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Abstract

We give a comprehensive account of a complex systems ap-
proach to large blackouts caused by cascading failure. In-
stead of looking at the details of particular blackouts, we
study the statistics, dynamics and risk of series of blackouts
with approximate global models. North American blackout
data suggests that the frequency of large blackouts is gov-
erned by a power law. This result is consistent with the
power system being a complex system designed and oper-
ated near criticality. The power law makes the risk of large
blackouts consequential and implies the need for nonstan-
dard risk analysis.

Power system overall load relative to operating limits is a
key factor affecting the risk of cascading failure. Blackout
models and an abstract model of cascading failure show
that there are critical transitions as load is increased. Power
law behavior can be observed at these transitions.

The critical loads at which blackout risk sharply increases
are identifiable thresholds for cascading failure and we dis-
cuss approaches to computing the proximity to cascading
failure using these thresholds. Approximating cascading
failure as a branching process suggests ways to compute
and monitor criticality by quantifying how much failures
propagate.

Inspired by concepts from self-organized criticality, we sug-
gest that power system operating margins evolve slowly
to near criticality and confirm this idea using a blackout
model. Mitigation of blackout risk should take care to ac-
count for counter-intuitive effects in complex self-organized
critical systems. For example, suppressing small blackouts
could lead the system to be operated closer to the edge and
ultimately increase the risk of large blackouts.

1 Introduction

Cascading failure is the usual mechanism for large black-
outs of electric power transmission systems. For example,
long, intricate cascades of events caused the August 1996
blackout in Northwestern America (NERC [44]) that dis-
connected 30,390 MW of power to 7.5 million customers
[41, 57]). An even more spectacular example is the August
2003 blackout in Northeastern America that disconnected
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61,800 MW of power to an area spanning 8 states and 2
provinces and containing 50 million people [56]. The vital
importance of the electrical infrastructure to society moti-
vates the understanding and analysis of large blackouts.

Here are some substantial challenges:

e North American power transmission system data ap-
pears to show power tails in the probability distribu-
tion of blackout sizes, making the risk of large black-
outs consequential. What is the origin and the impli-
cations of this distribution of blackout sizes? Can this
probability distribution be changed within economic
and engineering constraints to minimize the risk of
blackouts of all sizes?

e Large blackouts are typically caused by long, intricate
cascading sequences of rare events. Dependencies be-
tween the first few events can be assessed for a sub-
set of the most likely or anticipated events and this
type of analysis is certainly useful in addressing part
of the problem (e.g. [48]). However, this combinatorial
analysis gets overwhelmed and becomes infeasible for
long sequences of events or for the huge number of all
possible rare events and interactions, many of which
are unanticipated, that cascade to cause large black-
outs. How does one do risk analysis of rare, cascading,
catastrophic events? Can one monitor or mitigate the
risk of these cascading failures at a more global level
without working out all the details?

e Much of the effort in avoiding cascading failure has
focussed on reducing the chances of the start of a cas-
cading failure. How do we determine whether power
system design and operation is such that cascades will
tend to propagate after they have started? That is,
where is the “edge” for propagation of cascading fail-
ure?

The aim of global complex systems analysis of power sys-
tem blackouts is to provide new insights and approaches
that could address these challenges. We focus on global
bulk properties of series of blackouts rather than on the de-
tails of a particular blackout. Concepts from complex sys-
tems, statistical physics, probability and risk analysis are
combined with power system modeling to study blackouts
from a top-down perspective.
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1.1 Literature review

We briefly review some other approaches to complex sys-
tems and cascading failure in power system blackouts.

Chen and Thorp [17] and Chen, Thorp, and Dobson [18]
model power system blackouts using the DC load flow ap-
proximation and standard linear programming optimiza-
tion of the generation dispatch and represent in detail hid-
den failures of the protection system. The expected black-
out size is obtained using importance sampling and it shows
some indications of a critical point as loading is increased.
The distribution of power system blackout size is obtained
by rare event sampling and blackout risk assessment and
mitigation methods are studied. Rios, Kirschen, Jawayeera,
Nedic, and Allan [51] evaluate expected blackout cost us-
ing Monte Carlo simulation of a power system model that
represents the effects of cascading line overloads, hidden
failures of the protection system, power system dynamic
instabilities, and the operator responses to these phenom-
ena. Kirschen, Jawayeera, Nedic, and Allan [40] then ap-
ply correlated sampling and their Monte Carlo simulation
to develop a calibrated reference scale of system stress that
relates system loading to blackout size and test it on a 1000
bus power system. Hardiman, Kumbale, and Makarov [35]
simulate and analyze cascading failure using the TRELSS
software. In its “simulation approach” mode, TRELSS rep-
resents cascading outages of lines, transformers and gener-
ators due to overloads and voltage violations in large AC
networks (up to 13000 buses). Protection control groups
and islanding are modeled in detail. The cascading outages
are ranked in severity and the results have been applied in
industry to evaluate transmission expansion plans. Other
modes of operation are available in TRELSS that can rank
the worst contingencies and take into account remedial ac-
tions and compute reliability indices.

Ni, McCalley, Vittal, and Tayyib [48] evaluate expected
contingency severities based on real time predictions of the
power system state to quantify the risk of operational con-
ditions. The computations account for current and volt-
age limits, cascading line overloads, and voltage instability.
Zima and Andersson [59] study the transition into subse-
quent failures after an initial failure and suggest mitigating
this transition with a wide-area measurement system.

Roy, Asavathiratham, Lesieutre, and Verghese [52] con-
struct randomly generated tree networks that abstractly
represent influences between idealized components. Com-
ponents can be failed or operational according to a Markov
model that represent both internal component failure and
repair processes and influences between components that
cause failure propagation. The effects of the network degree
and the inter-component influences on the failure size and
duration are studied. Pepyne, Panayiotou, Cassandras, and
Ho [50] also use a Markov model for discrete state power
system nodal components, but propagate failures along the

transmission lines of a power systems network with a fixed
probability. They study the effect of the propagation prob-
ability and maintenance policies that reduce the probability
of hidden failures.

The challenging problem of determining cascading failure
due to dynamic transients in hybrid nonlinear differen-
tial equation models is addressed by DeMarco [24] using
Lyapunov methods applied to a smoothed model and by
Parrilo, Lall, Paganini, Verghese, Lesieutre, and Mars-
den [49] using Karhunen-Loeve and Galerkin model reduc-
tion. Watts [58] describes a general model of cascading
failure in which failures propagate through the edges of a
random network. Network nodes have a random thresh-
old and fail when this threshold is exceeded by a sufficient
fraction of failed nodes one edge away. Phase transitions
causing large cascades can occur when the network becomes
critically connected by having sufficient average degree or
when a highly connected network has sufficiently low av-
erage degree so that the effect of a single failure is not
swamped by a high connectivity to unfailed nodes. Lindley
and Singpurwalla [42] describe some foundations for causal
and cascading failure in infrastructures and model cascad-
ing failure as an increase in a component failure rate within
a time interval after another component fails.

Chen and McCalley [19] fit the empirical probability distri-
bution of 20 years of North American multiple line failures
with a cluster distribution derived from a negative binomial
probability model. Carlson and Doyle have introduced a
theory of highly optimized tolerance (HOT) that describes
power law behavior in a number of engineered or otherwise
optimized applications [6]. Stubna and Fowler [55] pub-
lished an alternative view based on HOT of the origin of the
power law in the NERC data. To apply HOT to the power
system, it is assumed that blackouts propagate one dimen-
sionally [55] and that this propagation is limited by finite
resources that are engineered to be optimally distributed to
act as barriers to the propagation [6]. The one dimensional
assumption implies that the blackout size in a local region
is inversely proportional to the local resources. Minimizing
a blackout cost proportional to blackout size subject to a
fixed sum of resources leads to a probability distribution of
blackout sizes with an asymptotic power tail and two free
parameters. The asymptotic power tail exponent is exactly
—1 and this value follows from the one dimensional assump-
tion. The free parameters can be varied to fit the NERC
data for both MW lost and customers disconnected. How-
ever [55] shows that a better fit to both these data sets can
be achieved by modifying HOT to allow some misallocation
of resources.

The historically high reliability of power transmission sys-
tems in developed countries is largely due to estimating the
transmission system capability and designing and operat-
ing the system with margins with respect to a chosen sub-
set of likely and serious contingencies. The analysis is usu-
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ally either deterministic analysis of estimated worst cases or
Monte Carlo simulation of moderately detailed probabilistic
models that capture steady state interactions [4]. Combi-
nations of likely contingencies and some dependencies be-
tween events such as common mode or common cause are
sometimes considered. The analyses address the first few
likely and anticipated failures rather than the propagation
of many rare or unanticipated failures in a cascade.

1.2 Blackout mechanisms

We review cascading failure mechanisms of large blackouts
to provide context for the cascading failure modeling. Bulk
electrical power transmission systems are complex networks
of large numbers of components that interact in diverse
ways. When component operating limits are exceeded pro-
tection acts and the component “fails” in the sense of not
being available to transmit power. Components can also fail
in the sense of misoperation or damage due to aging, fire,
weather, poor maintenance or incorrect design or operat-
ing settings. In any case, the failure causes a transient and
causes the power flow in the component to be redistributed
to other components according to circuit laws, and subse-
quently redistributed according to automatic and manual
control actions. The transients and readjustments of the
system can be local in effect or can involve components
far away, so that a component disconnection or failure can
effectively increase the loading of many other components
throughout the network. In particular, the propagation of
failures is not limited to adjacent network components. The
interactions involved are diverse and include deviations in
power flows, frequency, and voltage as well as operation
or misoperation of protection devices, controls, operator
procedures and monitoring and alarm systems. However,
all the interactions between component failures tend to be
stronger when components are highly loaded. For example,
if a more highly loaded transmission line fails, it produces
a larger transient, there is a larger amount of power to
redistribute to other components, and failures in nearby
protection devices are more likely. Moreover, if the over-
all system is more highly loaded, components have smaller
margins so they can tolerate smaller increases in load before
failure, the system nonlinearities and dynamical couplings
increase, and the system operators have fewer options and
more stress.

A typical large blackout has an initial disturbance or trig-
ger events followed by a sequence of cascading events. Each
event further weakens and stresses the system and makes
subsequent events more likely. Examples of an initial dis-
turbance are short circuits of transmission lines through
untrimmed trees, protection device misoperation, and bad
weather. The blackout events and interactions are often
rare, unusual, or unanticipated because the likely and antic-
ipated failures are already routinely accounted for in power
system design and operation. The complexity is such that

it can take months after a large blackout to sift through
the records, establish the events occurring and reproduce
with computer simulations and hindsight a causal sequence
of events.

2 Blackout data and risk
2.1 Power tails in North American blackout data

We consider the statistics of series of blackouts. The North
American Electrical Reliability Council (NERC) has a doc-
umented list summarizing major blackouts of the North
American power transmission system from 1984 to 1998
[45]. Tt is apparent that large blackouts are rarer than
small blackouts, but how much rarer are they? One might
expect a probability distribution of blackout sizes to fall off
at most exponentially as the blackout size increases. How-
ever, analyses of the NERC data show that the probability
distribution of the blackout sizes does not decrease expo-
nentially with the size of the blackout, but rather has a
power law tail [15, 7, 8, 16].
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Fig. 1: Log-log plot of scaled PDF of energy unserved
during North American blackouts 1984 to 1998.

For example, Fig. 1 plots on a log-log scale the empirical
probability distribution of energy unserved in the North
American blackouts. The fall-off with blackout size is close
to a power dependence with an exponent between —1 and
—2. (A power dependence with exponent —1 implies that
doubling the blackout size only halves the probability and
appears on a log-log plot as a straight line of slope —1).
Thus the NERC data suggests that large blackouts are
much more likely than might be expected. The power tails
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are of course limited in extent in a practical power sys-
tem by a finite cutoff near system size corresponding to the
largest possible blackout.

2.2 Blackout risk with respect to blackout size

Blackout risk is the product of blackout probability and
blackout cost. Here we assume that blackout cost is roughly
proportional to blackout size, although larger blackouts
may well have costs (especially indirect costs) that increase
faster than linearly. In the case of the exponential tail, large
blackouts become rarer much faster than blackout costs in-
crease so that the risk of large blackouts is negligible. How-
ever, in the case of a power law tail, the larger blackouts
can become rarer at a similar rate as costs increase, and
then the risk of large blackouts is comparable to, or even
exceeding, the risk of small blackouts [12]. Thus power laws
in blackout size distributions significantly affect the risk of
large blackouts. Standard probabilistic techniques that as-
sume independence between events imply exponential tails
and are not applicable to systems that exhibit power tails.

Consideration of the probability distribution of blackout
sizes leads naturally to a more sophisticated framing of the
problem of avoiding blackouts. Instead of seeking only to
limit blackouts in general, one can seek to manipulate the
probability distribution of blackouts to jointly limit the fre-
quency of small, medium and large blackouts. This elab-
oration is important because measures taken to limit the
frequency of small blackouts may inadvertently increase
the frequency of large blackouts when the complex dynam-
ics governing transmission expansion are considered as dis-
cussed in section 8.

The strength of our conclusions is naturally somewhat lim-
ited by the short time period (15 years) of the available
blackout data and the consequent limited resolution of the
statistics. To further understand the mechanisms governing
the complex dynamics of power system blackouts, model-
ing of the power system is indicated. We consider both
abstract models of cascading failure and a power system
blackout model in the following section.

3 Three models of cascading failure

This section summarizes three models of cascading failure
that are used to explore aspects of blackouts. The first
two models aim to represent some of the salient features of
cascading failure in blackouts with an analytically tractable
probabilistic model and the third model represents a power
transmission system.

1. The CASCADE model is an abstract probabilistic
model of cascading failure that captures the weakening
of the system as the cascade proceeds [27, 32].

2. The branching process model is a useful approximation
to the CASCADE model [28].

3. The OPA model for a fixed network is a power systems
model that represents cascading line overloads and out-
ages at the level of DC load flow and LP dispatch of
generation [11].

While our main motivation is large blackouts, the abstract
CASCADE and branching process models are sufficiently
simple and general that they could be applied to cascading
failure of other large, interconnected infrastructures [47].

3.1 CASCADE model

The features that the CASCADE model abstracts from the
formidable complexities of large blackouts are the large but
finite number of components, components that fail when
their load exceeds a threshold, an initial disturbance load-
ing the system, and the additional loading of components
by the failure of other components. The initial overall sys-
tem stress is represented by upper and lower bounds on a
range of initial component loadings. The model neglects the
length of times between events and the diversity of power
system components and interactions. Of course, an ana-
lytically tractable model is necessarily much too simple to
represent with realism all the aspects of cascading failure in
blackouts; the objective is rather to help understand some
global systems effects that arise in blackouts and in more
detailed models of blackouts.

3.1.1 Description of CASCADE model

The CASCADE model [27, 32] has n identical components
with random initial loads. For each component the mini-
mum initial load is L™ and the maximum initial load is
Lmax For j=1,2,...,n, component j has initial load L; that
is a random variable uniformly distributed in [L™n, [max],
Lq,Ls,---, L, are independent.

Components fail when their load exceeds L. When a
component fails, a fixed amount of load P is transferred to
each of the components.

To start the cascade, we assume an initial disturbance that
loads each component by an additional amount D. Other
components may then fail depending on their initial loads
L; and the failure of any of these components will distribute
an additional load P > 0 that can cause further failures in
a cascade.

Now we define the normalized CASCADE model. The nor-
malized initial load ¢; is

L. — Lmin
0 =—1"2 1
J [max _ [ min ( )

Then ¢; is a random variable uniformly distributed on [0, 1].
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Let

P D + [max _ Lfail
= d= . 2
p [max _ [min ’ [max _ [min ( )

Then the normalized load increment p is the amount of load
increase on any component when one other component fails
expressed as a fraction of the load range L™ — ™", The
normalized initial disturbance d is a shifted initial distur-
bance expressed as a fraction of the load range. Moreover,
the failure load is ¢; = 1.

3.1.2 Distribution of the number of failures

The distribution of the total number of component failures

S is
(1) ot oot - a -y,

P[S = ’)"] = i r= 07 17 ey, U — 1’ (3)
I_ZP(SZS)a r=mn,
s=0

where p > 0 and the saturation function is

0;x<0,
z;0<2 <1, (4)
1:2>1.

¢(z) =

When using (3) it is assumed that 0° = 1 and 0/0 = 1.

If d > 0 and d+np < 1, then there is no saturation (¢(x) =
x) and (3) reduces to the quasibinomial distribution

PlS=r]= (f) d(d+rp)" (1 —d—rp)"~". (5)

The quasibinomial distribution was introduced by Consul
[21] to model an urn problem in which a player makes
strategic decisions and further studied by Burtin [5], Islam,
O’Shaughnessy, and Smith [37], and Jaworski [38]. The
saturation in (3) extends the parameter range of the qua-
sibinomial distribution and the saturated distribution can
represent highly stressed systems with a high probability of
all components failing.

3.2 Branching process

The branching process approximation to the CASCADE
model gives a way to quantify the propagation of cascad-
ing failures with a parameter \ and further simplifies the
mathematical modeling [28].

In a Galton-Watson branching process [36, 1] the failures
are regarded as produced in stages. The failures in each
stage independently produce further failures in the next
stage according to a probability distribution with mean .
An exception is that the first stage assumes a probabil-
ity distribution with mean 6 to represent the initial distur-
bance. We assume in this section that each failure produces

0,1,2,3,... further failures according to a Poisson distribu-
tion. Thus, after the initial disturbance, each failure in
each stage independently produces further failures in the
next stage according to a Poisson distribution of mean .

The branching process is a transient discrete time Markov
process and its behavior is governed by the parameter .
The mean number of failures in stage k is OA*~!. In the
subcritical case of A < 1, the failures will die out (i.e., reach
and remain at zero failures at some stage) and the mean
number of failures in each stage decreases geometrically.
In the supercritical case of A > 1, although it possible for
the process to die out, often the failures increase without
bound. Of course, there are a large but finite number of
components that can fail in a blackout and in the CAS-
CADE model, so it is also necessary to account for the
branching process saturating with all components failed.

The stages of the CASCADE model can be approximated
by the stages of a saturating branching process by letting
the number of components n become large while p and d
become small in such a way that A = np and 0 = nd re-
main constant. The number S of components failed in the
saturating branching process is a saturating form of the
generalized Poisson distribution:

For 6 > 0,

—rA—0

P[S=r] = 0(rA+0) 15— .

; 0<r<(n—6)/\ r<n (6)

PS=r]=0; (n-0)/A<r<n,r>0 (7)
PlS=r]=1- Zg(s,@,/\,n) (8)
s=0

In the subcritical or critical case A < 1, there is no satura-
tion and (6)-(8) reduce to

P[S =] = 0(r + 9)“% 9)

which is the generalized (or Lagrangian) Poisson distribu-
tion introduced by Consul and Jain [23, 20, 22].

Further approximation of (6)-(8) yields [30]

0
get=Nx . o/
P[S:T]%WT 1'06 /To (10)
;1< r <ry =min{n/\n}, 6/A~1

where ro=MA—-1—=In\)""

In the approximation (10), the term r~!® dominates for
r < ro and the exponential term e~"/" dominates for r >
ro. Thus (10) reveals that the distribution of the number of
failures has an approximate power law region of exponent
—1.5for 1 < r < rg and an exponential tail for rq < r < rq.
Note that near criticality, A = 1 and ry becomes large.
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For a very general class of branching processes (not neces-
sarily assuming that each failure produces further failures
with a Poisson distribution), at criticality, the probability
distribution of the total number of failures has a power law
form with exponent —1.5. That is, as one doubles the num-
ber of failures the probability of that number of failures is
divided by 2':5. The universality of the —1.5 power law at
criticality in the probability distribution of the total num-
ber of failures in a branching process suggests that this is
a signature for this type of cascading failure. In particular,
the generalized Poisson distributions (6)-(8) and (9) have a
—1.5 power law at A = 1.

The approximation of CASCADE by a branching process
implies that the CASCADE model has approximately a
—1.5 power law at np = 1. Moreover, the —1.5 power
law is approximately consistent with the North American
blackout data described in section 2.1.

Criticality or supercriticality in the branching process im-
plies a high risk of catastrophic and widespread cascading
failures. Maintaining sufficient subcriticality in the branch-
ing process according to a simple criterion such as requiring
A < Amaz < 1 would limit the propagation of failures and
reduce this risk. The approximation of CASCADE as a
branching process allows the criterion to be expressed in
terms of system loading. However, implementing the cri-
terion to reduce the risk of catastrophic cascading failure
would require limiting the system throughput and this is
costly. Managing the tradeoff between the certain cost of
limiting throughput and the rare but very costly widespread
catastrophic cascading failure may be difficult. Indeed we
maintain in section 6 that for large blackouts, economic, en-
gineering and societal forces may self-organize the system
to criticality and that efforts to mitigate the risk should
take account of these broader dynamics [12].

Our emphasis on limiting the propagation of system failures
after they are initiated is complementary to more standard
methods of mitigating the risk of cascading failure by re-
ducing the risk of the first few likely failures caused by an
initial disturbance as for example in [48].

The branching process approximation does capture some
salient features of loading dependent cascading failure and
suggests an approach to reducing the risk of large cascad-
ing failures by limiting the average propagation of failures.
However, much work remains to establish the correspon-
dence between these simplified global models and the com-
plexities of cascading failure in real systems.

3.3 OPA blackout model for a fixed network

This section summarizes the OPA blackout model when
the network is assumed to be fixed [11]. This model repre-
sents blackouts caused by probabilistic cascading line over-
loads and outages and is used to produce blackout statistics.

Lines fail probabilistically and the consequent redistribu-
tion of power flows is calculated using the DC load flow
approximation and a standard LP dispatch of generation.
Cascading line outages leading to blackout are modeled.
There is also a version of OPA that additionally represents
the complex dynamics as the network evolves and this is
discussed in section 6.2.

Cascading failure can happen at any time but tends to be
more likely and more widespread at peak load when the
network is most stressed. For simplicity, the daily peak load
is chosen as representative of the loading during each day
and the cascade is computed based on that peak load. Each
day has the possibility of one cascade. The lines involved
in the cascade are represented but the timing of events is
neglected.

The OPA model represents transmission lines, loads and
generators with the usual DC load flow assumptions. Start-
ing from a solved base case, blackouts are initiated by ran-
dom line outages. Whenever a line is outaged, the gen-
eration and load is redispatched using standard linear pro-
gramming methods. The cost function is weighted to ensure
that load shedding is avoided where possible. If any lines
were overloaded during the optimization, then these lines
are outaged with probability p;. The process of redispatch
and testing for outages is iterated until there are no more
outages.

The OPA model does not attempt to capture the intricate
details of particular blackouts, which may have a large va-
riety of complicated interacting processes also involving,
for example, protection systems, dynamics and human fac-
tors. However, the OPA model does represent in a simpli-
fied way a dynamical process of cascading overloads and
outages that is consistent with some basic network and op-
erational constraints.

4 Critical loading

As load increases, it is clear that cascading failure becomes
more likely, but exactly how does it become more likely?
Our results show that the cascading failure does not grad-
ually and uniformly become more likely; instead there is a
point of criticality or phase transition at which the cascad-
ing failure becomes more likely.

In complex systems and statistical physics, criticality is as-
sociated with power tails in probability distributions. Other
indicators of criticality are changes in gradient (for a type 2
phase transition) or a discontinuity (for a type 1 phase tran-
sition) in some measured quantity as system passes through
the critical point.

The importance of the critical loading is that it defines a
reference point for increasing risk of cascading failure. The
terminology of “criticality” comes from statistical physics



444

and it is of course extremely useful to use the standard sci-
entific terminology. However, while the power tails at crit-
ical loading indicate a substantial risk of large blackouts,
it is premature at this stage of risk analysis to automati-
cally presume that operation at criticality is bad because
it entails some substantial risks. There is also economic
gain from an increased loading of the power transmission
system. Indeed, one of the objectives in pursuing the risk
analysis of cascading blackouts is to determine and quan-
tify the tradeoffs involved so that sensible decisions about
optimal design and operation and blackout mitigation can
be made.

4.1 Qualitative effect of load increase on distribution of
blackout size

Consider cascading failure in a power transmission system
in the impractically extreme cases of very low and very
high loading. At very low loading, any failures that occur
have minimal impact on other components and these other
components have large operating margins. Multiple fail-
ures are possible, but they are approximately independent
so that the probability of multiple failures is approximately
the product of the probabilities of each of the failures. Since
the blackout size is roughly proportional to the number of
failures, the probability distribution of blackout size will
have a tail bounded by an exponential. The probability
distribution of blackout size is different if the power sys-
tem were to be operated recklessly at a very high loading
in which every component was close to its loading limit.
Then any initial disturbance would necessarily cause a cas-
cade of failures leading to total or near total blackout. It
is clear that the probability distribution of blackout size
must somehow change continuously from the exponential
tail form to the certain total blackout form as loading in-
creases from a very low to a very high loading. We are
interested in the nature of the transition between these two
extremes. Our results presented below suggest that the
transition occurs via a critical loading at which there is a
power tail in the probability distribution of blackout size.
This concept is shown in Figure 2.

4.2 Critical transitions as load increases in CASCADE

This subsection describes one way to represent a load in-
crease in the CASCADE model and how this leads to a
parameterization of the normalized model. Then the effect
of the load increase on the distribution of the number of
components failed is described.

We assume for convenience that the system has n = 1000
components. Suppose that the system is operated so that
the initial component loadings vary from L™ to LM% =
L%l = 1. Then the average initial component loading L =
(L™ 4+ 1)/2 may be increased by increasing L™". The
initial disturbance D = 0.0004 is assumed to be the same
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Fig. 2: Log-log plots sketching idealized blackout size prob-
ability distributions for very low, critical, and very high
power system loadings.

as the load transfer amount P = 0.0004. These modeling
choices for component load lead via the normalization (2)
to the parameterization

0.0004
_ 11
5 5L (11)

The increase in the normalized power transfer p with in-
creased L may be thought of as strengthening the compo-
nent interactions that cause cascading failure.

05<L<1.

The distribution for the subcritical and nonsaturating case
L = 0.6 has an approximately exponential tail as shown
in Figure 3. The tail becomes heavier as L increases and
the distribution for the critical case L = 0.8, np = 1 has
an approximate power law region over a range of S. The
power law region has an exponent of approximately —1.4
and this compares to the exponent of —1.5 obtained by the
analytic approximation discussed in subsection 3.2. The
distribution for the supercritical and saturated case L =
0.9 has an approximately exponential tail for small r, zero
probability of intermediate r, and a probability of 0.80 of
all 1000 components failing. If an intermediate number of
components fail in a saturated case, then the cascade always
proceeds to all 1000 components failing.

The increase in the mean number of failures as the aver-
age initial component loading L is increased is shown in
Figure 4. The sharp change in gradient at the critical load-
ing L = 0.8 corresponds to the saturation of (3) and the
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consequent increasing probability of all components failing.
Indeed, at L = 0.8, the change in gradient in Figure 4
together with the power law region in the distribution of
S in Figure 3 suggest a type two phase transition in the
system. If we interpret the number of components failed as
corresponding to blackout size, the power law region is con-
sistent with the North American blackout data discussed in
section 2. In particular, North American blackout data sug-
gest an empirical distribution of blackout size with a power
tail with exponent between —1 and —2. This power tail indi-
cates a significant risk of large blackouts that is not present
when the distribution of blackout sizes has an exponential
tail.

The model results show how system loading can influence
the risk of cascading failure. At low loading there is an ap-
proximately exponential tail in the distribution of number
of components failed and a low risk of large cascading fail-
ure. There is a critical loading at which there is a power law
region in the distribution of number of components failed
and a sharp increase in the gradient of the mean number of
components failed. As loading is increased past the critical
loading, the distribution of number of components failed
saturates, there is an increasingly significant probability of
all components failing, and there is a significant risk of large
cascading failure.

4.3 Critical transitions as load increases in OPA

Criticality can be observed in the fast dynamics OPA model
as load power demand is slowly increased as shown in Fig. 5.
(Random fluctuations in the pattern of load are superim-
posed on the load increase in order to provide statistical
data.) At a critical loading, the gradient of the expected
blackout size sharply increases. Moreover, the PDF of
blackout size shows power tails at the critical loading as
shown in Fig. 6. OPA can also display complicated crit-
ical point behavior corresponding to both generation and
transmission line limits [11].

As noted in section 1.1, the cascading hidden failure model
of Chen and Thorp also shows some indications of criticality
as load is increased [17, 18].

5 Quantifying proximity to criticality

At criticality there is a power tail, a sharp increase in mean
blackout size, and an increased risk of cascading failure.
Thus criticality gives a reference point or a power system
operational limit with respect to cascading failure. That is,
we are suggesting adding an increased risk of cascading fail-
ure limit to the established power system operating limits
such as thermal, voltage, and transient stability. How does
one practically monitor or measure margin to criticality?

One approach is to increase loading in a blackout simula-

0.001

0.0001

0.00001

1 510 50 100 5001000
Fig. 3: Log-log plot of distribution of number of compo-
nents failed S for three values of average initial load L.
Note the power law region for the critical loading L = 0.8.
L = 0.9 has an isolated point at (1000,0.80) indicating
probability 0.80 of all 1000 components failed. Probability
of no failures is 0.61 for L = 0.6, 0.37 for L = 0.8, and 0.14
for L =0.9.

ES
1000¢f

800+
600+
400¢

200¢

Fig. 4: Mean number of components failed E'S as a function
of average initial component loading L. Note the change in
gradient at the critical loading L = 0.8. There are n = 1000
components and ES becomes 1000 at the highest loadings.

tion incorporating cascading failure mechanisms until crit-
icality is detected by a sharp increase in mean blackout
size. The mean blackout size is calculated at each load-
ing level by running the simulation repeatedly with some
random variation in the system initial conditions so that a
variety of cascading outages are simulated. This approach
is straightforward and likely to be useful, but it is not fast
and it seems that it would be difficult or impossible to ap-
ply to real system data. Also it could be challenging to de-
scribe and model a good sample of the diverse interactions
involved in cascading failure in a fast enough simulation.
This approach, together with checks on the power law be-
havior of the distribution of blackout size, was used to find
criticality in several power system and abstract models of
cascading failure [11, 17, 18, 32, 28]. Confirming criticality
in this way in a range of power system models incorporat-
ing more detailed or different cascading failure mechanisms
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Fig. 5: Average blackout size in OPA as loading increases.
Critical loading occurs at kink in curves where average
blackout size sharply increases.

would help to establish further the key role that criticality
plays in cascading failure.

Another approach that is currently being developed [13,
30, 31] is to monitor or measure from real or simulated
data how much failures propagate after they are initiated.
Branching process models such as the Galton-Watson pro-
cess described in section 3.2 have a parameter A that mea-
sures both the average failure propagation and proximity
to criticality. In branching process models, the average
number of failures is multiplied by A at each stage of the
branching process. Although there is statistical variation
about the mean behavior, it is known [1] that for subcriti-
cal systems with A < 1, the failures will die out and that for
supercritical systems with A > 1, the number of failures can
exponentially increase. (The exponential increase will in
practice be limited by the system size and any blackout in-
hibition mechanisms; current research seeks to understand
and model the blackout inhibition mechanisms.)

The idea is to statistically estimate A\ from simulated or
real failure data. Essentially this approach seeks to ap-
proximate and fit the data with a branching process model.
The ability to estimate A and any other parameters of the

branching process model would allow the computation of

the corresponding distribution of blackout size probability
and hence estimates of the blackout risk.

Note that the cascading failure limit measures overall sys-
tem stress in terms of how failures propagate once started;
it is complementary to measures to limit cascading failure
by inhibiting the start of cascade such as the n-1 criterion.
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Fig. 6: Blackout size PDF at critical loading P=15392 and
other loadings.

6 Self-organization and slow dynamics of network
evolution

6.1 Qualitative description of self-organization

We qualitatively describe how the forces shaping the evolu-
tion of the power network could give rise to self-organizing
dynamics. The power system contains many components
such as generators, transmission lines, transformers and
substations. Each component experiences a certain load-
ing each day and when all the components are considered
together they experience some pattern or vector of load-
ings. The pattern of component loadings is determined by
the power system operating policy and is driven by the
aggregated customer loads at substations. The power sys-
tem operating policy includes short term actions such as
generator dispatch as well as longer term actions such as
improvements in procedures and planned outages for main-
tenance. The operating policy seeks to satisfy the customer
loads at least cost. The aggregated customer load has daily
and seasonal cycles and a slow secular increase of about 2%
per year.

The probability of component failure generally increases
with component loading. Each failure is a limiting or zero-
ing of load in a component and causes a redistribution of
power flow in the network and hence a discrete increase in
the loading of other system components. Thus failures can
cascade. If a cascade of events includes limiting or zeroing
the load at substations, it is a blackout. A stressed power
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system experiencing an event must either redistribute load
satisfactorily or shed some load at substations in a black-
out. A cascade of events leading to blackout usually occurs
on a time scale of minutes to hours and is completed in less
than one day.

It is customary for utility engineers to make prodigious ef-
forts to avoid blackouts and especially to avoid repeated
blackouts with similar causes. These engineering responses
to a blackout occur on a range of time scales longer than one
day. Responses include repair of damaged equipment, more
frequent maintenance, changes in operating policy away
from the specific conditions causing the blackout, installing
new equipment to increase system capacity, and adjusting
or adding system alarms or controls. The responses re-
duce the probability of events in components related to the
blackout, either by lowering their probabilities directly or
by reducing component loading by increasing component
capacity or by transferring some of the loading to other
components. The responses are directed towards the com-
ponents involved in causing the blackout. Thus the prob-
ability of a similar blackout occurring is reduced, at least
until load growth degrades the improvements made. There
are similar, but less intense responses to unrealized threats
to system security such as near misses and simulated black-
outs.

The pattern or vector of component loadings may be
thought of as a system state. Maximum component load-
ings are driven up by the slow increase in customer loads
via the operating policy. High loadings increase the chances
of cascading events and blackouts. The loadings of com-
ponents involved in the blackout are reduced or relaxed by
the engineering responses to security threats and blackouts.
However, the loadings of some components not involved
in the blackout may increase. These opposing forces driv-
ing the component loadings up and relaxing the component
loadings are a reflection of the standard tradeoff between
satisfying customer loads economically and security. The
opposing forces apply over a range of time scales. We sug-
gest that the opposing forces, together with the underlying
growth in customer load and diversity give rise to a dynamic
equilibrium.

These ideas of complex dynamics by which the network
evolves are inspired by corresponding concepts of self-
organized criticality (SOC) in statistical physics. As a brief
introduction to the concept, a self-organized critical system
is one in which the nonlinear dynamics in the presence of
perturbations organize the overall average system state near
to, but not at, the state that is marginal to major disrup-
tions. Self-organized critical systems are characterized by a
spectrum of spatial and temporal scales of the disruptions
that exist in remarkably similar forms in a wide variety of
physical systems [2, 3, 39]. In these systems, the proba-
bility of occurrence of large disruptive events decreases as
a power function of the event size. This is in contrast to

many conventional systems in which this probability decays
exponentially with event size.

6.2 OPA blackout model for a slowly evolving network

The OPA blackout model [14, 25, 9, 10] represents the es-
sentials of slow load growth, cascading line outages, and
the increases in system capacity caused by the engineering
responses to blackouts. Cascading line outages leading to
blackout are regarded as fast dynamics and are modeled as
described in section 3.3 and the lines involved in a blackout
are predicted. The slow dynamics model the growth of the
load demand and the engineering response to the blackout
by upgrades to the grid transmission capability. The slow
dynamics represents the complex dynamics outlined in sec-
tion 6.1. The slow dynamics is carried out by the following
small changes applied at each day: All loads are multiplied
by a fixed parameter that represents the daily rate of in-
crease in electricity demand. If a blackout occurs, then the
lines involved in the blackout have their line flow limits in-
creased slightly. The generation is increased at randomly
selected generators subject to coordination with the limits
of nearby lines when the generator capacity margin falls
below a threshold. The OPA model is “top-down” and rep-
resents the processes in greatly simplified forms, although
the interactions between these processes still yield complex
(and complicated!) behaviors. The simple representation of
the processes is desirable both to study only the main inter-
actions governing the complex dynamics and for pragmatic
reasons of model tractability and simulation run time.

6.3 Self-Organization

We propose one way to understand the origin of the dynam-
ics and distribution of power system blackouts. Indeed, we
suggest that the slow, opposing forces of load increase and
network upgrade in response to blackouts shape the system
operating margins so that cascading blackouts occur with a
frequency governed approximately by a power law relation-
ship between blackout probability and blackout size. That
is, these forces drive the system to a dynamic equilibrium
just below and near criticality.

The load increase is a force weakening the power system
(reducing operating margin) and the system upgrades are
a force strengthening the system (increasing operating mar-
gin). If the power system is weak, then there will be more
blackouts and hence more upgrades of the lines involved in
the blackout and this will eventually strengthen the power
system. If the power system is strong, then there will be
fewer blackouts and fewer line upgrades, and the load in-
crease will weaken the system. Thus the opposing forces
drive the system to a dynamic equilibrium that keeps the
system near a certain pattern of operating margins relative
to the load. This process is observed in OPA results. Note
that engineering improvements and load growth are driven
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by strong, underlying economic and societal forces that are
not easily modified.

Moreover, when the generator upgrade process is suitably
coordinated with the line upgrades and load increase, OPA
results show power tails in the PDF of blackout sizes. For
example, OPA results for the IEEE 118 bus network and an
artificial 382 bus tree-like network are shown in Figure 7.
Both the power law region of the PDF and the consistency
with the NERC blackout data are evident. We emphasize
that this criticality was achieved by the internal dynamics
modeled in the system and is in this sense self-organizing
to criticality.
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Fig. 7: Blackout size PDF resulting from self-organization
showing OPA results on 2 networks. The NERC blackout
data is also shown for comparison.

6.4 Blackout mitigation

While much remains to be learned about these complex dy-
namics, it is clear that these global dynamics have impor-
tant implications for power system control and operation
and for efforts to reduce the risk of blackouts.

The success of mitigation efforts in self-organized crit-
ical systems is strongly influenced by the dynamics of
the system. Unless the mitigation efforts alter the self-
organization forces driving the system, the system will be
pushed to criticality. To alter those forces with mitiga-
tion efforts may be quite difficult because the forces are an
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intrinsic part of our society. Then the mitigation efforts
can move the system to a new dynamic equilibrium while
remaining near criticality and preserving the power tails.
Thus, while the absolute frequency of disruptions of all sizes
may be reduced, the underlying forces can still cause the
relative frequency of large disruptions to small disruptions
to remain the same.

105 ] ] ] ] ] ]

——DBase case
—=-p =10
max

e =20
max

[Em—

-
[N
|

——pn =30
max

p—

<&
W
]

Mumber of hlackouts
2
|

f—
<.
]

10°

20 30 40 50

Line outages

SN SN
0 10 60 70

Fig. 8 Number of blackouts as number of line outages
varies for differing inhibition of line outages (nmax is the
maximum number of line overloads for which outages are
inhibited). Results are obtained using OPA model on the
IEEE 118 bus system.

Indeed apparently sensible efforts to reduce the risk of
smaller blackouts can sometimes increase the risk of large
blackouts. This occurs because the large and small black-
outs are not independent but are strongly coupled by the
dynamics. For example the longer term response to small
blackouts can influence the frequency of large blackouts in
such a way that measures to reduce the frequency of small
blackouts can eventually reposition the system to have an
increased risk of large blackouts. The possibility of an over-
all adverse effect on risk from apparently sensible mitiga-
tion efforts shows the importance of accounting for complex
system dynamics when devising mitigation schemes [12].
For example [12], Figure 8 shows the results of inhibiting
small numbers of line outages using the OPA model with
self-organization on the IEEE 118 bus system. One of the
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causes of line outages in OPA is the outage of lines with
a probability p; when the line is overloaded. The results
show the effect of inhibiting these outages when the num-
ber of overloaded lines is less than nyax. The inhibition
corresponds to more effective system operation to resolve
these overloads. Blackout size is measured by number of
line overloads. The inhibition is, as expected, successful in
reducing the smaller numbers of line outages, but eventu-
ally, after the system has repositioned to its dynamic equi-
librium, the number of larger blackouts has increased. The
results shown in Figure 8 are distributions of blackouts in
the self-organized dynamic equilibrium and reflect the long-
term effects of the inhibition of line outages. It is an in-
teresting open question to what extent power transmission
systems are near their dynamic equilibrium, but operation
near dynamic equilibrium is the simplest assumption at the
present stage of knowledge of these complex dynamics.

Similar effects are familiar and intuitive in other complex
systems. For example, more effectively fighting small forest
fires allows the forest system to readjust with increased
brush levels and closer tree spacing so that when a forest
fire does happen by some chance to progress to a larger fire,
a huge forest fire is more likely [12].

7 Conclusions

We have summarized and explained an approach to series of
cascading failure blackouts at a global systems level. This
way of studying blackouts is complementary to existing de-
tailed analyses of particular blackouts and offers some new
insights into blackout risk, the nature of cascading failure,
the occurrence of criticality, and the complex system dy-
namics of blackouts.

The power law region in the distribution of blackout sizes
in North American blackout data [15, 16] has been repro-
duced by power system blackout models [11, 14, 18] and
some abstract models of cascading failure [32, 28] and en-
gineering design [55]. The power law profoundly affects the
risk of large blackouts, making this risk comparable to, or
even exceeding the risk of small blackouts. The power law
also precludes many conventional statistical models with
exponential-tailed distributions and new approaches need
to be developed such as [32, 28, 31, 19].

We think that the power law in the distribution of black-
out sizes arises from cascading failure when the power sys-
tem is loaded near a critical loading. Several power system
blackout models [11, 18] and abstract models of cascad-
ing failure [32, 28] show evidence of a critical loading at
which the probability of cascading failure sharply increases.
We suggest that determining the proximity to critical load-
ing from power system simulations or data is an important
problem. It seems that Monte-Carlo simulation methods
will be able to usefully compute the proximity to critical
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loading [11, 18, 40]. Moreover, branching process models of
cascading failure provide ways of quantifying with a param-
eter A the extent to which failures propagate after they are
started. We are pursuing practical methods of estimating
A from real or simulated failure data [28, 30, 31].

A novel and much larger view of the power system dynam-
ics considers the opposing forces of growing load and the
upgrade of the transmission network in response to real
or simulated blackouts. Our simulation results show that
these complex dynamics can self-organize the system to be
near criticality [14]. These complex dynamics are driven
by strong societal and economic forces and the difficul-
ties or tradeoffs in achieving long-term displacement of the
power system away from the complex systems equilibrium
caused by these forces should not be underestimated. In-
deed we have simulated a simple example of a blackout
mitigation method that successfully limits the frequency
of small blackouts, but in the long term increases the fre-
quency of large blackouts as the transmission system read-
justs to its complex systems equilibrium [12]. In the light
of this example, we suggest that the blackout mitigation
problem be reframed as jointly mitigating small and large
blackouts.

There are good prospects for extracting engineering and
scientific value from the further development of models,
simulations and computations and we hope that this pa-
per encourages further developments and practical applica-
tions in this emerging and exciting area of research. There
is an opportunity for systems research to make a substan-
tial contribution to understanding and managing the risk
of cascading failure blackouts.
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