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Abstract—It is challenging to simulate the cascading line
outages that can follow initial damage to the electric power
transmission system from extreme events. Instead of model-
based simulation, we propose using a Markovian influence graph
driven by historical utility data to sample the cascades. The
sampling method encompasses the rare, large cascades that
contribute greatly to the blackout risk. This suggested new
approach contributes a high-level simulation of cascading line
outages that is driven by standard utility data.

I. INTRODUCTION

Historical transmission line outage data that is routinely
collected by utilities can be processed and grouped into
cascades of outages [1]. These processed cascades are the
observational bedrock for the study of cascading failure, since
they occurred in practice. However, if one assumes some
initial outages and seeks to predict the probabilistic extent
of further cascading, ranging from no further outages to
blackouts, the historical cascades are limiting: the particular
initial outages may not occur in the historical cascades, and
even if they do occur once or twice, it is only one or two
samples of the possible cascading outcomes. To address this
problem, we propose using the Markovian influence graph to
describe the statistics of the historical outage data, and then
sample from the Markovian influence graph to simulate the
consequences of some assumed initial outages. This gives a
high-level and flexible statistical model of cascading that can
be driven by standard utility data. In suggesting this approach,
we are motivated by the resilience problem of estimating the
cascading that can follow damage to the power transmission
system in an extreme event [2]–[4].

Extreme events such as storm, fire, or earthquake can
damage multiple power system components. Then further
power system components can outage in a cascade. Usually the
cascading only outages components without damaging them,
but the cascading does make the blackout more widespread and
impactful, and can seriously hinder the subsequent recovery
from the event. There is considerable expertise modeling
probabilistic power system component failure under extreme
conditions of wind, flooding, icing, earthquake and fire. How-
ever, the cascading phase of resilience is much less well
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characterized. Given the initially damaged components, one
can simulate the cascading using a model-based simulation.
While useful, simulation only captures a limited subset of
approximated cascading mechanisms. The alternative that we
suggest and explore in this paper uses a Markovian influence
graph driven by historical utility data to generate samples of
the cascaded transmission lines. Throughout the paper we are
interested in properly sampling from the largest cascades since
these dominate the risk [5], because straightforward sampling
does not work well for the larger cascades.

There is a large literature on model-based simulation of cas-
cading (reviewed in [6], [7]), and substantial literature on influ-
ence or interaction graphs and fault chains driven by simulated
data (reviewed in [8], [9]). To our knowledge, the only previ-
ous work on influence graphs driven by real data is [8], [10].

The need for higher-level statistical simulation of cascading
arose from broader studies of the multiple phases of resilience.
For example, Romero [2] optimized investments to improve
resilience to earthquakes, and discussed but did not model
the cascading phase of resilience. Recently Kelly-Gorham
[3], [4] proposed a high-level statistical method driven
largely by observed statistics called CRISP to quantify power
transmission system overall resilience in all its phases. CRISP
models the cascading phase of resilience by sampling from a
probability distribution of the total number of lines out based
on historical data. Then, in [4], given the number of lines out,
the lines outaged in a cascade are chosen in accordance with
an observed probability distribution [11] of network distance
between cascaded line outages.

In this paper, given the initial outages, we aim to more
accurately capture the spatial and interdependence statistics
of which lines outage by simulating the recently developed
Markovian influence graph driven by utility data. We also
discuss possibilities for determining the load shed from the
samples of cascaded lines and hence the risk of a widespread
blackout caused by the extreme event and the cascading.

II. HISTORICAL DATA AND INFLUENCE GRAPH

This section summarizes the historical outage data and the
Markovian influence graph used in this paper; all detail is
referred to [8], [11].

Detailed transmission line outage data are routinely col-
lected by utilities worldwide, such as in North America’s
Transmission Availability Data System (TADS). Here, as an
illustration, we use some publicly available historical line
outage data [12] recorded over fourteen years by a utility in
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the WECC interconnection of the USA. The data includes the
forced line outages, names of the outaged lines, and their start
time to the nearest minute. There are 10942 forced outages
and over 500 different transmission lines outaging in the data
with rated voltages ranging from 69 kV to 500 kV.

The line outages in the historical utility data are grouped
into cascades and then divided into generations in each cascade
using a simple method based on the outage timing that is
described in [11]. This data processing combines into 6687
cascades a variety of dependent outages, including the initi-
ating outages, cascading interactions within the network, and
outages occurring in faster succession with a common cause
such as bad weather. Thus the extreme conditions of interest
in this paper are included in the data and its processing.

The cascades of outages divided into generations are then
processed to form the Markovian influence graph. The Marko-
vian influence graph is a Markov chain with discrete time steps
and a discrete state space. Each new time step corresponds
to a new generation of cascading. Each observed line outage
(or a set of line outages that occur nearly simultaneously)
forms a state of the Markov chain, and statistics of the
pairwise interaction of states in successive generations are
extracted. For example, given a specific line outage in a
cascade generation, the probabilities of transition to other
specific line outages in the next generation of the cascade
are estimated from the transitions that occurred in the data.
That is, the estimated transition probabilities represent the
influence between successive line outages. At each state, there
is a probability of the cascade stopping, which is represented
as a transition to a special state with no line outages that
is indicated by the empty set of outages {}. After the first
transition to {}, the influence graph remains stopped at {} for
all subsequent generations.

A simple 3-line toy example of forming the Markovian
influence graph from outage data is shown in Figure 1.
The Markov chain indicated by the influence graph at the
bottom of Figure 1, models the statistics of outage data at
the top of Figure 1. This example uses a constant transition
matrix for ease of illustration, but the practical Markovian
influence graph has varying transition matrices for different
generations. This is because the transitions vary, especially
between the first transition and subsequent transitions and
because particular care is taken in forming the influence graph
that the overall stopping probabilities at each generation match
those in the data. The formation of the influence graph is
somewhat intricate [8] and is designed to leverage the sparse
data as much as feasible, particularly for the higher cascade
generations that are rarer in the observed data.

The Markovian influence graph resulting from the historical
outage data is a Markov chain with 1094 states. 543 of the
states are single line outages, and the rest of the states have
several line outages that occurred nearly simultaneously.

The Markovian influence graph in [8] exploits the asymp-
totic properties of the Markov chain to find the transmission
lines most involved in large blackouts. In this paper we sample
from the Markov chain to find cascades consistent with the

assumed initial failures and the statistics of how cascades
spread on the network.
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Fig. 1. The influence graph (bottom graph) formed from the line outage data
(top table) for a 3-line system. Reproduced from [8] under CC BY 4.0 license.

III. SAMPLING CASCADES WITH THE INFLUENCE GRAPH

Let Y0 be the set of initially failed lines that are damaged
by the extreme event. We express Y0 as a disjoint union of m
Markov chain states:

Y0 = x
(1)
0 ∪ x

(2)
0 ∪ ... ∪ x

(m)
0 (1)

Consider the state x
(r)
0 in Y0 with 1 ≤ r ≤ m. Let the

rth Markov chain starting from state x
(r)
0 but subsequently

avoiding any initially failed states be X(r)
0 , X

(r)
1 , .... That is,

P[X
(r)
0 = x

(r)
0 ] = 1 and P[X

(r)
k ∈ Y0] = 0 for k > 0. (The

transition matrix for the Markov chain X(r)
0 , X

(r)
1 , ... is easily

obtained by preventing transitions to states in Y0 by deleting
the columns of the transition matrix corresponding to states in
Y0 and renormalizing.)

We write |x| for the number of line outages in state x. The
number of lines out in the rth chain is

N (r) =

∞∑
k=0

|X(r)
k | (2)

and the total number of lines out is

N =

m∑
r=1

N (r) (3)

Note that (2) and (3) neglect any repeats of lines out within
or between chains.

A. Simulating the influence graph

We first describe a straightforward but inferior way to
do the simulation. For the rth chain we need to simulate
X

(r)
0 , X

(r)
1 , ... from its starting state x(r)0 until it stops. That

is, the simulation produces a series of states x(r)0 , x
(r)
1 , x

(r)
2 , ...

until it stops by transitioning to the empty state { }. Suppose
state x

(r)
j is produced at step j. Then the next state is



produced as follows: Let e(r)j be the row vector with a one
at the index of state x(r)j and zeros elsewhere. Let Pk be the
transition matrix from generation k to k + 1. Then e(r)j Pk is
a probability distribution over the states not in Y0

1. Sample
from this probability distribution to obtain the state x(r)k+1. Thus
x
(r)
0 , x

(r)
1 , x

(r)
2 , ... are produced.

The problem with this straightforward way to do the simu-
lation is that it will mainly sample the frequent short cascades
with few line outages, so that a huge number of samples is
needed to accurately estimate the longer cascades. An advan-
tage of the influence graph is that it can be easily modified
to sample more uniformly over the range of the possible
cascades by manipulating the cascade stopping probabilities.
Instead of allowing chains to stop by themselves, the stopping
is inhibited until a maximum number of cascade generations
gmax is simulated, and then the chain stops. At each generation
before gmax, the line outages are recorded, and, although the
chain does not stop, the probability that the state would have
stopped is recorded. This gives many samples of the number
of line outages for each of the generations 0, 1, 2, .., gmax, and
these samples range from a small to a large number of line
outages. And the probability of stopping at each intermediate
length cascade can be calculated.

We now give the details of this improved simulation.
Suppose the rth chain is simulated and is at state x

(r)
k at

generation k < gmax. When the simulation samples from
the probability distribution to obtain the next state x

(r)
k+1, it

is easy to prohibit the choice x
(r)
k+1 = { } that would stop

the chain. (This is equivalent to zeroing the probability of
transition to { } and renormalizing the probabilities of the
other transitions.) It is also straightforward to record x

(r)
k

(which contains the lines outaged in generation k), and the
probability σ(r)

k = P[transition from x
(r)
k to { }] that the chain

stops when the state is x
(r)
k . σ(r)

k is the entry in the first
column of the transition matrix Pk corresponding to x(r)k . The
probability that the rth chain has exactly k generations is

q
(r)
k = (1− σ(r)

0 )(1− σ(r)
1 )...(1− σ(r)

k−1)σ
(r)
k (4)

More precisely, we have simulated (realized) one particular
sequence of states x(r)1 , x

(r)
2 , ..., x

(r)
k that avoid stopping. Now,

conditioned on the states that do happen occurring in this
sequence, we compute in the Markov chain that does not avoid
stopping the probability of stopping at generation k with (4).

We indicate the first simulation of the rth chain by the
superscript (r; 1). We perform the first simulation of the rth
chain up to generation gmax and extract results for each
generation k ≤ gmax. For generation k, the total number of
lines out is

n
(r;1)
k =

k∑
j=0

|x(r;1)j | (5)

1During the simulation, however, we allow lines not in Y0 to outage again
in successive generations except the next generation.

and the probability of n
(r;1)
k lines out is equal to q

(r;1)
k ,

since the number of lines out increases at each non-stopping
generation. Repeating the simulation of the rth chain t

times for the same initial state x(r)0 gives different sequences
x
(r;s)
0 , x

(r;s)
1 , x

(r;s)
2 , ... for s = 1, 2, , ..., t, generating many

samples of the number of line outages n(r;s)k and their proba-
bilities q(r;s)k for s = 1, 2, ..., t and k = 0, 1, ..., gmax. All these
results are combined to give the distribution of the number of
line outages N (r) in the simulations of the rth chain:

P[N (r) = v] =
1

t

gmax∑
k=0

t∑
s=1

I[n
(r;s)
k = v]q

(r;s)
k (6)

where the indicator function I[·] limits the sums in (6) to the
results giving v line outages. Thus (6) is the average of all the
probabilities corresponding to the t possible occurrences of v
line outages in the simulations of the rth chain.

Then, according to (3) and assuming the chains are indepen-
dent, we evaluate the distribution of the total number of lines
out N by convolving the distributions N (1), N (2), ..., N (m).
The convolution is done by multiplying probability generating
functions:

E[zN ] = E[z(
∑m
r=1N

(r))] =

m∏
r=1

E[zN
(r)

] (7)

The coefficient of zv in E[zN ] is the probability P[N = v].

IV. PROBABILITY DISTRIBUTION OF LOAD SHED

The load shedding of a cascade is denoted as L. We want
to estimate fL, the probability distribution of load shed. We
do this by conditioning on the number of line outages.

The number of line outages N ranges from `0 to `max,
where `0 = number of lines in Y0. We partition the range of
N into K disjoint bins B1, B2, ..., BK so that

{`0, `0 + 1, `0 + 2, ..., `max} = B1 ∪B2 ∪ .... ∪BK (8)

We use the following subsections to obtain fL|N∈Bκ the distri-
bution of the load shed given that the number of lines out are
in bin Bκ. The bins (8) are chosen large enough so that there is
sufficient data in each bin to be able to approximate fL|N∈Bκ .

From the distribution of N provided in section III, we can
easily evaluate the bin probabilities:

bκ = P[N ∈ Bκ] =
∑
v∈Bκ

P[N = v] (9)

The idea is to evaluate the distribution of load shed fL by
conditioning on the number of lines in the bins:

fL =

K∑
κ=1

bκfL|N∈Bκ (10)

We now use the OPA simulation to approximate fL|N∈Bκ .



A. Load shed given the number of lines out

Given that the number of lines N outaged after cascading
are in bin Bκ, we want to obtain the distribution of load
shed fL|N∈Bκ . We use a probability distribution of load shed
because we are trying to estimate the risk of a future extreme
event, and the power system loading condition, generator dis-
patch and maintenance status for a future event are uncertain
and variable. This variability will produces different load sheds
for the same line outages, or the same number of line outages.

The OPA model [13]–[16] has been validated to approx-
imate well the observed bulk statistics of blackouts of the
WECC [17], [18]. Here, noting that our historical data is from
part of WECC, we use OPA results on a 1553 bus model
of WECC to generate the conditional distributions of load
shed fL|N∈Bκ , κ = 1, 2, 3, ..., 12. Note that OPA is a long-
term simulation that samples from a variety of grid loading
conditions. The OPA results consist of 58 903 cascades. Each
cascade yields the load shed and the number of lines out.

The OPA results are easily sorted into the bins
B1, B2, ..., B12 according to the number of lines outaged in
each cascade. Bin Bκ has κ line outages for 1 ≤ κ ≤ 11,
and bin B12 has 12 or more line outages. Each bin has at
least 83 data points. The empirical distribution for load shed
in bin Bκ is fit with the lognormal distribution fL|N∈Bκ .
Figure 2 shows three of these fits. The data points that have
a fraction of load shed less than 0.01 are excluded. The mean
µ and standard deviation σ of the lognormal distributions for
the 12 bins are shown in Table I. The mean and standard
deviation increase as the number of line outages in cascades
increase, as expected. Moreover, the Kolmogorov-Smirnov test
for each bin’s fitting has a p-value at least 0.1, so these fits
are statistically significant.
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Fig. 2. The survival functions of the distribution of fraction of load shed for
cascades with 1, 7, or 11 line outages.

V. RESULTS

A. Simulation of line outages

We use the improved sampling of section III-A to sample
cascades from the Markovian influence graph formed from the
utility data in section II. Specifically, starting with assumed 3

TABLE I
PARAMETERS OF THE LOGNORMAL DISTRIBUTIONS OF THE LOAD SHED

GIVEN THE NUMBER OF LINE OUTAGES IN THE κTH BIN

κ 1 2 3 4 5 6 7 8 9 10 11 12
µ -4.29 -4.26 -4.27 -4.22 -4.21 -4.18 -4.12 -4.18 -4.05 -3.99 -3.89 -3.75
σ 0.19 0.22 0.23 0.26 0.30 0.32 0.33 0.31 0.32 0.33 0.41 0.42

initial outages, we simulate 100 cascades up to gmax = 100
generations. Since the simulation also records data for each
cascade stopping at any generation before 100 generations,
this is equivalent to simulating 10 000 cascades, in which 100
cascades have 1 generation, 100 have 2 generations, and so on.

To contrast the improved sampling with straightforward
sampling, we also simulate 10 000 cascades with the same
initial outages using the straightforward sampling method of
simply simulating until the cascade stops, with no special
control of the stopping. The two simulations have close
execution times. Figure 3 shows that the survival functions
match except for some variability in the tail due to limited
samples from the straightforward sampling. With the same
simulation time, the improved sampling has two benefits: it has
smaller standard deviations and generates more large cascade
samples. For example, the standard deviation of the probability
that cascades have more than 30 line outages is 0.00004 for
improved sampling, and 0.0004 for straightforward sampling.
As the number of line outages increases, this advantage is
even more significant. The straightforward sampling focuses
on the small cascades and does not sample enough large
cascades to accurately estimate the large cascades. In contrast,
the improved sampling samples uniformly across a full range
of cascade sizes to better estimate a longer tail. The Marko-
vian influence graph flexibly allows this improved sampling,
addressing the straightforward sampling problem common in
the literature of inherently undersampling large cascades.

Although in this paper we only estimate the distribution
of the number of lines out, there is a wealth of detailed
information in the simulated cascades that could be useful.
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Fig. 3. The survival function of the number of line outages N given 3 initial
outages using the improved sampling (red crosses) and the straightforward
sampling (black dots).



B. Distribution of load shed

After estimating distribution of the number of line out-
ages N , we proceed to estimate the distribution of load
shed using the method described in Section IV. Subsection
IV-A calculates the conditional lognormal load shed dis-
tributions fL|N∈B1

, fL|N∈B2
, ..., fL|N∈B12

. The distribution
of N gives the bin weights b1, b2, ..., b12 according to (9).
Then the distribution of load shed fL is the mixture of
fL|N∈B1

, fL|N∈B2
, ..., fL|N∈B12

weighted by b1, b2, ..., b12 as
described by (10).

Figure 4 shows the survival function of the distribution of
load shed fL given 3 initial outages (red solid curve). In Figure
4, we also vary the number of initial outages to simulate
different initial line damage scenarios. As the number of initial
outages increases, the probability of large load shed increases.
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Fig. 4. Survival functions of load shed with 1, 3, 6, or 11 initial outages.

VI. COMPARING SIMULATION DRIVEN BY HISTORICAL
DATA WITH MODEL-BASED SIMULATION

This section describes and contrasts the strengths and
weaknesses of model-based simulation and simulation of the
Markovian influence graph driven by historical data.
Realism: A major limitation is that model-based simulations
are practically constrained to approximate a limited subset of
cascading mechanisms. The Markovian influence graph driven
by historical data uses the statistics of real cascades, which
encompass all the cascading mechanisms encountered in the
historical period. It produces many cascades not observed in
the real cascades. However, the Markovian influence graph
does not describe the pairwise interactions between outages
that could happen but that did not happen in the historical
period. The power grid slowly changes over the historical
period as components age and upgrades to the grid and oper-
ational procedures are made. The Markovian influence graph
pools together all the interactions in the power system over the
historical period. For example, if an interaction was mitigated
half way during the historical period, it still contributes a
possible interaction to the Markovian influence graph.

Validation: When used to predict cascades, model-based sim-
ulation can produce cascades that are often judged to be cred-
ible, but most model-based simulations are not yet validated
against historical cascade data. (One of the exceptions is the
OPA simulation used in subsection IV-A, which is validated
with WECC data in [17], [18].) An appropriate validation is
reproducing the form of cascade statistics, and there is notable
progress towards this goal [19], [20]. On the other hand, the
Markovian influence graph describes the historical statistics
of successive line outages, and reproduces the statistics of
numbers of lines out [8], so important aspects of validation are
inherent or already checked. There are additional assumptions
in the processing of the historical data and the influence graph
formulation, and some of these issues are discussed below.
However, the more subtle validations of the Markovian influ-
ence graph would seem to require more elaborate approaches
to statistical validation.
Sampling of grid conditions: Another requirement, which
is not always satisfied in the literature, is that model-based
simulations should sample appropriately from a range of grid
operating conditions [21]. Historical data inherently samples
all the actual grid conditions encountered over the observed
time, and this is often an appropriate sampling.
Sampling of cascades: Predicted cascading is inherently
probabilistic due to the many interactions and protection
actions that involve thresholding in an uncertain environment.
Note that even “deterministic” model-based simulations can
sample from cascade possibilities by randomizing the grid
conditions. As regards sampling technique, the Markovian
influence graph easily allows computing the rarer but riskier
long cascades while tracking the outcomes and probabilities
of all the truncations of the long cascades, as explained in
subsection III-A. A corresponding advantage in computing the
largest cascades can be achieved for model-based simulation
using splitting [22] or other methods.
Markov assumption: The Markovian influence graph only
describes the statistics of successive Markov states in the
historical cascades. Each Markov state is a specific line outage
or set of line outages. The issue is the extent to which one
can assume that knowing the state in a cascade generation
is sufficient to approximate the statistics of which state is
in the next generation. This is a pragmatic but fairly strong
assumption.
Limited data: The Markovian influence graph is formed
from historical data, which is limited in extent, especially
for the higher cascade generations. This limitation can be
partially mitigated [8], but not eliminated. In practice the
higher generations are combined together in some ways to
get sufficient data. Model-based simulations can, if not too
detailed, produce larger amounts of cascading data.
Commonality between cascades: In this paper, the Marko-
vian influence graph describes the statistics of all types of
cascades, but some of these may not be the cascades of
interest. That is, there is an assumption that the same set
of probabilistic cascading interactions tend to occur for all
cascades. In particular, statistical patterns in small cascades are



to some extent extrapolated to large cascades. It is certainly
possible to restrict the historical data to the subset of cascades
of interest if the subset is large enough, but there is the tradeoff
that as data set becomes smaller, estimation becomes more
uncertain. In model-based simulation it seems easier to restrict
the cascades simulated, but the challenges of validation for the
restricted subset of cascades remain.

VII. COMBINING HISTORICAL AND SIMULATED DATA

We observe that the Markovian influence graph could be
used to combine historical cascading data from utilities with
cascading data produced by model-based simulation. One
method is to simply combine the cascades from both data sets
and then form the Markovian influence graph from the com-
bined data set. This method would weight the historical and
model-based cascades according to their respective amounts
of data. If a different weighting is desired; for example, an
equal weight to historical and model-based cascades despite
differing amounts of data, then this can be easily achieved by
forming two separate Markovian influence graphs and taking
their weighted average.

In particular, suppose that the historical cascades give a
Markovian influence graph with transition matrices P hist

k ,
k = 1, 2, ... and the model-based cascades give a Markovian
influence graph with transition matrices Pmodel

k , k = 1, 2, ....
We form the union of the states of the historical and model-
based influence graphs and add rows and columns of zeros to
the transition matrices to expand them so that they describe
transitions between the union of the states. This gives tran-
sition matrices P histexpand

k and Pmodelexpand
k , k = 1, 2, ....

Then, if the desired weight on the historical data is whist with
0 < whist < 1, then the weighted average Markovian influence
graph has transition matrices

whistP histexpand
k + (1− whist)Pmodelexpand

k , k = 1, 2, ...

This construction relies on the fact that the weighted average
of stochastic matrices are stochastic matrices. Combining the
two influence graphs as described above is straightforward,
assuming that the components that outage in the cascades are
described in the same way and in the same format.

VIII. CONCLUSION

This paper suggests a new form of cascading simulation
driven by the detailed transmission line outage data that is rou-
tinely collected by utilities. This historical outage data is first
processed into cascades and generations within cascades, and
then used to form the Markovian influence graph that describes
the statistics of outages in successive cascade generations as a
Markov chain. Some initial line outages are assumed, and in
this paper these are the lines damaged by some extreme events,
such as weather, fire, icing, or earthquake. Our immediate aim
is to simulate and quantify the cascading of line outages after
the initial damage. The Markovian influence graph is sampled
to produce the simulated cascades. The simulated cascades
are statistically similar to but more variable than the cascades
in the historical data. The Markovian influence graph easily

allows improved sampling that is more uniform across all
sizes of cascades, and this gives better estimates of the large
cascades that are rare but significant for cascade risk.

The Markovian influence graph produces cascades of spe-
cific line outages but no direct estimates of load shed. We
show one way to estimate load shed by using a model-based
simulation, OPA, to evaluate the probability distribution of
load shed conditioned on the number of line outages. The
distribution of load shed is then a weighted sum of these
conditional distributions, with the weights determined by the
line outage statistics produced by the Markovian influence
graph. Other methods of estimating load shed can be devel-
oped and compared in future work. The combined result of
the Markovian influence graph cascading simulation and the
load shed estimation is probability distributions of load shed
for choices of specific initial lines damaged by the extreme
event. We also explain how the Markovian influence graph
can describe a weighted combination of cascading data from
historical data and from the model-based simulation.

We critically examine the strengths and limitations of
model-based cascading simulation versus cascading simulation
driven by historical data via the Markovian influence graph.
While more work is needed to develop and test the Markovian
influence graph simulation, it seems to be a viable alternative
to model-based simulation. It is particularly exciting that
the Markovian influence graph simulation has strengths and
weaknesses that complement those of model-based simulation,
so that future decisions about cascading resilience could be
informed by two different and complementary approaches to
cascading simulation.
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