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Abstract
In this paper we explore the interaction between a

dynamic model of the power transmission system
(OPA) and a simple economic model of power
generation development.  Despite the simplicity of this
economic model, complex dynamics both in the
economics (prices, market share etc) and in the
transmission system characteristics (blackouts,
reliability etc) are found.  Depending on the values of
the control parameters (the price enhancement factor,
the critical margin and the Minimal Acceptable Rate of
Return) the system can be in various states with vastly
differing properties.  These states are characterized by
power law tails in the failure sizes in one limit and
exponential tails with extremely high frequency of
failures in the other limit.   At least some of these
control parameters can be thought of as regulatory
based and could therefore be directly influenced by
reliability considerations.

1. Introduction

The OPA model [1, 2] was developed to study

the failures of a power transmission system under the

dynamics of an increasing power demand and the

engineering responses to failure. In this model, the

power demand is increased at a constant rate and was

also modulated by random fluctuations. However,

there was no dynamic mechanism regulating the

increase in the generation of power. Rather, the

generation power was automatically increased when

the capacity margin was below a given critical level.

Using the OPA model we have been able to study
and characterize the mechanisms behind the power

tails in the distribution of the blackout size. These

algebraic tails obtained in the numerical calculations

are consistent with those observed in the study of the

blackouts for real power systems [3, 4]. This model

also permits us to separate the underlying causes for

cascading blackouts from the triggers that generate

them.  However there are clearly many important

feedback mechanisms that are left out of OPA.

To address some of these mechanisms, and thereby

improve the realism of the model, we have extended

the model by including a minimal dynamical model for

increasing the generation capacity as a response to the

increasing demand. This extension has required us to

include: 1) an electricity market that determines a daily
electricity price and 2) a model for investment in new

generation based on economical incentives.

In this paper, we describe this simple economic

model for generation and the impact on the reliability

of the system from the changes introduced in this

model.

2. The electricity market

In the new version of the OPA model, we model a
system with several independent utilities. Each utility

is responsible for one or more generation nodes in the

network. With this framework, we have set up a daily

electricity market. The type of market that best fits our

purpose is an electricity pool [5].

Let us consider a system with Ng generators. They

produce electricity at different costs. Each makes a

daily offer to sale, which we assume equal to their cost

of producing electricity. One could device a more

sophisticated market process, but for our purpose it is

sufficient. Given these offers and the amount of
electricity the generators can produce, the supply

function can be constructed. Since the elasticity of

demand is very low, we take it to be a constant value.

In this manner, the daily clearing price is determined.

In Fig. 1, we show an example of the supply function

used in the OPA model.  Because the power demand

on average increases daily at the same time that it

oscillates around the mean value, the electricity price

will vary and, as will the revenues of the utilities.



Fig.1 Typical supply function

In the present model, we consider three types of

generators. They are a 500 MW coal-fired generator, a

500 MW combined-cycle gas turbine, and a 2000 MW

nuclear reactor. For each, we have the cost of the initial

capital investment and expected cost of electricity

taken from [5, 6]

3. The economics model for generation

We allow up to 12 separate utilities to be associated

with the Ng generators. The generators associated with

a given utility are initially randomly chosen. Following

that, they are kept with the same utility throughout the

calculations.

There are several parameters associated with each

utility. Each utility has a value for its Minimal
Acceptable Rate of Return (MARR) to determine its

investment strategy, an initial amount capital for

starting operations, and a day of the year on which it

plans the construction of new generators. The MARR

for a utility is determined initially by the formula

MARR[i] = MARR + MARR(rand 1 / 2)        (1)

Here, <MARR> is the average MARR, MARR/2

is the range of the MARR among the utilities

considered, and rand is a random number between 0

and 1. The initial capital for each utility is similarly

assigned. Finally the planning day is randomly

assigned to be between 1 and 365.
Every year on its assigned day, each utility

analyzes their potential investments. To carry out the

investment it must not have any generator under

construction and it is discouraged from investing if

many other utilities are already building generators. If

these two criteria are met, the next consideration is the

amount of cash on hand, which guides them toward

one of the three generator types. They can add the new

generators to the ones they already have. They are also

allowed to borrow money to invest, but in this case, the

can add only a single generator.

Each utility uses an estimate of the future price of

the electricity, and checks to see if it is profitable to put
another generator on line with the electricity cost

associated with it. If they find a good option, they

analyze the potential of the investment calculating the

internal rate of return (IRR) and comparing with their

MARR. If the IRR is equal or larger than the MARR,

they go ahead and build a new the new generators.

After the number of days given in Table I for the type

of generation chosen, the generator begins operation in

the network.

Table I. Grid utilization for different values of
the enhancement factor
F = 2.2 1.8 1.4 1.3 1.2 1.1 1.0

Averaged

line
loading

0.60 0.596 0.63 0.62 0.56 0.60 0.596

Average

line flow
limit per
MW

served

0.08 0.07 0.05 0.03 0.006 0.006 0.004

The estimate of the future price is a critical factor in

determining investment; the approach used to make

this estimate can change the dynamics. At present, we

keep a record of the averaged monthly clearing price,

pi, for the most recent 12 months. We have used three

different methods for estimating the future price:
1. A linear fit is made to the data and then

extrapolated 12 months ahead, this is Fp1.

2. The averaged value of the 12 months is Fp2.

3. A weighted average is computed in the following

way

 

Fp3 =
1

66
ipii=1

12
       (2)

The results presented here are obtained by

averaging Fp1 and Fp3.

To stimulate the investment on new generators, we

introduce another mechanism to the model. A critical

margin, CM, is defined as a fraction of the total power

in the system. When the capacity margin is below this

critical margin the clearing price is multiplied by an

enhancement factor F. This stimulates investments and
accounts for the “missing money” for investment in

generation capacity [7]. It can be interpreted as an

intervention of the regulatory system or as a change of

rules in the electricity market.



4. A reference case for the dynamic

evolution of the system

Before discussing the dynamics of the economic

model for generation coupled to OPA we describe the

result of a reference case. In the following calculations

we have used the WECC 179 network. We assume that

there are 12 utilities associated with the 49 generator

nodes.

The basic OPA parameters for all the calculations

presented here are: 1) the daily rate of growth in

demand,  = 1.00005, which corresponds to an

averaged annual growth of about 2%, consistent with

the US data for the last two decades; 2) the rate of

upgrade of overloaded lines μ = 1.12; after a blackout,

overloaded lines are upgraded at this rate; this value

has been adopted to match the averaged frequency of

the blackouts in the Western interconnect; 3) the daily

load fluctuation parameter,  = 1.3, the network is

divided in four regions and the power demand in those

regions varies around the averaged demand by a

fraction smaller or equal to  – 1; 4) probability of a

random line outage p0 = 0.00001, and 5) the probability
that an overloaded line will outage during a cascading

process is p1 = 0.15. More details on the role of these

parameters in the OPA model can be found in Refs. [1,

2].

As reference values for the parameters of the

economic model, we have used: <MARR> = 0.10, CM

= 0.3, and F = 1.8. These are not necessarily the

optimal values. All calculations were done for a period

of 120,000 days.

Fig.2 Capacity margin as a function of time for
the reference case.

For the base case, the capacity margin is

maintained well above zero. The minimum value of the

capacity margin over the whole time period is 0.228;

the critical margin for the economic incentives needed

to maintain this capacity margin is 0.3.

In Fig. 2, we have plotted the evolution of the capacity
margin as a function of time. There is a basic

oscillation with an averaged period of about 15.5 years.

Note that the typical time scale for this model is

1/( -1). If the system has a maximum capacity M1 at a

given time and if the system evolves only as a result of
the increase in demand, the time it takes to get at a

minimum capacity M2 is:

 

=
1

1
ln

1+ M1

1+ M2

      (3)

For the particular case that M1 = 0.6 and M2 = 0.2,

we get  = 15.76 years, which is approximately the

value given above. Therefore, if the construction times

of the different plants are short compared with this
value, construction does not greatly affect the time

scale of the oscillations.

This reference case corresponds to a fairly

competitive market in which 8 of the 12 utilities are

competing at similar level. This can be seen in Fig. 3,

where we have plotted the fraction of the total extant

capital that each utility holds as a function of time.

There are fairly large oscillations but, in the end, each

of the 8 surviving utilities held a reasonable fraction of

this capital.

Fig.3 Fraction Extant Capital for the 12 utilities
as a function of time for the reference case.



The frequency of blackouts involving outage and/or

overloaded lines is 0.015 and the frequency of all

blackouts is 0.023. These relatively low values of the

frequencies are due to the fact that the probability of

the random failures p0 is rather low.

Fig.4 Rank function of blackouts.

Fig.5 Rank function of blackouts with outages

The rank function of the load shed normalized

to the total power has a well-defined power tail with an
exponent close to –1, as can be seen in Fig. 4. This

value for the exponent is consistent with the one

obtained in the analysis of the data from the Western

interconnect. If we select the blackout events that

involve an outage and/or overload lines, the rank

function for the normalized load shed has a similar

power law to the one we gat if we take all events.

However, the region of power tail seems to be

somewhat narrower in the second case, as shown in

Fig. 5.

The events corresponding to large values of load shed

are associated with the minima of the capacity margin.

In looking at the time sequence of the blackouts, they

appear to be bursty and correlated with these minima.
This correlation can be seen in Fig. 6. However, as we

can see by comparing Figs. 3 and 4, these large events

extend the power tail, but they are not necessarily the

reason for such power tail.

Because the daily load fluctuation parameter  is

1.3, the loads fluctuate up to a 30%. Therefore, it

makes sense that when the capacity margin goes below

30% blackouts with no outages are often triggered.

We use this case as a reference case in what

follows, and we explore in the following sections the

dependence of the system performance and reliability

in the values of the main parameters controlling the

economics model.

Fig.6 Margin and normalized load shed as
function of time showing the correlation
between the two.

5. Effect of varying the price enhancement

factor

The price enhancement factor F that acts when the

capacity margin is below the critical margin increases

the clearing price by a factor F, increasing the benefits

to the utilities and providing them with some of the so-
called “missing money” for investment in generation.

If this factor is close to one, the amount of extra cash

available to the utilities is small and not surprisingly, it



is not possible to keep the capacity margin above zero.

In Fig. 7, we show the sensitivity of the averaged

capacity margin to changes in this factor.

Fig.7 Capacity margin and normalized load
shed plotted vs. price enhancement factor

Fig.8 Capacity margin as a function of time

The error bars represent the standard deviation in

the fluctuations in the capacity margin; they give a

measure of the averaged size of its oscillations. In the

same figure, we also show the averaged load shed

normalized to the power demand per blackout.

In examining Fig. 7, we can see that when the

factor is above 1.4, there is a relatively stable regime

with a capacity margin always above 20%. When the
factor is bellow 1.4 there are problems; the capacity

margin is not always maintained above zero. When the

factor is below 1.2 the system collapses and the

mechanism to stimulate investments no longer has any

positive effect. When F is 1, there is no enhancement

of the clearing price and the capacity margin drops

below 0.4 and becomes negative, as can be seen in

Fig. 8.

In the transition region, when 1.5 > F >1, there is

not only a change in the mean value of the parameters
and in the properties of the blackouts, but also a change

in the economic dynamics. This is reflected in the

change of the time evolution of the capacity margin.

Although the capacity margin is sometimes pushed

above 0.2, as in Fig. 2, there are periods of time that it

becomes negative, as shown in Fig. 8.

When the price enhancement factor decreases, not

only the average size of blackouts increases but also

the frequency of blackouts. The reliability of the

system deteriorates seriously. In Fig. 9, we have

plotted the frequency of all blackouts and of those

blackouts that have outage or overloaded lines.
As the enhancement factor increases, there is a

decrease of the blackouts without outage or overloaded

lines (brown outs) but also of the blackouts with outage

lines. When the system collapses because of the lack of

investments, the frequency of the brown outs gets close

to 1; brown-outs occur nearly every day.

Fig.9 Frequency of blackouts (total and with
outage) plotted vs. price enhancement factor

The distribution function of the blackout size,
measured here by the load shed normalized to the

power demand, also changes as F changes. For the base

case, F = 1.8, we have seen that the Rank function had

a clear power law region with exponent –1. As F

decreases, the Rank function is broader and at a certain

point the power law region disappears. This is shown

in Fig. 10. If we examine the same Rank function but

only for the blackouts with outage or overloaded lines,



we see that the power law region is maintained up to F

= 1.3, with the same exponent. Only below 1.3 does

the Rank function change to exponential. Of course,

one of the reasons for the change to exponential tail is

that most of the blackouts are of the order of the

system size and a power tail behavior is no longer
possible.

Fig.10 Rank function of blackouts for 3 values
of F

Fig.11 Clearing price as a function of
enhancement factor

As the clearing price enhancement factor decreases,

there is a serious deterioration in system reliability as

shown by an increase in the frequency and size of

blackouts.  This decrease in reliability is accompanied
by an apparent paradox: an increase of the cost of

power to the consumer. Reducing the enhancement

factor does not save money, because the system spends

more time bellow the critical margin. If we plot the

averaged clearing price as a function of the

enhancement factor, we can see this increase in cost.

This plot is shown in Fig. 11.
In Ref. [8], we introduced a measure of utilization

of the system, which is the average line flow limit per

MW served. It is defined as,

Averagedline flow limit

per MW served at time t
=

1

Nlines

Fj
Max t( )

j=1

Nlines

load supplied at t
      (4)

Here, Fj
Max t( )  is the power flow limit of the line j

at time t, and Nlines is the number of lines in the

network.

In Table I, we show the change in grid utilization as

the price enhancement factor changes. The average line
load is not very affected by changes in F; however, the

utilization of the system deteriorates as F is reduced.

For values of the factor above 1.4, we get similar

results to the results obtained for the IEEE 118 network

when the n-1 criterion was applied [8]. Below F = 1.4

there is a reduction in the utilization by a factor of 2 or

3.

6. Effect of varying the critical margin and

the averaged MARR

Another important parameter in this model is the

critical margin. This is the value of the capacity margin

below which the clearing price is enhanced by the

factor F.  Changing the critical margin has the expected

impact on the system. It changes the capacity margin

and the size of the blackouts. Both change in an

expected way as shown in Fig. 12.

In Fig. 12, the error bars in the capacity margin

represent the standard deviation; they reflect the

amplitude of the oscillation of the capacity margin. The
changes are less dramatic than they were when case the

enhancement factor was changed, but the impact is

similar.

The effect on the frequency of the blackouts is also

similar. As the critical margin decreases, there is a

significant increase in the brown-outs; the frequency of

the blackouts with line outages also increases. This is

shown in Fig. 13



Fig.12 Capacity margin and normalized load
shed plotted vs. critical margin

Fig.13 Frequency of blackouts (total and with
outage) plotted vs. critical margin

Increasing the averaged MARR, <MARR>, of the

utilities very quickly leads to reliability problems. As

<MARR> increases, it becomes more difficult to get

enough cash for investments in generation, because the

utilities do not want to take these risks.  Therefore,

there is no way of maintaining a reasonable capacity

margin. The system then has large and frequent
blackouts.

In Figs. 14 and 15, we provide plots <MARR> of

the same data as we did for the other parameters. The

patterns of time evolution of the capacity margin are

reminiscent of the ones in the transition region when

the enhancement factor was varied. They show the

capacity deepening below zero and a burst of blackouts

emerging. This is typical for this model when not

enough investments in generation are made.

Also in this case, the decrease in reliability of the

system is concomitant with a large increase in the cost
of electricity. The clearing price goes from $33.48 per

MWh in the base case, to a $59 per MWh in the case of

the highest <MARR>.

7. Transients in the dynamic evolution

Though the economic model discussed here is

rather simple, it has a complex dynamics. From the
previous analysis we can see that there are two stable

steady state solutions. They are exemplified in Figs. 2

and 8. One of these states corresponds to the solution

of the reference case with the capacity margin kept

above 0.2. The other is the state that corresponds to F =

1.0 with the capacity margin going below zero.

Fig.14 Capacity margin and normalized load
shed plotted vs. avg MARR

In addition, there are solutions that seem to jump

between these two types. In many cases the solution

keeps the capacity margin above a given value, but for

a period of time, the capacity goes below zero. This

type of behavior is generally found in the transition

region of the enhancement factor and in the cases
where MARR takes on higher values, but they can also

be triggered by changes in the economic conditions.



Fig.15 Frequency of blackouts (total and with
outage) plotted vs. price enhancement factor

For instance, we can start from the reference case

described in Section II and run it for 30000 days. At

this point, the enhancement factor is changed from 1.8

to 1.4. Therefore, the extra money the utilities get is

reduced by one half. Here we call the reference case 1

and the one where we change F at t = 30000 case 2. A

plot comparing these two cases in terms of the time

evolution of the capacity margin is given in Fig. 16.

Fig.16 Capacity margin as a function of time,
reference case and transient case.

In Fig. 16, the effect of changing F is clear; the

capacity margin drops below 10%. After about 5000

days it recovers and oscillates at a lower level

corresponding to the reduced value of F. This transient
is associated with a sudden burst of blackouts. This is

shown in Fig. 17, where we have plotted the

normalized load shed as a function of time. In this

figure and at t = 30000, the load shed increases in size

and frequency.

Fig.17 Normalized load shed as a function of
time, reference case and transient case.

There is a drop in the reliability of the system

at the point where the factor F is changed. The system

changes some more some time later, when the price

enhancement factor only goes into operation when the

capacity margin falls below 0.3.

Fig.18 Market fraction for the 12 utilities
as function of time for the transient case.

The basic parameters describing the reliability of

the system all change, as shown in Table II. There is

also a change in the dynamics of the utilities after the

change in F as shown in Fig. 18.



Table II. Change of the reliability parameters
and grid utilization during a transient

1st 30000

days

30000 days

post change

Frequency

blackouts

0.022 0.119

<Load shed/Power> 0.027 0.061

Average line flow

limit per MW

served

0.061 0.0152

8. Conclusions

The interaction between a dynamic model of the

power transmission system (OPA) and a simple

economic model of power generation development is

found to lead to complex dynamics both in the

economics (prices, market share etc) and in the

transmission system characteristics (blackouts,

reliability etc).  The most effective control parameter,

the price enhancement factor, moves the system from a
critical state, for larger values of F, to a continuously

failing system for small values of F.  The other control

parameters, the critical margin and the Minimal

Acceptable Rate of Return, have similar but less

dramatic effects. They can also move the system into

different states with vastly differing properties.  These

states are characterized by power law tails in the failure

sizes in one limit and exponential tails with extremely

high frequency of failures in the other limit.   Because

the price enhancement factor and the critical margin

can be set by regulators, they could therefore be

directly influenced by reliability considerations.  The

next step in this investigation is to add regulatory

feedback on these parameters to investigate the impact

on the overall system reliability.
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