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Towards using utility data to quantify how
investments would have increased the wind

resilience of distribution systems
Arslan Ahmad, Student Member IEEE Ian Dobson, Fellow IEEE

Abstract—We quantify resilience with metrics extracted from
the historical outage data that is routinely recorded by many
distribution utilities. The outage data is coordinated with wind
data to relate average outage rates in an area to wind speed
measured at a nearby weather station. A past investment in wind
hardening would have reduced the outage rates, and the effect of
this on metrics can be calculated by sampling a reduced number
of historical outages and recomputing the metrics. This quantifies
the impact that the hardening would have had on customers.
This is a tangible way to relate an investment in wind resilience
to the benefits it would have had on the lived experience of
customers that could help make the case for the investment to
the public and regulators. We also quantify the impact of earlier
or faster restoration on customer metrics and compare this to
the impact of investment in hardening. Overall, this is a new
and straightforward approach to quantify resilience and justify
resilience investments to stakeholders that is directly driven by
utility data. The approach driven by data avoids complicated
models or modeling assumptions.

Index Terms—Power distribution systems, outages, resilience,
metrics, fragility, data, weather, wind

I. INTRODUCTION

Resilience generally addresses the response of power sys-
tems to extreme weather events, as well as other unusual high
stresses such as earthquakes, fires, and epidemics. There are
many overlapping frameworks and definitions of resilience
[1]–[4] and the most concise definition is “Power system
resilience is the ability to limit the extent, severity, and
duration of system degradation following an extreme event.”
[5]. There remains much scope for practically quantifying
resilience [6] and for justifying investments that improve
resilience. In particular, this paper proposes a data-driven
approach to quantify the resilience of a distribution system to
wind1 and to help justify investments in hardening the system
or speeding up its restoration. Wind-related hazards due to
storms and hurricanes are one of the most significant hazards
for overhead distribution system; the effects of high winds
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1Regarding the definition of wind resilience, while some of the nuances
of the overall definition of resilience are vigorously debated, e.g., [4],
distinguishing types of resilience by threat, such as wind, seems widely
accepted. Some other resilience threats may, to some extent, involve wind
(e.g., ice storms, extreme rain, wildfires) or may be independent of wind
(e.g., cyber attacks, physical attacks, earthquakes, geomagnetic disturbances).

include tree falls and flying debris as well as direct impacts
such as pole toppling and conductor galloping.

Investment decisions upgrading distribution systems or their
restoration consider many factors, such as cost, reliability,
load, distributed generation, deployment of crews and materi-
als, and many engineering and community constraints. In order
to also consider resilience in these decisions, it is desirable to
quantify the benefits of investments that increase resilience
and communicate those benefits to utilities, communities, and
regulators. One useful but complex approach is to make
detailed models of the extreme weather, its impact on the
distribution system, the restoration process, and the impact
on customers and then use these models to estimate the future
benefits of a proposed upgrade. This model-based approach
is challenging because of the extensive approximations and
assumptions needed to make practical models of the entire
process. Nevertheless, there has been considerable progress
in using these models as reviewed in section II. The purpose
of this paper is to open up another, complementary approach
driven directly by utility data that can also help to quantify
and communicate the benefits of investments that increase
resilience to strong winds.

Fig. 1. Quantifying the benefits of wind-hardening resilience investments.

We briefly outline the new data-driven approach in Fig. 1
and as follows: Consider an area inside the distribution system
that is close to a weather station measuring wind speed. We
process the area outage data and the wind speed together to
obtain an “area outage rate curve” that describes how the mean
outage rate of the area increases with wind speed. The area
outage rate curve quantifies the resilience of the area with
respect to the measured wind speed. A previous investment in
hardening the area would have shifted the area outage rate
curve and reduced the area outage rates. We can go back
to the historical outage data and sample a reduced number
of outages from it to match the reduced outage rates. This
samples the historical outages that the investment would have
caused. Computing resilience metrics for the historical outages
and comparing these to the improved resilience metrics for
the sampled outages quantifies the effect that the investment
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would have had on the area and its customers. Moreover, we
also quantify the impact of improved restoration: Investment
in restoration can make the restoration start earlier or increase
the rate of restoration. We change the historical restoration
times to correspond to these improvements and recalculate
the metrics to quantify their impacts. This brief outline is
elaborated throughout the paper, but we start by discussing the
value of the new approach in justifying resilience investments.

In addition to the routine reluctance to pay more for
improved electrical infrastructure, resilience investments are
particularly hard to justify because they concern rarer large
events that will recur, but at an indefinite time in the future2.
There are indeed technical difficulties in estimating the impact
of rare events, but arguably at least as important for practically
improving resilience are the difficulties in communicating the
impact of rare events and the benefits of investing to reduce
their impact. The model-based approach can estimate, with
some approximations and assumptions, the projected future
benefits of a resilience investment. The data-driven approach
can estimate the benefits that the investment would have had if
the investment had previously been made. In some ways, the
approach driven by historical data can be more persuasively
tangible because the historical data is related to people’s
lived past experience, in that the historical blackout risk and
consequences are more easily recalled and more vivid than
imagining a blackout predicted by a model at an indeterminate
time in the future. For example, it could be persuasive to say
that the community would have saved 20% fewer customer
minutes of outages over the past 10 years, or even more
specifically that a particular, extreme wind event (such as
the upper midwest USA derecho in August 2020 that caused
∼11 billion dollars of damage) would have had 20% fewer
customer minutes out.

The overall paper contribution is showing the feasibility of
a new, entirely data-driven method of quantifying distribution
system resilience to wind, particularly the change in standard
metrics that would have occurred if overall investments in
hardening or earlier or faster restoration had been made.
There are no modeling assumptions, the data is readily avail-
able to utilities with an outage management system, and
the computations are fast and relatively straightforward. The
new quantification of resilience benefits of investments can
be tangible to stakeholders and help support the case for
investments. The more detailed technical contributions of the
paper include implementing the overall effect of hardening by
sampling a reduced number of historical outages and the new
conception and use of area outage rate curves and super events.

After reviewing the literature in section II, section III de-
scribes the outage and weather data used. Section IV describes
the area outage rate curves that quantify the wind resilience
from data, and how they can be shifted to represent hardening.
Section VI explains how to extract resilience events from data
and calculate their metrics. Section VII describes the sampling
that represents the hardening and Section VIII shows how
improved restoration is represented. Results quantifying the
improvement in metrics due to the hardening and improved

2Note that reliability investments already address the common failures.

restoration are presented in Section IX. Sections V and X
give technical details of constructing area outage curves and
tracking events after sampling. Finally, the paper contributions
and conclusions are given in section XII. The paper elaborates
and builds on the initial work presented in the MS thesis [7].

II. LITERATURE REVIEW

Since high winds are a significant hazard for overground
power distribution systems [7], [8], there is substantial work
studying the resilience of these systems to the wind.

We begin by briefly surveying a variety of methods that
build and use models to quantify distribution system resilience.
These methods form a useful complementary approach to our
new data-driven quantification of resilience. Xu [9] defines a
calculator for hurricanes that calculates the cost and benefits of
distribution system undergrounding or hardening given utility
estimates of input data. The modeling includes exponential
fragility models for poles, power law fragility models for span
damage, simulated hurricanes, and restoration times estimated
from crew availability. Ma [10] formulates system hardening,
the impacts of extreme weather, and minimizing load shedding
as a multi-level mixed-integer linear program to find an
optimal hardening strategy. Arif [11] co-optimizes distribution
system operation and repair crew routing for outage restoration
after extreme weather events using a two-stage stochastic
mixed integer linear program. Tan [12] finds an optimal
hardening and repair sequence to minimize the expected
energy not served using mixed integer linear programming and
associated convex relaxations and heuristics. Tan [13] finds
optimal repair sequencing when there is large-scale damage by
solving a scheduling problem using approximations to linear
programming and accounting for multiple faults obstructing
the power to the same customer. Ouyang [14] models the
resilience of Harris County, Texas, to hurricane Ike using
exponential fragility curves, a DC power flow network model,
and high-level models of restoration resources and sequencing.
Ciapessoni [15] evaluates the power grid’s resilience in a
mountainous area to the combined effects of wind, snow,
and trees with a risk-based model. Poudel [16] simulates
for a distribution of wind conditions the improvement in
resilience risk of planned improvements using measures such
as value at risk of energy not served. Wei [17] analyzes
resilience to particular severe hurricanes with time-varying
Poisson processes that model distribution system outage and
repair processes as a queue. Hughes [18] develops a wind
fragility based weather infrastructure model to predict outages
under extreme weather events and then analyzes the cost and
benefits of different infrastructure hardening scenarios on the
resilience of the overhead distribution system by simulating
outages under each scenario using Monte Carlo.

We now survey methods that analyze dependencies in
distribution system data to describe wind resilience. Much of
the analysis is for specific hurricanes. Davidson [19] studies re-
silience to hurricanes in the Carolinas using utility outage data,
a combination of interpolated and simulated hurricane wind
data, and land cover and rain data. Liu [20] constructs a spatial
generalized linear mixed model of the number of hurricane
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and ice storm outages in zip codes as a function of weather,
protection device density, and spatial data. Reed [21] studies
the resilience to wind-induced damage in Hurricane Katrina.
Jaech [22] estimates individual component repair times using
a gamma distribution with parameters predicted using neural
networks trained on utility outage records. Carrington [23]
establishes methods for extracting events from utility outage
data, computes standard resilience metrics for the events, and
estimates restoration times. Cerrai [24] and Kezunovic [25]
use machine learning methods based on multiple decision
trees and logistic regression to combine weather prediction,
vegetation, outage, and other data to predict the probability
of storm outages in small areas of the distribution system. Al
Mamun [26] studies the impacts of extreme weather events on
the reliability and resilience of a North Carolina distribution
system by analyzing the correlations in outage data between
outage duration, the number of affected customers, and SAIDI.

Now we review relevant work extracting fragility curves
from wind and outage data for use in resilience models.
Dunn [27] develops empirical fragility curves for overhead
lines from 11 kV to 132 kV in the UK during wind storms,
defined as winds exceeding 38 mph. The fragility curves
are fit with power laws, and relate the number of faults
per line length in areas of ∼2000 km2 to the reanalyzed
maximum wind gust over the storm duration in the areas. Reed
[28] analyzes the fragility and outage duration of an urban
distribution system for four different wind storms. Fragility
curves show the fraction of affected feeder length as a function
of the peak storm wind gust squared. Bjarnado [29] describes
lognormal fragility curves for pole design subject to hurricane
risk as well as reviewing deterministic pole design with safety
factors. Murray [30] correlates reanalyzed wind gust data with
transmission system faults in the UK to give an exponential
fragility curve for transmission lines. Hughes [31] calibrates
physics-based structural fragility curves of overhead distribu-
tion systems using machine learning techniques to compensate
for the limited empirical data for large events, and develops a
hybrid physics-based and data-driven outage prediction model
with improved accuracy. Donaldson [32] uses historical outage
data to develop fragility curves normalized to expected wind
speeds in each region in order to compare the wind resilience
between several regions of a distribution network operator in
northwest England.

Reliability addresses performance averaged over the year
rather than resilience, but we acknowledge the extensive and
useful tradition of evaluating distribution system reliability
with steady-state Markov models [33] in which extreme
weather is modeled with additional Markov states [34].

III. OUTAGE DATA AND WEATHER DATA

Two different datasets are used, one with outage data
recorded by a distribution utility in the USA and the other
containing NOAA (National Oceanic and Atmospheric Ad-
ministration) wind data for weather stations in that utility’s
service area. Both datasets cover the same time span of six
years. The outage dataset contains 32 278 individual outages
and has a one-minute resolution; i.e., all outages that occurred

within one minute are labeled with the same timestamp. Each
outage entry in the dataset corresponds to an outage of a
component in the power distribution system and includes
the location coordinates of that component, the number of
customers affected during the outage, the outage’s starting and
ending time, and cause codes.3

Each record in the weather dataset provides the average
hourly wind speed and various other weather details. Only the
average hourly wind speed data is used here. There is data
from multiple weather stations in the utility’s service area.
With the outage and weather stations’ geographical locations
known, each outage is associated with the weather station
closest to the outage. This divides the distribution system
into multiple areas, where each area contains all the outages
closest to the weather station associated with that area. This
paper analyzes the outages in two of these areas, as shown in
Fig. 2. Area 1 and area 2 contain 7876 and 12 715 outages,
respectively.

The typical measured wind speeds at the weather station in
area 2 are systematically slower than the typical measured
wind speeds at the weather station for area 1. Differences
in these two measurements are expected: Weather Station 2
measures wind 5 feet above the ground in a field surrounded
by woods, whereas Weather Station 1 measures wind 33 feet
above the ground in a large, flat area with no trees. The
weather stations are 13 miles apart.

When applying the method of this paper in practice, we
note that the data should be collected over a period of time
long enough to have sufficient large events with high wind (in
our case, 6 years of data gave 32 large events in Area 1 and
88 large events in Area 2) and that it is better to use data over
a recent time period.

Fig. 2. Geographical location of outages and the associated weather stations
in two areas of a distribution system.

3149 outage records with missing location information are removed. Further
data cleaning and pre-processing details are given in [7].
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IV. AREA OUTAGE RATE CURVES

Area outage rate curves describe the resilience to wind of
an area of the distribution system based on the average outage
rates observed at different wind speeds. This section explains
area outage rate curves, how they quantify wind resilience, and
how shifting them represents the effect of distribution system
hardening.

A. Quantifying wind resilience with area outage rate curves

Each area of the distribution system is associated with its
weather station. The area outage rate curve specifies the mean
outage rate of the area F (v) as a function of the wind speed
v measured at the weather station. In Figs. 3 and 4, the
dots indicate the empirical mean outage rates F

empirical
(v̂) at

integer wind speeds v̂ that are calculated from the wind and
outage data for areas 1 and 2; the details of the calculation
are given in section V. Whereas the area outage rate curves
in Figs. 3 and 4 are exponential fits to the empirical data of
the form

F (v) = aebv (1)

The exponential fit4 uses the Levenberg-Marquardt method
(also known as the damped least-squares method) with a 99%
confidence level for parameters and predictions. The parameter
values obtained for the fit are a = 0.00018 and b = 0.38 for
area 1, and a = 0.006 and b = 0.48 for area 2. The wind
station in area 2 measures slower wind speeds than the wind
station in area 1. This is expected as discussed in section III.
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Fig. 3. Area outage rate curve of area 1. Dots are the mean outage rate at
each wind speed from data, and the curve is an exponential fit.

The outage rate curve describes the resilience of the area
with respect to the wind measurement at the weather station.
The mean outage rate is low, except that it increases sharply
for higher wind speeds. The sharp increase in mean outage
rate is expected: As the wind speed increases, the overhead
distribution infrastructure (poles, wires, cross arms, insulators)
and nearby vegetation face more stress, leading to more faults

4The exponential has simplicity and a better fit to our data than alternatives
such as power law and exponential fit with offset. The fit uses the NonLinear-
ModelFit function in Mathematica that implements the Levenberg-Marquardt
method.

Actual Data

Fitted Curve

0 5 10 15
0

5

10

15

20

Wind Speed v (mph)

M
ea
n
O
ut
ag
e
R
at
e
F

(o
ut
ag
es

/h
ou
r)

Fig. 4. Area outage rate curve of area 2. Dots are the mean outage rate at
each wind speed from data, and the curve is an exponential fit.

and increased outage rates. Other authors report a dependence
of outage rate data on the wind speed of a similar form and
use exponential [9], [30], [35] or power law [9], [27] fits to
describe this dependence.

B. Hardening shifts the area outage rate curves

Overhead power line components such as poles are designed
to withstand their rated wind speed. Hardening upgrades or
reinforces the components. The overall effect of the hardening
is that the same mean outage rate can be achieved at a higher
wind speed; that is, the hardening shifts the outage rate curve
to the right, as shown in Fig. 5.5 For example, replacing poles
rated for 60 mph wind with poles rated at (60+x) mph for a
positive x value would shift the outage rate curve F (v) right
by x mph so that the new outage rate curve is Fnew(v) =
F (v−x). Since the mean outage rate generally increases with
wind speed, Fnew(v) < F (v) so that the hardening reduces
the mean outage rate at wind speed v. This reduction in the
outage rate is implemented with sampling in section VII. In
the case of the exponential area outage rate curve (1), the
reduction in outage rate takes the simple form of multiplying
the outage rate by the same factor e−bx at all wind speeds:

Fnew(v) = F (v − x) = aeb(v−x) = F (v)e−bx (2)

We also note that for the exponential outage rate curve, the
right shift is equivalent to the alternative modeling of reducing
all the outage rates by the same factor.

C. Comparing area outage rate curves and fragility curves

Fragility curves for wind describe the probability of com-
ponent failure or failure per kilometer of line as a function
of wind speed [27], [28], [30]. Area outage rate curves have
some similarities and differences with fragility curves, so it is
interesting to compare them. Area outage rate curves give the
mean outage rate of an area as a function of the measurement
of wind speed at a particular weather station, whereas fragility
curves give the probability of failure of a component as a

5A right-shift is also used to model the failure rate data for hardened
transmission structures in Richard Brown’s report [35, Figs. 5-4 and 5-5].
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Fig. 5. Comparison of original and shifted area outage rate curve of area 2
after 1 mph hardening to wind hazard.

function of the wind speed (at least conceptually) at that
component. The wind speed at any given component in the
area is correlated with, but different than the wind speed at
any particular weather station. The area contains many types of
components that can cause an outage (poles, lines, insulators,
etc.), and these components can also differ in manufacturer,
age, elevation, topography, local environment, tree cover, and
condition and are subject to different wind conditions. Since
the area outage rate curve is directly obtained from historical
data, it incorporates all these types and variations, and de-
scribes the aggregated response of the area in terms of outages
with respect to the wind speed at the particular weather station.
One notable difference is in the use of the two curves: area
outage rate curves bypass any component modeling to directly
describe the aggregated resilience of the entire distribution
system area with respect to a particular wind measurement,
whereas fragility curves are used in models of components to
design that component or to compute the resilience of many
similar components. Indeed, it is not appropriate to directly
substitute an area outage rate curve for a component fragility
curve in models.

V. CONSTRUCTING AREA OUTAGE RATE CURVES

This section explains how to align and process the outage
and wind data to construct the area outage rate curves.

Since the outage times are recorded to the nearest minute
and the wind speeds are recorded hourly6, we need to in-
terpolate the wind speeds. Let V (t) be the piecewise linear
interpolation of the wind data as shown in Fig. 6.

The wind speed as a function of time t can be rounded7 to
the nearest integer wind speed in miles per hour to obtain the
integer wind speed function

V̂ (t) = round(V (t)) (3)

6Eighteen outages with a time difference of more than 201 minutes and low
wind speeds are omitted from further analysis. Some of the wind speed data
is at 15-minute or more than one-hour intervals. The time zone convention of
each wind station should be checked, since their use of daylight savings time
can vary.

7We use statistician’s rounding that rounds the borderline cases to the
nearest even integer.
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Fig. 6. Piecewise linear interpolation V (t) of hourly wind speed data. Red
dots represent the wind speeds at each hour and the blue lines represent the
interpolated wind speeds.
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Fig. 7. Wind speed V̂ (t) that is rounded to the nearest integer wind speed.

as shown in Fig. 7. For a given integer wind speed v̂,

V̂ −1(v̂) = {t | V̂ (t) = v̂} (4)

is all the times for which the wind speed rounds to v̂. V̂ −1(v̂)
is a set of time intervals. The total time in V̂ −1(v̂) is the sum
of the durations of all the time intervals. Then the empirical
mean outage rate at integer wind speed v̂ is

F
empirical

(v̂) =
number of outages occurring in V̂ −1(v̂)

total time in V̂ −1(v̂)
(5)

Evaluating F
empirical

using (5) at integer wind speeds v̂ gives
the empirical mean outage rates shown as dots in Figs. 3 and
4.

VI. EVENTS, PROCESSES AND RESILIENCE METRICS

A necessary step in the data processing groups outages into
resilience events and then calculates several metrics for each
event. The particular metrics we use are among the typical
resilience metrics proposed and explained in references such
as [36], [37], allowing for the observation that in real data the
theoretically successive phases of resilience usually overlap
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[23]. The focus on events, particularly the larger ones, and the
metrics for events instead of average performance over a year
make this a resilience analysis.

To define the resilience events and automatically extract
them from the distribution system data we use the method
in [23], [38]. The start of an event is defined by an initial
outage that occurs when all components are operational, and
the end of the same event is defined by the first subsequent
time when all the components are restored. We write n for the
number of outages in an event. If we write o1 for the start time
of the first outage and rn for the time of the last restore, then
the event occurs over the time interval [o1, rn]. Two example
events are shown in Fig. 8.

P(t) P(t)

o1 r1 o1
o2 o3

r1
r2

r3

Number of
outages

Time t

-3

-2

-1

Fig. 8. An event with one outage and an event with 3 outages. Above the
time axis shows each outage start time (open circle) and restore time (dot).
Below the time axis is the performance curve P (t) for each event.

In most of the literature (e.g. [19], [21], [28], [30]), the
events in the power system data are identified based on the
time period in which the weather is intense, but we use a
different approach that identifies events based on the time of
occurrence and restores of outages that detects when outages
overlap [23]. Our approach based on outages does produce
events caused by wind; indeed, almost all large-size events
identified in the studied distribution system are caused by high
wind speeds. An important advantage of our approach is that
it allows analysis of events of all sizes and causes. This will
be very useful in future work quantifying and comparing the
risks of the various causes and sizes of events in distribution
systems. Events also are defined in transmission systems based
on the time of occurrence and restores of outages, and these
events are useful in yielding the statistics of North American
transmission events of a range of sizes and causes [39] and
their typical stochastic models [40], [41].

Performance curves that track in time the negative of the
cumulative number of unrestored outages or customers or other
quantities are routinely used in studies of resilience to track
the progress in time of resilience events [1]–[3], [16], [36].
Accordingly, we define the component performance curve
P (t) as the negative of the cumulative number of unrestored
outages in an event. (P (t) is also the cumulative number of
restores at time t minus the cumulative number of outages at
time t [23].) Component performance curves for two events
are shown in Fig. 8. P (t) decrements by one when there is
an outage and increments by one when there is a restore. In
particular, P (t) is initially zero, the event starts at o1 when
the cumulative number of failures P (t) first decrements from
zero, and ends at rn when P (t) increases to return to zero.
The events group together the successive outages that have
some overlap in duration. Events in our distribution utility
data (2944 total events in area 1 and 3706 in area 2) are of

all sizes, ranging from a single outage that is restored without
involving any other outages to the largest event with more than
100 overlapping outages.

In an event with n outages, we write o1 ≤ o2 ≤ ... ≤ on
for the outage times in the order in which they occur and
r1 ≤ r2 ≤ ... ≤ rn for the restore times in the order in
which they occur.8 The outages happen in the time interval
[o1, on] and the restores happen in the time interval [r1, rn].
In real data the restores typically start before the outages end,
so these time intervals overlap. We write ck for the number
of customers outaged at the kth outage.

The component performance curve P (t) tracking the num-
ber of unrestored outages easily generalizes to a customer per-
formance curve P cust(t) that tracks the number of unrestored
customers: P cust(t) is the negative of the cumulative number
of unrestored customers in an event.

It is now straightforward to give formulas for the resilience
metrics that we evaluate for each event:

• event size = number of outages = n
• outage hours = area under performance curve

= r1 − o1 + r2 − o2 + ...+ rn − on = −
∫ rn
o1

P (t)dt
• event duration = rn − o1
• time to first restore = r1 − o1
• restore duration = rn − r1
• restore rate = n/(rn − r1)
• outage rate = n/(on − o1)
• customers out = c1 + c2 + ...+ cn
• customer hours = area under customer performance curve

= c1(r1 − o1) + c2(r2 − o2) + ... + cn(rn − on)
= −

∫ rn
o1

P cust(t)dt

The two expressions for outage hours, or for customer hours,
are shown to be equal in [41]. Note that dividing the customer
hours for an event by the number of customers gives the
contribution of that event to SAIDI, assuming for the larger
events that major event days are included in SAIDI.

VII. OUTAGE SAMPLING TO GET THE AVERAGE METRICS
FOR REDUCED OUTAGE RATES

This section describes the sampling from the historical
outages to select a reduced number of outages that repre-
sents hardening. The resilience metrics are recalculated for
many such samples and then averaged to find the average
improvements in the metrics. This metric calculation is applied
separately to small, medium, and large events.

Suppose that the mean outage rate F (v) at wind speed v
is calculated from the k outages {e1, ..., ek}. According to
section IV-B, a shift in the area outage rate curve gives the
new outage rate F new(v) at wind speed v. To realize this
reduced outage rate, we randomly sample knew outages from
{e1, ..., ek} where, in general,

knew = round
(
k
F new(v)

F (v)

)
(6)

8Since the restores times r1 ≤ r2 ≤ ... ≤ rn are in the order in which they
occur, they are usually not in the same order as their corresponding outages.
For example, r1 is the restore time of the outage that gets restored first, and
this may or may not be the restore of the outage o1 that occurred first.
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But in our case of exponential outage rate curves, (6) simplifies
using (2) to

knew = round(ke−bx) (7)

At each wind speed, we sample a reduced number of
outages from the historical outages to obtain a new set of
outages that realizes the new area outage rate and the effect of
the hardening. For example, if there are 50 historical outages
at 25 mph wind speed, and the hardening reduces the outage
rate at 25 mph by 10%, then we randomly sample 45 outages
from the 50 outages. This sampling is done for all the wind
speeds. We then calculate the new resilience metrics for the
new set of outages. It is convenient to write M for one of these
resilience metrics, and M

(1)
new for the metric evaluated on the

new set of outages at all wind speeds. The entire sampling
and metric evaluation procedure is then repeated m times to
obtain the new metrics M

(1)
new, M (2)

new, ..., M (m)
new . Finally, the

average new metric is computed as

Mnew =
1

m

m∑
i=1

M (i)
new (8)

An explanation for this procedure is that while the shift in
the outage rate curve determines the new reduced number of
outages knew at each wind speed, it does not determine which
outages are to be omitted when realizing this reduced number
of outages. That is, we do not know which outages at each
wind speed will be removed by the hardening. Therefore, we
compute the average new metric Mnew for random samples
of the reduced number of outages.

One complication is that the sampling can sometimes re-
move outages from an event in such a way that the event
splits into smaller events. This complication is handled with
super events as explained in section X.

For our calculations, the number of repetitions of the
sampling procedure is chosen as m = 2000 to ensure that
the confidence interval Mnew ± 0.01 contains the true value
of the mean metric with probability 99% or greater. m = 2000
is obtained as follows: Since the distributions of the sampled
metrics Mnew are observed to be approximately normal, the
half width d of a 99% confidence interval for the mean Mnew

satisfies

d ≤ t0.005,m−1
s√
m

(9)

where s is the sample standard deviation of the metric sam-
ples and t0.005,m−1 is the 99.5% percentile of the Student-t
distribution with m−1 degrees of freedom. We take d = 0.01
and increase m until (9) is satisfied for each metric.

There is a clear pattern in the data of far more smaller
events and much fewer large events. For example, Fig. 9 shows
the empirical probability distribution of event size for area 1
on a log-log scale. This pattern affects the processing of the
results because if one averages all the results together, the
smaller events will dominate the average. To address this,
and particularly because resilience must have some focus on
the large events, we divide the events into small events (1
or 2 outages), medium events (3 to 15 outages), and large
events (16 or more outages). Area 1 has 2386 small events,

526 medium events, and 32 large events; area 2 has 2845
small events, 773 medium events, and 88 large events. Average
metrics for small, medium, or large events can distinguish the
resilience performance for these different sizes of events, while
still having enough large events to give usable estimates of the
average metrics for large events.
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Fig. 9. Empirical distribution of event size in area 1 (log-log scale)

VIII. REPRESENTING EARLIER OR FASTER RESTORATION

This section represents the effects of improved restoration
by modifying the restore times of the historical data. Recall
that in an event with n outages, we write r1 ≤ r2 ≤ ... ≤ rn
for the restore times in the order in which they occur. The
outage times of the components that are restored in this restore
order are written as oπ(1), oπ(2), ..., oπ(n). The components do
not usually outage in the order in which they are restored, so
the π function permutes the order to account for this.

We represent the improved restoration in two ways. First,
the repair can start earlier by providing more resources for
identifying, locating, and automatically resolving faults; this
includes investing in more sensors, switches, communications,
meters, and reclosers, as well as more crews to inspect the lines
and clear debris. Let the change in start time be specified by
tearlier, then the new restore times for the event are

rnewk = max{rk − tearlier, oπ(k)}, k = 1, ..., n. (10)

Taking the maximum with oπ(k) in (10) limits the new restore
time so that rnewk ≥ oπ(k); restoration of a component must
occur after its outage.

Second, the rate of restoration can be increased and the
restoration duration decreased by investing in more repair
crews, better stocks of spare parts, and better route scheduling.
Let the faster restore duration be specified by multiplying by a
factor cfaster < 1. Then the restore duration of the kth restore
rk − r1 is reduced by a factor of cfaster, as long as the new
restore time occurs after its corresponding outage:

rnewk = max{r1 + (rk − r1)cfaster, oπ(k)}, k = 1, ..., n.
(11)

IX. RESULTS

This section presents a case study of the impacts of hard-
ening and improved restorations on the resilience metrics for
areas 1 and 2 of the distribution system.
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TABLE I
AVERAGE METRICS FOR SMALL, MEDIUM, AND LARGE EVENTS AND THEIR CHANGES WITH HARDENING OR EARLIER OR FASTER RESTORATION

AREA 1
Base Case Events Change with Hardening Change with Earlier Restore Change with Faster Restore

Resilience Metric small medium large small medium large small medium large small medium large
event size 1.22 4.64 78.91 -10.0% -10.0% -10.0% 0% 0% 0% 0% 0% 0%
outage hours 3.06 17.33 2084 -10.0% -10.0% -10.0% -74.8% -58.6% -10.0% -0.6% -5.7% -10.0%
event duration 2.72 8.22 46.62 -8.9% -4.5% -1.2% -68.2% -27.5% -5.5% -0.7% -3.9% -4.4%
time to first restore 2.40 2.97 2.95 -7.6% 1.7% 2.2% -75.9% -65.1% -69.0% 0% 0% 0%
restore duration 0.32 5.25 43.67 -19.0% -10.7% -2.4% -10.0% -6.3% -1.2% -6.2% -6.1% -4.7%
customers out 45.26 257.93 5610 -10.0% -10.0% -9.9% 0% 0% 0% 0% 0% 0%
customer hours 85.88 680.83 95304 -10.0% -10.1% -10.0% -80.5% -68.2% -14.1% -0.5% -5.4% -9.1%

AREA 2
event size 1.25 4.75 62.48 -10.0% -10.0% -10.0% 0% 0% 0% 0% 0% 0%
outage hours 2.71 15.28 1142 -10.0% -10.0% -10.0% -67.8% -51.1% -10.0% -0.5% -4.6% -10.0%
event duration 2.39 7.51 37.67 -8.8% -4.5% -1.3% -61.7% -22.7% -4.8% -0.6% -3.1% -4.0%
time to first restore 2.10 2.66 2.56 -7.4% 1.6% 3.0% -68.6% -56.8% -62.3% 0% 0% 0%
restore duration 0.28 4.85 35.11 -19.0% -10.8% -2.9% -10.5% -3.9% -0.6% -4.8% -4.8% -4.3%
customers out 50.74 242.98 4084 -10.0% -10.1% -10.0% 0% 0% 0% 0% 0% 0%
customer hours 85.51 547.28 58700 -10.0% -10.0% -10.1% -74.0% -61.9% -12.0% -0.3% -4.7% -9.0%

all time quantities in hours small events have 1–2 outages, medium events have 3–15 outages, large events have ≥16 outages

A. Base case resilience metrics

The base case is the historical outages without any mod-
ifications. Table I shows the base case average values of
the resilience metrics for small events (1 or 2 outages),
medium events (3–15 outages), and large events (≥16 out-
ages). Considering the different sizes of events separately and
with some special attention to the large events is needed
for this quantification of resilience, as explained at the end
of section VII. As expected, all the metrics (except time to
first restore) clearly show the increased impact on customers
as the event size increases from small to medium to large.
The average resilience metrics show that area 1 has greater
customer impacts than area 2 for large events.

B. Change in metrics due to hardening

The hardening for each area with respect to wind is rep-
resented by an increased mile-per-hour wind rating, which
gives a percentage reduction in the outage rate (see section
IV-B) that is implemented by sampling a reduced number of
outages (see section VII). For the case study, it is convenient
to consider a hardening that gives a 10% reduction in the
outage rate for both areas. This 10% reduction in outage
rate corresponds to 0.28 mph wind hardening for area 1 and
0.22 mph wind hardening for area 2. The 10% reduction in
outage rate is implemented by sampling 10% fewer outages,
so that the hardening reduces the average event size (number
of outages) by exactly 10%, as confirmed in Table I. The
hardening also reduces the average outage hours by exactly
10%. This result follows from a resilience metric formula in
[41].9

Table I shows that the hardening decreases the customers
out and customer hours by approximately 10% for events of

9For each event, [41, (17)] gives outage hours = nρ = n
(
1
n

∑n
k=1 ρk

)
,

which is the number of outages n times the average component restore time
ρ in the event. Averaging over all the samples with n reduced by 10% leaves
the expectation of the average of ρ over all the samples equal to ρ. Therefore
the average outage hours reduces by exactly 10%.

all sizes in both areas. However, the reductions in the average
duration metrics are less than 10%, except for the restore
duration of small events. When we sample the reduced number
of outages, one or more outages get removed from events
randomly. Depending on exactly which outage is removed,
the event duration and restore duration metrics either decrease
or remain the same. The restore duration of small-size events
reduces by more than 10% because the restore duration drops
to zero when an outage is randomly removed for an event
having only two outages. Removing an outage has a larger
percentage impact on durations in a small event than in a large
event, so the average decrease is smaller for large events. In
particular, it is notable that the hardening which gives close
to a 10% average reduction in customer hours reduces the
average event duration for large events by less than 2%.

Table I shows that time to first restore can increase or
decrease when outages are removed from an event. This is
because time to first restore is the time difference between the
first outage and the first restored outage. For example, if the
sampling retains the first outage but removes the first restored
outage, the time to first restore can increase. If the sampling
removes the first outage but retains the first restored outage, the
time to first restore can decrease. And if the first outage is the
same outage as the first restored outage, and the sampling re-
moves that outage, then time to first restore can increase or de-
crease. Time to first restore is the only metric that can increase
after sampling removes outages; all the other metrics can only
decrease or remain the same when outages are removed. A de-
tailed discussion along with the probability of change in each
metric due to outages removed by sampling is given in [7].

C. Change in metrics due to earlier or faster restoration

Table I also presents the change in metrics for the two
types of improved restoration. The earlier restoration time is
specified by the shortening time tearlier in (10), and the faster
restoration is specified by the improvement factor cfaster in
(11). It is convenient in order to facilitate comparisons to select



9

tearlier and cfaster for each area so that the average outage
hours for large events decrease by exactly 10%. In particular,
we select tearlier = 2.84 hour and cfaster = 0.9385 for area 1
and tearlier = 1.92 hour and cfaster = 0.9522 for area 2.

The earlier and faster restorations do not remove any
outages, so the event size and customers out metrics stay the
same.

The earlier restoration in (10) reduces restoration times
by tearlier, but with a limitation so that restoration of each
component does not occur before it outages. This limitation for
some restores causes the average time to first restore to reduce
but by less than tearlier. For large events, the average time to
first restore reduces from 2.95 hrs to 0.92 hrs and from 2.56
hrs to 0.96 hrs in area 1 and area 2, respectively. In the absence
of the limitation in (10), all restoration times are reduced by
tearlier and the restore duration stays the same. However, the
limitation affects some of these restorations, which can include
the first and last restoration of an event, resulting in the average
restore duration decreasing.

The faster restoration in (11) speeds up the restoration by
the factor cfaster over the duration of the restoration, but with
a limitation so that restoration of each component does not
occur before it outages. In the absence of the limitation in
(11), the restore duration would decrease by 6.2% and 4.8%
corresponding to the cfaster values for area 1 and area 2,
but we see in Table I less decrease in some of the mean
restore durations due to the limitation. The time to the first
restore is unaffected by the faster restoration. The change in
the average customer hours quite closely follows the change
in the average outage hours. The faster restoration affects the
small events differently because they have only one or two
outages. The events with only one outage remain unchanged
as their restore duration is zero. Also, a large number of two-
outage events have zero restore duration when both outages are
restored at the same time. Therefore, those small events also
remain unchanged. Consequently, only a small proportion of
small events see improvements due to faster restoration, which
explains the very small changes in the average metrics other
than restore duration.

D. Comparing hardening and improved restoration

Two overall options are available for power system re-
silience investments. One is to invest in hardening and the
other is to invest in improved restoration. Hardening invests in
infrastructure, whereas improved restoration invests in crews,
their resources, and automated actions. Our results confirm
the general observation that hardening reduces the event size
(number of outages) while affecting event durations less,
whereas improved restorations decrease the outage durations
but do not affect the event size.

The results in table I show that a hardening decreasing
outage hours and event size by 10% also decreases customer
hours and customers out by approximately 10%, irrespective
of small, medium or large events. The customer hours are
particularly important in assessing the impact of power outages
on consumers. On the other hand, the improved restorations
to achieve a 10% reduction in the mean outage hours for large

events also provide almost the same percentage decrease in
customer hours. However, unlike hardening, the event size and
customers out remain unchanged. So the customers would still
face power outages but get restored more quickly.

All these results show how different overall investments
would have changed the various resilience metrics and cus-
tomer impacts. This quantifies the various benefits that the
investments would have made to the utility and its customers.

X. SAMPLING AND SUPER EVENTS

Since the sampling removes outages, the remaining outages
that were in the same event before sampling may not all be
overlapping after sampling and so can sometimes split into two
or more events. We call the set of events arising after sampling
in this way from one event before sampling a “super event”,
and this section explains super events. For example, consider
the timeline plot of a typical event E = {e1, e2, e3, e4, e5, e6,
e7, e8, e9} with 9 outages before sampling as shown in Fig. 10.
If the sampling removes e1, then the remaining outages still
form one event and the super event is {{e2, e3, e4, e5, e6, e7,
e8, e9}}. However, if the sampling removes e4 and e5 then
the remaining outages form two events since the system is
fully restored when outage e3 is restored and the super event
is {{e1, e2, e3}, {e6, e7, e8, e9}}.

The changes in the sizes and numbers of events due to
sampling cause problems when the metrics of events before
and after sampling are compared: Basic to the analysis is
the classification of events by size based on their number of
outages, and the variable reduction in event size, and espe-
cially events splitting into multiple smaller events, interferes
with tracking the effect of the sampling on event metrics
and disrupts the effect of the sampling on the categories of
small, medium, and large events, since the events can change
categories after sampling. These problems are resolved by
keeping track of all the events arising after sampling from
one event before sampling in a super event, and appropriately
defining the metric of a super event as follows:

Consider a metric M that can be evaluated on an event E
as M [E], and a super event {E1, E2, ..., Ep} that has events
E1, E2, ..., Ep after sampling. Then, for the metrics event size
(number of outages), outage hours, restore duration, number
of customers out, and customer hours, we define the metric
evaluated on the super event as

M [{E1, E2, ..., Ep}] = M [E1] +M [E2] + ...+M [Ep]

and for the metrics restore rate, outage rate, and time to first
restore, we replace summation by the average to define

M [{E1, E2, ..., Ep}] = 1
p (M [E1] +M [E2] + ...+M [Ep])

Events with only one outage can disappear if that outage is
removed by sampling. In this case, the super event is the empty
set { } and all the metrics evaluate to zero.

XI. COMPARING HISTORICAL DATA AND MODEL-BASED
APPROACHES

The new approach towards quantifying wind resilience
investment based on “rerunning history” with the changes
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Fig. 10. Timeline plot of a medium-sized resilience event with 9 overlapping
outages shown by line segments. For each line segment, the open circle is the
outage start time and the dot is the outage restore time.

to outages and restores caused by the investment can be
compared with approaches based on models or models and
data to predict the future effect of the investments. This is
necessarily a preliminary overall comparison, because while
hundreds of papers have explored aspects of prediction with
models, this seems to be the first paper outlining the historical
approach, and so its full potential and limitations are not
yet explored. Moreover, many of the model-based approaches
have legitimately different objectives than this paper, including
modeling only some of the processes, such as modeling only
the weather impact on the power grid, modeling and optimiz-
ing only the restoration process, analyzing specific hurricanes,
or optimizing an operational response to a specific severe
weather forecast. There is no strict dividing line between
model-based and data approaches because machine learning
models are data-intensive, and physically based models use
data for parameter values, calibration, and validation.

Weather shows considerable variability in space and time. A
historical approach assumes the weather that previously hap-
pened, which has similarities to future weather but is not the
same as future weather, whereas predicting the future weather
can look at specific likely cases, but there is substantial
uncertainty in its predictions. The historical approach records
the actual response of the power system to the experienced
weather, and it is feasible to estimate the overall changes
in outages and restores that would have been caused by the
investment. The historical approach accounts for combined
effect of all the detailed differences in the individual power
system components and their individual weather conditions,
as well as all the changes (both planned and unexpected)
in the power system and its operation and maintenance over
the historical period. A model-based approach must make
many assumptions approximating the power system and its
response to weather. The representative physical models of
power system components used in the model-based approach
to estimate component fragility can be calibrated and validated
with data. Given specific simulated outages and a standard
detailed specification of the power system including its protec-
tion, it is relatively straightforward to compute the customers
disconnected. The restoration is harder to model, but it can be
done. However, there is uncertainty in the simulated outages
due to the uncertainties in the weather, and in realizing the
fragility curves, and in restoration so that the simulation of all
these processes must be run many times to produce samples of
the outages and restores. That is, the model-based approach is
computationally expensive, whereas the computations for the

historically-based method are easy and quick. The computation
of resilience metrics from the historical or simulated events is
straightforward in both approaches.

The model-based approach has the advantage that the pro-
posed investment can be more directly expressed in the model,
whereas the historical data approach needs to estimate the
effect of the investment on outages and restores. Detailed
engineering is needed to make this estimate, but utilities do
this sort of detailed engineering routinely, and the estimate
can be made using engineering experience, data from previous
investments, or a model.

The historical data approach has a specific, realistic, and
easily understood assumption of the past history. That is, the
historical data approach is based on how the power system,
with all of its complexity and changes, actually responded to
the wind stress that occurred and then evaluates the effects that
the investment would have had. Building and running validated
models for weather and power system outages and restoration
requires far greater effort, but the investments can be expressed
in the model more directly and more flexibly. The models can
choose their assumptions and approximations about the future,
but have to handle the uncertainties of prediction. Justifying a
proposed investment to stakeholders by looking back at what
its effect would have been and by predicting its future effects
are clearly complementary, and both can be pursued.

XII. CONCLUSIONS

This paper combines historical outage and weather data to
construct area outage rate curves to quantify the resilience
of areas of a distribution system to wind. An investment
hardening the distribution system would have shifted the area
outage rate curves and reduced the outage rates, and the
effect of this on resilience metrics is quantified by sampling a
reduced number of the historical outages and recalculating the
resilience metrics. The effect of an improvement in restoration
times is also quantified by advancing or speeding up the his-
torical restoration and recalculating the metrics. The resilience
metrics include the event size (number of outages), durations,
rates, and customer hours evaluated on resilience events of dif-
ferent sizes. These data-driven calculations quantify the impact
on customers that previous investments would have had.

Overall, we initiate a new approach towards resilience
quantification. Specific contributions and attributes of this new
approach are:

• Quantifying the impact on customers that a resilience
investment would have made in the past gives a novel
and credible way to justify the benefits of the invest-
ment that can be tangible to utilities, communities, and
regulators, because it clearly shows how the lived past
experience of customers would have been improved. This
is significant since effective ways to justify resilience
investments to stakeholders are essential for practically
implementing resilience. Quantifying the effect that the
investment would have made in the past complements and
augments justifications for resilience investments that rely
on projections into the future with models.



11

• Modifying historical data is an entirely new way to
quantify resilience and resilience investments that cal-
culates the changes in standard resilience metrics from
the effects that the investments would have had. This
approach directly driven by data has clear advantages
in realism in accounting for all the conditions that the
power system experienced over the period of observation,
including variations in space and time in weather, load,
upgrades, operating procedures and restoration policies,
and component design, location, conditions and mainte-
nance. No modeling assumptions are made.

• We construct area outage rate curves that quantify the
wind resilience of an area of a distribution system directly
from data by describing how the mean outage rate of the
area increases as a specific nearby wind measurement
increases. The area outage rate curves have a similar form
as component fragility curves, but describe the empirical
aggregate area response in terms of outages rather than
the response to wind experienced at specific components
of the distribution system. Area outage rate curves rework
the concept of fragility curves for a different purpose.

• The overall effect of resilience investments are simply
represented by an earlier or faster restoration or by a
hardening that increases resilience to wind by a given
number of miles per hour. This enables a novel and
credible comparison of investment in hardening versus
investment in better restoration in terms of customer
impact. The hardening is implemented on the historical
outages in a novel way: The outage rate curve is shifted
by the hardening to determine the reduced number of
outages at each wind speed. Then the reduced number of
the outages are sampled from the historical outages and
the improved metrics are calculated. Repeating this many
times and averaging gives the expected improvement in
the metrics. The effect of the improved restoration is
implemented by changing the historical restoration times
to start earlier or to be completed faster.

• The technical aspects of the calculations include:
(a) the segregation of resilience events into small,
medium, and large events to get a meaningful assessment
of the resilience of events of different sizes with metrics,
(b) the new concept of super events to track the metrics
of events that split into smaller events when outages are
removed, and
(c) leveraging recent work [23] that automatically extracts
events of all sizes from utility outage data and calculates
a range of metrics for each event.

• The method is limited to a net reduction in historical
outages; it does not synthesize additional new outages.
Note that this limitation does not rule out the incorpo-
ration of all future effects. For example, the effect of a
future increase in the average wind speed can still be
represented, as long as it is offset by sufficient hardening
so that the net outage rate decreases. Also the effect of a
percentage increase in the rate of events is straightforward
to evaluate because the metrics per event are unchanged,
and any metrics that accumulate over a time period
increase by the same percentage. The feasibility of these

extensions is significant since wind speeds and storm
frequencies are expected to increase with climate change.

• Many standard definitions of resilience, such as [5], focus
exclusively on high-impact, low-frequency events. How-
ever, consider the following reason to extend the scope of
methods for quantifying resilience investments to all sizes
of events: A resilience investment will generally change
the probability of events of all sizes, and to properly
assess the benefits of the investment we need to quantify
its benefits for all event sizes. One simple way to do this
and easily communicate the results divides the events into
small, medium, and large events, and assesses the change
in resilience metrics for the small events, the medium
events, and the large events.

• Investments in the power system result in specific hard-
ening and/or restoration improvements in specific parts
of the system. This paper models the overall effect
of improvements by changes in outages and restores
and then quantifies the impacts on resilience metrics of
these overall improvements. However, description of the
specific hardening/restoration improvements, their cost,
and estimation of the change in outages and restores from
the specific projects are not done in this paper due to
the unavailability of the relevant feeder and cost data.
We hope to find suitable outage, feeder, weather, and
cost information for a different distribution system so that
we can address this aspect in future work. We note that
utilities already have extensive experience in proposing,
costing, and estimating the impact of projects.

• The outage data and weather data required to use this ap-
proach are easily available to any distribution utility with
an outage management system, and the computations are
relatively straightforward and fast.

There is promising scope for extending the methods of
this paper in future work: Other wind data could be tested
and evaluated. Other hazards such as flood or icing could
be considered and outage cause code information could be
related to the hazards and leveraged. Detailed model-based
approaches could be used to directly link specific engineering
improvements to the overall changes in hardening and faster
restoration that model the investments in this paper. If cost
estimates and probability estimates of rarer events can be
improved, then the risk and improvements to risk could be
quantified.

This paper has established the feasibility and useful char-
acteristics of a new approach to quantifying resilience and the
benefits of investments in resilience from historical data, and
we are confident that further developments can follow.
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