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Abstract—Detailed outage data is foundational for the study
of power transmission grid reliability and resilience, and par-
ticularly for dependent outages and rarer events, but there are
very few such data sets that are published and freely accessible
to all engineers and researchers. There are voluminous logs of
scheduled and actual outages in a region of Northeast America
available on the web. We show how to compress and process these
logged data to obtain bulk statistics describing the outages, such
as event size, propagation, and spread on the network. These
statistics are very useful for calibrating and validating models
of resilience to ensure realism, and in developing data-driven
approaches.

I. INTRODUCTION

Outage data is the foundation of engineering practice,
models, and simulations for reliability and resilience. Outage
rates averaged over classes of equipment and time periods are
published by some national organizations such as [1], and there
are many books and papers with realistic annual outage rates
for specific test systems, and sometimes for broad categories
of weather conditions. All these averaged and typical data
are useful, especially for steady state Markov modeling of
reliability and detecting trends in reliability. However, for
many problems involving dependencies between outages and
rare events, including common cause outages, cascading, and
resilience, averaged and typical single component data do not
suffice, and the timings and details of many specific outages
are required to advance the field.

While it is sometimes feasible for engineers and re-
searchers to gain access to detailed industry outage data with
non-disclosure agreements and publish some suitably non-
identifying overall results, there is a special role for public
data in advancing the field, since methods based on public
data can be reproduced and improved on by other investigators.
Moreover, the developed methods can subsequently be applied
across the industry, since transmission utilities and system
operators in North America and worldwide routinely collect
their own detailed outage data.

There are few detailed outage records freely available to
engineers and researchers; indeed, to the authors’ knowledge
there has been only one such source for transmission line
outage data, namely the Bonneville Power Administration
(BPA) website [2]. In this paper we show how to obtain
detailed outage data from a second public website.

The BPA published data has been processed in various ways
in [3]–[5] and used to validate and calibrate models in [4],

[6]–[10]. There are many potential applications for detailed
outage data, and we seek to generally facilitate applications
by showing how to extract the new data. One application
studies the size, propagation and spread of outages that bunch
together in cascading or weather induced events, and we show
the bulk statistics that can be obtained from the detailed
outage data. These bulk statistics are useful in calibrating
and validating cascading models and simulations [11], [12],
or can be sampled to directly drive resilience quantification
[13]. There are also parallel advances in methods driven by
detailed outage data in distribution systems such as [14]–[16].

II. TRANSMISSION UTILITY DATA

The New York Independent System Operator (NYISO) is
the organization that manages New York State’s electric grid
and wholesale electric marketplace [17]. Detailed power grid
outage data can be publicly accessed from the NYISO website
[17]. The outage data on the website span from July 2002 to
the present. For this paper, we use twelve years of these outage
data from November 2008 to November 2020.

NYISO uses data collection methods that check the current
status of the system every 5 minutes and record the status in
a database. This 5 minute granularity of recording results in
about 35 000 records per day and 12.6 million records per year
for each data type. The two data types that we are interested
in using are the real-time actual outages and the real-time
scheduled outages.

The real-time actual outage data records the current status
of all outages present in the system at the time of checkpoint,
including the timestamp, part identification (PTID), equipment
name and the outage date/time as shown in Table I. The
timestamp is the checkpoint of the date and time at which the
system recorded the information. Part identification (PTID) is a
unique numerical tag identifying each system component. The
equipment name for a transmission line identifies the names
of the sending and receiving buses and the rated voltage; for
example, N.SIMONE-COLTRANE 138 361. The equipment
name for a transformer identifies the substation. Table I also
shows outages of filter capacitors and circuit breakers. Note
that the outage date/time is the date and time at which the
component went out, which is different from the timestamp.
Although the data is public, we follow good practice in
anonymizing the substation names in Tables I and II.
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TABLE I
REAL-TIME ACTUAL OUTAGE DATA

Timestamp PTID Equipment Name Outage Date/Time
4/5/2021 2:22 25312 NRTHSIMONE 138N 138E PAR 1 1/15/2018 10:15
4/5/2021 2:22 25126 WYNTON 120 SVC CLC1 1/26/2018 10:15
4/5/2021 2:22 25913 DELFAYO 120KV CAP GC2 FILTER 1/15/2018 10:15
4/5/2021 2:22 25909 N.SIMONE-COLTRANE 138 361 3/25/2021 12:29
4/5/2021 2:22 25908 BRADFORD345KV 8 CB 1/26/2018 10:15
4/5/2021 2:22 25116 ELLIS DC GC1 3/12/2018 00:59
4/5/2021 2:22 25916 E.FITZGERALD-DAVIS 345 31 10/20/2020 17:09
4/5/2021 2:22 25917 GILLESPIE-ELLINGTON 345 30 1/25/2018 10:15
4/5/2021 2:22 25904 N.SIMONE-HOLIDAY 138 465 1/16/2020 10:15
4/5/2021 2:22 25905 SIMONE-N.SIMONE C 115 3-VI 1/15/2018 4:13
4/5/2021 2:22 25937 WYNTON 120KV CAP GC1 FILTER 3/20/2018 00:15
4/5/2021 2:22 25921 MARSALIS 345KV 1500-A CB 4/23/2019 1:25
4/5/2021 2:22 25927 MARSALIS 345KV 77-2X CB 4/23/2019 10:13
4/5/2021 2:27 25912 DELFAYO120KV 120-101 CB 1/15/2018 10:15
4/5/2021 2:27 25312 NRTHSIMONE 138N 138E PAR 1 1/15/2018 10:15
4/5/2021 2:27 25126 WYNTON 120 SVC CLC1 1/26/2018 10:15
4/5/2021 2:27 25913 DELFAYO 120KV CAP GC2 FILTER 1/15/2018 10:15
4/5/2021 2:27 25909 N.SIMONE-COLTRANE 138 361 3/25/2021 12:29
4/5/2021 2:27 25908 BRADFORD345KV 8 CB 1/26/2018 10:15
4/5/2021 2:27 25116 ELLIS DC GC1 3/12/2018 00:59
...

...
...

...

The real-time scheduled data record the outages that are
scheduled to occur for operational or maintenance reasons.
The real-time scheduled data include the timestamp, PTID,
equipment name, scheduled out date/time, and scheduled in
date/time as shown in Table II. The definition of the timestamp,
PTID, and equipment name are the same as in the real-time
actual data. The in date/time is the date and time that the
component is scheduled to be re-energized. It is very common
that scheduled outages are rescheduled.

TABLE II
REAL-TIME SCHEDULED OUTAGE DATA

Timestamp PTID Equipment Name Out Date/Time In Date/Time
4/5/2021 2:22 25312 NRTHSIMONE 138N 138E PAR 1 1/15/2018 10:15 12/6/2021 10:59
4/5/2021 2:22 25126 WYNTON 120 SVC CLC1 1/26/2018 10:15 5/12/2022 10:15
4/5/2021 2:22 25913 DELFAYO 120KV CAP GC2 FILTER 1/15/2018 10:15 4/23/2021 2:22
4/5/2021 2:22 25909 N.SIMONE-COLTRANE 138 361 3/25/2021 12:29 10/20/2021 12:59
4/5/2021 2:22 25908 BRADFORD345KV 8 CB 1/26/2018 10:15 4/13/2023 4:59
4/5/2021 2:22 25116 ELLIS DC GC1 3/12/2018 00:59 1/13/2025 00:59
4/5/2021 2:22 25916 E.FITZGERALD-DAVIS 345 31 10/20/2020 17:09 1/25/2025 1:59
4/5/2021 2:22 25917 GILLESPIE-ELLINGTON 345 30 1/25/2018 10:15 2/1/2025 0:59
4/5/2021 2:22 25904 N.SIMONE-HOLIDAY 138 465 1/16/2020 10:15 2/1/2025 23:00
4/5/2021 2:22 25905 SIMONE-N.SIMONE C 115 3-VI 1/15/2018 4:13 12/6/2021 3:45
4/5/2021 2:22 25937 WYNTON 120KV CAP GC1 FILTER 3/20/2018 00:15 10/13/2023 0:59
4/5/2021 2:22 25921 MARSALIS 345KV 1500-A CB 4/23/2019 1:25 3/28/2023 7:45
4/5/2021 2:22 25927 MARSALIS 345KV 77-2X CB 4/23/2019 10:13 3/20/2021 1:15
4/5/2021 2:27 25912 DELFAYO120KV 120-101 CB 1/15/2018 10:15 5/26/2021 10:30
4/5/2021 2:27 25312 NRTHSIMONE 138N 138E PAR 1 1/15/2018 10:15 12/6/2021 10:59
4/5/2021 2:27 25126 WYNTON 120 SVC CLC1 1/26/2018 10:15 5/12/2022 10:15
4/5/2021 2:27 25913 DELFAYO 120KV CAP GC2 FILTER 1/15/2018 10:15 4/23/2021 2:22
4/5/2021 2:27 25909 N.SIMONE-COLTRANE 138 361 3/25/2021 12:29 10/20/2021 12:59
4/5/2021 2:27 25908 BRADFORD345KV 8 CB 1/26/2018 10:15 4/13/2023 4:59
4/5/2021 2:27 25116 ELLIS DC GC1 3/12/2018 00:59 1/13/2025 00:59
...

...
...

...
...

III. DATA PROCESSING

This section describes the details of the processing that
compresses and combines the real-time actual outages and the
real-time scheduled outages into a single dataset. The process-
ing compresses the data to make it manageable, identifies the
automatic outages, and removes repeated data. It is inherent
in converting from data recording the outage status every 5
minutes to a list of outages described once that large amounts
of repetitive data must be deleted. All the processing is done
using Mathematica to help mitigate the difficulties of handling
mixed alphanumeric and date and time data.

A. Compression

The objective of the compression is to discard most of the
real-time data that is not needed in order to make the file
sizes more manageable. The source files are for each day from
November 2008 to November 2020 (except that there are some
days missing in April and October 2010 and September 2016).
Each month of daily source files is read and compressed as
follows.

The real-time actual outage data is very repetitive as the
outage is recorded every 5 minutes until it is restored. The
real-time actual outage data is sorted according to PTID, then
Equipment Name, then Outage Date/Time, and then Times-
tamp. Then the outages are grouped according to the same
successive PTID, Equipment Name, and Outage Date/Time
and only the first and last of each group (with the minimum
and maximum timestamp respectively) are retained. This re-
moves most of the repeated records for the same outage and
compresses the real-time actual outage data.

The real-time scheduled outage data is very repetitive as
the scheduled outage is recorded for every 5 minutes until it
happens and the scheduled outages are frequently postponed
to a later time. The timestamp is removed, and then duplicate
records are discarded. Then only the outages that are not
postponed are retained: the successive pairs of scheduled out-
ages that either have different PTID or have Out Date/Times
differing by more than 16 minutes are determined to be not
postponed, and are retained. This leaves a record of only the
last time the outage was scheduled in a month and compresses
the real-time scheduled outage data.

Finally, for each of the actual and scheduled real-time data,
the monthly compressed data is combined into a single dataset
and sorted according to Out Date/Time.

B. Identifying automatic outages

One objective of the data processing is to identify the
automatic outages. This is done by noting the outages that
actually occurred but were not scheduled. That is, the auto-
matic outages are those outages that are in the real-time actual
outages but not in the real-time scheduled outages.

In detail, for each actual outage, the scheduled outage with
the same PTID with scheduled Out Date/Time closest in time
to the actual Out Date/Times is searched for. If there is no such
scheduled outage, or the closest scheduled Out Date/Time is
more than one hour different than the actual Out Date/Time,
then the actual outage is identified as automatic. If the closest
scheduled Out Date/Time is less than one hour different than
the actual Out Date/Time, then the actual outage is identified
as scheduled. The processing can now neglect the scheduled
outage data and proceed with the actual outages identified as
automatic or scheduled.

We were unable to deduce usable component repair times
from the data.

The final step is to remove any remaining repeated records
of the same outage. Any successive duplicated records of
an outage with the same PTID, Equipment Name, and Out
Date/Time are removed.



C. Extracting transmission line outages

The transmission lines in the outage data have a standard
format in their Equipment Name of two 8 character sending
and receiving bus names separated by a hyphen, followed by
the rated voltage and other information. It is straightforward to
extract the transmission line outages by detecting this format
(select Equipment Names with the 9th character a hyphen).

From the twelve years of data, the processing results in
45 178 transmission line outages, comprising 9600 automatic
line outages and 35 578 scheduled line outages.

D. Forming the network

The first step in forming the network is to clean the bus
names. There can be slight variations in spaces, punctuation
or abbreviation that prevent the bus being uniquely identified
by its bus name that need to be resolved.

After the bus names are cleaned, since almost all transmis-
sion lines have a planned or automatic outage in 12 years of
observation, it is feasible to form the network from outage data
simply by adding a link between the sending and receiving
buses of each line that was outaged in the data, as explained
in detail in [5]. A key feature of the resulting network is
that it is completely compatible with the outage data in that,
by construction, all the outaged lines can be located on the
network. (Note that it can be difficult in practice to precisely
relate the outages with other descriptions of the network.)

There are 1192 buses in the cleaned bus data. Forming the
network directly from the outage data yields a large connected
component as shown in Figure 1 of 1139 buses. The majority
of the 53 buses not in the large connected component are in
portions of the grid outside New York state that are represented
less comprehensively. 95.5% of the lines have voltage ratings
ranging from 69 kV to 500 kV.

Fig. 1. Network formed from the outage data.

IV. OUTAGE STATISTICS

This section shows some bulk statistics derived from the
automatic transmission line outage data that describe how the
line outages cascade on the network. The methods used to
derive the statistics are the same as in [4], [5], [18], where they
were used to process the detailed outage data from BPA. The
numerical values of the plotted data are given in the appendix
to facilitate researchers making qualitative comparisons of the
results with other simulated or real data.

The outage data is grouped into cascades and generations
based on the outage start time using the simple method
described in [4].1 An outage occurring more than one hour
after the preceding outage is assumed to start a new cascade,
and within each cascade a series of outages less than one
minute apart are grouped into the same generation. Thus
each cascade consists of a series of generations, with each
generation containing one or more line outages that occur
closely spaced in time. For example, outages caused by
protection within one minute are grouped together in the same
generation. This processing produces 6687 cascades. Since the
power system is generally resilient, 66% of cascades have only
one outage, and 84% of cascades have only a single generation
of outages that does not propagate further.

The initiating line outages are those in the first generation
of outages. The probability distributions of the number of
initiating line outages and the number of line outages in
each cascade are shown in Figure 2, and the corresponding
survival functions are shown in Figure 3. Figures 2 and 3
show how cascading increases the number of line outages
beyond the initiating outages. Note the heavy tailed nature
of the distributions, which is also seen in the analysis of BPA
data in [4, Figure 1].

The propagation from generation k to generation k + 1 in
terms of the number of lines is defined as

λ(k) =
# lines out in generation k+1

# lines out in generation k
.

The line propagation in each generation is shown in Figure 4.
The line propagation increases from a low value and then
becomes more noisy for the higher generations due to the
sparse data for the longer cascades. This general behavior is
also seen in the analysis of BPA data in [4, Figure 3].

A better way to measure propagation [18] uses the prob-
ability distribution of the number of generations in cascades
or events as shown in Figure 5. The absolute value of the
slope of the fitted red line in Figure 5 is the System Event
Propagation Slope Index, or SEPSI, that is a single number
describing the propagation of the generations [18], [19]. In
this case SEPSI = 3.17. Figure 5 can be compared with the
analysis of BPA data in [18, Figure 2] and with NERC data in
[19, Figure 4]. However, a strict quantitative comparison with
[19, Figure 4] is not appropriate because [19] uses a different
grouping of outages into events or cascades than this paper or
[18].

1Note that alternative ways of grouping outages into events are being
developed [19].



The network distance between two lines can be measured
as the number of “hops” on the network between the lines
[5].2 For example, the distance of line to itself is zero and the
distance of a line to a neighboring line with at least one bus
in common is one.

One use of locating the outages on the network is to
obtain the bulk statistics of how the outages spread on the
network in cascades. For example, Figure 6 shows the network
distances between random pairs of distinct lines in the same
cascade. Successive sampling from this distribution gives an
approximate high-level statistical model of cascade spread that
can be used in modeling the cascading phase of resilience,
as is done in [13, Figure 2] with the corresponding BPA
data in order to give a data-driven quantification of overall
transmission grid resilience.
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Fig. 2. Probability distributions of the number of line outages in initiating
and cascaded outages.
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Fig. 3. Survival functions of the number of line outages in initiating and
cascaded outages.

2More precisely, the network distance between lines Li and Lj is defined
as the minimum number of buses in a network path joining Li to Lj .
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Fig. 4. Line propagation λ(k) as a function of generation number k.
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V. CONCLUSIONS

In this paper we show how to process public website data
for a region of Northeast America logging transmission grid
outages every 5 minutes to obtain a detailed list of component
outages that occurred, with the outage times to the nearest
minute, the component details, and whether the outage is
scheduled or automatic identified. To the authors’ knowledge,
this is only the second such public source of detailed outage
data for transmission grids. We were unable to extract repair
times from the data. The 12 years of processed data is
sufficient to form a network on which the outages can be
located.

The detailed outage data is valuable to engineers and
researchers, especially in studying the rarer dependencies
between outages that occur in cascading and resilience events.
The outage data is rich with possibilities, including the study
of outages of a variety of equipment. To illustrate one of the
uses of the data, we show how bulk statistics obtained from
the automatic transmission line outages in the data can be used
to quantify how cascading or resilience events propagate and
spread. These statistics have forms similar to those in the other
publicly available source of detailed outage data, showing that
the main features of the previous work with this other source of
data are reproduced in another region of North America. The
statistics from this and the other public source are foundational
in ensuring realism and validation of simulations and models
of cascading and resilience.
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APPENDIX
NUMERIC VALUES OF PLOTTED RESULTS

This appendix gives the numbers used to obtain the plots
to facilitate comparison with other results.

The probability distribution of the number of initiating line
outages in Figure 2 is {0.7941, 0.1876, 0.01392, 0.002914,
0.001133, 0., 0., 0.0001619, 0., 0., 0., 0.0001619, 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}.

The probability distribution of the number of cascaded
line outages in Figure 2 is {0.6643, 0.2397, 0.0539,
0.01942, 0.008903, 0.00518, 0.002428, 0.001619, 0.0004856,
0.001133, 0., 0 .0004856, 0.0006475, 0.0003237, 0.0004856,
0., 0.0001619, 0.0001619, 0., 0., 0., 0.0001619, 0.0001619,
0.0001619, 0., 0., 0., 0., 0., 0.}.

The survival functions in Figure 3 can easily be calculated
from the corresponding PDFs.

The number of outages in each generation used to obtain
Figure 4 are {7609, 1183, 341, 156, 74, 58, 37, 31, 25, 16,
14, 13, 8, 10, 5, 8, 4, 3, 2, 1, 1, 1}.

The counts of the number of generations in all the cascades
used to obtain Figure 5 are {1, 5210}, {2, 687}, {3, 155},
{4, 62}, {5, 24}, {6, 11}, {7, 5}, {8, 4}, {9, 6}, {10, 3},
{11, 2}, {12, 2}, {13, 1}, {14, 2}, {15, 1}, {18, 1}, {19, 1},
{22, 1}.

The probabilities in Figure 6 are {0., 0.3772, 0.07398,
0.02917, 0.03013, 0.03556, 0.03323, 0.03718, 0.05356,
0.06793, 0.06093, 0.04605, 0.04275, 0.03843, 0.02264,
0.01652, 0.01008, 0.008638, 0.005005, 0.001932, 0.002527,
0.001718, 0.003386, 0.001354, 0., 0.00004955}.


