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Failures of the complex infrastructures society depends on having enormous human and

economic cost that poses the question: Are there ways to optimize these systems to reduce the

risks of failure? A dynamic model of one such system, the power transmission grid, is used to

investigate the risk from failure as a function of the system size. It is found that there appears to

be optimal sizes for such networks where the risk of failure is balanced by the benefit given by

the size. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868393]

In 1928, Haldane wrote an essay
1

on the right size of the

living beings. He pointed out how the physics laws and

the environment lead to the existence of a “right size” for

each of them. This has led to an entire area of biological

research, allometric studies,2–5 in which the biological

“system” is optimized for its function. He also speculated

that this concept could be applied to social organizations

and institutions. In our society, we are experiencing the

rapid expansion of all types of networks from physical

infrastructure networks to economic and social ones.

Because of the critical importance of many of the net-

works, and in the light of Haldane’s comments, it seems

appropriate to wonder if this expansion should continue

or if there is a “right” or optimal size for our nations’

critical complex infrastructure. To investigate the exis-

tence of a “right size” we will focus on a model of cascad-

ing failure in an evolving power transmission network.

The model is based on standard power grid equations7

and has been validated by approximately reproducing

statistical patterns of blackout size in the Western North

American power grid.
11

We show that there is an optimal

size for the grid model based on a balance between effi-

ciency and risk of large failure. The existence of an opti-

mal size has important implications for planning, design,

and operation of the electrical grid upon which society

depends. It is plausible that many other complex systems

which exhibit similar characteristics and cascading fail-

ures also have an optimal size.

I. INTRODUCTION

In response to a near exponential increase in demand,

power transmission networks have been growing in size over

the years. The increasing size and interconnectivity of these

networks is important because it permits the supply of elec-

trical power from distant points when needed (utilizing a sur-

plus in one place to meet an excess demand in another). This

is designed to allow for continuous reliable operation of the

system and the avoidance of many interruptions of the

service.

The flip side of the size issue is that large connected net-

works are susceptible to large cascading failures, which can

propagate over a wide area of the network. Although these

failures are rare, they are very costly and are the penalty that

must be paid for large-scale interconnectivity. It is the dy-

namics of these cascading failures that cause a power tail in

the distribution of the blackout sizes,6 and it is the power law

tail that can make the risk of the large failures the dominant

risk to the system. The general issue of cascading failure in

power grids is reviewed in Refs. 8 and 24.

Because of this cost-benefit trade off, one may ask if

there is an optimal connected size (for the rest of the paper,

by connected size, we mean size of system with fully con-

nected elements) for the power system networks. A detailed

determination of this optimal size for a specific system

would require a detailed knowledge of the system and its

reliability, of the cost associated with large failures and other

non-trivial but knowable factors. However, the benefit of

finding such an optimum size would, of course, be to allow

planners to use this size as a design objective rather than

allowing the intrinsic pressure toward a “larger is better”

model to dominate the evolution of the infrastructure

systems.

Here, we show that for the power transmission grid

model, there is indeed an optimal size for the system to man-

age the risk of blackouts. Expanding beyond this size, the

network is no longer “economically” advantageous due to

the cost of failure.

The rest of the paper is organized as follows. In Sec. II,

we give a summary description of the OPA model used in

the present research (OPA stands for “Oak Ridge National

Lab, Power Systems Engineering Research Center, Alaska”

which are the institutions involved in the invention and de-

velopment of the model). A comparison between networks

formed by several disconnected small network and large

compact networks with the same number of nodes is given in

Sec. III. A risk evaluation of these different types of
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networks is done in Sec. IV, and, in Sec. V, the concept of

an optimal size is introduced. Finally in Sec. VI, results are

discussed and the conclusions of this work are given.

II. THE OPA MODEL

To model the dynamics of the power transmission sys-

tem, we use the OPA model.7,8 OPA and its extensions have

been investigated by several research groups.9–11,17–23 The

OPA model calculates the long time behavior of cascading

transmission line outages of a power transmission system

under the dynamics of an increasing power demand, and the

engineering responses to failure. In this model, the power

demand increases at a constant rate and random fluctuations

modulate the daily loads. There are two sorts of upgrades to

meet the increase in demand. Transmission lines are

upgraded as engineering responses to blackouts, and maxi-

mum generator power is increased in response to the increas-

ing demand. The transmission lines selected for upgrade are

those transmission lines involved in a blackout. The trans-

mission lines are upgraded by increasing their maximum

flow limits. The generation power increases automatically

when the capacity margin is below a given critical level.

This can be done in different ways: by keeping the same

generation profile when statistical studies of an existing sit-

uation are studied, by randomly choosing the generators to

be upgraded, or by using a market model for upgrades, to

study the market impacts on system robustness.9,10

The OPA model for a given network represents trans-

mission lines, loads, and generators with the usual DC load

flow approximation. Starting from a solved base case, black-

outs are initiated by random line outages. Whenever a line is

outaged, the generation and load are redispatched using

standard linear programming methods. Since there is more

generation power than the load requires, one must choose

how to select and optimize the generation that is used to

exactly balance the load. The cost function for the optimiza-

tion is weighted to ensure that load shedding is avoided

where possible. If some of the lines were overloaded during

the optimization, then these lines are outaged with probabil-

ity p1. The process of redispatch and testing for outages is

iterated until there are no more outages. Then, the total load

shed is the power lost in the blackout.

Power generation patterns across the network are

adjusted as the outages progress to represent the ability of

the network to supply power across long distances. The main

input to OPA is a model network and has been validated on

the Western North American network using different size

network models and data from this network.11 The Western

North American network (the Western Electricity

Coordinating Council—WECC) covers the area west of the

Rocky Mountains and includes parts of Canada, USA, and

Mexico. In this work, we use a sequence of homogenous

100, 200, 400, 800, and 1600 node artificial networks gener-

ated with network characteristics built using the method of

Wang et al.12 The network degree (k) distribution is approxi-

mately Poisson with a mean k of �3, consistent with the

degree distribution found in many real power transmission

networks.13 In addition, the network is fully connected with

no isolated nodes or regions.

Of the six basic parameters that control the slow time

evolution of the system in OPA,7,8 four parameters have

been estimated from the data available for the US power

transmission grid14–16 and are shown in Table I (The demand

growth rate is the factor by which average load increases per

day, the critical generation margin controls how generators

are upgraded in meeting the load increase, the load variance

controls the stochastic variation of regional load about its av-

erage value, and the upgrade rate controls how much the

capacity of outaged lines involved in a blackout increases;

details are in Ref. 8). The other two model parameters, which

are very important in the determination of the dynamics are,

the probability p0 of failure of a component by a daily ran-

dom event and the probability p1 of an overload becoming

an outage. The first one represents the chances of random ac-

cidental failures while the second is a measure of the reliabil-

ity of system components and their interactions which

impacts the propagation of failures through the system.

Ranges for these too, can be estimated from data though

with less certainty. Therefore, several values, within the

range found to be reasonable for the western region of the

North American grid, of these two parameters will be consid-

ered in what follows.

III. LARGE SIZE NETWORK VERSUS MULTIPLE
SMALL NETWORKS

To investigate the importance of connected size, we

compare the failures in a large network with the failures in a

system formed by several independent, disconnected, small

networks with the same total number of nodes as the large

network we are comparing to. For instance, we compare the

1600 node network with 16 independent, unconnected, 100

node networks. We do the same for the other network sizes

thereby allowing the exploration of the importance of the

connected size of the system rather than just the total number

of nodes. In the work that follows, we assume that the total

power demand is proportional to the network size N.

In Fig. 1(a), we plot the frequency of blackouts (simply

the number of blackouts divided by the number of simulation

“days” in which a cascade can occur) vs. the number of

nodes (N) for different combinations of 100 node networks

with the frequency of blackouts from connected networks

with the same number of nodes for p0¼ 0.00025 and

p1¼ 0.037. The blackout frequency is systematically higher

for the multiple networks, because the large networks are

more effective in providing power to all nodes when there

are large fluctuations in demand. This is because there are

TABLE I. Parameters used.

Variable name Symbol Value

Daily rate of increase of the demand k 1.00005

Critical generation margin DP/P 0.2

Variance of loads c 1.15

Upgrade rate l 1.07
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more sources of power and more routes from the sources to

the sinks in the larger systems and is a cause of the increased

efficiency of the larger networks.

The averaged load shed normalized to the power demand

per blackout vs. the number of nodes is practically the same

for the large connected networks as it is for the multiple 100

node networks, as can be seen in Fig. 1(b). This result appears

to hold for all the sets of parameters (the various values of p0

and p1) that we have considered and would superficially sug-

gest that the bigger connected system is “better.”

However, most importantly, the distribution of the load

shed during a blackout for the multiple independent net-

works is very different than the corresponding distribution

for the large networks (Fig. 2). For the same sequence of net-

works and parameters as in Fig. 1, we have plotted in Fig.

2(a) comparison of the complementary cumulative distribu-

tions for the normalized load shed (LS/P) for different size

networks with 200, 400, 800, and 1600 nodes. We can see

that for the multiple 100 node networks, the tail of the rank

function is essentially exponential. However, for the large

connected size networks, a power law tail emerges; there is

evidence for the power law in the 800 nodes networks, but it

is clear for 1600 nodes. The emergence of this tail makes the

probability of the large blackouts decrease much more

slowly as blackout size increases.

The simulation results also show that medium size

blackouts occur significantly more frequently in the multiple

100 node networks. In the large connected size networks, the

large blackouts, although less frequent, increase greatly in

relative frequency as a result of increasing the number of

nodes. The emergence of the power tail for the large net-

works is characteristic of a system displaying critical behav-

ior and is the main drawback of these large complex

systems. This is why the advantage of a wider range of

FIG. 1. The left panel (a) shows the

frequency of outages as a function of

the number of nodes with the fre-

quency increasing much more rapidly

for the multiple unconnected 100 node

regions (circles) than for the connected

single regions (squares). The right

panel (b) shows that the normalized

average blackout size is approximately

the same for both systems and gets

smaller with size.

FIG. 2. These figures show the com-

plementary cumulative distribution

function (CCDF) calculated by ranking

the normalized load shed for the

sequence of increasing size networks

compared to the same size system of

unconnected 100 node networks.

Normalized load shed is the load shed

divided by the total load power before

the blackout.
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power dispatch options can turn into the large disadvantage

of the increased risk of very large blackouts due to the

increased probability of large cascading failures.

IV. THE RISK OF BLACKOUTS

To make a comparative evaluation of the impact of dif-

ferent types of blackouts, we introduce a measure of the risk.

The risk associated with failure i can be defined17 as:

Risk ið Þ ¼ Probability ið Þ Cost ið Þ: (1)

While we can directly evaluate the probability of an

event from the model calculation, it is more difficult and

controversial to determine the cost associated with the event

and the cost savings from a larger interconnected network.

One way of evaluating the cost is by setting the cost propor-

tional to the energy lost during the blackout.25 Then we can

write, with A being a constant,

Cost ¼ A� Power lost� Duration of blackout: (2)

Since we lack direct information about the duration of

the blackout (the time it takes for the system to be restored),

we assume that the duration is proportional to the size of the

blackout and therefore to the power lost. Using Eq. (2), we

can re-write Eq. (1) for an event with load shed L as

Risk ðLÞ ¼ BP2 probability ðLÞ L

P

� �2

: (3)

In Eq. (3), B is a constant, P is the total power demand,

and L/P is therefore the normalized load shed. Once again, in

what follows, we also assume that the total power demand is

proportional to the network size N. In Fig. 3, we compare the

risk function for the case of multiple 100 networks and the

two large networks.

When we compare the risk function for the case of mul-

tiple 100 networks to that for large networks, we find the risk

for the multiple 100-node networks has a large peak, due to

high frequency of the blackouts, at medium values of load

shed, while in contrast, the large networks show a slowly

decreasing tail for very large values of load shed. Therefore,

FIG. 3. These figures show the normal-

ized risk as a function of normalized

load shed for a homogeneous 800 bus

network and 8 independent 100 bus

networks (left) and a homogeneous

1600 bus network and 16 independent

100 bus networks (right). These show

a much larger risk from the larger

events in the homogenous systems.

FIG. 4. The risk index R (normalized

to the constant B) is plotted versus the

system size for four cases for four val-

ues of p1.

FIG. 5. The risk index R (normalized to the constant B) is plotted versus the

system size for three base system sizes for the same value of p1.
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the cost of the large events may dominate the overall risk as

the size of the system increases. This dominance depends on

how fast the cost of the events increases with its size and

how fast its probability decreases.

It is useful to have a compact measure of the over-

all risk by integrating Eq. (3), which we define as an

index

R � 1

P

ðP

0

Risk
L

P

� �
dL: (4)

In Fig. 4, we have plotted the risk index R, normalized

to the constant B, for four sequences, they correspond to

p1¼ 0.075, p1¼ 0.037, p1¼ 0.018, and p1¼ 0.009, with

p0¼ 0.00025 for all four cases.

We can see that, for p1¼ 0.037, around N¼ 1000, the

multiple 100 node networks become more cost effective than

the large size networks. For p1¼ 0.075, the crossing point is

about N¼ 500. As the reliability increases, the crossing point

moves to a larger value of N. For the other two values of p1

the crossing point is beyond the maximum size of the net-

work used in the present calculations.

For the combined multiple networks, the risk increases

uniformly with the total size, where the total size is the

base network size times the number of networks. The expo-

nent of the rate of increase does not seem to depend on the

size of the base network unit. We can see that the results

are similar if we consider 100 node or 200 node or 400

node base networks. This is shown in Fig. 5 for the case

p1¼ 0.075.

FIG. 6. The risk ratio is plotted versus

the system size for four values of p1

and two (or three) values of the base

system size (100, 200, and 400 in the

highest p1 case).

TABLE II. Optimal size of the network for different values of p1 for the risk

ratios constructed from the 100 node base system sizes.

p1 Optimal size No

0.075 230

0.037 332

0.028 449

0.018 656

0.009 1895

FIG. 7. The risk ratio plotted versus the system size for a small value of p1,

p1¼ 0.009, and two values of the base system size (100 and 200).
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V. OPTIMAL SIZE OF A NETWORK

The idea of an optimal size of a network is based on the

comparison of a homogenous large network with an equiva-

lent size system formed by a combination of a set of uncon-

nected smaller networks. It can also be defined as a relative

concept. Therefore, the optimal size will, in principle,

depend on the size of the smaller networks that we used for

comparison.

Here, calculating the relative risks, we compare the inte-

grated risk of a homogeneous network to the integrated risk of

multiple non-connected networks with the same number of

nodes. To do this comparison, we look at the ratio of the inte-

grated risk for both types of networks. For unconnected net-

works, we will not only consider systems base on multiple 100

node networks but also multiple 200 node and 400 node net-

works. The results for four values of p1 are plotted in Fig. 6.

The optimal size corresponds to the minimum of the ra-

tio. The first curious thing is that the value of the minimum

does not seem to depend on the sequence of multiple net-

works considered. Using a simple quadratic fit to the results

plotted in Fig. 6, we can evaluate the optimal size for each of

the values of p1. The results are given in Table II.

If we further increase the reliability of the network to

values probably higher than reasonable for our present day

networks, the minimum shifts above the maximum size of

the network used in these calculations. This can be seen in

Fig. 7 for the case with p1¼ 0.009.

From Table II, we can see that the optimal size, No,

increases as we increase the reliability of the network as can

be expected. Plotting the optimal size vs p1 shows a roughly

1/p1 relationship as seen in Fig. 8.

VI. CONCLUSIONS

Many large dynamical infrastructure systems display

power law tails in the size distribution function of their fail-

ures. It is often the “near critical7,27” nature of these complex

systems coming from the competing forces on the system

that generates the power law tail in the probability of failure

as the system gets larger, and it is this tail that leads to the

dominance of the cost over the benefit beyond a crossover

point in size.

The question “Is there an optimal size?” seems to have

at the least a qualified “yes” as the answer in our model of a

power transmission grid. In this generic model of the power

transmission system, a range of size values exists beyond

which the risk from large failures starts to dominate the over-

all risk to the system. This suggests that there is a size at

which the balance between more efficient distribution of

power leading to a reduction of relative frequency of failures

and risk of ever larger cascading failure is optimized. An in-

triguing implication of this is that heterogeneous networks

made up of a series of weakly coupled homogeneous regions

each with tight internal coupling might be a method for

exploiting the best of both worlds. These considerations

become even more interesting as the grid and its reliability

changes due to the increasing penetration of highly variable

renewable generation.26

In this study of transmission network failures, the balance

of efficiency with cost of large failure leads to an optimal size

range in which increasing the network size to that point

improves the system but beyond which degrades it. This opti-

mal network size range depends on details of the reliability of

the system and how the cost function of the failures scale with

the system size. While this work focuses on the power trans-

mission grid, it is likely that other systems which have cascad-

ing failures and therefore the heavy tails will exhibit this type

optimal size in contrast to systems which have uncorrelated

random failures. Because many complex dynamical systems

have cascading failures and the characteristics that come with

them as well as similar underlying mechanisms for generating

these characteristics, it is plausible that this is a general prop-

erty of complex infrastructure systems. It will be interesting to

see how broadly this property applies; that is, what other net-

worked infrastructure systems that show cascading failure and

complex dynamics have such an optimum size for similar rea-

sons. In particular, coupled complex infrastructure systems

have been shown to have the large size events

disproportionally28–30 enhanced by the coupling that would

tend to reduce the optimal size produced by the mechanism

described here.
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