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Bayesian Estimates of Transmission Line Outage
Rates That Consider Line Dependencies

Kai Zhou , James R. Cruise, Chris J. Dent , Ian Dobson , Louis Wehenkel , Zhaoyu Wang ,
and Amy L. Wilson

Abstract—Transmission line outage rates are fundamental to
power system reliability analysis. Line outages are infrequent, oc-
curring only about once a year, so outage data are limited. We pro-
pose a Bayesian hierarchical model that leverages line dependencies
to better estimate outage rates of individual transmission lines from
limited outage data. The Bayesian estimates have a lower standard
deviation than estimating the outage rates simply by dividing the
number of outages by the number of years of data, especially when
the number of outages is small. The Bayesian model produces
more accurate individual line outage rates, as well as estimates
of the uncertainty of these rates. Better estimates of line outage
rates can improve system risk assessment, outage prediction, and
maintenance scheduling.

Index Terms—Bayesian methods, hierarchical model, outage
rates, transmission lines, transmission system reliability.

I. INTRODUCTION

TRANSMISSION line outage rates are foundational for
many reliability calculations, but in historical data the

counts of outages for the more reliable lines are low, and esti-
mated individual line outage rates are highly uncertain. There are
several ways in which individual transmission lines are partially
similar, including their length, rating, geographical location, and
their proximity. We leverage these partial similarities with a
Bayesian hierarchical method to improve the estimation of line
outage rates from historical data.

The conventional method of estimating annual line outage
rates divides the number of outages by the number of years of
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data. However, these estimates have a high variance when the
data are insufficient. Indeed, in a year, many lines either do not
fail or only fail once.

One pragmatic approach to mitigate the problem of limited
outage counts is to group or pool lines together to get an estimate
for the outage rate of that group. The lines can be grouped
by area [1]–[3], or by line voltage rating. Lines in the same
area experience similar weather conditions, and lines of the
same rating have similar construction. However, the similarity
between lines in these groups is only partial, variations of outage
rates within the groups are neglected, and it is unwieldy to group
lines according to multiple characteristics.

Transmission line outage rates are often supposed to be pro-
portional to line length, and they are often quoted as rates per
unit length [4], [5]. However, a line’s outage rate is not strictly
proportional to the line length because of substation and other
effects, making the dependence on line length only a partial
dependence. Indeed, our historical line outage data shows only
a limited dependence on line length.

There is a middle ground between pooling lines in groups
assuming perfect line dependencies within the group, and com-
pletely neglecting dependencies between lines by computing
individual line outage rates in isolation. To exploit the partial
dependencies of line outage rates, this paper proposes a Bayesian
hierarchical method to estimate outage rates of individual trans-
mission lines. In particular, our method can leverage the multiple
partial dependencies in line length, rating, network proximity,
and geographical area to give better outage rates of individual
lines. This is done by explicitly modeling the dependence of
outage rates on line length and rating and by using covariance
kernels to model the dependencies between lines in close prox-
imity. Our method can, therefore, learn about the outage rates
of individual lines from lines close-by and with similar lengths
and ratings. This means that where there is little data associated
with a line (because the outage rate is small), our method can still
estimate an outage rate for that line and its uncertainty. Also, by
borrowing information from other lines, we can expect smaller
uncertainties associated with estimates of outage rates, without
assuming that all lines within a group have the same outage rate
(as would be the case if we pooled the data).

The Bayesian hierarchical model proposed in this paper
makes better estimates of outage rates. In particular, the pro-
posed model:
� estimates annual outage rates for individual transmission

lines more accurately by leveraging partial similarities
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between lines, including proximity, length, and rated volt-
age, especially when the annual outage counts are low
or the data is limited. The estimates have lower standard
deviation for given data, or the same standard deviation for
less data.

� has performance better than the conventional method of
simply dividing the number of outages by the number of
years observed, especially when the data is limited.

� instead of pooling lines with one characteristic in com-
mon, gives a way to combine multiple partial similarities
between lines.

� provides not only mean line outage rate, but also the
uncertainty of this estimate.

� shows that line length and rated voltage correlate with line
outage rate, but the correlation is not strong.

� works using one standard line outage dataset routinely
collected by transmission utilities worldwide.

These advances benefit applications of the line outage rates,
and we start to explore these benefits for maintenance and
reliability calculations in [6].

After reviewing the literature in Section II, Section III presents
the historical outage data collected by a large utility and the
modeling of the line dependencies. Sections IV and V present
the Bayesian hierarchical model and the processing of the utility
data. As we do not know the true outage rates from historical
outage data, we use synthetic data to validate and evaluate the
performance of the Bayesian hierarchical model in Section VI.
Section VII concludes the paper.

II. LITERATURE REVIEW

Bayesian approaches encode uncertainty in uncertain parame-
ters such as outage rates as random variables. The Bayesian anal-
ysis aims to estimate a probability distribution for the uncertain
parameters by incorporating all of our knowledge and accurately
reflecting the uncertainty. Bayes theorem is used to combine
data with prior distributions that describe initial knowledge of
the uncertainty. The prior distributions are updated with the
available data to give a posterior distribution that describes the
uncertainty in the parameter values given all the available data.
The mean or mode of the posterior distribution can be used
to give a point estimate of the parameter. For further detail
explaining Bayesian methods we suggest [7] as an introduction
and [8] as a reference.

Bayesian methods are ideal for problems with limited data
(such as estimation of outage rates), where it is necessary to
use all the information available. Studies in ecology and social
science have shown that when data are limited, Bayesian meth-
ods have less bias and are more robust than frequentist methods
that consider parameters as fixed values [9], [10]. When lots
of data are available, the data outweighs any effect of the prior
distributions and a Bayesian method is less advantageous.

There is previous research predicting outage rates using
Bayesian methods. Li [1], Iešmantis [4], and Moradkhani [5]
present three Bayesian hierarchical models. All three hierar-
chical models have a Poisson distribution for outage counts,

but how the outages are counted and lower levels of the model
are different. Li [1] develops a hierarchical model to predict
outage counts in a substation district given weather conditions,
in which the log of the outage rate is a linear combination
of weather factors. Iešmantis [4] presents a Poisson-Gamma
random field model to estimate 230 kV transmission lines
outage rates in a specified rectangular cell. The grid cells are
introduced to model spatial dependence by constructing a cor-
relation matrix in the Gamma field. The hierarchical model in
Moradkhani [5] estimates failure rates of individual overhead
distribution feeders, which are assumed to be independent of
each other. To have an analytical form for the posterior distri-
bution, conjugate priors are used, which results in a Gamma
posterior distribution. Bayesian networks are also applied to
estimate outage rates. Zhou [3] proposes a simple Bayesian
network to predict weather-related outage rates given lightning
and wind conditions over the whole system. Zhou compares the
Bayesian network with a Poisson regression model and con-
cludes that the Bayesian network is preferable. Yang [11] gives
interval estimates of outage rates of individual transmission lines
given weather conditions using a credal network with imprecise
priors, which is an extension of Bayesian networks. Dunn [12]
formulates a Bayesian hierarchical model for the total outage
counts in a system. All components share the same failure rate
derived from a fragility curve. In contrast to all the references
above, our paper estimates outage rates of individual transmis-
sion lines using a Bayesian hierarchical model considering line
dependencies.

Transmission line outages are correlated with each other in
several ways. Lines in the power grid interconnect at substations,
and some faults or substation arrangements may trip several lines
simultaneously. Multiple line outages also occur due to protec-
tion schemes such as control protection groups and remedial
action schemes. Moreover, lines in the same area experience
similar weather conditions. There is some previous work on
these dependencies. Li [1] uses the network adjacency matrix
to model district dependencies. Similarly, Dokic [2] uses the
weighted adjacency matrix to model substation dependencies.
The difference between them is that [1] models the dependencies
as a covariance matrix from the Bayesian perspective, while [2]
uses an embedding method by learning vector representations
of dependencies from a frequentist perspective. Iešmantas [4]
models geographical dependencies between the outage rate per
kilometer of 230 kV lines by making a rectangular grid of the
area. Portions of lines in the same rectangle are assumed to have
the same geographical influence, and the correlation between
lines in different rectangles is assumed and modeled in the
Gamma field. The main conclusion of [4] is that geographi-
cal correlation between line outage rates is present but weak.
However, our method captures partial similarities between lines,
including proximity, length, and rated voltage as a layer in the
Bayesian hierarchical model.

Many researchers focus on predicting outage probabilities in a
short term according to the weather condition [1]–[3], [11], [13]–
[15]. [5], [11], [15] consider the data deficiency when building
the outage rate model.
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TABLE I
ANNUAL OUTAGE COUNTS, LINE ATTRIBUTES, AND BAYESIAN ESTIMATES OF OUTAGE RATES AFTER 1ST, 7TH AND 14TH YEARS FOR 4 LINES

III. EXPLORING HISTORICAL OUTAGE DATA AND

MODELING LINE DEPENDENCIES

Utilities routinely collect detailed outage data. For exam-
ple, NERC’s Transmission Availability Data System (TADS)
collects outage data from North American utilities. Here, to
illustrate our methods, we use some publicly available historical
line outage data [16].

A. Historical Outage Data

The historical line outage data we use consists of transmission
line outages recorded by a North American utility [16] for 14
years since 1999. The data record forced and scheduled line
outages, including the sending and receiving bus names of
outaged lines, outage start and end times and dates, line attributes
such as lengths, voltage ratings, districts in which a line is, and
outage causes. Some lines cross several districts. There are 549
lines outaging in the data with rated voltages of 69, 115, 230,
287, 345, and 500 kV.

We neglect the scheduled outages and only consider the forced
line outages. We also exclude the two 1000 kV HVDC lines,
and momentary outages (outage duration does not exceed one
minute). There are lines that failed once or twice in most of the
years but suddenly failed, for example, ten times in one year.
One common reason that a line could fail several times in a day
is outages and reclosures for the same cause. So if a line fails
several times in a day, we only count it once. Table I shows an
example of the outage data.

B. Data Exploration

We initially explore the line outage data using the conven-
tional method of estimating annual line outage rates by dividing
the number of outages by the number of years of data. We first
pool all the line data together (i.e. treat as one homogeneous
data set) to calculate the overall mean and standard deviation of
outage rates, which are 0.6 and 0.7 outages per year, respectively.
Next, we examine the individual conventional line outage rates.
The mean variance-to-mean ratio of outage counts for each
line is 1.2, which indicates that the outage counts show some
overdispersion.1

The power system network can be deduced directly from
the outage data using the method of [17], and we show the
conventional outage rates on the network in Fig. 1 to visualize
the spatial correlation. Close lines tend to have close colors,
which indicates line dependencies from network proximity.

1Overdispersion means that the variance is larger than the mean. The Pois-
son distribution commonly used for count data does not apply when there is
overdispersion because the Poisson mean and variance are equal.

Fig. 1. The number of average annual forced outages over 14 years on network
indicated by different colors (network layout is not geographic).

C. Scaling Line Lengths and Voltage Ratings

The line lengths and voltage ratings are transformed and
scaled so that their magnitudes and variations are scale-free and
comparable. We do this in ways suggested by Gelman [18] for
generic priors.

Line lengths in the vector L are first transformed by the
natural logarithm to make the range of values less extreme, and
then divided by the scale so that their variations are order of
magnitude one:

xL =
lnL

scale(lnL)
(1)

Here the scale of the sample in a vector z is estimated by the
Mean Absolute Deviation, which is scale(z) = median(z −
median(z)). Note that we use bold variables for vectors in this
paper, and functions such as ln are applied element-wise so that
lnL = [lnL1, . . ., lnLN ]′.

Similarly, the line voltage ratingsV are first scaled bySD(V ),
the standard deviation of V , and then divided by the scale:

xV =
V /SD(V )

scale(V /SD(V ))
(2)

It is usually considered that the line length and voltage rating
have a positive correlation. Indeed, the BPA data shows this
correlation, but it is a weak correlation: the Pearson correlation
coefficient is 0.34 (0.12 for transformed lengths and voltage
ratings).



1098 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 2, MARCH 2021

D. Line Proximity

The proximity of lines is quantified by the weighted sum of
two kernels, which reflect two aspects of proximity. The first
kernel is based on districts. Lines in the same district are more
likely to experience the same weather conditions. Another kernel
is based on network distance in terms of line length, which, to
some extent, reflects both geographic proximity and the physical
and engineering interactions in the power grid. We fit a linear
regression model with correlated lines (described below) to
support the form of the Bayesian hierarchical model and give
guidance on setting priors.

1) Districts: There are 12 districts, and districts for each
line are represented by a feature vector φdis ∈ {0, 1}12 whose
coordinates correspond to the districts, and are set to 1 for each
district crossed by that line, and to 0 otherwise. The scalar
product in this feature space thus counts the number of common
districts crossed by two lines.

We define the district kernel as:

Σ1 = exp
(−||φdis(i)− φdis(j)||22 − Ii�=j

)
(3)

where || · ||2 stands for the two-norm,2 and Ii�=j is an indicator
function. The reason why Ii�=j is included is that a line is most
similar to itself. The kernel Σ1 has the form of a correlation
matrix since it is positive definite.

2) Network Distance: The network distance between lines
Li and Lj along the network lines is defined as

dij = d(Li, Lj) = minimum length in miles of a network path

joining midpoint of Li to midpoint of Lj .

For example, the distance of line to itself is zero and the distance
of a line to a neighboring line with at least one bus in common
is half of the total length of the two lines.

Then we use the exponential kernel Σ2 which is

Σ2 = exp[−2d(Li, Lj)] (4)

As d(Li, Li) = 0, the diagonal elements of Σ2 are one.
3) Combining the Two Kernels: The network proximity Σ is

the weighted sum of above two kernels:

Σ = wΣ1 + (1− w)Σ2, (5)

where 0 < w < 1. For example, if the two kernels are equally
important, then w = 0.5.

We find the weight by fitting a linear regression model for
the logarithm of average outage counts with β0 following a
multivariate normal distribution to model correlation:

ln
N

t
= β0 + βLxL + βV xV , (6)

β0 ∼ N (m1, σ2Σ), (7)

where N is a column vector whose entry Ni is the total number
of counts in t years for line i, 1 is a column vector of ones,
m,βL, βV are scalars, and

σ2Σ = σ2(wΣ1 + (1− w)Σ2)) = σ2
1Σ1 + σ2

2Σ2. (8)

2Since the vectors only have entries 0 or±1, the one-norm is the same as the
two-norm in this context.

Fig. 2. Residual plot (left) and QQ-plot (right) for Pearson residuals.

For computation convenience, we decouple the dependencies
between different lines in (8) by a coordinate transformation
to diagonalize the covariance matrix σ2Σ. This transforms the
multivariate normal random vector β0 in (7) into independent
univariate normal random variables in the vectorβ′0. This decou-
pling facilitates the maximum likelihood calculation below. In
particular, by simultaneous diagonalization [19, p.286], we find
a matrix Q such that QTΣ1Q = I and QTΣ2Q = Λ, where
Λ is a diagonal matrix. Define β′0 = QTβ0, then

β′0 ∼ N (mQT1,QT (σ2
1Σ1 + σ2

2Σ2)Q)

∼ N (mQT1, σ2
1I + σ2

2Λ). (9)

We use Maximum Likelihood Estimation to estimate the
parameters σ2

1 , σ
2
2 ,m, βL, βV from the utility data. The log

likelihood logL is

y = QT

(
ln

N

t
− βLxL − βV xV

)

logL =
∑
i

ln f(yi|m(QT1)i, σ
2
1 + σ2

2Λi) (10)

where y is a column vector with ith entry yi, f(·|μ, σ2) is the
PDF of a normal distribution with mean μ and variance σ2,
(QT1)i is the ith entry ofQT1, andΛi stands for the ith diagonal
entry of Λ.

The maximum of logL in (10) is attained when σ2
1 =

0.45, σ2
2 = 0.42, m = −1.5 and (βL, βV ) = (0.13, 0.12). By

normalizing σ2
1 and σ2

2 , we have w = σ2
1/(σ

2
1 + σ2

2) = 0.52.
The positive values of βL and βV indicate that longer lines or
higher voltage lines tend to have higher outage rates, which is
reasonable. These values shall give guidance on setting priors in
Section IV.

We check the model assumptions by using the residual plot
and QQ-plot as shown in Fig. 2. β′0 has no correlation, so we
focus on the transformed linear model, and Pearson residuals
are used here as β′0 has heterogeneous variance. The Pearson
residual is estimated by ε′i = εi/

√
σ2
1 + σ2

2Λi, where the raw
residuals are ε = QT (lnN/t− βLxL − βV xV −m1). There
is no noticeable trend in the residual plot, and the QQ-plot shows
that the Pearson residual follows the normal distribution.
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IV. THE BAYESIAN HIERARCHICAL MODEL

WITH LINE DEPENDENCIES

We propose a Bayesian hierarchical model of outage counts
incorporating line dependencies. We assume that outage counts
follow a Poisson distribution:

Ni ∼ Poisson(λiti), i = 1, . . ., n (11)

where Ni is the outage count for line i over ti years, λi is the
annual outage rate, and n is the number of lines.

We assume that the outage rates λi follow a Gamma distribu-
tion:

λi ∼ Gamma(α, α/μi), i = 1, . . ., n (12)

The Gamma distribution is chosen for two reasons: It is a con-
jugate prior for the Poisson distribution. Moreover, the Gamma
distribution mean is μi and its variance is μ2

i /α. The variance
of the Gamma distribution increases quadratically as the mean
increases, which allows for the overdispersion observed in Sec-
tion III-B.

The mean outage rate μi is modeled via a linear regression
model with correlated lines. The linear regression model as-
sumes the predicted variable is normally distributed, but μi

is positive and may have a large range of values, so μi is
transformed by a log function [20, Sec. 3.6]:

lnμ = β0 + βLxL + βV xV (13)

where μ, β0 are column vectors.
β0 follows a multivariate normal distribution:

β0 ∼ N (m1, σ2(wΣ1 + (1− w)Σ2)) (14)

Line dependencies are captured by the covariance matrix of this
multivariate normal distribution, σ2 is a scalar which controls
the magnitude of the covariance and w controls the weights of
the two kernels. The parameters α, βV , βV , m, σ2 and w will be
estimated using prior distributions in combination with the data
as described below.

The prior distributions are:

α ∼ Half Normal(0.7, 82)

m ∼ Normal(−1.5, 52)
σ2 ∼ Half Normal(0, 0.52)

βL ∼ Normal(0.13, 52)

βV ∼ Normal(0.12, 52)

w ∼ Beta(1, 1)
(15)

These priors are set to ensure that the parameters have a rea-
sonable range and/or mean3 when compared to our knowledge
about the system and the model tested in Section III-B. As there
is not much information about the standard deviations about
these priors, we make these priors weakly informative. The detail
is as follows.

The prior for α is a half-normal distribution with α > 0.
As discussed in Section III-B, the mean annual outage rate
is 0.6, and the standard deviation is 0.7. This suggests the

3By saying that a range or mean is reasonable, we mean that the distribution
of the prior has mean or range that is consistent with our prior knowledge, and
it does not incorporate any further information.

expected value of μ is 0.6, so the expected value of α would be
0.62/0.72 = 0.7 (as μ2

i /α = Varλi). The standard deviation of

α is (0.6+2×0.7)2
0.72 − 0.6 ≈ 8 (the numerator is the maximum of μ

in a typical range estimated by two times the standard deviation,
(0.6+2×0.7)2

0.72 is the maximum of α).
Priors for m,βL, βV are normal distributions. The linear

regression model in Section III-D suggests expected values for
these parameters. xL and xV have range [−10, 10] after scaling
using method described in Section III-C, and we observe that
the range of lnN/t is [−10, 10] conservatively. Therefore, we
set the standard deviations of m,βL, βV to 5 so that 95% of
the values lie in [−10, 10] and they vary mostly in the same
magnitude, which produces weakly informative priors.
σ2 functions as a variance. The inverse-gamma prior is usu-

ally preferred since it is a conditional conjugate distribution.
Gelman [21], however, does not recommend the inverse-gamma
prior as the estimation ofσ2 would be sensitive to the parameters
of inverse-gamma distribution when σ2 is near zero. Thus, we
let σ2 have a half-normal prior. Section III-D shows that σ2

1 , σ2
2

are about 0.5, so we set the standard deviation of σ2 to 0.5 to
make at least 95% of the values of σ2 to lie in [0,1]. We give w a
uniform prior as we know that w lies in [0,1] and the expectation
of w is 0.52 ≈ 0.5 from Section III-D.

We now summarize the Bayesian hierarchical model. The
Bayesian hierarchical model is specified by (11,12,13,14) to-
gether with the prior distribution of the parameters (15). Note
that the partial dependencies between the lines are expressed in
(13,14).

The model parameters, including the outage rates λ, are

θ = (λ,μ,β0, α, βL, βV ,m,w) (16)

The objective is to estimate the posterior distribution of the
parameters p(θ|N) that is informed by the line outage counts
N . By Bayes’ theorem, the posterior distribution is

p(θ|N) =
p(N |θ)p(θ)

p(N)
(17)

Because normalization can be applied later, it is sufficient to
calculate the unnormalized numerator of (17). We can exploit
the dependencies in the hierarchical model (12,13,14) to get

p(N |θ) = p(N |λ) =
∏
i

p(Ni|λi) (18)

p(θ) =
∏
i

p(λi|α, μi)p(μ|β0, βL, βV )p(β0|m,w)

× p(α)p(βL)p(βV )p(m)p(w) (19)

so that

p(θ|N) ∝ p(N |θ)p(θ)
∝

∏
i

p(Ni|λi)
∏
i

p(λi|α, μi)p(μ|β0, βL, βV )

× p(β0|m,w)p(α)p(βL)p(βV )p(m)p(w) (20)
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Fig. 3. Point estimates (black dots) and 95% credible intervals (blue bars) of
annual outage rates. Lines are ordered by point estimates.

V. BAYESIAN PROCESSING OF REAL DATA

The Bayesian hierarchical model described in the previous
section is applied to the historical outage data.

A. Sampling Posterior Distributions Using Stan

The posterior distributions (20) of the parameters (16) can
be evaluated numerically by repeated sampling from the dis-
tribution with a Monte Carlo Markov Chain (MCMC) algo-
rithm. MCMC is a class of algorithms for sampling from a
probability distribution. We use the software Stan, which im-
plements MCMC as Hamiltonian Monte Carlo (HMC) [22]
with the algorithm adaptively tuned by the No-U-Turn Sampler
(NUTS) [23]. Appendix A reproduces the algorithm of HMC
with some explanatory comments and gives a detailed guide to
the introductory and advanced literature on HMC.

We sample 2000 times, and the first 1000 samples are burn-in.
Appendix B discusses technical details of model diagnostics and
algorithm convergence. In this section, we focus on the result of
the sampling.

B. Results of Bayesian Estimates

We use the posterior mean as the point estimate of line outage
rate because the posterior mean minimizes the Bayes risk in
terms of squared error loss. Fig. 3 shows the point estimates of
line outage rates and their 95% credible intervals.4 The mean
outage rate of all lines is 0.74 outages per year, and 82% of
lines have rates less than 1 outage per year. There are two
lines with very high outage rates. By inspecting the cause codes
of these outages, one line outaged mainly because of foreign
trouble (which is an external cause outside the power system,
such as vehicles striking towers), while the other outaged mainly
because of a remedial action scheme.

The values of βL and βV reveal the relationship between
line lengths, voltage ratings, and outage rates. Fig. 4 shows
the posterior distributions of βL and βV and their correlation.
The means of βL and βV are both 0.1. So the logarithm of the
outage rate has a weakly positive correlation with transformed

4The credible interval is described by the multiplicative factor κ within which
the outage rate λi can vary from the point estimate λ̂i with 95% probability; that
is, P [λ̂i/κ ≤ λi ≤ λ̂iκ] = 95%.

Fig. 4. Distributions of βL and βV (top) and their scatter plot and correlation
(bottom).

line length and transformed voltage rating. βL and βV have a
very weak correlation, which is reasonable as xL and xV have
a very weak correlation.

We use weakly informative priors in the Bayesian model. If
we had access to previous studies in the region, or outage rates
for other similar regions then these could be used to refine the
priors. In this case we would expect the uncertainty in the outage
rate estimates to be reduced.

We also test the sensitivity of the Bayesian model to the priors
using 14-year data using two different sets of priors. The first
case uses somewhat stronger informative priors. We reduce the
standard deviation of the prior distributions ofm,βL, βV from 5
to 1 and redo the calculations. In the second case, we randomly
set parameters of priors by sampling from uniform distributions;
then, we run the MCMC to estimate the posterior distributions.
We compare the posterior mean and standard deviation of outage
rates λ calculated using different priors, and find there is not
much difference.

C. Comparing the Standard Deviations of Bayesian and
Conventional Estimates

The Bayesian method produces a distribution of the outage
rate, and it is straightforward to compute the standard deviation
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Fig. 5. Distributions of ratios of standard deviations of Bayesian estimator and
conventional estimator using 1-year and 14-year data respectively. The ratio is
SD(Bayesian)/SD(conventional).

of this distribution. The conventional method estimates the
outage rate with the sample mean. The standard deviation of the
sample mean can be estimated as s/

√
n, where s is the sample

standard deviation, and n is the sample size.
Fig. 5 shows the ratio of the standard deviations of the

Bayesian and conventional estimators. It shows that the standard
deviation of the Bayesian estimator is typically smaller than the
conventional estimator, especially when the data is limited to
one year. The median ratio of standard deviations is 0.66 for one
year of data, while the median ratio is 0.93 for 14 years of data.
Thus the Bayesian estimator typically achieves a lower standard
deviation than the conventional one for limited data. Another
way to present this finding is that given the same acceptable
precision, the Bayesian method requires fewer data. Since the
standard deviation is proportional to the square root of sample
size, the Bayes estimator using one year of data achieves the
same standard deviation as the conventional estimator using
2.30 years of data (1/(0.662) = 2.30). Similarly, the Bayesian
estimator using 14 years of data achieves the same standard
deviation as the conventional estimator using 16.2 years of data
(14/(0.932) = 16.2).

D. Performance on Rarely Outaged Lines

One advantage of the Bayesian method is that it provides a
principled way of making line outage rates with no observed
outages. The conventional estimate of outage rate is zero if a
line has no outage in a year. However, it is more reasonable that
the underlying outage rate of this line is a small value.

Table I calculates 4 line outage rates with the data available
after the 1st year, after the 7th year, and after the 14th year. In
Table I, line 29 has no outage except in the 9th and 10th year. The
Bayesian estimate of the outage rate of line 29 for the 1st year
is 0.32, which is informed by correlations with other lines. By
the 7th year, more years with no outages have been observed, so
that the estimated outage rate decreases to 0.17. Line 29 outages
several times in the 9th and 10th years, so its estimated rate over
14 years increases. There are also many zeros for lines 11 and

2, but the two outage rates vary differently as the distribution of
zeros has different patterns. Most counts for line 11 are zeros,
and single outages appear every several years. So we believe that
the outage rate is roughly constant and small, which is captured
by the Bayesian estimator. At the beginning, line 2 had several
outages, and then it stops having outages. So this line has a
decreasing outage rate. Line 8 is an example of a line with a
high and increasing outage rate.

E. Validation of the Bayesian Hierarchical Model

Section III-D fits a linear regression model to the data, and
Fig. 2 shows that the assumptions for this regression model hold.
This validates that the form of the Bayesian hierarchical model
(particularly for (13), (14)) is reasonable.

As we do not know the true outage rates using real data, we
generate synthetic data to further validate the Bayesian model
in Section VI. That is, assuming that the real outage data follow
the model detailed in III-D, we test that the Bayesian model
accurately estimates the outage rates. As we have checked in
Fig. 2 that the model in III-D is a good fit to the real outage data,
this is a reasonable method for validating the model when we
do not have the true outage rates.

VI. TEST BAYESIAN ESTIMATES ON SYNTHETIC DATA

We build a generative model for synthetic datasets of arbitrary
size, so the data are not limited in size, and the ground truth
values are known. Then we test the Bayesian hierarchical model
and the conventional estimates on the synthetic data. It turns out
that the Bayesian hierarchical model predicts the outage rates
well, and the Bayesian estimates compare favorably with the
conventional method.

We also construct and test with synthetic data sets a Bayesian
hierarchical model without correlations between the lines to
evaluate the effect of line dependencies, which shows that mod-
eling the dependencies reduces the variation of estimates.

A. The Generative Model for the Synthetic Data

In Section III-D, we fit a linear regression model with cor-
related lines. Based on this model, we generate outage counts
according to the following model:

Ni ∼ Poisson(λiG) (21)

G ∼ Gamma(a, a) (22)

lnλ ∼ N (m1+ βLxL + βV xV ,Σ) (23)

The parameters in (21)–(23) are assigned values accord-
ing to the linear regression model with correlated lines.
That is,m = −1.5, βL = 0.13, βV = 0.12, andΣ = 0.52Σ1 +
0.48Σ2, which models the line dependencies.

Once we draw a sample from (23), the failure rate is known
and fixed. So the variation of outage counts comes from the
Poisson and Gamma distributions. In particular, using EG = 1,
we derive from (21), (22) that the mean of Ni is the same
as only using a Poisson distribution and that a controls the
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overdispersion:

ENi = E[E[Ni|G]] = λi (24)

VarNi = E[Var[Ni|G]] + Var[E[Ni|G]] = λi + λ2
i /a (25)

The value ofa is chosen so that the variance of the model matches
the empirical variance calculated from the data. In particular,
we find the quadratic that best fits the relationship between the
empirical variance and mean to beσ2 = 0.14 + 0.54μ+ 0.53μ2

(where σ2 is the variance, μ is the mean). Since the coefficients
of μ and μ2 are close, we choose a = 1.

We generate three datasets with different sizes so that we have
the equivalents of 1-year, 5-year, and 100-year data: 1) draw a
sample of lnλ from the multivariate normal distribution (23);
2) draw a sample of G from the Gamma distribution (22); 3)
draw samples of Ni from the Poisson distribution (21) n times
(n ∈ {1, 5, 100}). Thus, we obtain n annual outage counts for
each line, and we know the true values of the outage rates λ.

B. Comparing to the Conventional Estimates

The conventional estimates of outage rates are average outage
counts per year. The conventional estimates and their standard
deviations are obtained using Monte Carlo simulation: draw
B = 1000 samples according to model (21), calculate the av-
erage count of each sample, and then calculate the standard
deviation of the estimates.

We apply the Bayesian hierarchical model to synthetic
datasets using MCMC with the same configuration as in Sec-
tion IV, and use the mean of the posterior distribution as a point
estimate.

1) Errors of Point Estimates: Fig. 6 shows the distribution of
errors of the Bayesian estimates and the conventional estimates
(the estimation errors of the Bayesian method and conventional
method have the same distribution for 100-year data, so that the
plot is not shown). In general, the less the data, the wider the his-
togram. The error of the conventional estimates has two modes,
and the probability of error near zero is lower for 1-year data. As
the data size increases, the two modes merge into one. Moreover,
for 1-year data, the standard deviation of the error is 0.6 for
Bayesian estimates and 0.9 for conventional estimates; for 5-year
data, the standard deviation is 0.3 for Bayesian estimates and 0.4
for conventional estimates. Therefore, the Bayesian estimates
have a high chance of obtaining more accurate point estimates,
especially when data is limited.

On the other hand, there is not much difference in the bias.
Specifically, the bias is −0.007 for Bayesian estimates and
−0.004 for conventional estimates using 1-year data, and the
bias is 0.003 for both Bayesian estimates and conventional
estimates using 5-year data.

2) Standard Deviation: Fig. 7 shows the distribution of the
ratio of the standard deviation of the Bayesian estimator to that of
the conventional estimator. The Bayesian estimator has a lower
standard deviation when the data set is smaller. Specifically, the
median of the ratio is 0.74 for 1-year data, 0.90 for 5-year data,
and 0.99 for 100-year data.

3) Interval Estimates: Fig. 8 shows 95% credible intervals
of the Bayes estimator using 1-year, 5-year, and 100-year data

Fig. 6. Distributions of point estimation errors of Bayes estimates (posterior
mean) and conventional estimates using 1-year and 5-year data.

Fig. 7. Distributions of ratios of standard deviations of Bayes estimator and
conventional estimator. The ratio is SD(Bayes)/SD(conventional).

respectively. As the size of the dataset increases, we gain more
information, and the width of the credible intervals decreases.
Fig. 8 also shows the true values of the outage rates as black dots.
As expected with a 95% credible interval, approximately 5% of
the true values lie outside the credible interval. The Bayesian
point estimates (not indicated in Fig. 8) lie in the center of the
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Fig. 8. 95% credible intervals of Bayesian estimates using 1-year, 5-year and
100-year data. Lines are ordered by outage rates (black dots).

credible intervals and tend to be larger than the true values for
low outage rates and smaller than the true values for high outage
rates. This can be explained as the shrinkage towards the mean
expected with Bayesian methods; see [7, Sec. 1.5].

C. Comparing to the Bayesian Hierarchical
Model With Independent Lines

Previous work does not compute individual line outage rates
while considering spatial dependencies between lines. We test
the effect of the spatial dependence by removing it. The Bayesian
hierarchical model with independent lines is:

Ni ∼ Poisson(λiti) (26)

λi ∼ Gamma(α, α/μi) (27)

lnμi = β0 + βLxLi + βV xV i (28)

The prior distributions are:

α ∼ Half Normal(0.7, 82)

β0 ∼ Normal(0, 1)

βL ∼ Normal(0.13, 52)

βV ∼ Normal(0.12, 52)
(29)

We apply this restricted model to synthetic datasets using
MCMC with the same configurations as in Section IV. The stan-
dard deviation when considering line dependencies is smaller
than that without considering line dependencies. The medians
of standard deviation ratios of this model to the conventional
estimator for 100-year, 5-year, and 1-year data are 0.99, 0.93,
and 0.89, which are greater than standard deviation ratios of
the Bayesian model with line dependencies to the conventional
estimator.

VII. DISCUSSION AND CONCLUSION

We use a Bayesian hierarchical model to improve the estima-
tion of annual outage rates for individual transmission lines. This
Bayesian method incorporates several types of dependencies
between lines and is applied to real outage data and tested with
synthetic data. Particularly for the shorter observation periods
with the lower outage counts, the Bayesian estimates perform
better than the conventional estimates that simply divide the
number of outages by the observation time: estimates of the
individual line outage rates are more accurate, and the uncer-
tainty of the estimates is reduced. Moreover, the comparison
with a Bayesian model assuming spatially independent lines
shows modeling line spatial dependencies reduces the standard
deviation of estimates.

Our Bayesian hierarchical model offers an improvement over
the conventional estimates for two reasons. Firstly, the Bayesian
method can appropriately capture our prior knowledge of the pa-
rameter uncertainties with prior distributions. Secondly, because
the model is hierarchical and models the dependence between
lines, information about multiple partial commonalities can be
appropriately shared across similar lines. These reasons imply
that estimates can be improved for lines with no (or a small
number of) outages.

Geographically close and neighboring lines experience sim-
ilar weather conditions, may have a similar design, and share
some physical and engineering interactions through the network.
We model these line dependencies as a covariance matrix in
the Bayesian hierarchical model. The covariance matrix is the
weighted sum of two kernels that represent geographic district
commonalities and network line proximity, respectively. The
Bayesian model learns the weights of the two kernels from
the outage data. Our modeling of these dependencies can be
realized from a single utility outage dataset that is routinely
collected, since the line district is recorded in the dataset, and the
network can be readily deduced from the dataset [17]. Using only
one dataset is advantageous since coordinating and combining
different datasets is often arduous. However, it is conceivable
that further advantage could be gained by including other factors
such as average wind speed or altitude.

Previous work has often assumed that transmission line outage
rates are proportional to line length [4] or grouped together
lines of the same area [1]–[3]. We model these dependencies by
linear factors in the outage rate, and the Bayesian model learns
the weights for these factors. The results for our data are that
individual line outage rates are only partially correlated with the
line length or the voltage rating. Therefore, it is more reasonable
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to consider the outage rate for a whole line instead of the rate
per mile.

The Bayesian method estimates the distribution of individual
line outage rates. This is an advantage compared to methods that
return point estimates, as a complete picture of the uncertainty
around estimates is needed to make robust decisions about
risk and maintenance. For example, if a line has a high point
estimate outage rate that is very uncertain, it may be beneficial
to wait to gather more information. If desired, any point or
interval estimates can be easily obtained from the distribution,
depending on the desired application of the outage rates. The
quantification of the uncertainty of estimates is useful when
the outage rates are used in other models and simulations. For
example, a Monte Carlo simulation of transmission reliability
can easily be modified to sample from the outage rate distribution
to better capture the uncertainty in the estimated reliability.

We focus on overall line outage rates without considering
different outage causes in this paper. However, the proposed
Bayesian method can naturally be extended to investigate line
outage rates for specific causes.

When data is limited, which is generally true for power system
outage data, Bayesian estimates have smaller uncertainty than
conventional estimates. Equivalently, with a specific acceptable
standard deviation, the proposed Bayesian method needs less
data than the conventional method. Thus, utilities can monitor
individual line outage rates with fewer years of recording out-
ages. There is a potential to more quickly identify lines with
increasing outage rates and aging problems so that maintenance
can be scheduled. For example, if utilities need two years of data
using the conventional method to estimate line outage rates with
a given uncertainty, they typically only need one year of data
using the proposed Bayesian method to obtain an outage rate
estimate that meets the same uncertainty requirement.

The general advantages of the hierarchical Bayesian method
discussed above suggest benefits for various applications of line
outage rates. We apply the hierarchical Bayesian method to
start to explore and quantify these benefits in [6], which shows
improved performance in detecting deterioration in line outage
rates, quantifying the effect of storms, and a system reliability
calculation.

APPENDIX A
HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo (HMC) is a sophisticated sam-
pling algorithm combining ideas from Markov chains, rejection
sampling, differential geometry, and numerical integration of
Hamiltonian dynamics. This appendix reproduces the HMC
Algorithm 1 from [23], briefly outlines how the algorithm works
differently than other Markov chain Monte Carlo (MCMC)
methods, and then recommends both tutorial and advanced
references to HMC. Some general familiarity with MCMC is
assumed.

HMC has similar overall form as other Metropolis-Hastings
Monte Carlo methods in that it proposes and probabilistically
accepts successive samples of parameters to sample effectively
from the posterior probability density. The successive samples

Algorithm 1: Hamiltonian Monte Carlo.

Given θ0, ε, L,L,M :
for m = 1 to M do

Sample r0 ∼ N (0, I).
Set θm ← θm−1, θ̃ ← θm−1, r̃ ← r0.

for i = 1 to L do
Set θ̃, r̃ ← Leapfrog(θ̃, r̃, ε).

end for
With probability α = min{1, exp {L(θ̃)−0.5r̃·r̃}

exp {L(θm−1)−0.5r0·r0}},
set θm ← θ̃, rm ← −r̃.

end for
function Leapfrog(θ, r, ε)
r̃ ← r + (ε/2)∇θL(θ).
θ̃ ← θ + εr̃.
r̃ ← r + (ε/2)∇θL(θ̃).
return θ̃, r̃

are transitions in an ergodic Markov chain designed so that its
final steady state distribution is the posterior probability density.
However, HMC samples differently than other methods in an
enlarged space. In the notation of Algorithm 1, the parameter
vector θ of “position” variables is augmented with a vector of
“momentum” variables r to form an enlarged space of twice
the dimension in which the successive samples are taken. The
enlarged space enables Hamiltonian dynamics, where the “po-
tential energy” L is the negative logarithm of the joint pdf of θ,
and the “kinetic energy” is 1

2r · r.
Suppose the sampler is at (θ0, r0) in Algorithm 1. To propose

a new sample at (θ̃, r̃), the initial momentum r0 is sampled from
a Gaussian distribution, and then the Hamiltonian dynamics is
integrated for L integration steps with integration step size ε. A
symplectic leap-frog integrator that interleaves integration steps
is used in order to preserve the Hamiltonian structure. Then the
proposed sample is probabilistically accepted or rejected in a
way similar to the Metropolis algorithm. Hoffman [23] proposed
the No-U-Turn Sampler to avoid hand tuning the parameters L
and ε controlling the integration.

To understand why HMC works, we refer readers to the
approachable and intuitive expositions in [22] and [24, Cha.15]
for expert explanations of the algorithm and to [23], [25]–[27]
for further technical analysis. In particular, Betancourt discusses
how HMC is “uniquely suited to the high-dimensional problems
of applied interest.” [22] and how HMC can tackle the corre-
lations induced by hierarchical models [25]. The No-U-Turn
Sampler has at least the same efficiency as a well-tuned HMC
algorithm [25]. The convergence is usually checked by empirical
diagnostic tools [27]. Also, we carefully set the initial values of
the parameters to make the convergence faster by exploring the
outage data in Section III.

APPENDIX B
CONVERGENCE OF SAMPLING ALGORITHM

This appendix uses four methods to check the convergence
of the Hamiltionian Monte Carlo algorithm used to sample the
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Fig. 9. Iterates of R̂ for all parameters computed from four parallel Markov
chains at increments of 20 iterations.

posterior distributions, including potential scale reduction fac-
tors, effective sample size diagnostics, trace plots, and autocor-
relation plots. In addition, we check that the algorithm is not
getting stuck in a local mode in the posterior distributions.

The Gelman-Rubin potential scale reduction factor diagnostic
R̂ is often used to check Markov chain Monte Carlo conver-
gence [27]. R̂ is defined as the ratio of the estimated pooled
variance to the estimated within-chain variance (see [8, Sec.
11.4] for the equations of R̂). Fig. 9 plots the iterates of R̂ for
all parameters at increments of 20 iterations from four parallel
Markov chains. Fig. 9 shows that all R̂s converge and are less
than 1.1 after 400 iterations.

As suggested by Gelman [8], we also compute the effective
sample size n̂eff , which is the equivalent number of independent
samples that have the same standard error of the sample mean of
the parameter as the Markov chain samples (see [8, Sec. 11.4]
for the equations of n̂eff ). It turns out that n̂eff s for all λs are
greater than 100 per chain after 300 iterations, which shows that
the estimates are reliable.

Graphical methods provide another way to check conver-
gence. We make trace plots and autocorrelation function plots
for each variable to check whether the chains are mixing and
have large autocorrelation. It is not practical to show all the plots
here. Instead, we randomly select four parameters to show the
trace plots (Fig. 10) and autocorrelation function plots (Fig. 11).
The two chains have mixed, and the autocorrelation decreases
quickly and tends to zero.

Based on the results of the four methods of checking conver-
gence, we conclude that there is no evidence of nonconvergence.

To check that the algorithm is not getting stuck in a local
mode in the posterior probability distribution, we simulate two
additional Markov Chains with random initial values sampled
from a uniform distribution over the support of parameters. Each
of these additional Markov Chains has 3000 iterations in which
the first 2500 samples are burn-in and are thrown away. We
compare the posterior distributions of all parameters estimated
from the additional chains and the original chain with the initial
values in the body of the paper, and we find no convergence
issues. Moreover, as we are most interested in the outage rates λ,

Fig. 10. Trace plots of two chains of four randomly selected λs.

Fig. 11. Autocorrelation function plots of four randomly selected λs.

we implement a Kolmogorov-Smirnoff test on the corresponding
distributions of outage rates of the two chains that start with
random values. All the λs except two are judged to be from the
same distribution with a significance level 0.01. And these two
λs have close means (0.32 and 0.33, 0.14 and 0.15) and close
standard deviations (0.14 and 0.13, 0.08 and 0.08).
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