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Obtaining Statistics of Cascading Line Outages
Spreading in an Electric Transmission Network

From Standard Utility Data
Ian Dobson, Fellow, IEEE, Benjamin A. Carreras, David E. Newman, and José M. Reynolds-Barredo

Abstract—We show how to use standard transmission line
outage historical data to obtain the network topology in such a way
that cascades of line outages can be easily located on the network.
Then we obtain statistics quantifying how cascading outages
typically spread on the network. Processing real outage data is
fundamental for understanding cascading and for evaluating the
validity of the many different models and simulations that have
been proposed for cascading in power networks.
Index Terms—Power system reliability, complex networks.

I. INTRODUCTION

C OMPLICATED series of cascading outages in the trans-
mission network occasionally cause blackouts. These

large cascading blackouts are rare, but of substantial risk since
their impact is high [1], [2]. In cascading, initial outages propa-
gate and progressively spread across the network, and, if there
are many outages, load is shed and there is a blackout. The
initial outages can be random failures due to many different
causes, including weather, animals, equipment malfunction,
earthquakes, operational errors and malicious attacks. The
subsequent spreading of the outages beyond the initial outages
in a cascade of dependent outages is complicated and includes
many ways in which multiple previous outages or a common
cause such as weather can weaken the transmission network to
make further outages more likely.
To motivate our study, we first consider how the transmis-

sion line outages spread in the August 10, 1996 Western in-
terconnection blackout. The NERC blackout report [3] shows
the initial spread of the cascading as reproduced in Fig. 1. The
numbers show the order of the outages. It is clear that the out-
ages propagate to other outages both near and far in the network
and that the total extent of the cascade spreading can be large.
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Fig. 1. Initial portion of Western interconnection blackout of August 10, 1996.
Numbers show the order of the outages. Figure is extracted from [3].

In particular, the first 18 line outages of the blackout occur on
the network formed in Section II that is a subnetwork of the
Western interconnection, so we located the 18 outages on this
network. One way to measure the distance between two line
outages counts the minimum number of buses in a path in the
network joining the two lines. For example, two lines with a
common bus are a distance one apart. In the case of the first 18
line outages of the blackout, we find that the distance between
successive line outages ranges from 2 to 6 buses and has a mean
value of 3.2. The maximum extent of the first 18 cascading out-
ages is 4 buses away from the initial outage.
This example of the August 10, 1996 blackout shows the ini-

tial spread of one blackout and shows what can possibly happen.
However, one cannot draw general conclusions about how cas-
cades typically spread from one sample. Indeed, the August 10,
1996 blackout is one of the more serious blackouts that has
ever occurred in the Western interconnection, whereas the most
common cascades, by careful design and operation of the power
system, are that an initial outage occurs and either no outages
or only a few outages follow. In order to account for successful
mitigation as well as failures of mitigation, the assessment and
mitigation of cascading risk must account for cascades of all
sizes.
The detail of the spreading of cascading outages can be

studied either by analyzing the complexities of particular
blackouts after they occur [4], [5], or by simulating some subset
of the mechanisms for cascading [6]–[9]. These approaches are
very useful both in understanding cascading blackouts and sug-
gesting ways to mitigate particular mechanisms of cascading
failure. The spatial correlation of Euclidean distance between
outages is computed in [10] for the July 2 and August 10, 1996
Western interconnection blackouts. However, cascading failure
remains a hard problem requiring multiple approaches. In this
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paper we pursue another and complementary approach which is
bulk statistical analysis of typical observed cascading data. One
advantage of analyzing real data is that there are no modeling
assumptions.
Bulk statistical analysis can describe the size and extent of

cascading from real or simulated cascades so that blackout risk
can be quantified. For example, cascading transmission line out-
ages from utility data [11], [12] can be used to estimate the av-
erage propagation of transmission line outages during the cas-
cade as well as the probability distribution of cascading size in
terms of number of transmission line outages. Similar efforts
for simulated cascades in [13], [14] characterize the distribution
of blackout size in terms of load shed. These studies quantify
the average growth in blackout size during the cascade and the
probability of the cascade growing to a given blackout size. Ob-
served WECC data for the causes and frequencies of common
mode and dependent outages are analyzed in [15].
There has also been general progress in describing how

cascades spread in simulated cascades, especially those as-
suming that cascades propagate by line outages causing static
overloads. Overloaded line cascading outage interactions are
analyzed using network resistance distance and line outage
distribution factors in [16]. Line outage distribution factor cal-
culations of the effect of double contingencies in overloading
other lines are used to find all the critical N-2 contingencies in
[17]. Progression of cascading through sets of lines is described
in the simulation of [18]. Interactions between cascading line
outages are described by line interactions graphs different than
the transmission network topology in [19], [20].
This paper processes observed transmission line outage data

to obtain the statistics of how cascades spread in a real power
network. This is, to our knowledge, the first statistical study of
typical cascade spreading and spatial extent based on real data.
The statistics of the manner and extent of real cascade spreading
is basic information that can support the analysis and mitigation
of cascading. For example, the chance of a cascade spreading a
certain amount can inform the design of area monitoring and
control to mitigate cascading, and the fraction of cascading in-
teractions at a given distance in the network is of interest in dis-
tinguishing the mechanisms of cascading that more frequently
arise in practice.
Moreover, there is a large variety of many different simula-

tion models of cascading that are claimed to represent cascading
in power networks [21], [22], and the extent to which the sta-
tistics of cascade spreading match the observed statistics serves
either to validate the simulation or to suggest ways to improve
or disprove the simulation model [23]. It is especially important
to make this comparison since the real data incorporates all the
mechanisms of cascading whereas the current simulations only
represent a limited and varying subset of the dozens of plausible
cascading mechanisms [21], [23]. More generally, the objective
of the validation of the models and simulations with real data is
to determine which mechanisms need to be represented and in
what detail in order to be able to do cascading failure risk anal-
ysis with confidence in the results. To achieve this objective, it
is necessary to develop methods of data processing so that the
statistics of typical real cascades can be obtained and compared
with the statistics of simulated cascades.

Many countries, including the United States and Canada,
collect useful transmission line outage data, and it would
seem straightforward to sort this data into individual cascades
and determine where on the network the successive line out-
ages are located, and hence obtain the statistics of cascade
spreading. However, this is difficult unless a network model
consistent with the outage data is available. Indeed, an initial
effort using observed North American transmission line outage
data encountered substantial difficulties in automating the
location of the line outages in a network model that was not
consistent with the outage data [24]. For example, single buses
representing a single substation in the observed line outage
data can correspond to multiple buses of a detailed network
model, and the details of corresponding bus names can differ.
Single lines in the observed line outage data can correspond to
several sections of lines in the detailed network model. Devices
such as transformers in the detailed network model need to
be accounted for, and the areas and voltage levels covered
by the observed line outage data and the detailed network
model need to be coordinated. Overall, an automated analysis
is difficult since the observed line outage data corresponds to
a particular reduction of a detailed network model, and it is
not straightforward to perform that reduction in order to be
able to relate the network implicit in the observed data with
the detailed network model. These difficulties can be overcome
to some extent by a sustained combination of automatic and
hand processing; indeed [24] processes one year of line outage
data for higher voltage levels, but it remains challenging and
arduous to process enough data for statistically meaningful re-
sults. These difficulties are not surprising; they are an example
of the general difficulty of coordinating different data bases
containing different power system network descriptions. This
paper describes a much better approach: we discovered that it
is practical to form a satisfactory network directly from the line
outage data as explained in Section II.
The goal of this paper is to analyze observed cascading

data to quantify how cascades typically spread. We describe
a practical method to process standard utility data to locate
outages on a network and obtain some bulk statistics of the
spread, and illustrate the new method with real data that is
publicly available. Similar data is produced by North American
utilities for reporting to NERC, and also by some utilities
worldwide, so that the method can be applied broadly to ex-
isting utility data.

II. FORMING THE NETWORK FROM UTILITY DATA

The required data is a list of recorded transmission line
outages1, including the outage start time (to the nearest minute
suffices) and the names of the buses at both ends of the line,
and, for multiple circuits between the same two buses, the
circuit number. The automatic line outages should be identi-
fied, since the cascade analysis should primarily address the
automatic outages. For some purposes it is also useful to know
the line length, nominal voltage rating and district. All this

1The analysis could be extended to incorporate other outages such as gener-
ators and transformers, but since we do not have enough of this data, and the
transmission lines capture the spreading, automatic transmission line outages
suffice for a first analysis.
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Fig. 2. Network formed from line outage data. Layout is not geographic.

data is standard. For example, this data is reported by North
American utilities in NERC's Transmission Availability Data
System (TADS) [25], [26] and is also collected in several other
countries.
The transmission line outage data used in this paper starts

from 44 593 automatic and planned line outages2 recorded by
a North American utility over a period of 14 years starting in
January 1999 [27]. The data requires some cleaning adjustments
before the main processing. Outages in districts remote from the
main network, outages of 9 lines rated below 68 kV, outages of
7 lines that did not have bus names for each end of the line and
10 rural lines that seemed disconnected from the main network
were all deleted. About 20 bus names were adjusted to eliminate
duplicate forms of the same bus name or to combine buses in
the same or adjacent substation. This left 42 561 automatic and
planned line outages from the main connected network of the
utility, with each line outage having a sending end and receiving
end bus identified from a list of unique bus names.3
Then the network model was constructed simply by joining

two buses with a transmission line if there was in the data an au-
tomatic or planned outage of the line joining those buses. This
procedure produces a subset of the actual network, capturing
only those branches that have experienced an outage within the
time horizon of the data. Since it is not obvious how much
outage data is needed to form a sufficiently complete network
model in this way, we address and confirm the completeness of
the network model formed in this way in Section VII.
The network model obtained from the data is shown in Fig. 2.

It is a connected network with 361 buses and 614 lines. An im-
portant practical advantage of forming the network model di-
rectly from the outage data is that there is then no difficulty es-
tablishing the correspondence between the network model and
the outage data; the correspondence is immediate by construc-
tion. For example, an observed cascade obtained from the data
set is located on the network as shown in Fig. 3. Fig. 3 changes
or omits identifying details since it is bad practice to publish
these when it is not absolutely necessary.

2Lines that are normally out are ignored.
3We do not process outages of sections of lines or taps of lines or feeders in

forming the network and analyzing the outages.

Fig. 3. Illustrative example of a cascade of line outages located on the network.
The darker and red network lines are the lines that outage. The numbers are the
generation number of the outage and show the order in which the outages occur.
Outages occurring in sufficiently quick succession are in the same generation.
The bus names and outage times are changed for the illustrative presentation in
this figure. Layout is not geographic.

III. GROUPING OUTAGES INTO CASCADES AND GENERATIONS

Having formed the network model from both the automatic
and planned line outages, the analysis of the cascade spreading
proceeds with only the automatic outages. There are 10 942 au-
tomatic outages in the data. One motivation for analyzing only
the automatic outages is that cascading focusses on uncontrolled
outages; for example, NERC defines cascading as “the uncon-
trolled successive loss of system elements triggered by an inci-
dent at any location [28].”
The structure of cascading is that each cascade starts with ini-

tial outages in the first generation followed by further outages
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grouped into generations 2, 3, 4, … until the cascade stops. The
first step in processing the line outages is to group the line out-
ages into individual cascades, and then within each cascade to
group the outages that occur in close succession into genera-
tions. The grouping of the outages into cascades and generations
within each cascade is done based on the outage start times ac-
cording to the method of [12].We summarize the procedure here
and refer to [12] for the details. The grouping is done by looking
at the gaps in start time between successive outages. If succes-
sive outages have a gap of one hour or more, then the outage
after the gap starts a new cascade (note that operator actions
are usually completed within one hour). Within each cascade,
if successive outages have a gap of more than one minute, then
the outage after the gap starts a new generation of the cascade
(note that fast transients and protection actions such as auto-re-
closing are completed within one minute). Note that since the
outage times are only known to the nearest minute, the order of
outages within a generation often cannot be determined.
This procedure applied to the 10 942 automatic outages yields

6687 cascades. 84% of these cascades have only one generation
of outages and do not spread further.

IV. NETWORK DISTANCES

To quantify the spatial spreading of the cascading line out-
ages, we specify two measures of distance in the network be-
tween two lines.
The network distance between lines and in terms of

number of buses4,5 is defined as

minimum number of buses in a network path
joining midpoint of to midpoint of

For example, the distance of line to itself is zero and the
distance of a line to a neighboring line with at least one bus
in common is one.
The network distance between lines and in terms of

miles of transmission line6 is defined as

minimum length in miles of a network path
joining midpoint of to midpoint of

Cascading lines occur in generations and we define the net-
work distance between two generations of lines. (Note that from
the point of view of the processing that groups outages into gen-
erations, lines outaging in the same generation outage simul-
taneously and their outage times cannot be distinguished.) We

4It is common to define the network distance between buses as the minimum
number of lines in a path between the buses, and can be con-
veniently evaluated using this network distance between buses: Except for the
case of the distance of a line to itself, is one plus the minimum
bus distance between either of the end buses in and either of the end buses
in . This follows since a path between the midpoints of and with the
minimum number of buses must include a path between the end buses of and
the end buses of with the minimum number of buses.

5The distance is the same as the network distance between
and in the line graph of the network.

6 can also be conveniently evaluated using a network dis-
tance between buses: Except for the case of the distance of a line to itself,

is half the length of plus half the length of plus the min-
imum bus distance in miles between either of the end buses of and either of
the end buses of .

Fig. 4. Probability distribution of network distance between
successive generations of line outages. The error bars show a 95% confidence
interval.

TABLE I
PROBABILITY DISTRIBUTIONS OF NETWORK DISTANCES

write for the network distance which can either be in terms of
number of buses or in terms of miles. Then the mean network
distance between generation of lines and generation of lines

is defined as

and

and the maximum network distance between generation and
generation is defined as

and

V. STATISTICS OF CASCADE SPREADING
There are 6687 cascades and 84% of these cascades have

only one generation and so do not spread further. To analyze
the spreading cascades, we exclude the cascades with only one
generation, and only analyze the remaining 1098 cascades with
more than one generation.
We are interested in the distance between successive genera-

tions of line outages where and are
successive generations in the same cascade. There are 2426 such
pairs of successive generations in the data. (There are no succes-
sive generations in the 5589 cascades with only one generation.)
The statistics of the network distance for these successive

generations in terms of number of buses is shown in Fig. 4 and
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Fig. 5. Cumulative probability distribution of the network distance
between successive generations of line outages.

Table I. The mean number of buses between successive genera-
tions is 2.9 and the median number of buses between successive
generations is 2. The most frequent number of buses (23%) is
zero; these are cases in which an outaged line is restored but out-
ages again after more than one minute and less than one hour
after the initial outage. Next most frequent (17%) is one bus,
in which a neighboring line outages. But more than one bus,
or equivalently not a repeat outage and not a neighbor, has fre-
quency 60%. So, while neighboring lines do outage, this is less
likely than the same line tripping again andmuch less likely than
a non-neighboring line outaging.
The distribution of the distance in network miles of succes-

sive generations of the spreading cascades is shown in Fig. 5.
Fig. 5 shows that half of the successive generations spread more
than 100 miles, one third of the successive generations spread
more than 200 miles, and one eighth of the successive genera-
tions spread more than 400 miles.
In the processing described so far, we have counted a repeated

outage of the same line after more than one minute delay as one
additional outage, and the distance spread in this case is zero.
While this is reasonable since repeated outages have more im-
pact than a single unrepeated outage, one could alternatively
regard the repeat outages as the same as the original outage
and count them only once. Then all the successive outages in
a cascade move in the network a distance that is greater than
zero. The effect of this alternative assumption on the spreading
statistics is obtained by conditioning the probabilities on the
spreading distance being greater than zero and the results for
the bus network distance are also shown in Table I.
We are also interested in the maximum distance that a cascade

spreads from the initial generation of outages :

the initial generation in cascade and
any generation in cascade

This maximum spreading distance is shown in Fig. 6 and
Table I for number of buses and Fig. 7 for network miles. Most
of the probability of zero spreading is due to cascades with only
one line outage. If the cascades with only one line outage are
excluded, the mean maximum distance spread is 3.8 buses.

Fig. 6. Probability distribution of the network distance which is the
maximum network bus distance between the initial generation of line outages
and any generation of line outages in the same cascade. The error bars show a
95% confidence interval. Only is plotted. The probability of a
cascade not spreading is 0.78 with 95% confidence interval

.

Fig. 7. Probability distribution of the network distance which is
the maximum distance in miles between the initial generation of line outages
and any generation of line outages in the same cascade.

All the spreading statistics show the effects of the finite size
and edges of the network. In terms of network bus distance,
the diameter of a network is the maximum possible distance

between any two lines and . The diameter
of the network is 15, so this is an upper bound to the spreading
results shown in Figs. 4, 6, and Table I. There are two types
of cascades: cascades that are confined to the network lines for
which the data includes all the outages, and cascades that in-
volve lines outside the network that have missing data. The cas-
cades that involve lines outside the network have spreads that
can exceed the spread confined to the network and affect the re-
sults in Fig. 6 by tending to increase moderate spreads, tending
to reduce larger observed spreads such as spreads of more than
10 buses, and eliminating cascades of more than 15 buses. This
“network edge effect” is of interest for future work in trying to
quantify how many cascades spread to or from a neighboring
power system area.
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VI. INDEPENDENT OUTAGES AND DEPENDENT OUTAGES

Cascading arises from a variety of types of dependent out-
ages, and it is useful to check that independently occurring out-
ages do not contribute much to the results. Independent outages
occur randomly throughout the year. Most of these independent
line outages are isolated in time from each other and from de-
pendent outages, and do not contribute to the measures of cas-
cading effects used in this paper. By chance, occasionally these
independent line outages occur in close proximity to each other
or to dependent outages in time and do contribute to the mea-
sures of cascading. This section quantifies the contribution of
statistically independent outages towards the measures of cas-
cading used in this paper.
Each cascade contains at least one initiating outage, and we

assume that the first initiating outage7 in each cascade is inde-
pendent, and that a fraction of the remaining outages in all
the cascades are also independent outages. Then, since there
are 6687 initiating outages and 4255 remaining outages, there
are independent outages in the 10 942 observed
outages, and this corresponds to an independent outage rate of

per hour. We model the independent outages
as a Poisson process [30] with this rate. In particular, the time
differences between independent outages are exponentially dis-
tributed with rate parameter .
It is convenient to call the outages that remain after the

first initiating outage of each cascade is omitted “remaining
outages.” A remaining independent outage is processed as
belonging to a cascade when it occurs after the initiating outage
but no later than one hour after the last outage of a cascade.
The average time between the initiating outage and last outage
of a cascade is 7 minutes or 0.12 hour. Therefore, on average,
a remaining independent outage is processed as belonging to a
cascade when it occurs less than 1.12 hour after the initiating
outage of a cascade. Therefore, assuming that the preceding
independent outage is the initiating outage8, the fraction of
remaining independent outages that are processed as belonging
to a cascade is

time difference with preceding outage hour
(1)

Solving (1) numerically gives . That is, approximately
6% of the remaining outages, or 4% of all outages, are indepen-
dent but classified as cascading outages.
One way to appreciate the strong effect of cascading de-

pendence in the cascade spreading results is to remove the
dependence by retaining the observed outages, but assigning
them artificial and random outage times sampled from a
Poisson process. Then, with the same processing described in
Section III, the number of cascades increases from 6687 to
9956 because there are more cascades with only one outage,

7If there are several initiating outages at the same time, then we arbitrarily
choose one of these to be the first one.

8In the much rarer case that the preceding independent outage during the cas-
cade is not the initiating outage, the approximation (1) is not much different
since in this case the remaining independent outage is processed as belonging
to a cascade when it occurs on average less than a time after the preceding
outage, where .

TABLE II
NUMBER OF LINE OUTAGES IN GENERATIONS 0 TO 10

but these initial outages propagate very weakly as shown in
Table II; the average propagation of outages9 reduces from 0.28
to 0.08.
While it is useful for some purposes, such as classifying out-

ages and their mechanisms, to find out how much independent
outages contribute to the cascading results by being lumped to-
gether with dependent outages, it should also be emphasized
that the power system operators have to deal with multiple out-
ages closely spaced in time regardless of their independence or
dependence.
One consequence of our analysis method of grouping the out-

ages into generations is that it classifies automatic outages as
initial outages (in the first generation), or as dependent outages
(in second or higher generations). Of the 10 942 automatic out-
ages there are 7911 initial outages (comprising 72%) and 3031
dependent outages (comprising 28%).
Since many of the mechanisms for initial outages differ from

the mechanisms for dependent outages, it can be expected that
there can be some differences between the initial and dependent
outages, as observed in simulated cascades [29]. We examine
the most frequently involved lines in initial outages and in de-
pendent outages. One half of the 20 lines most frequently in-
volved in initial outages differ from the 20 lines most frequently
involved in dependent outages. And one third of the 100 lines
most frequently involved in initial outages differ from the 100
lines most frequently involved in dependent outages.
It is also very useful to analyze the causes of the initial out-

ages from utility data since some of these causes can be miti-
gated, and mitigating the initial outages is one way to reduce
cascading outages [25], [26]. This paper does not address this
useful aspect of cascade analysis and mitigation because this
paper has the complementary objective of opening up possibili-
ties for analysis and mitigation of the dependent cascading out-
ages that follow the initial outages.

VII. COMPLETENESS OF THE NETWORK

As more outages are processed, outages of new lines are
encountered, and the network formed from all the outages
processed so far becomes more complete, and, if sufficiently
many outages from a fixed network are processed, the network
formed from all the outages processed so far converges to the
entire network. This section examines this convergence to show
that enough outages were processed to form a good approxi-
mation of the network. This verifies building the network from
the outage data.
In practice, the network slowly changes as new lines are

added and old lines retire. Therefore the network formed from

9Details of the average propagation definition are in [11].
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Fig. 8. Cumulative number of lines in network as the number of outages pro-
cessed increases.

the outages includes both retired and new lines over the time
period of the processed outages.
Both convergence towards a complete network and the ef-

fect of the network changing can be seen in Fig. 8. Fig. 8 ini-
tially shows the number of lines in the network converging as
more outages are processed and then finally increasing slowly
as new lines are added in the later outages. To confirm the con-
vergence, we want to remove the effect of the network changing
from Fig. 8. This is done by splitting the outage data into two
halves at the midpoint, reversing the order of the data in the
second half, and then interleaving the reversed second half with
the first half. To give a small example, if 10 outages were origi-
nally in the order 1,2,3,4,5,6,7,8,9,10 then the reordering yields
1,10,2,9,3,8,4,7,5,6. The problem of confirming convergence
arises from new lines added in the later, converging portion of
the data (new lines added in the earlier portion of the data only
affect the transient before the convergence), and the reversal of
the second half of data ensures that these new lines are likely
to appear in the data before convergence. (Note that simply re-
versing all the data does not work: the new lines added during
the converging portion of the data would now appear before con-
vergence, solving the problem of the new lines, but now there
would be a new problem of lines retiring at the beginning of the
data appearing as added lines at the end of the reversed data.)
The reordered outages that remove the effect of the changing

network from the convergence are shown in Fig. 9 and the con-
vergence is clear. The network constructed from the data would
ideally include all the lines that have been present for a portion
of or all of the time period, and the convergence analysis shows
that the network constructed with the data converges to almost
all such network lines.

VIII. SENSITIVITY TO CASCADE INTERVAL

We check the sensitivity of the results to the one-hour min-
imum interval between cascades assumed in processing the data
in Section III. Changing the minimum interval between cas-
cades from one hour to 30 minutes causes the number of cas-
cades to increase from 6687 to 7332 and changes the results in
Table I to the results shown in Table III. The results are close;
probabilities change by less than 0.01, with the exception of the

Fig. 9. Cumulative number of lines in network as the number of reordered out-
ages processed increases.

TABLE III
PROBABILITY DISTRIBUTIONS OF NETWORK DISTANCES

WITH CASCADE INTERVAL 30 MINUTES

lowest distance results in each column, which change by less
than 0.04.

IX. COMPARING CASCADE SPREAD STATISTICS FROM THE
OPA SIMULATION WITH THE OBSERVED DATA

We make an initial comparison between the statistics of cas-
cade spreading simulated by the OPA simulation and the statis-
tics of the observed cascade spreading data from the previous
sections. The intent is to show a specific example of using the
paper results for improvement and validation of models, and to
show how some technical issues in such a comparison may be
addressed.
We start by briefly summarizing the OPA simulation, which

includes a fast time scale for cascading transmission line out-
ages and a slow time scale for the complex systems feedback
shaping the reliability; for details see [9].
The fast time scale of the cascading line outages and black-

outs is of the order of minutes to hours. The cascading black-
outs are modeled by overloads and outages of lines determined
in the context of a standard DC load flow model of the net-
work power flows and generator power dispatch optimized by
standard linear programming. The successive calculations in the
simulation naturally produce generations of line outages in each
cascade. If lines outage in a generation, the model recomputes
and check the load flow for overloaded lines. The overloaded
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lines outage probabilistically, and if any of these overloaded
lines outage they form the next generation of line outages. If
none of the overloaded lines in a generation outage, the cascade
stops.
The slow time scale of the OPA simulation in which the power

system evolves is of the order of days to years. In the slow
timescale, the load power demand slowly increases and trans-
mission lines involved in blackouts are upgraded as engineering
responses to blackouts and maximum generator power is in-
creased in response to the increasing demand. These slow op-
posing forces of load increase and network upgrade self orga-
nize the system to a complex system dynamic equilibrium that
is close to the critical points of the system [9], [1], [33]. The re-
sults used here were obtained from OPA in this complex system
dynamic equilibrium condition.
OPA was validated on a model of WECC with respect to his-

torically observed statistics in [31], using a 1553-bus network
model of WECC developed in a California Energy Commis-
sion project for analysis of extreme blackout events [32]. The
OPA parameters used were derived from WECC data. The sim-
ulated and observed statistics compared were the distribution
of blackout sizes, the number of line outages, the number of
generations, and the average propagation of number of line out-
ages between generations. The simulated and observed statistics
agreed well, except for the average propagation of number of
line outages in the later cascade stages. For the present paper,
we extend the comparison to the statistics of cascade spatial
spreading using the same 1553-bus network and OPA param-
eters as in [31].
There were 16 788 cascades and 28 361 line outages simu-

lated with OPA across the entireWECC.Many of these cascades
occur wholly or partially outside of the Northwest region10 of
WECC that covers the collection area for the observed data an-
alyzed in the paper. To approximate the conditions of the ob-
served data, we limited the analysis to the 6534 line outages
that occurred inside the Northwest region. That is, the analyzed
simulated outages correspond to the cascades or parts of cas-
cades that occurred inside the Northwest region. This yielded
6534 outages which are organized into 2768 cascades and 5082
generations using the method of Section III. These were then
processed to obtain the distances of Section IV between genera-
tions of line outages using the network distance on the 1553-bus
network.
Fig. 10 shows the probability distribution of distance in the

1553 network between successive generations of simulated
outages as open circles. The mean distance in the 1553 network
between the simulated successive generations of outages is
9.8. Since OPA (in common with other cascading failure sim-
ulations) does not simulate repeated outages of the same line,
the simulated results should be compared with the probability
distribution of nonzero distances in the formed network be-
tween the observed successive generations of outages. This is
the data of the second column of Table I and it is plotted as the
solid dots in Fig. 10. The mean distance in the formed network
between the observed successive generations of outages is 3.8.

10The Northwest region can be determined as WECC bus numbers in the
range 40 000 to 49 999.

Fig. 10. Probability distributions of network distance be-
tween successive generations of observed line outages on the formed network
(dots) and simulated outages on the 1553-bus network (circles).

Fig. 11. Probability density functions of network distance
between successive generations of observed line outages (dots) and simulated
line outages (circles) with the 1553-bus network distances scaled to formed net-
work distances.

A problem with the comparison in Fig. 10 is that the network
distances are measured in different network representations of a
similar area of the power system. To correct this, we computed
the mean network distance between 10 000 pairs of randomly
chosen buses in each network, yielding a mean bus distance of
14.0 in the 1553 bus network and a mean bus distance of 6.4 in
the network formed from the data. The ratio of the bus distances,

, is applied as a scaling factor to the simulated
distances to allow the comparison with the same distance scale
in Fig. 11 (to allow direct comparison of the probabilities despite
the distance scale change, Fig. 11 shows a probability density on
the vertical scale). The mean distances expressed in terms of the
distance for the formed network are now 4.5 for the simulation
and, as before, 3.8 for the observed data.
Fig. 11 shows agreement between the statistics of spreading

between the simulated and observed data for long-range cas-
cading interactions and disagreement for shorter-range interac-
tions. In particular, the simulated data shows fewer interactions
at distances 1 or 2 and more interactions at distances 4 or 5 than
the observed data. Beyond showing which aspects of reality are
well described by the simulation and for which purposes the pre-
dictions of the simulation are validated, a particular value of this
comparison of spreading statistics is that it suggests the aspects
of the simulation to be reconsidered to improve the match. In
this case, the results indicate that the modeling of short range
cascading interactions is not captured well enough by OPA.
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Obvious candidates for improvement in the short-range mod-
eling would include protection system effects (such as hidden
failures [6]) and representing parallel transmission lines in the
network.

X. CONCLUSION

It is fundamental to the study of cascading blackouts in trans-
mission networks to be able to process and characterize real cas-
cading outage data. This paper gives newmethods to process the
spread of transmission line outages from standard utility data
already collected by utilities and gives the first statistical char-
acterization of how the cascading outages typically spread on
the network. We also discuss the opportunities in cascading risk
analysis opened up by these new methods, including the valida-
tion of simulations and models for cascading risk analysis that
is needed to advance the field. The quantification of typical cas-
cade spatial spreading in this paper complements and augments
the quantification of cascading propagation in terms of number
of line outages in [12].

A. Contributions to Methods of Outage Data Analysis

The paper contributes new methods of analyzing standard
outage data:
• We solved the problem of obtaining a network model at
the same level of detail as and compatible with the outage
data by using the outage data itself to form the network.
This is shown to be an effective and practical solution to an
otherwise messy problem coordinating different network
descriptions. Then the recorded outages can be readily lo-
cated on the network so that their spread can be observed in
terms of network distance between generations of outages.

• We demonstrated methods to verify that a substantially
complete network is formed from the line outage data.
Even when the network changes over the period of ob-
servation, reordering the data can verify the network
completion.

• Cascading is initial outages followed by dependent out-
ages. The processing methods include a small fraction of
independent outages among the dependent outages, and we
show how to estimate the fraction of independent outages.

• We define metrics describing the average distances be-
tween generations of line outages on the network in terms
of both average number of buses between the generations
and network miles.

B. Contributions of the Results of the Data Analysis

We present for the first time some basic statistics of real
cascades spreading on a power transmission network. The
spreading is quantified in terms of the minimum number of
buses or network miles between generations of cascading line
outages. In the case of the average minimum number of buses
between generations, a generation of outages is followed by
a repeated outage of the same line in about one quarter of
the cases, and only one sixth are followed by a neighboring
line outage. (Even if we ignore the repeated outages, less than
one quarter are followed by a neighboring line outage.) A

generation of cascading outages is followed by an outage of
a non-neighboring line in over half of the cases. As detailed
below, these statistics of typical cascade spreading can be used
to help validate cascading models and simulations, understand
the mechanisms of dependent cascading outages, design cas-
cade mitigation schemes, and develop new cascading models.
The data shows that the lines most involved in initial out-

ages and the subsequent propagation of dependent outages differ
somewhat, as might be expected from the different mechanisms
involved. Also, there are dramatic differences in the amount
of propagation between realistic outages that have cascading
dependencies and outages that occur at artificially randomized
times.
We show that, after the initial automatic outage, the following

cascades of mostly dependent outages contain about 6% inde-
pendent outages. The distinction between independent and de-
pendent outages is important in understanding and mitigating
cascading, but it is also worth noting that in any case the power
system operators have to cope with multiple outages regardless
of their cause.
While the data used in the paper is from one large transmis-

sion operator, the methods can be applied much more broadly
because the data is already routinely collected by some trans-
mission operators internationally. In the USA, since TADS data
is reported by all transmission operators, the approach can be
applied by any transmission operator or by reliability organiza-
tions that aggregate the TADS data.

C. Using Spatial Spreading Data to Validate Models and
Simulations for Cascading Risk Analysis

A large variety of cascading outage models and simulations
have been proposed. For example, a 2008 survey paper refer-
ences a sample of about 25 different models and simulations and
many more have been subsequently proposed. However, there
has been very little quantitative validation of these models with
real data in the sense of reproducing observed cascade statis-
tics so that they can be relied upon to quantify cascading risk.11
There is a strong need for this validation so that the most impor-
tant mechanisms of cascading risk analysis can be determined
and represented at an appropriate level of detail. The statistics
of cascading spread in this paper are a new contribution to the
observed cascade statistics. This will enable the validation and
improvement of cascadingmodels and simulations that are close
to the reality of power systems and the rejection of models that
are unrealistic.
Two examples of this validation process are:
• Section IX shows an example of this validation process by
comparing the statistics of the next generation spreading of
line outages in the OPA simulation of cascading with the
observed statistics, after an appropriate normalization of
the distances in the simulated network. We show how the
comparison of spatial spreads distinguishes the matches

11In many cases, simulated cascades are judged to be credible, or a limited
selection of the dozens of mechanisms involved in cascading failure are reason-
ably approximated. Exceptions where some aspects have been quantitatively
validated with observed data include [5], [12], [31]. For a detailed account of
validation approaches and current needs see [23].
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obtained for long-range and short-range cascading mech-
anisms, giving insight into which mechanisms need to be
differently modeled to get a better match.

• Our data clearly shows a substantial fraction of non-local
propagation of outages. Therefore cascading models from
complex network theory that hypothesize nearest-neighbor
propagation on the topology of the electrical network are
inconsistent with the data observed in this paper.

D. Opening up Other Possibilities in Cascading Risk Analysis

Other possible research directions based on the cascading
spread data include:
• When analyzing outage data to better understand cas-
cading, dependent outages can now be classified according
to local or more global mechanisms according to how far
they are from preceding outages in the cascade. The larger
risk analysis context is that one can start from available
outage data and then use the interaction distances and
other attributes to classify the observations of dependent
outages into groups of mechanisms.12

• The observed statistical data on cascading spread could
enable approximate high-level stochastic models of the
effect of cascading. For example, given some initial
damaged components outaging in an earthquake [34],
[35], one could sample from a branching process model
calibrated with the outage statistics [12] to determine the
number of line outages in the next generation and then
use the statistics generated in this paper to sample the
position on the network of the line outages. This would
give a Monte Carlo way to approximate the extent to
which the blackout cascaded beyond the initial damage
caused by the quake. While such a method is a rough
approximation, it is grounded in the reality of the observed
data, and may be a useful approximation in some contexts.
For example, optimized transmission planning invest-
ments accounting for the risk of earthquakes is already
highly computationally intensive [34], [35], and a fast,
approximate assessment sampling the effect of cascading
would be useful13. The problem of estimating the further
spread of cascading blackout is particularly important for
earthquakes (and other natural disasters or attacks [36])
because earthquakes typically cause much more death,
destruction and economic losses than blackouts, but if the
response to the earthquake is delayed by a widespread
cascading blackout, the losses from the earthquake will be
significantly increased.

• The statistics of how far cascades typically spread are a
starting point for designing local andwide area schemes for
mitigating cascading. In particular, for design one needs to
know typical interaction distances for dependent outages

12This general “top-down” and data-driven approach is complementary to
detailed modeling of a particular dependent outage mechanism and then seeking
data for the detailed model.

13Evenwhen it is desirable in principle tomodel cascadingmore exactly, there
are some computations and contexts in which the computational, modeling and
data limitations require a simple stochastic approximation, and it is better to use
an approximate model than to omit the effect of cascading entirely.

(available from probability distributions such as Fig. 4)
and the fraction of cascades that are confined to the design
area of the scheme (available from probability distributions
such as Fig. 6).

That is, in addition to validating cascading models and simula-
tions, there are several promising avenues of engineering risk
analysis that open up given that real cascades can be readily
tracked spatially on a network.
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