTS AND PROCESSES

To obtain resilience metrics from utility outage data, we first
need to automatically extract resilience events and the outage
and restore processes for each event. This section explains
how to do this based on previous work [9], [28], [29] and
establishes the notation needed for the paper.

A. Utility data and extracting resilience events

NERC’s TADS collects outage and inventory data for the
following four types of transmission elements: AC circuits,
transformers, AC/DC back-to-back converters, and DC circuits
[34] which are part of the North American Bulk Power System
(i.e. operated at 100 kV or higher) [35]. The detailed automatic
outage data include the outage and restore time to the nearest
minute, the initiating cause code for each outage, and the
sustaining cause code for sustained outages. In this paper we
analyze the approximately 62 000 automatic outages for all
elements reported in TADS from 2015 to 2021 for the Eastern,
Western, and ERCOT interconnections.
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A key step in resilience analysis of real data is automatically
extracting resilience events. For each interconnection, the
automatic outages are grouped together into resilience events
based on the bunching and overlaps of their starting times and
durations. We quote from [29] the algorithm used: “Every
outage in an event has to either start within five minutes of a
previous outage in the event or overlap in duration with at least
one previous outage in the event that has a difference in start-
ing time not exceeding one hour. In applying this algorithm,
repeated momentary outages of the same element are neglected
if they occur within 5 minutes of each other.” We use this
algorithm to automatically group outages into resilience events
(their sizes vary from 1 to 352 outages) and then analyze all
the resilience events with 10 or more outages. An event that
contains at least one outage with a weather-related initiating
or sustained cause code is defined as a weather-related event.
The weather-related TADS cause codes are lightning, weather
excluding lightning, fire, and environmental. This procedure
identified 352 transmission events with 10 or more outages,
329 of which are weather-related. Note that events are defined
so that if an outage is included in an event, then so is its
corresponding restore. Therefore the number of outages in an
event is equal to the number of restores.

B. Outage, restore, and performance processes

Suppose that the resilience event has n outages at times
o1 ≤ o2 ≤ ... ≤ on and n restores at times r1 ≤ r2 ≤ ... ≤ rn.
Note that the outages are sorted into the order in which the
outages occur, and the restore times are sorted into the order
in which the restores occur. This sorting implies that the kth
restore time rk is not usually the restore of the kth outage ok.

For each event, the outage process O(t) is the cumulative
number of outages at time t and the restore process R(t) is
the cumulative number of restores at time t:

O(t) = number of outages oj with oj ≤ t (1)
R(t) = number of restores rk with rk ≤ t (2)

Both processes start at zero at the beginning of the event and
increase to the total number of outages n, as can be seen in
the example in Fig. 1.
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Fig. 1. Processes for a transmission system resilience event with 12 outages.

Resilience studies [1], [3]–[5] often define for each event a
performance (or resilience) curve P (t), which is the negative
of the number of unrestored outages at time t. The perfor-
mance curve decrements for each outage and increments for
each restore as shown in Fig. 1. Indeed, the performance curve
is related to the outage and restore processes by P (t) = R(t)−
O(t). The performance curve can be uniquely decomposed
into its outage and restore processes, and it contains the same
information as the outage and restore processes [9].

The outage and restore processes, while straightforward,
are fundamental to analyzing real outage data, and they have
several distinctive features [9]: (a) The outage and restore
processes routinely overlap in time in real data; this differs
from the customary idealized outage and restore phases of
resilience that are separated in time [1], [3]–[5], [8]. (b) The
analysis is at a systems level and is not focused on tracking
individual elements: it only counts the numbers of outages and
restores and it does not track which outaged element restored
when or the order in which elements restore. (c) The forms
of the outage and restore processes and performance curve
readily lead to resilience metrics that describe each process;
in particular, it is useful to have separate metrics describing
the outage process and the restore process.

III. POISSON PROCESS MODELS OF OUTAGE AND RESTORE

This section introduces new Poisson process models
that describe typical outage and restore processes in our
transmission system data. Fig. 2 shows examples. The mean
values of these Poisson processes are a useful approximation
of the outage and restore processes. Moreover, parameters
of the Poisson process models yield resilience metrics, and
section VIII uses the Poisson process models to quantify the
variability of the metrics. We consider two different Poisson
models for the restore process, based on lognormal and
exponential rates respectively. The fit of the Poisson models
with the data is discussed in section VII, where it is shown
that the model with a lognormal rate typically fits the restore
process better than the model with an exponential rate.

A. Poisson process of outage times with constant rate

The data for each event specifies that there are n outages
in the event and that the outages start at time o1 and end
at time on. Given this information, and assuming a constant
rate Poisson process, we model the outage times as occurring
randomly and at a constant rate λO in the time interval
(o1, on). In particular, given that there are n outages in
(o1, on), the n− 2 outage times o2, ..., on−1 are independent
samples from a uniform distribution on (o1, on) sorted into
ascending order2.

2One well known property of a constant rate Poisson process is that, if
there are a given number of outages in an interval, then these outage times are
uniformly distributed in that interval [37, Thm. 4A, Ex. 4A], [38, Thm. 5.2].
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Fig. 2. Examples of outage processes (dark blue) and restore processes (red) for events. Red dashed line is lognormal restore approximation, gray dashed
line is exponential restore approximation. p-value is from Anderson Darling test on lognormal fit to restore process.
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Fig. 3. Horizontal axes ticks show eight outage times o1,o2,...,o8 produced by
a Poisson process with constant rate λO . The resulting outage process O(t)
is the dark blue stepped line. O(t) is approximated by the average outage
process O(t), which is the dashed line of slope λO .

A metric characterizing the outages is their rate λO, which
is estimated for each event as3

λO =
n− 1

on − o1
(3)

The average or expected cumulative number of outages O(t)
at time t is

O(t) = E[O(t)] = 1 + λO(t− o1), o1 ≤ t ≤ on (4)

O(t) approximates the outage process O(t) as shown in
Fig. 3. We see in Fig. 2 some typical examples in which
the cumulative number of outage increases in the linear way
given by (4). The total number of outages is O(on) = n.
For each event, λO can be estimated from (3), and then the
averaged outage process (4) approximates and describes the
outage process O(t).

3Since there are n−1 time differences between the n outages, the estimated
average time difference between successive outages is (on−o1)/(n−1), and
then the estimated rate λO is the reciprocal of the average time difference.
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Fig. 4. Horizontal axes ticks show eight restore times r1,r2,...,r8 produced
by a Poisson process with lognormal rate. The resulting restore process R(t)
is the red stepped line. R(t) is approximated by the average restore process
R(t), which is the dashed curve. R(t) is proportional to the CDF of the
lognormal distribution and its slope is the Poisson process rate.

B. Poisson process of restore times with lognormal rate

The data for each event specifies that there are n restores in
the event and that the restores start at time r1. We work with
the restore times relative to r1; that is, rj − r1, j = 1, 2, .., n.
The first restore time relative to r1, and any other simultaneous
restores at r1, become r1 − r1 = 0. Suppose that first restore
that occurs at a time > r1 is rz+1. Usually r2 > r1 and z = 1.

The restore times typically happen with a rate that varies,
as can be seen in the examples in Fig. 2. In particular,
the rate of restores typically slows dramatically for the final
restores. We model the n−z positive restore times rj−r1,
j = z + 1, z + 2, ..., n as occurring randomly in a nonhomo-
geneous Poisson process at a rate proportional to a lognormal
distribution. In particular, given that there are n − z outages
in the time interval (r1,∞) = {t | t > r1}, the n− z restore
times rz+1− r1, ..., rn− r1 are independent samples from a
lognormal distribution on (r1,∞) sorted into ascending order.
There are some extremely long restore times rn in the data
(up to a year is recorded), and this is reflected in the modeling
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of the process as unbounded in (r1,∞).
Let the lognormal distribution have parameters µ and σ and

probability density function fµ,σ(t). Then the Poisson process
rate is proportional to the probability density function:

λR(t) = (n− z)fµ,σ(t− r1), t > r1 (5)

By definition of the lognormal distribution, since the restore
times rz+1−r1, rz+2−r1, ..., rn−r1 are independent samples
from a lognormal distribution, the natural logarithms of the
restore times ln(rz+1 − r1), ln(rz+2 − r1), ..., ln(rn − r1) are
independent samples from a normal distribution. The standard
parameters characterizing the lognormal distribution are the
mean µ and standard deviation σ of the normal distribution.
Therefore we estimate µ and σ for each event by

µ =
1

n− z

n∑
k=z+1

ln(rk − r1) (6)

σ2 =
1

n− z − 1

n∑
k=z+1

(ln(rk − r1)− µ)2 (7)

The Poisson process restore rate λR(t) is proportional to
the lognormal distribution as shown in (5). Then the average
or expected cumulative number of restores R(t) is

R(t) = E[R(t)] = z +

∫ t

r1

λR(τ)dτ

= z + (n− z)
∫ t

r1

fµ,σ(τ − r1)dτ (8)

= z + (n− z) 1

σ
√

2π

∫ ln(t−r1)

−∞
e−

(y−µ)2

2σ2 dy

= z + (n− z)Φ
[

ln(t− r1)− µ
σ

]
, t ≥ r1 (9)

where Φ is the CDF of the standard normal distribution.
Equation (8) shows that R(t)−z is proportional to the CDF of
the lognormal distribution, and (9) expresses R(t) in terms of
the parameters µ and σ. R(t) approximates the restore process
R(t) as shown in Fig. 4.

The lognormal model has parameters µ, σ, z, and n. For
each event, µ and σ can be estimated from (6) and (7) and
then the averaged outage process R(t) (9) approximates and
describes the restore process R(t). Examples of the approxi-
mating restore curves are shown by red dashed lines in Fig. 2.

C. Poisson process of restore times with exponential rate

We can substitute the exponential distribution for the lognor-
mal distribution of subsection III-B to obtain a Poisson restore
process with exponential rate. That is, given that there are n−z
outages in (r1,∞), the n−z restore times rz+1−r1, ..., rn−r1
are independent samples from an exponential distribution on
(r1,∞) sorted into ascending order. We analyze the exponen-
tial restore rate because it is an analytically convenient choice
to try to describe the slowing rate of restores.

Let the exponential distribution have time constant τ and
probability density function τ−1 e−t/τ for t ≥ 0. Then the
Poisson process rate is

λRexp(t) = (n− z)τ−1 e−(t−r1)/τ , t > r1 (10)

and the expected cumulative number of restores is

Rexp(t) = z + (n− z)
∫ t

r1

τ−1 e−(s−r1)/τds (11)

= z + (n− z)[1− e−(t−r1)/τ ], t ≥ r1 (12)

We estimate the exponential time constant by

τ =
1

n− z

n∑
k=z+1

(rk − r1) (13)

τ is the arithmetic mean of the positive restore times relative to
r1. The exponential model has parameters τ , z, and n. For each
event, τ can be estimated from (13), and then the averaged
outage process Rexp in (12) approximates and describes the
restore process R(t). Examples of the approximating restore
curves are shown by gray dashed lines in Fig. 2.

IV. DURATION METRICS

There are many possible metrics describing durations in
resilience events. This section defines and describes a variety
of these metrics.

A. Straightforward duration metrics

outage duration DO = on − o1
time to first restore Dr1 = r1 − o1
restore duration Dn = rn − r1
restore time to kth restore Dk = rk − r1
event duration DE = rn − o1

The outage process starts at the first outage o1 and ends
at on so that the outage duration DO = on − o1. The first
restore is at time r1 and the time to the first restore is Dr1 =
r1 − o1. That is, Dr1 quantifies how much the start of the
restore process is delayed. The restore process starts at r1
and ends at the last restore rn so that the restore duration
Dn = rn − r1. The event starts at time o1 and ends at time
rn. The event duration DE = rn − o1 can be split into the
time to the first restore and the restore duration:

DE = rn − o1 = (r1 − o1) + (rn − r1) = Dr1 +Dn (14)

This section discusses restore duration, but the correspond-
ing metrics describing event duration are easily obtained from
the metrics for restore duration by adding the time to first
restore Dr1 as in (14). The outage duration DO and time to
first restore Dr1 are useful metrics, but section V explains that
the restore duration Dn and the event duration DE suffer from
high variability.

B. Restore metrics based on quantiles

It is of interest to quantify the time to reach a given percent-
age x of restoration, or, equivalently, the x/100 quantile of the
restore times 0, r2 − r1, r3 − r1, ..., rn − r1. There are many
different definitions of quantiles ( [36] analyzes 10 definitions
used in statistics), and correspondingly many ways to define
restore metrics based on quantiles. This subsection discusses
two metrics of restore duration based on quantiles; the first
metric quantizes to a restore time while the second metric
interpolates between restore times.
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time to first restore with at least x% restoration

D≥x% = rdnx/100e − r1 (15)

The ceiling function due is the smallest integer ≥ u. For
example, D≥95% is the time between the first restore r1 and
the first restore rd0.95ne at which at least 95% of the restores
are completed. It follows that D≥95% = Dn for n < 20,
D≥95% = Dn−1 for 20 ≤ n < 40, and D≥95% = Dn−2 for
40 ≤ n < 60. For example, for n = 16, d0.95ne = d15.2e =
16 and D≥95% = D16. These quantum jumps in D≥95% as n
varies, and which also occur as x varies, are unsatisfactory
when analyzing a range of events. This can be fixed with the
following more elaborate quantile definition.
restore time to x% of restoration

Dx% = (1− (u− buc))rbuc + (u− buc)rdue − r1
= (1− (u− buc))Dbuc + (u− buc)Ddue (16)

where u = min
{1

3
+
(
n+

1

3

) x

100
, n
}

(17)

The ceiling function due is the smallest integer ≥ u, the floor
function buc is the largest integer ≤ u, and u − buc is the
fractional part of u.

Eqn. (16) shows that Dx% linearly interpolates between
restore times Dbuc and Ddue. Dx% uses the median-based
quantile definition4 recommended by [36], but also limits u to
a maximum of n in (17). When limiting applies, Dx% = Dn.

In contrast to D≥x%, Dx% changes continuously as x varies
and with much smaller jumps as n varies. For this reason, we
strongly prefer Dx% to D≥x%.
D50% evaluated with (16) reduces to the usual median. That

is, letting ` = dn/2e,

D50% =

{
r` − r1 , n = 2`− 1 = odd
1
2 (r` + r`+1)− r1 , n = 2` = even

(18)

C. Metrics related to restore process models

These metrics work with the positive restore times relative
to r1; that is, rj − r1, j = z + 1, z + 2, .., n.5 Usually z = 1
as explained in section III-B.
geometric mean of positive restore times

DGM =
[∏n

k=z+1(rk − r1)
] 1
n−z = eµ

arithmetic mean of log restore times
µ = 1

n−z
[∑n

k=z+1 ln[rk − r1]
]

= lnDGM

standard deviation of log restore times
σ =

√
1

n−z−1
∑n
k=z+1(ln[rk − r1]− µ)2

restore time to x% restoration assuming lognormal
Dln
x% satisfies nx/100 = R(Dln

x% + r1) and
nx/100− z = (n− z)Φ[(lnDln

x% − µ)/σ] so that

Dln
x% = exp

[
µ+ σΦ−1

(nx/100− z
n− z

)]
(19)

Note that Dln
(50+50z/n)% = eµ = DGM.

4implemented in R as quantile type 8, and in Mathematica by Quantile
with parameters {{1/3, 1/3}, {0, 1}}

5The following metric definitions require a positive outage duration (on >
o1) so that z < n. If on = o1, we define the metric to be zero.

arithmetic mean of nonzero restore times
τ = 1

n−z
∑n
k=z+1(rk − r1)

restore time to x% restoration assuming exponential
Dexp
x% satisfies nx/100− z = Rexp(Dexp

x% + r1) and
n(1− x/100) = (n− z) exp[−Dexp

x% /τ ] so that

Dexp
x% = τ ln

[ n− z
n(1− x/100)

]
The average restoring half life Dexp

50% = τ ln[2(n−zn )] is the
average time for the number of unrestored outages to halve
averaged over the restore process assuming exponential decay.

There are variants of Dln
x% and Dexp

x% with slightly simpler
formulas that describe the time to restoration of x% of the
n− z nonzero restore times. For these variants, Dln

x% be-
comes exp[µ+σΦ−1(x/100)] and Dexp

x% becomes τ ln[1/(1−
x/100)]. We prefer the definitions of Dln

x% and Dexp
x% above

because the time to restoration of x% of all n restore times
seems more straightforward.

All the duration metrics in the paper (labeled with D)
are given in hours so that the time unit tu = 1 hour. We
now discuss the units of µ and σ. A more precise version
of µ = lnDGM is µ = ln(DGM/tu) (or DGM = tue

µ).
Dividing DGM in hours by tu = 1 in hours gives the required
nondimensional argument of the logarithm [39]. Changing tu
will cause a change in the value of µ. σ does not depend on
the units used and gives the same value for any choice of tu.

V. DISCUSSING RESTORE METRICS Dn, DGM, D95%, Dln
95%

All duration metrics of the restore process are subject
to substantial statistical variability that can undermine their
usefulness, especially for smaller values of event size n. The
variabilities of the restore metrics are analyzed in section VIII
by calculating the size of their confidence interval, and only
the conclusions about their variability are stated here.

The restore duration metric Dn is straightforward, but it
is typically too highly variable to be a reliable estimate.
Moreover, Dn depends strongly on the last or last few restores,
preventing Dn from describing the performance throughout
the entire restore process. This dependence also makes Dn

relate poorly to transmission performance because these last
restores may be unimportant for customers, or may be ex-
cessively delayed by factors out of the control of the utility,
such as the difficulty of repairing transmission lines in the
mountains in the winter or structural damage caused by
hurricane or tornado.

The geometric mean of the positive restore times DGM is
the best estimate of restore performance in terms of having the
least variability. It is also clear that DGM depends on all the
restores throughout the restore process. We now discuss how
DGM also estimates a median of the restore process. Since the
normal distribution is symmetrical about its mean value, the
mean µ also estimates the median of the normal distribution,
and therefore DGM = eµ estimates the median of the
lognormal distribution6. In fact, DGM is a better estimate (less
variance) of the median than applying the standard formula

6Only the symmetry of the distribution of the logarithm of the nonzero
restore times relative to r1 is needed here.
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TABLE I
SUMMARY OF METRICS, RECOMMENDATIONS, AND TYPICAL VALUES

metric recommend? comment median

n number of outages/restores Yes useful measure of event size 13.5
DO outage duration Yes useful description of outage process 2.69
λO outage rate Yes useful description of outage process 5.45
Dr1 time to first restore Yes useful description of delay in start of restores 0.52
DE event duration No = Dr1 +Dn; extreme variability 69.8
Dn restore duration (time to last restore) No extreme variability 69.1
Dn−1 restore time to (n−1)th restore No D95% preferred 31.4

D≥
95%

first restore time with ≥ 95% restore No D95% preferred since continuous 55.4
D90% restore time to 90% quantile Yes 39.2
D95% restore time to 95% quantile Yes Dln

95%
is an alternative 65.2

µ mean of log restore times No µ = lnDGM and DGM is recommended. 1.64
σ standard deviation of log restore times – 1.56

Dln
95%

restore time to 95% with lognormal(µ, σ) – D95% slightly preferred; lognormal fit only typical 67.7
τ arithmetic mean of restores> 0; exp time constant No exponential fit poorer; variable for small n 16.4

Dexp
95%

restore time to 95% with exponential(τ) No exponential fit poorer 47.8
D50% median restore time No DGM preferred 4.27
DGM geometric mean of restore times Yes best, least variable restore performance metric; 5.15

also estimates median of restores> 0

all durations in hours, λO in per hour

(18) for the median. The detailed correspondence is that DGM

estimates the median of rj − r1, j = z+ 1, z+ 2, ..., n, which
is modestly greater than7 the median of all the restore times
rj − r1, j = 1, 2, .., n calculated in (18). That is, under the
lognormal model, DGM is a good estimate of the median of
the positive restore times relative to r1, and approximates from
above the median D50% of all restore times relative to r1.

While DGM is an informative metric with the lowest vari-
ability, D95% and Dln

95% can be used as more representative
of the almost complete duration of the restore process, with
the compromise of higher variability than DGM. D95% is a
more smoothly varying quantile metric indicating the 95%
completion of the restore process. Dln

95% is also smoothly
varying. D95% is a bit more variable than Dln

95%, particularly
for small n. Overall, we slightly prefer D95% to Dln

95% because
the quantile approach is less model dependent, whereas Dln

95%

will work best in the typical lognormal restore case.
Table I summarizes the metrics and our recommendations.

VI. TYPICAL VALUES OF METRICS & MODEL PARAMETERS

Typical values of metrics and parameters are given for all
the data in Table I and for each interconnection in Table
II; these values are expected to be useful for modeling and
assessing interconnection-specific transmission events. Due to
the heavy tails in their distribution, some quantities in Table II
such as Dn have mean values that greatly exceed the median
and large standard deviations. In these cases, the estimated
mean has substantial statistical variation and poorly indicates
a typical value; the median is a better typical value. The
large standard deviations arise from both the metric statistical
variability and the metric variation between events.

On average, events in the Eastern interconnection are larger
than in the West and ERCOT. It can be explained by the fact
that the largest transmission events were caused by hurricanes,
and all of these events occurred in the East. For all inter-
connections, the mean and median outage process durations

7For z = 1, difference in the medians is (r`+1−r`)/2, where ` = dn/2e.

TABLE II
TYPICAL VALUES OF METRICS BY INTERCONNECTION

Eastern ERCOT Western
Metric mean SD median mean SD median mean SD median
n 23.2 38.2 13 16.9 10.0 13 20.1 17.7 14
DO 3.5 3.6 2.8 2.6 2.1 2.3 2.8 2.3 2.5
λO 7.3 8.6 5.1 6.5 3.7 5.2 24.0 99.0 6.4
Dr1 0.78 1.07 0.53 1.28 1.34 0.95 0.65 0.80 0.43
DE 379 1088 73 154 227 53 219 494 62
Dn 379 1088 72 153 228 50 218 494 61
Dn−1 126 332 32 75 81 36 81 210 26
D≥

95%
305 1000 62 128 204 49 170 438 46

D90% 151 471 44 78 83 39 103 262 32
D95% 294 945 67 122 182 49 180 442 48
µ 1.68 1.17 1.76 1.48 1.62 2.19 1.23 1.11 1.10
σ 1.64 0.57 1.59 1.56 0.59 1.67 1.57 0.65 1.46

Dln
95%

397 2740 77 199 327 55 132 362 46
τ 49.8 154 17.6 28.6 30.8 15.0 28.5 57.6 12.5

Dexp
95%

145 449 52 84 90 44 83 167 37
D50% 15.3 65.3 4.8 18.1 28.8 5.3 5.6 6.1 2.6
DGM 12.8 51.6 5.8 10.0 9.5 8.9 5.8 5.6 3.0

all durations in hours, λO in per hour

DO are similar, and very short compared to event durations
DE . The mean outage rate in the West is much higher due
to several events (wildfires and a lightning storm) for which
all outages started almost simultaneously. This extremely short
outage duration DO results in huge outage rates (see (3)).

The restoration usually starts very quickly after the event
starts as the time to first restore Dr1 indicates. In ERCOT the
average time to a first restore, 1 hour 17 minutes, is statistically
significantly larger than in the East and in the West, where
restoration typically starts within one hour. Overall, the time
to first restore is negligible compared to event duration;
this makes the event duration DE and the restore process
duration Dn effectively equal. In contrast, the time between
the (n − 1)th and nth restores, Dn − Dn−1, is sizeable and
often comprises a substantial share (41% on average) of Dn.
This observation again underscores the impact of the last few
restores to the event and restore durations.

The geometric mean of the positive restore times, DGM,
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is a simple and stable metric. DGM is also an approximate
estimate for the time to one half of restores for the events with
log-normal restore times. The largest difference between these
metrics observed for the ERCOT events can be attributed to
the poorer log-normal fit for the ERCOT events. On average,
DGM is 12% of the entire restore process duration Dn.

It is interesting to compare in Table II the sample quan-
tile restore time D95% with the lognormal and exponential
quantiles Dln

95% and Dexp
95%. Dln

95% often overestimates D95%

due to the heavy tail of the lognormal distribution, whereas
Dexp

95% often underestimates D95% due to the light tail of the
exponential distribution.

The parameters µ and σ for fitted log-normal distributions
and τ for fitted exponential are consistent in each intercon-
nection and across interconnections. Table V shows that µ
increases and σ decreases with event size n.

Only 23 of the 352 resilience events in the dataset are not
weather-related. These 23 events vary in size from 10 to 26
outages. Except for Dr1, the medians of the duration metrics
in Table III are statistically significantly higher8 for weather-
related events than for non weather-related events. Table III
also shows for each weather type the median metrics for the
95 weather-related events with at least 18 outages. There are
some statistically significant differences8 among the extreme
weather types: the medians of Dn and D95% for hurricanes
are greater than for other weather types, and DGM and µ for
hurricanes and tornadoes are greater than for other weather
types. The mean of the times to first restore Dr1 are similar
for all weather types except tornadoes; the mean Dr1 for
tornadoes is 1.7 hours, which is at least double the mean Dr1

for the other weather types.

TABLE III
MEDIAN VALUE OF METRICS BY TYPE OF WEATHER

Type (# cases) n DO Dr1 Dn DGM D95% µ σ
fire (4) 21 1.51 0.33 33.4 2.63 30.8 0.96 1.89

hurricane (17) 55 6.53 0.58 257 20.4 109 3.02 1.50
wind,thunder (36) 25 4.04 0.44 122 6.75 82.3 1.90 1.44

tornado (15) 24.5 5.04 0.96 174 12.7 93.4 2.54 1.47
winter (23) 32 4.37 0.60 49.5 4.73 41.5 1.55 1.32

all weather (329) 14 2.80 0.52 73.4 5.76 67.7 1.75 1.56
non-weather (23) 11 1.00 0.65 19.1 1.10 19.1 0.09 1.58

all durations in hours

Our analysis confirms a well-known fact that a type of
extreme weather can be more typical and impactful for one
interconnection than another. Among the 11 named hurricanes
that caused 17 transmission outage events shown in Table
III (the largest, longest and most impactful events in the
data set) all except one hit the Eastern Interconnection; the
exception was the hurricane Harvey (ERCOT, August 2017).
Wildfires causing large transmission events usually occur in
the West. These examples demonstrate a possible reason in
metric variability across the system and, more importantly, the
impractically of using duration metrics to compare resilience
of transmission system in different interconnections. These
metrics should be used to track differences in resilience
and restoration for the same grid (changes in time, between
different types of events etc.).

8confirmed with a nonparametric one-way ANOVA test for medians [40]

VII. FIT OF POISSON PROCESS MODELS TO UTILITY DATA

This section discusses the fit of the Poisson models to the
observed utility data by a goodness of fit test, which allows
for analysis of each of the 352 events, and by probability plots
for the combined normalized data, which also show where the
fit deviates. For the goodness of fit tests, there is some arbi-
trariness in the threshold amount of deviation corresponding
to the significance level, as well as some dependence on the
event size n, but they do give an indication of fit.

A. Outage process fit with uniform distribution

The Poisson process model with constant outage rate im-
plies that for each event the n− 2 outage times ok, k =
2, 3, ..., n−1 should be independent samples from a uniform
distribution on the interval (o1, on). We evaluated the fit of
these outage times for each event to the uniform distribution
as shown in Table IV. Satisfying the test means that the ideal
model is not rejected at the significance level 0.05. Table IV
shows that a majority of events satisfy the model.

TABLE IV
PERCENT OF EVENTS SATISFYING OUTAGE AND RESTORE MODELS

test interconnection
(satisfies if p ≥ 0.05) all eastern western ERCOT

PERCENT OF EVENTS SATISFYING UNIFORM OUTAGES
Kolmogorov-Smirnoff 69 70 72 50

Cramer-vonMises 72 73 71 56
Anderson-Darling 63 63 66 50

PERCENT OF EVENTS SATISFYING LOGNORMAL RESTORES
Kolmogorov-Smirnoff 63 63 66 44

Cramer-vonMises 60 61 64 38
Anderson-Darling 59 59 64 38

PERCENT OF EVENTS SATISFYING EXPONENTIAL RESTORES
Kolmogorov-Smirnoff 35 33 42 25

Cramer-vonMises 35 33 45 25
Anderson-Darling 32 31 40 13

The normalized outage times (ok − o1)/(on − o1), k =
2, 3, ..., n−1 should be independent samples from the standard
uniform distribution on the interval (0, 1). The fit of the
normalized outage times for all of the events to the standard
uniform distribution is shown by the QQ plot in Fig. 5. The
fit in Fig. 5 is quite close over the middle range, and the main
deviations occur at the ends of the distribution and correspond
to simultaneous multiple outages recorded at the beginning or
end of the outage process9.

The fits of this subsection indicate that the Poisson model
with uniform rate is a typical case (a majority of all events)
usefully approximating the outage process.

B. Restore process fit with lognormal distribution

As explained in section III-B, the Poisson process model
with lognormal rate for the restores implies that for each
event the restore times rz+1−r1, rz+2−r1, ..., rn−r1 should
be independent samples from a lognormal distribution. We
evaluated the fit of these restore times for each event to the

9While it is plausible that some outage processes start or end with outages
occurring in the same minute, it is not clear that the records accurately reflect
the outage timing in all these cases.
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Fig. 5. Fit of normalized outage data to standard uniform distribution on QQ
plot.
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Fig. 6. Fit of normalized log restore data to standard normal distribution.
Above compares CDFs; below is QQ plot.

lognormal distribution with parameters µ, σ estimated using
(6), (7) at the significance level 0.05 as shown in Table IV.
Table IV shows that a majority of all events satisfy the model,
and this also holds for the East and West interconnections.

For each event, the normalized restore times (ln(rk−r1)−
µ)/σ, k = z + 1, z + 2, ..., n should be independent samples
from the standard normal distribution N(0, 1). The fit of the
normalized restore times for all events to the standard normal
distribution is shown by the CDF and QQ plots in Fig. 6, which
show a reasonably good fit with some modest deviations.

The fits described in this subsection indicate that the Poisson
process model with lognormal rate is a typical case usefully
approximating the restore process. The typical lognormal case
has a heavy tail that can describe some extremely delayed final
restores.
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Fig. 7. Fit of normalized restore data to standard exponential distribution.
Above compares log survival functions; below is QQ plot.

C. Restore process fit with exponential distribution

As explained in section III-C, the Poisson process model
with exponential rate for the restores implies that for each
event the restore times rz+1−r1, rz+2−r1, ..., rn−r1 should
be independent samples from an exponential distribution with
time constant τ . We evaluate the fit of the restore times for
each event to the exponential distribution with time constants
τ estimated using (13) as shown in Table IV. Table IV shows
that a minority of events satisfy the model.

For each event, the normalized restore times τ−1(rk−r1),
k = z+1, z+2, ..., n should be independent samples from the
standard exponential distribution with time constant 1. The fit
of the normalized restore times for all events to the standard
exponential distribution is shown by the survival function and
QQ plots in Fig. 7. There is clear discrepancy between the
exponential model and the data for the initial portion and
tail of the distribution. The tail in the data is much heavier
than exponential, and this discrepancy in the tail is particularly
significant for our purpose here of estimating restore durations.

The fits described in this subsection indicate that the Poisson
process model with exponential rate only fits a minority of the
events and is a noticeably poorer approximation of the typical
restore process than the model with lognormal rate.

VIII. STOCHASTIC VARIABILITY OF RESTORE METRICS

The restore duration metrics vary due to variation of the
restore processes between events (and this of course is what
we want to quantify) but also due to the inherent statistical
variability of the metric used (which we want to minimize by
selecting a better metric). The statistical variability makes the
metric vary between events, even if the events have the same
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characteristics, because of random variations in the progress
of the restores.

We assess the inherent statistical variability of the metrics
by assuming the lognormal Poisson model for average values
of µ and σ, which vary as functions of n, and are estimated
using (6) and (7). In this section we assume that z = 1.

A. Variability of DGM , Dln
x%, τ

Since z = 1 is assumed, µ and σ are estimated with
n−1 samples. The sample mean µ of n−1 samples from
a normal distribution with mean µ and standard deviation
σ has normal distribution N(µ, σ/

√
n−1). Therefore µ has

two-sided 100(1 − c)% confidence interval with end points
µ±σzc/

√
n−1, where zc = Φ−1(1−c/2) and Φ is the CDF of

the standard normal distribution. It follows that the geometric
mean DGM of n−1 samples from a lognormal distribution with
parameters µ and σ has two-sided 100(1 − c)% confidence
interval with endpoints exp[µ± σzc/

√
n−1 ], or{

eµ ÷ exp(σzc/
√
n−1 ), eµ × exp(σzc/

√
n−1 )

}
(20)

We measure the size of the DGM confidence interval (20) by
the multiplicative factor exp(σzc/

√
n−1 ), which we call the

“multiplicative half-width” of the confidence interval. More
generally, we define the size of a confidence interval with
endpoints c1, c2 as

multiplicative half-width of {c1, c2} =
√
c2/c1 (21)

Now we obtain the size of the confidence interval for Dln
x%.

From (19), taking z = 1,

lnDln
x% = µ+ φx,nσ, where φx,n = Φ−1

[nx/100− 1

n− 1

]
(22)

The sample standard deviation σ has distribution
(σ/
√
n−2)χn−2 where χn−2 is the chi distribution with

n−2 degrees of freedom10.
Using (22) and the independence of µ and σ, the probability

density function of lnDln
x% is the convolution

flnDln
x%

= fN(µ,σ/
√
n−1) ∗ f(φx,nσ/√n−2)χn−2 (23)

and the CDF of lnDln
x% is

FlnDln
x%

= fN(µ,σ/
√
n−1) ∗ F(φx,nσ/

√
n−2)χn−2 (24)

We use (24), numerically integrating to evaluate the convolu-
tion, to find the 100(1 − c)% confidence interval for lnDln

x%

as {F−1
lnDln

x%

(c/2), F−1
lnDln

x%

(1− c/2)}, then use (21) to find the

multiplicative half-width of the confidence interval for Dln
x%.

Equation (13) shows that the exponential time constant τ
is also the arithmetic mean of the nonzero restore times. In
this section these n− 1 restore times are assumed to be sam-
pled from a lognormal distribution. Using Cox’s approximate
method [41], the multiplicative half-width of the confidence
interval of τ is

exp
(
zcσ
√

1/(n− 1) + σ2/(2n− 4)
)

(25)

10the definition of σ uses µ, so that the number of degrees of freedom is
one fewer than the number of samples n−1

B. Variability of Dk and Dx%

Since the restore times r1, r2, ..., rn are sorted in increasing
order, Dk = rk−r1 corresponds to the kth largest restore time
and, assuming that z = 1 and k ≥ 2, Dk is the (k−1)th order
statistic of the n−1 lognormally distributed restore times r2−
r1, ..., rn − r1. We evaluate in Mathematica the inverse CDF
F−1Dk

of the (k−1)th order statistic of n−1 samples of the log-
normal distribution with parameters µ and σ. Then we find the
100(1−c)% confidence interval for Dk {F−1Dk

(c/2), F−1Dk
(1−

c/2)} and its multiplicative half-width from (21).
To evaluate the variability of Dx%, we approximate its

inverse CDF with the linear interpolation

F−1Dx%
(p) = (1− (u− buc))F−1Dbuc

(p) + (u− buc)F−1Ddue
(p)

where u is given by (17). We then obtain the 100(1 − c)%
confidence interval {F−1Dx%

(c/2), F−1Dx%
(1−c/2)} and use (21)

to obtain its multiplicative half-width.

C. Results for variability of metrics

The size of the 90% confidence interval, measured by the
multiplicative half-width (21), indicates the inherent statistical
variability of the metrics. For example, a multiplicative half-
width of 2 indicates that the interval spans from half to
double of a point inside the interval. Table V shows results
for metric variability, and there are some overall trends:
All the metrics become much more variable as the event
size n decreases. Metrics estimating a larger fraction of the
entire restore duration are much more variable (consider the
sequence DGM = Dln

50%, Dln
90%, Dln

95% or D50%, D90%, D95%,
D100% = Dn). The quantile metrics (D50%, D90%, D95%) are
always more variable than corresponding metrics related to
lognormal restore (DGM, Dln

90%, Dln
95%), but the increase in

variability is modest or small for n ≥50.
Metric variability is worst and unacceptably large for Dn,

which always has a confidence interval size of more than a
factor of 2. The high variability of the last restore rn and Dn is
expected due to the heavy tail of the lognormal distribution.
Fig. 8 shows that the variability of Dk is sharply reduced
for k/n = 0.95, at least for larger n, and further reduced
for k/n = 0.90. This motivates avoiding Dn and considering
the use of Dln

90%, Dln
95%, D90%, D95%, which have confidence

intervals with size less than a factor of 2 for n ≥ 50 and which
perform more continuously by interpolating the Dk metrics.
The arithmetic mean τ is highly variable for smaller values of
n; it has a confidence interval size of more than a factor of 2
for n < 30.

The pervasive problem of duration metric variability is best
mitigated by DGM, which has a confidence interval size of
less than a factor of 2 for n ≥ 17.

This section assesses metric variability assuming the lognor-
mal model of restores. This is a good assumption for a majority
of cases, and can be regarded as a stringent assumption for
the remaining minority of cases due to the heavy tail of the
lognormal distribution.
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TABLE V
MULTIPLICATIVE HALF WIDTH OF 90% CONFIDENCE INTERVAL

n µ σ DGM D50% τ Dln
90%

D90% Dln
95%

D95% Dn−1 Dn

10 1.18 1.72 2.57 3.19 4.68 3.56 5.09 4.29 5.40 3.83 5.40
20 1.60 1.58 1.82 2.10 2.49 2.24 2.76 2.51 3.69 2.85 3.93
50 2.20 1.35 1.37 1.49 1.56 1.54 1.72 1.63 1.96 2.14 2.79
100 2.52 1.35 1.25 1.32 1.36 1.35 1.46 1.41 1.60 1.98 2.56
200 3.15 1.33 1.17 1.21 1.24 1.23 1.30 1.27 1.39 1.85 2.37
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Fig. 8. Size of 90% confidence interval for kth order statistic Dk as the
fraction k/n varies. n is number of restores. Confidence interval size is
multiplicative half-width. Lognormal restore is assumed with parameters µ
and σ from Table V.

IX. CONCLUSIONS

We use extensive North American transmission system
data to analyze the statistical variability and interpretations of
a variety of metrics for the duration of processes in resilience
events. Some metrics, such as the outage duration DO, outage
rate λO, and the time delay before the first restore Dr1,
are useful. Other duration metrics can suffer from excessive
statistical variability, in which their estimated values are
contained in confidence intervals that are so large that the
estimated values of the metric are not representative. This
variability is quantified using new Poisson models for outage
and restore processes. The variability is worse for small events.

The apparently straightforward metrics of restore process
duration Dn and the event duration DE are extremely statisti-
cally variable and do not adequately describe the restore pro-
cess, so we recommend new duration metrics DGM and D95%

(or D90%) with better performance. In particular, the geometric
mean of restore times DGM has the least statistical variability,
summarizes all of the restore process, and approximates a time
at which half the restores are completed. The quantile-based
metric D95% indicates the time at which restoration is 95%
complete, but has greater variability than DGM. D95% uses
interpolation to vary more continuously as the data changes.
Table I summarizes the metrics and their recommendations,
and Tables II and III give typical values for the metrics for
three interconnections and different weather conditions.

Since our paper is driven by North American bulk electric
transmission system outage data, strictly speaking the results
describe aspects of resilience only in North American trans-
mission grids. However, since similar transmission outage data

is routinely collected worldwide, the methods of the paper
are readily applicable to other transmission systems to test or
confirm the models and conclusions of the paper.

We introduce novel Poisson process models for the out-
age and restore processes in resilience events. These new
stochastic models describe how resilience events progress
in North American transmission systems, and are verified
with extensive utility data to be good approximations for the
majority of cases. The outages occur uniformly over a short
time interval, whereas the restores occur at a lognormal rate
that slows to produce the long delays often observed for the
last few restores. The lognormal model for the restores is a
noticeably better fit than an exponential model for the restores.
We give typical values of the model parameters for three
interconnections and for different weather conditions to make
the new models more specific and useful to other researchers.

The Poisson process models describe probabilistic outages
and restores occurring according to specified rates. Averaging
the Poisson process models produces formulas for smooth,
deterministic curves that approximate typical outage and re-
store processes. These deterministic averaged models are of
considerable interest for future work describing how resilience
events progress in transmission systems. For example, one can
derive formulas for the area, duration, and nadir metrics of
mean performance curves in terms of the Poisson process pa-
rameters [42]. The formulas for area of the mean performance
curve are simple and intuitive, and sometimes also apply to the
area of empirical performance curves that are obtained from
observed data.

REFERENCES

[1] IEEE PES Task Force: A.M. Stanković et al., Methods for analysis and
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