
Abstract—Security concerns have been raised about cascading 

failure risks in evolving power grids. This paper reveals, for the 

first time, that the risk of cascading failures can be increased at 

low network demand levels when considering security-constrained 

generation dispatch. This occurs because critical transmission cor-

ridors become very highly loaded due to the presence of central-

ized generation dispatch, e.g., large thermal plants far from de-

mand centers. This increased cascading risk is revealed in this 

work by incorporating security-constrained generation dispatch 

into the risk assessment and mitigation of cascading failures. A se-

curity-constrained AC optimal power flow, which considers eco-

nomic functions and security constraints (e.g., network con-

straints, 𝑵 − 𝟏 security, and generation margin), is used to pro-

vide a representative day-ahead operational plan. Cascading fail-

ures are simulated using two simulators, a quasi-steady state DC 

power flow model, and a dynamic model incorporating all fre-

quency-related dynamics, to allow for result comparison and ver-

ification. The risk assessment procedure is illustrated using syn-

thetic networks of 200 and 2,000 buses. Further, a novel preventive 

mitigation measure is proposed to first identify critical lines, whose 

failures are likely to trigger cascading failures, and then to limit 

power flow through these critical lines during dispatch. Results 

show that shifting power equivalent to 1% of total demand from 

critical lines to other lines can reduce cascading risk by up to 80%. 

Index Terms—Cascading failure, frequency stability, power 

generation dispatch, risk assessment. 

I. INTRODUCTION

ASCADING failures are recognized as the main cause of

large blackouts [1]. Large blackouts, although they rarely 

occur, have significant social and economic impacts. As a re-

sult, risk assessment of cascading failure has long been required 

by NERC reliability standards to facilitate decision making and 

investment planning [2].  

As summarized in [3], methods for cascading failure risk as-

sessment are mainly based on cascading simulations and statis-

tical analysis of utility outage data. Standard metrics, such as 

Expected Demand Not Supplied (EDNS), are produced to quan-

tify the resulting impact of cascading failures. This allows 

benchmarking of various cascading failure simulators and eval-

uating changes in cascading risk over slow system evolution. 

Previous studies have shown that cascading risk does not in-

crease proportionally with network loading. Instead, there is a 

critical loading at which the cascading risk rises sharply and the 

probability distribution of demand losses exhibits a power-law 

dependence, indicating an increased risk of large-scale outages 

[4]–[6]. The power-law dependence of outage probability on 

outage size is expressed in the form 𝑃𝑟~𝑋𝛼 , where 𝑋 is the 

amount of demand loss, and 𝛼 is the power-law exponent and 

slope when using logarithmic axes. However, these studies 

were performed using a proportional dispatch method to sched-

ule generation at different loading levels. That is, changes in 

demand are proportionally distributed to all available genera-

tors, regardless of cost. To improve this, the authors in [7] com-

puted generation dispatch for each loading level using a secu-

rity-constrained DC optimal power flow, but its impact on cas-

cading risk quantification has not been adequately investigated. 

Work remains to study the relationship between generation dis-

patch considerations and cascading risk assessment to inform 

system planning and operational decisions. 

Mitigation measures of cascading failures have been investi-

gated by several researchers, such as in [7]–[12]. A discussion 

of the challenges of developing measures for cascading failures 

mitigation, and the learned lessons of deploying such measures 

can be found in [11]. Existing measures mitigate cascading out-

ages mainly by: 1) identifying and strengthening critical assets 

[7]–[9], 2) scheduling system resources (e.g., backup genera-

tion and synchronous condensers) during planning and opera-

tional processes [8], [12], or 3) deploying intentional islanding 

techniques [10]. These mitigation measures are often based on 

a given power system model, identifying critical assets and sup-

porting system operators in deciding when to apply the meas-

ure. Extensive simulation and detailed cascading failure models 

are required to thoroughly test their effectiveness. 

Applications of generation dispatch techniques in cascading 

risk estimation and mitigation are less well explored [3], for 

several reasons. First, the modelling of cascading failures re-

mains a complicated problem. Existing cascading failure simu-

lators can only capture a subset of cascading mechanisms based 

on different research objectives. Without a systematic valida-

tion procedure, the information obtained from dispatch tech-

niques may vary depending on different modelling assumptions 

[13]. Second, it is challenging to provide reliable estimations of 

expected costs associated with generation dispatch, control ac-

tions and power outages. Uncertainties arise from the operating 
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state, the occurrence of certain contingencies, the system oper-

ator’s behaviors, etc. Making optimal decisions under uncer-

tainty requires a trade-off between the solution quality, the pro-

vision of probabilistic guarantees and the computational tracta-

bility. Modelling assumptions need to be carefully identified 

and validated against the limited knowledge available at the 

time of decision making. This gives rise to a range of different 

programming formulations, including stochastic optimization 

[14] and two-stage robust optimization [15]. Given the compu-

tational burden, applications of these optimization theories of-

ten rely on simplified approximations of post-contingency 

states and the use of a DC power flow model, and show limita-

tions in providing realistic and usable dispatch solutions for cas-

cading risk management. If not combined with detailed model-

ling of system dynamics, the optimization problem can lead to 

overly conservative decisions, and it is difficult to validate op-

timal solutions under different operating conditions [15].  

Security-constrained optimal power flow (SCOPF) is a pow-

erful scheduling tool for power system operators for day-ahead 

operational planning. SCOPF aims at minimizing the opera-

tional cost while satisfying network constraints under normal 

and contingency operations [16]. The formulation of SCOPF 

problems considers various control actions, mainly divided into 

preventive (i.e., pre-contingency) [17] and corrective (i.e., post-

contingency) [18] control actions. The state-of-the-art method-

ologies and challenges for solving SCOPF problems are dis-

cussed in [19]. Most existing SCOPF studies focus on manag-

ing control strategies and optimizing mathematical program-

ming to deal with failure events that lead to small-scale viola-

tions. In many cases, these violations can be eliminated in sub-

sequent cascades without causing a major power outage (e.g., a 

small-scale cascade caused by a single component failure). 

However, the nature of cascading failures has led to the widely 

observed power-law distribution of demand losses [4]. This 

suggests that certain combinations of events can trigger high-

impact cascading failures, although they occur with relatively 

low probability. Thus, research on small-scale violations is not 

sufficient in characterizing cascading phenomena, and the cou-

pling of SCOPF with cascading failure simulation has not been 

adequately investigated.  

To address these limitations, this paper incorporates security-

constrained AC optimal power flow (SC-ACOPF) into the risk 

assessment and mitigation of cascading failures. The use of SC-

ACOPF provides a day-ahead generation dispatch solution, pri-

oritizing cheaper generation technologies, and ensuring that 

network constraints and 𝑁 − 1 security are respected. It there-

fore provides insights into the interactions of dispatch consid-

erations with blackout risk, and the potential improvement that 

preventive operational measures can make on cascading risk 

mitigation. The proposed preventive SC-ACOPF mitigates cas-

cading risk by limiting the power flow through critical lines, 

whose tripping could lead to cascading failures. A Risk Sensi-

tivity Index (RSI) is computed to reveal the sensitivity of cas-

cading risk to individual line loading, and to identify critical 

lines where constraining power flow can reduce cascading risk. 

Then, the RSI values are used as weight factors for each line, 

and additional power flow constraints are imposed on critical 

lines to enhance the reliability of the power system against cas-

cading failures. In particular, this paper: 

• makes the first quantification of increased cascading risk 

at lower demand levels when using SC-ACOPF instead of 

the proportional dispatch method. 

• integrates dispatch considerations and frequency dynam-

ics into cascading failure simulation and risk assessment.  

• shows that assuming proportional dispatch can underesti-

mate cascading risk. 

• mitigates cascading risk by computing risk sensitivity in-

dexes and constraining power flow on the critical lines.  

• coordinates quasi-steady state and dynamic simulation for 

more robust and practical cascading risk assessment. 

The rest of this paper proceeds as follows: Section II begins 

with the formulation of SC-ACOPF problem. Then, methods 

for risk assessment and blackout mitigation are described. Sec-

tion III describes the static and dynamic cascading failure sim-

ulators. Simulation results are presented in Section IV for the 

200-bus and 2,000-bus systems to illustrate the impact of dis-

patch factors and the performance of mitigation measures using 

critical line sensitivities. Section V concludes the paper.  

II. RISK ASSESSMENT AND MITIGATION PROCEDURES 

Fig. 1 illustrates the cascading failure risk assessment and 

mitigation procedures with security-constrained dispatch con-

siderations. This framework begins with a SC-ACOPF solution, 

which offers a representative day-ahead operational plan. In 

contrast to the proportional generation dispatch commonly used 

in cascading failure analysis, SC-ACOPF provides valuable in-

sights into the advantages gained by implementing efficient dis-

patch solutions. Following this, the framework proceeds with 

generic procedures for cascading failure simulation, risk assess-

ment, and blackout mitigation to evaluate the current security 

state against expected but not yet occurring contingencies and 

implement effective mitigation measures. The following sub-

sections describe the three main parts required to apply this ap-

proach: (A) obtaining the cheapest pre-contingency dispatch, 

while ensuring system availability in steady-state and under all 

𝑁 − 1 contingencies for a system with 𝑁 lines, (B) risk assess-

ment of cascading failures under 𝑁 − 𝑘 contingencies (for cas-

cading failures initiated by 𝑘 line outages, where 𝑘 can be in the 

order of {2, 3, 4, … }), and (C) determining and applying pre-

ventive operational measure to find the re-dispatch solution.  

A. Formulation of SC-ACOPF Problem 

The conventional formulation of the SCOPF problem is 

adopted from [17], [18] and compactly expressed as follows. 

 min
 

𝑓(𝑥0, 𝑢0) (1) 

s.t. 𝑔0(𝑥0, 𝑢0) = 0 (2) 

 ℎ0(𝑥0, 𝑢0) ≤ 0 (3) 

 𝑔𝑛(𝑥𝑛, 𝑢𝑛) = 0       𝑛 = {1, 2, … , 𝑐}    (4) 

 ℎ𝑛(𝑥𝑛, 𝑢𝑛) ≤ 0       𝑛 = {1, 2, … , 𝑐} (5) 
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Fig. 1: Flowchart of cascading failures risk assessment and mitigation proce-

dures with security-constrained dispatch considerations. 

 

 
Fig. 2: Flowchart to solve SC-ACOPF with Benders decomposition. 

In (1), 𝑓(𝑥0, 𝑢0) is the objective function of system state var-

iable vector 𝑥 , and control variable vector 𝑢 . Subscript 𝑛 =
{1, 2, … , 𝑐}  denotes variables and constraints associated with 

the 𝑛-th contingency (𝑛 = 0 refers to the pre-contingency sys-

tem configuration). 𝑥𝑛 is the vector of state variables, i.e., bus 

voltage magnitudes and phase angles. 𝑢𝑛 is the vector of con-

trol variables, such as generator real power, generator terminal 

voltages, and transformer tap settings. This paper focuses on the 

preventive capabilities in pre-contingency states (e.g., genera-

tor frequency control, automatic tap-changers, etc.) and does 

not consider post-contingency corrective actions, i.e., 𝑢𝑛 =
𝑢0, ∀ 𝑛 = {1, 2, … , 𝑐}. More details on the corrective SCOPF 

problem can be found for instance in [20]–[22].  

Constraints (2, 3) and (4, 5) ensure the reliability of the pre-

contingency and post-contingency states, respectively. Equality 

constraints (2, 4) define the AC power flow equations. Inequal-

ity constraints (3, 5) include physical limits on device loading. 

Among the various types that may be enforced, this procedure 

imposes constraints on generator active power outputs, power 

flow through each line/transformer, bus voltages, and overall 

generation margin. Here, generation margin of generator 𝑖  is 

defined as its excessive generation capacity, i.e., difference be-

tween maximum and actual active power generation, as shown 

in (6). The overall generation margin is enforced to be close to 

a certain amount 𝑀 (in MW), as shown in (7) where 𝑈𝑖  is the 

state (on=1 and off=0) of generator 𝑖, and 𝑁𝐺 is the number of 

available generators. Due to the discrete nature of generator ca-

pacity, the expected generation margin is set with the tolerance 

of the minimum unit capacity, i.e., min
𝑖

{𝑃𝑖}.  

𝑁 − 1 security is achieved via an iterative process, starting 

with a dispatch solution, testing all single line outages, impos-

ing additional power flow constraints, and computing the new 

SC-ACOPF solution iteratively until no single failure will lead 

to further outages. Previous studies have shown that the com-

putation time of standard SC-ACOPF grows quadratically with 

the number of contingencies, but can be reduced to linear 

growth by Benders decomposition [23], [24]. This is an effi-

cient method of decomposing an optimization problem into a 

master problem and subproblems. As shown in Fig. 2, the mas-

ter problem aims to minimize the operational cost under normal 

operation. Control variables are then sent to subproblems to see 

if there are any violations under each 𝑁 − 1 contingency. In 

case that the dispatch solution to the master problem does not 

satisfy the operational constraints for a specific contingency, 

additional constraints are generated that force the relevant con-

trol variables to be within limits for the next iteration, thus mak-

ing the subproblem feasible. For example, if some lines become 

overloaded due to a single line outage, then additional power 

flow constraints are imposed on each violated line as shown in 

(8), where 𝑒𝑖𝑗  represents the power flow change of line 𝑖  (in 

MVA) caused by the outage of line 𝑗, and 𝐹𝑖  and 𝐹𝑖
𝑚𝑎𝑥  are the 

pre-contingency power flow and short-term emergency rating 

of line 𝑖, respectively. This process for 𝑁 − 1 security check is 

repeated until the solution to the master problem satisfies the 

constraints for all sub-problems.  

B. Risk Assessment of Cascading Failures 

The cascading risk of a failure scenario is quantified by its 

probability and impact [3]. Given a set of all possible failure 

scenarios Ω, the cascading risk (𝑅(𝑥)) at a particular state 𝑥 can 

be estimated as (9), where 𝑃(𝑐) and 𝐼(𝑐, 𝑥) are the probability 

and impact of failure scenario 𝑐. In this study, the impact of a 

failure scenario refers to the blackout size in MW measured by 

the cascading failure models (described in Section III). These 

models are designed to simulate various disturbances that could 

initiate a cascading failure, capture the dynamics and propaga-

tion of cascading outages and calculate the resulting demand 

loss. Therefore, 𝑅(𝑥) can be interpreted as the expected value 

of 𝐼(𝑐, 𝑥) in MW. Considering that it may not be feasible to 

Solve AC  F

A  l  contingenc   A  l  contingenc   

An  AC constraints 

violations 

An  AC constraints 

violations 

 enerate constraint   enerate constraint  

  

  

  

Aggregate constraints SC AC  F solution

              

                

                

 es  es

 o

 𝑀𝑖 = 𝑃𝑖
𝑚𝑎𝑥 − 𝑃𝑖  (6) 

 

𝑀 − min
𝑖

{𝑃𝑖} ≤ ∑ 𝑈𝑖 𝑀𝑖 ≤ 𝑀 + min
𝑖

{𝑃𝑖}

𝑁𝐺

𝑖=1

 (7) 

 −𝐹𝑖
𝑚𝑎𝑥 ≤ 𝐹𝑖 + 𝑒𝑖𝑗 ≤ 𝐹𝑖

𝑚𝑎𝑥  (8) 
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simulate all possible failure scenarios, a subset of scenarios (Ω𝑠) 

is randomly sampled from Ω according to the probability func-

tion 𝑃(𝑐). That is, scenarios are weighted according to their 

probability of occurrence, and scenarios with higher probability 

are more likely to appear in the sampling set. The estimated risk 

𝑅̂(𝑥) is given as (10), where |Ω| and |Ω𝑠| represent the number 

of samples in Ω and Ω𝑠, respectively. It is clear that 𝑅̂(𝑥) con-

verges to 𝑅(𝑥) when |Ω𝑠| → |Ω|. To obtain unbiased results, 

Ω𝑠 needs to be carefully determined, so that it provides an ade-

quate and representative subset of Ω, covering a wide range of 

probabilities and impacts of failure scenarios.  

The focus of this work is to estimate the risk of cascading 

failures initiated by simultaneous failures of 𝑘 lines, i.e., to per-

form an 𝑁 − 𝑘  contingency cascading analysis for a system 

with 𝑁 lines. Specifically, if the system has 𝑁 lines and the se-

quence of failures is ignored, Ω𝑘  represents the subset of Ω, 

where 𝑘 simultaneous line outages start the simulation of cas-

cading failures. This contains |Ω𝑘| =
𝑁!

𝑘!(𝑁−𝑘)!
 failure scenarios 

for a complete 𝑁 − 𝑘 analysis. Moreover, it is assumed that the 

initial outages in each scenario are independent, i.e., the proba-

bility of an initial event is the product of the individual outage 

probabilities. Correlations between initial outages, such as ag-

ing degree [25] and spatial correlation [26], [27] have been al-

ready investigated in some studies. Such factors can be applied 

if desired without affecting the general methodology presented 

here.  

The infrequent outages and sparse outage data hinder practi-

cal risk assessment in cascading failure analysis. Existing meth-

ods for estimating transmission line failure probabilities in-

clude: 1) considering common line features like length, loca-

tion, and proximity [28], 2) utilizing fragility curves to map fail-

ure probabilities to weather profiles within each weather region 

[29], and 3) performing statistical analysis of utility outage data 

to determine failure rates [30], [31]. Among all estimation 

methods, line length plays a role in determining the line outage 

rates against extreme events. Indeed, transmission line outage 

rates are often expressed per mile or per kilometer [28], [31], 

[32]. Here, following [28], [31], the failure probability of each 

line is assumed to be proportional to its length and impedance, 

given a consistent impedance per unit length. It is important to 

note that this assumption may not be appropriate for extreme 

line lengths or extreme weather intensities [31]. In cases where 

amply sufficient line outage data is available, a more detailed 

probability distribution of line failure can be utilized, allowing 

for a more nuanced analysis without altering the general meth-

odology presented. Therefore, the failure probability of each 

line is assigned according to the line impedance. As shown in 

(11), the initial probability of a failure scenario 𝑐 as an 𝑁 − 𝑘 

contingency can be estimated to be proportional to the product 

of 𝑘 line impedances (𝑍𝑙). Equation (12) represents the total in-

itial probability of all 𝑁 − 𝑘  contingencies. Then, all failure 

probabilities are normalized so that the total probability of all 

possible 𝑁 − 𝑘 scenarios is equal to the probability (𝜆𝑘) of an 

𝑁 − 𝑘 contingency occurring in the next simulation step, where 

𝑘 can be in the order of {2, 3, 4, … }. The normalized probabil-

ity of each 𝑁 − 𝑘 contingency can be expressed as (13), the 

sum of which equals to 𝜆𝑘 . The total blackout risk caused by 

𝑁 − 𝑘 contingencies can be estimated as (14), where Ω𝑘,𝑠 is a 

subset of scenarios randomly sampled from Ω𝑘 according to the 

probability function 𝑃𝑛𝑜𝑟𝑚,𝑘(𝑐). 

C. Approach for Cascading Risk Mitigation 

As mentioned in the introduction, by considering security-

constrained generation dispatch, this work shows that increased 

risk can be observed at lower demand levels. This is due to the 

heavy loading in certain transmission corridors, which will be 

discussed in Section IV-B where the results are presented. To 

mitigate the increased cascading risk, a preventive operational 

measure is proposed to constrain the steady-state transmission 

limits on critical lines. This can reduce the heavy loading of 

critical lines and mitigate the propagation severity of cascading 

failures caused by such critical line failures. As a preventive 

measure, this mitigation is applied to reduce the probability of 

cascading phenomena by temporarily reducing the power flow 

constraints and re-dispatching generation before disturbances 

cause severe outages. To do so requires information such as net-

work branch connectivity, power flows and load conditions, 

which can be gathered in reality by leveraging advanced moni-

toring capabilities without additional investments in electrical 

infrastructure reinforcement and hardening actions. Full ob-

servability of network topology, demand distribution and power 

flow can be augmented by placing phasor measurement units 

(PMU) throughout the network [33]. Assuming the PMU meas-

urements are always available for the application, the reported 

data is then transmitted to a central controller to assess the cur-

rent security state against expected but not yet occurring con-

tingencies.  

A sensitivity analysis is performed to investigate the impact 

of individual line loading on cascading risk. In order to con-

strain the power flow through each line individually, a Risk Sen-

sitivity Index (RSI) vector can be computed to indicate the 

change in cascading risk when the power flow limit of line 𝑖 

reduces from 𝐹𝑖
𝑚𝑎𝑥  to 𝐹𝑖

𝑙𝑖𝑚𝑖𝑡, as shown in (15) and (16). That 

is, the power flow constraint during the sensitivity analysis is 

 
𝑅(𝑥) = ∑ 𝑃(𝑐)𝐼(𝑐, 𝑥)

𝑐∈Ω

 (9) 

 
𝑅̂(𝑥) =

|Ω|

|Ω𝑠|
∑ 𝑃(𝑐)𝐼(𝑐, 𝑥)

𝑐∈Ω𝑠

 (10) 

 
𝑃𝑖𝑛𝑖,𝑘(𝑐) = ∏ 𝑍𝑙

𝑙∈𝑐

 (11) 

 
𝑃𝑖𝑛𝑖,𝑘 = ∑ 𝑃𝑖𝑛𝑖,𝑘(𝑐)

 

𝑐∈Ω𝑘

 (12) 

 

 𝑃𝑛𝑜𝑟𝑚,𝑘(𝑐) =
𝜆𝑘𝑃𝑖𝑛𝑖 ,𝑘(𝑐)

𝑃𝑖𝑛𝑖,𝑘

 (13) 

 
𝑅̂𝑘(𝑥) =

|Ω𝑘|

|Ω𝑘,𝑠|
∑ 𝑃𝑛𝑜𝑟𝑚,𝑘(𝑐)𝐼(𝑐, 𝑥)

𝑐∈Ω𝑘,𝑠

 (14) 
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set to be ∆𝐹𝑖 lower than the power flowing through the line in 

an unconstrained manner. Cascading risks can be estimated 

based on (14). To establish a fair comparison, the degree of 

power flow restriction needs to be consistent across all lines, 

thus for a system with 𝑁 lines, ∆𝐹𝑖 is defined as a fixed amount 

of power in MVA, ∀ 𝑖 = {1, 2, … , 𝑁}. That is, the transmission 

capacity of each line is reduced by the same amount of power 

and the impact on cascading risk is quantified as 𝑅𝑆𝐼(𝑖). In this 

sensitivity analysis, ∆𝐹𝑖 is chosen to be equal to 1% of total de-

mand, indicating that power equivalent to 1% of total demand 

is shifted from line 𝑖 to other lines in the sensitivity analysis. 

Considering factors such as network topology, generation 

margin, loading condition and failure probability of initial con-

tingencies, RSI values need to be accessed for various scenarios 

where cascading failures may occur. Then, RSI values are used 

to rank the importance of transmission lines in terms of cascad-

ing risk mitigation, and serve as a weight factor for each line to 

design the re-dispatch mitigation scheme. Finally, an effective 

mitigation can be achieved by first deciding how much power 

to shift from the top-ranked lines to other lines, and then impos-

ing power flow restrictions on the top-ranked lines to reduce the 

potential cascading risks associated with their failure. For ex-

ample, if 𝑁𝑐𝑟𝑖 is a set of critical lines ranked by RSI, additional 

power flow constraints will be imposed on each line 𝑖 ∈ 𝑁𝑐𝑟𝑖, 

in order to shift a total power of ∆𝐹 from the top-ranked 𝑁𝑐𝑟𝑖 

lines to other lines. The total transferred power ∆𝐹 is shared be-

tween these critical lines based on their weight factors, i.e., lines 

with higher RSI values are more restricted. The transferred 

power and the corresponding constrained power flow limit for 

each critical line are computed based on (17). The simulation 

procedures of Fig. 1 need to be conducted with and without con-

sidering the mitigation measure to determine the contribution 

of this preventive operational action to the cascading risk miti-

gation.  

Existing sensitivity analysis methods can be divided into lo-

cal, screening and global sensitivity tests, which exhibit a trade-

off between sensitivity accuracy and computational time [34]. 

Here, a local one-at-a-time method is used to show the sensitiv-

ity of cascading risk to individual line loading, where the impact 

of constrained power flow on cascading risk is linearized 

through RSI values. While slightly more optimized weights for 

critical lines may exist, more time is needed for day-ahead so-

lutions, and indeed the inaccuracies caused by the small adjust-

ments to power flow (1%-2% of total demand) are small. The 

linearized sensitivity analysis is considered computationally 

tractable and effective for day-ahead operational planning, and 

such linearization assumption has been made previously in 

other cascading risk mitigation works, such as [7], [8], [35]. 

Case studies of cascading risk mitigation are discussed in Sec-

tion IV-C to demonstrate and compare the improvements in sys-

tem security at different demand levels. However, it is not 

within the scope of this work to quantify the costs associated 

with implementing these improvements. If robust economic 

data is available, methods for balancing security and cascading 

risks, such as chance constrained programming [36], can be ap-

plied as an interesting possible extension of this work.  

III. CASCADING FAILURE SIMULATORS 

The above-mentioned risk assessment and mitigation proce-

dures are generic and can be applied to any cascading failure 

simulator that reflects the impact of cascading phenomena re-

sulting from a given set of initial contingencies. For the com-

parison and verification of the results, cascading failures are 

simulated based on two typical modelling approaches [37], i.e., 

the quasi-steady state DC power flow model (herein referred to 

as a static model), and the time-based dynamic model. Both the 

static and dynamic simulators were developed by the authors 

and explained in previous publications [38], [39]. In the prior 

work detailed in [38], the frequency-related cascading phenom-

ena have been illustrated using these two models. The results 

obtained from extensive comparisons of performance indicators 

(e.g., the amount of demand loss and the number of line out-

ages) have shown that the two models can produce consistent 

data distributions, such as the well-observed power-law distri-

bution of demand loss [4]. Cross-validation between these two 

models has shown their validity and accuracy, thus supporting 

their potential to provide useful information in different system 

scenarios. While the prior work focused on estimating cascad-

ing risk under one operating condition, this work computes risk 

assessment among various demand levels, and incorporates 

more realistic probability distribution of contingencies and SC-

ACOPF into cascading risk estimates. For brevity, only key as-

pects of the simulator implementations will be described in the 

following subsections.  

A. Static Modelling of Cascading Failures 

Several models have been developed for power flow-based 

steady-state analysis, including the OPA model [40], hidden 

failure model [41], and Manchester model [42]. The static 

model used in this study is based on the fast dynamic process 

of the standard OPA model, representing cascading events as 

discrete transitions. It starts with a SC-ACOPF solution for gen-

eration, demand, and power flow. Then, post-contingency states 

are computed iteratively. To enhance the representation of fre-

quency response during cascading failures and align with the 

dynamic model, several modifications have been made to the 

fast dynamic process of the standard OPA mode: (1) overloaded 

lines are tripped deterministically, while the standard OPA dis-

connects overloaded lines probabilistically, (2) after network 

separation, generation is re-dispatched and load is shed in each 

island individually, assuming that no operator action occurs 

during cascades and that a new steady state is reached by fre-

quency control, (3) the static model incorporates over-fre-

quency generator tripping schemes, starting from the smallest 

𝑅𝑆𝐼(𝑖) = 𝑅̂𝑘(𝑥;  |𝐹𝑖| ≤ 𝐹𝑖
𝑚𝑎𝑥) − 𝑅̂𝑘(𝑥; |𝐹𝑖| ≤ 𝐹𝑖

𝑙𝑖𝑚𝑖𝑡) (15) 

 ∆𝐹𝑖 = 𝐹𝑖
𝑚𝑎𝑥 − 𝐹𝑖

𝑙𝑖𝑚𝑖𝑡 (16) 

|𝐹𝑖| ≤ 𝐹𝑖
𝑚𝑎𝑥 − ∆𝐹

𝑅𝑆𝐼(𝑖)

∑ 𝑅𝑆𝐼(𝑖)𝑖∈𝑁𝑐𝑟𝑖

         𝑖 ∈ 𝑁𝑐𝑟𝑖 (17) 
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unit, as a result of the large generation surplus that typically oc-

curs after network separation, and (4) the static model explicitly 

considers the flexibility of generator and load during re-dis-

patch, with a certain ramp rate and limited generator dispatch 

and load shedding capabilities. In addition, the static model is 

simulated using the optimal power flow (OPF) solver from 

MATPOWER [43].  

B. Dynamic Modelling of Cascading Failures 

The dynamic simulator is implemented based on DIg-

SILENT PowerFactory 2023 SP3 and MATLAB version 9.14 

(R2023a) via the Python application programming interface. It 

overcomes the limitations of traditional manual system set-up 

methods, and represents a significant advance in the field of dy-

namic modelling of cascading failures in realistically sized 

power networks. The frequency dependence of system compo-

nents is explicitly simulated, where speed governor and auto-

matic generation control of all synchronous generators are mod-

elled, and a frequency-dependent ZIP load model is used. Wind 

turbine is modelled using type 3 model, i.e., doubly-fed induc-

tion generator. Five types of protection relays are modelled: 

thermal relays for transmission line protection, under-frequency 

load shedding relays for emergency frequency containment, un-

der-/over-frequency generator tripping relays for synchronous 

generator protection, and generator out-of-step relays for syn-

chronization check. Here, it is assumed that all protective relays 

can correctly remove circuit elements when triggering condi-

tions are met, and the hidden failures in the protection systems 

are not considered in this work. Studies analyzing hidden fail-

ures in protection systems can be found in [41], [44]. The dy-

namic model focuses on frequency-related cascading phenom-

enon, and the impacts of other cascading mechanisms (such as 

voltage violations and reactive power limits) on the cascading 

risk estimation remain topics for future work. The detailed in-

troduction and source codes of the dynamic cascading failure 

model are available in [39]. Based on this dynamic model, the 

impact of step size on various cascading metrics has been in-

vestigated in [45]. Results suggest that a step size of 0.1 s can 

be considered as a good balance between simulation accuracy 

and efficiency when simulating cascading failures with fre-

quency dynamics and limited renewable penetration and is 

therefore used here. 

IV. CASE STUDY APPLICATIONS 

The proposed framework is illustrated using two large syn-

thetic systems: the Illinois 200-bus system (ACTIVSg200) [46] 

and the Texas 2,000-bus system (ACTIVSg2000) [46].  

A. Simulation Data 

The case studies presented in this section focus on estimating 

cascading risks following a set of 𝑁 − 2  contingencies, i.e., 

cascading failures initiated by simultaneous failures of two 

transmission lines. A similar study can be applied to higher-or-

der initial contingencies where 𝑘 = {3, 4, … }. In large power 

systems, it is computationally infeasible to perform a complete 

𝑁 − 2 contingency analysis, and an adequate number of failure 

scenarios is required to obtain an effective risk estimation. The 

proper size of the sampling set Ω𝑘,𝑠 can be determined via a sep-

arate study of how the estimated cascading risk changes with an 

increasing number of failure scenarios. Fig. 3 shows the results 

of this study, where 2,000 𝑁 − 2 contingencies are randomly 

simulated and plotted as separate curves to eliminate any poten-

tial bias from the simulation order. Results show that the esti-

mated cascading risk converges to a consistent value when the 

number of failure scenarios exceeds 1,000. Specifically, in AC-

TIVSg200 and ACTIVSg2000, the average estimated risk in-

creases by 0.4% and 1.7% respectively, when the number of 

scenarios increases from 1,000 to 2,000 (doubling the simula-

tion time). Hence, 1,000 𝑁 − 2 contingencies are selected as a 

reasonable and computationally feasible sampling size for both 

networks. In fact, the static cascading failure model typically 

takes a few minutes to simulate 1,000 failure scenarios, using a 

desktop PC with Intel Core W-2123, 3.60 GHz CPU and 32 GB 

RAM. However, the dynamic model takes nearly an hour to 

complete the same simulation for ACTIVSg200 and 5 days for 

ACTIVSg2000. This can be improved if a better computer 

source is available, or if contingency screening/sampling tech-

niques are applied. Methods, such as selection of high impact 

𝑁 − 𝑘 contingencies [47], variance reduction techniques [48], 

stratified sampling [27], [49], and likely spatial patterns [27], 

have been developed to assist in the effective sampling of initial 

contingencies. However, before these methods can be applied, 

a detailed verification and validation process is required to 

check the accuracy of the results from multiple test systems, 

observed data sets and cascading failure simulators, as re-

quested by IEEE PES Working Group on Cascading Failures 

[37].  

 
Fig. 3: Dependency of cascading risk on number of failure scenarios using (a) 

ACTIVSg200 and (b) ACTIVSg2000 systems. 

All studies are conducted for the day-ahead operation plan-

ning with a simulation period of 24 hours. Reliable data of 

transmission line failure rate is needed to estimate the probabil-

ity of an 𝑁 − 2 contingency occurring the next day. The daily 

probability of an 𝑁 − 2 contingency is computed based on the 

transmission line outage data reported by Bonneville Power 

Administration (BPA) over 10 years [50], which gives the de-

tailed causes and timing of line outages. From 2012 to 2022, 

21,001 automatic transmission line outages were recorded. 

Here, the line outages are grouped into cascades according to 

the time interval between their occurrences. Assuming that suc-

cessive outages with a time interval of more than 1 hour belong 

to different cascades and outages with a time interval of less 
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than 1 minute occur simultaneously [51], 7,107 cascades are 

identified, of which 377 cascades are triggered by double line 

outages (i.e., nearly 0.1 occurrences/day). The BPA transmis-

sion network has 688 transmission lines. Considering that a 

larger network with more transmission lines has a higher prob-

ability of double-line outage, the probability (𝜆2) of an 𝑁 − 2 

contingency occurring on the next day is set to 0.1 occur-

rences/day in ACTIVSg200 and 0.2 occurrences/day in AC-

TIVSg2000. These probabilities are indicative and can be ad-

justed if better data is available. The specific probability of each 

failure scenario can be determined by (13). 

To illustrate the impact of different dispatch methods on cas-

cading risk estimation, steady-state operation states at different 

demand levels are computed using SC-ACOPF and propor-

tional dispatch. 140% and 110% are the highest demand levels 

for SC-ACOPF convergence to ensure system availability in 

steady-state and under all 𝑁 − 1  contingencies in AC-

TIVSg200 and ACTIVSg2000, respectively. Thus, in the fol-

lowing simulations, the demand level ranges from 50% to 140% 

for ACTIVSg200 and 50% to 110% for ACTIVSg2000. 

B. Estimating Risk at Different Demand Levels 

This section first discusses the impact of different dispatch 

methods and increased generation margin on cascading risk es-

timation. Then, special attention is paid to the changes in criti-

cal transitions as demand increases. In the following discussion, 

simulations are performed using static and dynamic models to 

support the validity of the findings. Considering the complexity 

of the research scope, the application on ACTIVSg200 is 

mainly used to illustrate the impact of dispatch considerations 

on cascading risk. The results of ACTIVSg2000 are used to ver-

ify the discovery and illustrate the impact of network size. 

1) Proportional Dispatch vs. SC-ACOPF Methods 

This section reveals how the cascading risk varies with the 

demand level in ACTIVSg200 using both static and dynamic 

models. The day-ahead operating states are computed using the 

SC-ACOPF and proportional dispatch methods for comparison. 

The proportional dispatch method equally distributes the 

change in demand to all the generators, regardless of cost. In 

other words, the same set of generators is committed at different 

demand levels and the generation margin reduces as demand 

increases. The SC-ACOPF method considers economic factors 

and system constraints. The setting of generation margin 𝑀 =
20% of total demand is first arbitrarily considered, which is in 

line with industrial practice (e.g., 20-30% in GB [52]). That is, 

the system always maintains an excess generation capacity 

equal to 20% of total demand to compensate for large power 

imbalances. The effect of this assumption is evaluated in Sec-

tion IV-B-2. 

As shown in Fig. 4, the sharp increase at higher demand lev-

els is captured in both simulators and with both dispatch meth-

ods. Compared with the static model, the sharp increase of cas-

cading risk occurs at a relatively lower demand level in the dy-

namic model. This is because the static model ignores the fre-

quency dynamics and tends to underestimate risks, thus leading 

to a higher level of critical demand. This phenomenon has been 

previously explored in more detail in [38]. Besides, observed 

by both simulators, the cascading risk of the proportional dis-

patch method is much smaller than that of the SC-ACOPF (note 

the different y-axis scaling). The proportional dispatch assump-

tion allows the generation margin to vary from 350% to 60%, 

as the demand level increases from 50% to 140%, which is 

much greater than the 20% generation margin used in SC-

ACOPF. This provides a high level of dispatch capability in 

emergency situations that would not be possible in real power 

system operation, and results in the significant underestimation 

of risk. SC-ACOPF considers the dispatch factors such as indi-

vidual generator output limits and security constraints, but the 

requirements for these factors need to be carefully determined 

to achieve an acceptable level of risk.  

 
Fig. 4: Cascading failure risk versus demand level in ACTIVSg200 using (a) 

proportional dispatch and (b) SC-ACOPF. The risks are measured by static and 

dynamic cascading failure simulators. 
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Fig. 5: Heatmaps of line loading conditions for ACTIVSg200 at demand levels of (a) 60%, (b) 100% and (c) 140%, dispatched by SC-ACOPF. 
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One striking result is that when using SC-ACOPF, the risk 

does not always increase as the demand increases. In fact, an 

increased risk is seen at lower demand levels of 50-70%, con-

trary to the steady growth indicated by the proportional dis-

patch. This reveals, for the first time, a centralized generation 

issue in cascading risk management that can happen when the 

system is operating with a small number of generators. In this 

case, power from a small number of sources needs to be trans-

mitted to a larger number of load locations, which will lead to 

a high utilization of a certain part of transmission system to 

transport the energy from the cheap generation locations. The 

high utilization of assets will increase the vulnerability of these 

devices, whose failure will lead to a high risk of cascading fail-

ure. To illustrate this, Fig. 5 presents heatmaps of the line load-

ing conditions at three representative demand levels, i.e., 60%, 

100% and 140%. Note that the network topology is formed 

based on line impedances and thus the layout is not geographic. 

It is shown that at 60% of demand (in Fig. 5(a)), even though 

the overall system demand level is low, some of lines (as 

marked) are more utilized than they would be when the demand 

is 100% (in Fig. 5(b)). In fact, results show that at 60% of de-

mand, cascading failures associated with the top 5 highly uti-

lized lines (as initial event or participating in the cascades) con-

tribute to 42% of the total blackout risk, which result in the in-

crease of blackout risk at lower demand levels. A similar ‘bowl-

sha e’ relationshi  has been observed in [53], indicating that 

the transition probabilities in a Markov model must change as 

the cascade proceeds to obtain that power law in cascade size. 

However, the relationship seen in [53] describes the cascade-

stop probability as a function of the progression of failures in a 

cascade, whereas here the impact of increasing system loading 

on blackout size is investigated. 

2) Impact of the Amount of Generation Margin 

In this subsection, the impact of the amount of generation 

margin (𝑀) on the cascading risk is investigated. This analysis 

will help to quantify the relationship between increased margin 

and the resulting system risk. For example, in GB, system op-

erators typically maintain generation margin at 20-30% of total 

demand [52]. Seasonal reserve margins averaged about 20% for 

2021 summer and 25% for 2021-2022 winter across all U.S. re-

gions assessed [54]. Therefore, this study considers 𝑀 increas-

ing from 10% to 40% with a 10% step size. Fig. 6 shows the 

extent to which the increased generation margin can mitigate 

cascading risk in the 200-bus system. It is notable that the re-

sults of static and dynamic models show similar trends in cas-

cading risks among various demand levels and generation mar-

gin requirements. Whilst differences do exist, among different 

operating conditions, the dynamic model always provides 

higher estimated risks than the static model. Dynamic simula-

tion on the 2,000-bus system is time-consuming, as thousands 

of measurement devices, controllers and relays are simulated 

concurrently. Considering the high computational cost of the 

dynamic model and the consistency of results obtained from 

static and dynamic simulators, the study is conducted on the 

2,000-bus network, using only the static simulator to increase 

computational efficiency as similar trends in cascading risks are 

observed in the two models. Results are shown in Fig. 7.   

 

 
Fig. 6: Dependence of risk on generation margin in ACTIVSg200, using static 

and dynamic cascading failure simulators. 

 
Fig. 7: Dependence of risk on generation margin in ACTIVSg2000, using static 

cascading failure simulator only. 

The increased risk at lower demand levels is reflected in the 

results of both systems, thus verifying that the centralized gen-

eration issue plays an important role in the cascading risk esti-

mation. The increased generation margin can improve genera-

tion dispatch capability to compensate large power imbalances 

and reduce the blackout size. In ACTIVSg200, by increasing 

the generation margin from 10% to 40%, the risk can be reduced 

by approximately 78% for demand level below 130%. When 

the demand level is above 130%, the system is operating under 

heavily loaded conditions and the contribution of generation 

margin towards risk reduction is limited. In particular, the cas-

cading risks with different generation margins all converge to a 

similar value at a demand of 140%. In ACTIVSg2000, increas-

ing generation margin to 40% can reduce the risk by about 40% 

for demand levels between 50% and 75%, and by about 18% at 

a demand of 110%. It is expected that further increase in the 

generation margin can reduce the cascading risk further, but the 

continuous provision of a large amount of generation margin 

may not be economically reasonable.  

3) Variations in Critical Demand Levels  

Existing studies have shown the existence of critical transi-

tions (also referred to as network tipping points or breakpoints) 

in power systems, as network demand grows. The critical tran-

sitions are determined by observing sudden increases in relia-

bility metrics, such as EDNS, the number of component outages 

and the probability of cascading outages of a certain size [4], 

[5]. Also, it is widely observed in historical records and simu-

lation-based studies that the probability distribution of cascad-

ing risk near the critical demand level is governed by a power-

law [1], [4]. The critical transition provides a reference point of 

system stressing. Recent advances in the field of system stress 
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testing have emphasized the great potential for detecting near-

collapse situations and providing early warning signals by pre-

dicting system behavioral changes [55]–[57]. Carefully control-

ling and operating the power system close to, but below, this 

critical point can effectively manage cascading risks and ensure 

economic benefits. This subsection identifies the critical de-

mand levels and power law exponents of ACTIVSg200 and 

ACTIVSg2000 when using SC-ACOPF, and investigates the 

probability distribution characteristics of power outages near 

the critical demand levels. 

Here, the critical demand is defined at the point where the 

gradient of the curves in Fig. 6 and Fig. 7 is greater than 

1 MW/percent. Given the similar trends in cascading risks ob-

served between simulation results of static and dynamic simu-

lators, the results of static model are presented here. It can be 

seen from Table I that the growth in the generation margin 

slightly increases the critical demand. Systems with higher crit-

ical demand levels have greater flexibility to tackle disturb-

ances and gain higher economic benefits by operating at in-

creased levels of transmission system loading without signifi-

cantly increasing the cascading risk. The exponent of the power 

law represents the slope of probability density function on a 

log-log plot, i.e., a smaller absolute value of exponent indicates 

a slower slope and a heavier tail of the probability distribution. 

Here, the value of exponent varies from −1.2 to −1.4 and is not 

sensitive to generation margin or network size. Observing prob-

ability distributions of unserved demand with exponents from 

−1 to −2 is in line with the trends of historical data and results 

using other cascading failure models [1], [4], [5], which sup-

ports the validity of the proposed methodology. However, the 

correlation between the exponent and disturbance types/net-

work properties has not been examined in previous studies.  

 
TABLE I 

CRITICAL DEMAND LEVELS AND APPROXIMATE POWER LAW EXPONENTS 

WITH DIFFERENT GENERATION MARGINS, DISPATCHED BY SC-ACOPF 

 

 ACTIVSg200 ACTIVSg2000 

Generation 

margin (%) 
10 20 30 40 10 20 30 40 

Critical  

demand (%) 
122 124 128 133 102 104 105 107 

Power-law 

exponent 
-1.27 -1.25 -1.32 -1.30 -1.25 -1.24 -1.29 -1.34 

 

 

  
Fig. 8: Probability density functions of unserved demand for demand levels be-

low (triangles), at (circles) and above (squares) the critical demand with a gen-

eration margin of 20% in (a) ACTIVSg200 and (b) ACTIVSg2000. 

With a generation margin of 20%, the probability density 

functions of unserved demand below, at and above the critical 

demand of ACTIVSg200 and ACTIVSg2000 are shown in Fig. 

8. In both systems, the probability distributions of unserved de-

mand below the critical demand show an approximately expo-

nential tail, while the distributions for cases at and above the 

critical demand show power-law behaviors with different expo-

nents. The power-law tail becomes heavier as demand in-
creases, indicating a higher probability for large blackouts. The 

critical transition from an exponential tail to a power-law tail of 

the blackout size is widely reflected in historical data and exist-

ing work [4], which highlights the validity of the proposed 

methodologies and cascading  failure simulators. For example, 

[58] shows the probability distribution of demand loss changing 

from a lognormal distribution to a regime with a power law tail 

and then back to a lognormal distribution, as the failure proba-

bility of transmission line increases. Fig. 9 of [58] shows a slope 

change in the power law regime, and this is consistent with the 

slope changes observed in Fig. 8 here as the demand changes 

from 124% to 130% in (a), and from 104% to 110% in (b). 

C. Blackout Mitigation 

This section examines the contribution of the proposed miti-

gation measure to risk reduction. RSI values are first computed 

to provide an importance ranking of transmission lines. Then, 

targeted preventive measures are developed to reduce transmis-

sion stress on critical lines, thus reducing overall cascading risk.  

 

Fig. 9: Sensitivity of cascading risk to individual line loading for all 245 

branches in ACTIVSg200 at demand levels of (a) 60% and (b) 140% with a 

generation margin of 20% and the dynamic simulator. The five lines with the 

highest RSI values are marked in red. 

By reducing line loading individually by an amount equal to 

1% of total demand, the sensitivity of cascading risk to individ-

ual line loading can be computed from (15). RSI values of two 

typical demand levels (60% and 140%) are shown in Fig. 9, 

representing high-risk conditions at low and high demand lev-

els. Lines with the highest RSI values are marked in red and are 

targeted for power flow restriction. The ranking of line im-

portance depends on the SC-ACOPF solution and varies with 
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different levels of demand. At a demand level of 60%, reducing 

line loading by 1% of total demand (i.e., 9.2 MVA) can reduce 

the expected cascading risk by up to 15.4 MW, smoothing out 

the increased risk at this demand level. However, at the 140% 

demand level, about 5% of lines have negative RSI values. This 

indicates that reducing the loading of these lines does not re-

duce cascading risk, but rather increases the likelihood of trig-

gering cascading outages when these lines are tripped. This oc-

curs because the system is highly utilized at a high demand level 

and shifting power from some lines can increase the failure 

probabilities of other lines, thus increasing the cascading risk. 

The proposed mitigation measure imposes additional power 

flow constraints (as shown in (17)) to avoid the high loading of 

critical assets. This type of asset high loading can occur, for ex-

ample, when large-scale offshore wind generation is connected 

at a single point of common coupling or can be exposed when 

the system is operating with a small number of generators, as 

discussed in Section IV-B. Fig. 10 showcases the performance 

of the proposed mitigation at 60% and 140% demand levels of 

ACTIVSg200. The ranking of line importance can be read from 

Fig. 9, for example, the top 5 critical lines at the 60% demand 

level are {99, 47, 124, 87, 16}. For each demand level, the cas-

cading risk is evaluated as the total transferred power ∆𝐹 in-

creases from 0 to 30 MVA, and 𝑁𝑐𝑟𝑖 increases from including 

of only the top-ranked line, to including the top-ranked 5 lines, 

to including all lines. More specifically, stud  case “  Line” 

shifts the transferred power of ∆𝐹 from 𝑁𝑐𝑟𝑖 = {99} to other 

lines. Stud  case “2 Lines” shifts a total  ower of ∆𝐹  from 

𝑁𝑐𝑟𝑖 = {99, 47} to other lines, where 𝑅𝑆𝐼(99)=15.4 MW and 

𝑅𝑆𝐼(47)=14.3 MW. ∆𝐹 is shared between lines 99 and 47 ac-

cording to their RSI values, i.e., the power flow limits are re-

duced by 52%∆𝐹 and 48%∆𝐹 for lines 99 and 47 respectively. 

 

 
Fig. 10: Dependence of risk on the total amount of transferred power and the 

number of constrained lines in ACTIVSg200 at demand levels of (a) 60% and 

(b) 140% with a generation margin of 20% and the dynamic simulator. 

The overall trend shows a clear reduction in cascading risk 

(up to 80%) by deploying the proposed mitigation measure. By 

constraining the power flow of only the top-ranked 5 lines, a 

risk reduction comparable to that of constraining all lines can 

be achieved, with a difference of less than 2% for different val-

ues of transferred power. The small difference in results sup-

ports the validity of the linearization assumption between cas-

cading risk and individual line loading, which is sufficiently 

fast to offer a good indication of critical lines for day-ahead op-

erational planning. Specifically, as ∆𝐹 increases, cascading risk 

at the 60% demand level gradually flattens out and the mitiga-

tion effect saturates when the total transferred power is above 

15 MVA. Furthermore, a steeper slope of risk reduction can be 

observed as more lines participate in mitigation, but operating 

at sub-optimal outputs can lead to higher system operation 

costs. These factors will need to be balanced when optimizing 

the mitigation of cascading risk. For the demand level of 140%, 

shifting 30 MVA from the top 5 critical lines to other lines can 

mitigate cascading risk by 50% but is still around 25 MW. Con-

tinuing to limit line loading at this point may not be appropriate 

for risk mitigation at high demand levels, as the network is al-

ready highly utilized. The impact of other dispatch considera-

tions, such as the spatial distribution of generation margin, 

against blackout mitigation can be further evaluated, so that ad-

vances can be made in understanding the relative importance of 

dispatch considerations under different system conditions. 

V. CONCLUSIONS 

This paper has revealed, for the first time, that an increased 

risk can be observed at lower demand levels, when security-

constrained generation dispatch is considered. This suggests 

that the presence of readily dispatched centralized generation 

can lead to high utilization of critical assets and result in a 

higher risk of power outages. This finding was revealed by in-

corporating security-constrained AC optimal power flow (SC-

ACOPF) into risk assessment and mitigation of cascading fail-

ures in power systems. Results showed that the proportional 

dispatch commonly assumed in cascading failure simulation 

can underestimate the cascading risk compared to SC-ACOPF 

dispatch. In addition, based on SC-ACOPF, a novel mitigation 

measure was proposed to limit critical line loading in the pre-

ventive mode and reduce the associated probabilities of line 

outages during cascading failures.  

Two cascading failure simulators were used for result verifi-

cation: a quasi-steady state DC power flow model and a time-

based dynamic model incorporating all frequency dynamics. 

The proposed approach was illustrated through risk assessment 

of cascading failures on two large synthetic networks: AC-

TIVSg200 and ACTIVSg2000. Cascading risks at different de-

mand levels were quantified and the probability distribution 

characteristics of demand loss near the critical demand levels 

were investigated. Consistent conclusions were drawn from 

simulations conducted with two distinct simulators, two large-

scale test systems and considering different system settings 

such as demand levels, generation margins, and power flow 

constraints. When using SC-ACOPF, an increased cascading 

risk was observed at low demand levels. Generally, the static 
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simulator can reflect important information regarding the vari-

ation trends of estimated risk but tends to underestimate the cas-

cading risk compared to the dynamic simulator. In addition, in-

creasing generation margin can effectively mitigate cascading 

risk and push the critical demand to a higher value, but contin-

uously providing a large generation margin solely to prevent 

occasional power outages may not be economically justified. 

Furthermore, a Risk Sensitivity Index (RSI) was defined to de-

scribe the sensitivity of cascading risk to individual line load-

ing. The proposed mitigation measure – imposing additional 

power flow constraints based on RSI values – can effectively 

solve issues associated with heavily loaded assets triggering 

cascading failures. Case studies of cascading risk mitigation at 

low and high demand levels provided insights on the contribu-

tion of preventive measures on blackout mitigation at different 

system stressing conditions. In particular, targeted line loading 

reduction based on RSI can mitigate cascading risk almost as 

effectively as reducing all line loading limits. All these findings 

emphasized the importance of taking the dispatch considera-

tions into account when performing cascading failure analysis, 

and carefully formulating these requirements in cascading risk 

management.  
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