Preprint; IEEE International Conference Probabilistic Methods Applied to Power Systems (PMAPS), June 2018, Boise ID USA

Can an influence graph driven by outage data
determine transmission line upgrades that
mitigate cascading blackouts?
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Abstract—We transform historically observed line outages
in a power transmission network into an influence graph that
statistically describes how cascades propagate in the power
grid. The influence graph can predict the critical lines that
are historically most involved in cascading propagation. After
upgrading these critical lines, simulating the influence graph
suggests that these upgrades could mitigate large blackouts by
reducing the probability of large cascades.

I. INTRODUCTION

One useful way to track cascading phenomena on the
power transmission grid is to record the sequences of lines
outaged. Some cascades of line outages, especially the longer
ones, will result in a blackout (significant amounts of load
shed), whereas others do not result in load shedding and can
be regarded as precursors to a blackout. Prior work [5], [6]
suggests that tracking line outages in both historical data and
simulations can give useful insight into cascading failure risk
in a particular power grid.

Recent work [1]-[4] shows how to transform the sequences
of line outages from a large set of simulated cascades into
an influence graph that statistically describes how successive
pairs of lines outage. The influence (or interaction) graph has
a node for each line and a directed link joining the nodes if the
corresponding pair of lines outaged in sequence. The weight of
the link indicates the empirical probability of that pair of lines
outaging in sequence. The line influence graph is a Markovian
model of the original cascading data. Then, moving from node
to node along the influence graph with probabilities according
to the link weights generates sequences of line outages that
are a statistical model of the original data. While the original
line outages occur in the actual power grid network with some
jumps to non-neighboring lines, the corresponding movement
in the influence graph is from node to node along the influence
graph links. This opens up possibilities for applying network
analysis methods to the influence graph.

Previous work has generated influence graphs from sim-
ulated cascades [1], [3], [4]. Here we generate an influence
graph from 14 years of historical line outage data recorded
by a large utility. While the data and its processing have
imperfections, the use of real data has the strong advantage of
avoiding the need to make difficult assumptions about which
of the many mechanisms of cascading to model, and how to
approximate those mechanisms in a simulator.

Cascading failures are comprised of initiating outages
followed by propagating outages [6]. The initial outages have
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mostly different causes than the subsequent propagation of
outages, so that the mitigation of cascading has the two dis-
tinct tactics of limiting outage initiation and limiting cascade
propagation. It is therefore of interest to find the lines most
involved in cascade initiation and/or in cascade propagation
so that candidate lines to upgrade can be selected. While this
can be done directly from historical outage data as suggested
in [11], there is a limitation with the historical data that the
impact of a proposed mitigation cannot be assessed before it
is implemented in reality on the power grid. In this paper we
overcome this limitation by showing that a proposed mitigation
could be tested using the influence graph. A line upgrade
corresponds to weakening the interactions involving that line
that are encoded in the influence graph, so that the effect of
an upgrade can be represented by the altered influence graph.
Simulating the altered influence graph then quantifies the effect
of the change in the influence graph on the probabilities of the
various sizes of cascade.

Some key differences with the previous work [4] are the
use of real data instead of simulated data for both the initial
and propagating outages, and simulating the influence graph
itself to test the effectiveness of the proposed upgrades with
multiple samplings of the initiating outages. The nature of the
conclusions also differs: The previous work [4] relied on the
modeling assumptions used for the simulation, whereas the
methods of this paper rely on processing observed data and are
free of the modeling assumptions used for simulation. Indeed,
the influence graph captures in some way all the mechanisms
of cascading that occurred while the data was collected.
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Fig. 1.  Survival function of the parameter A;,, (the propagation and

parameter for f) for each generation m.
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Fig. 2. The blue network is the physical utility network and the red network joining the blue lines is the influence network H14 formed from the transmission
line pairs in which one outage causes another. Self-loops at a node indicate lines which outage again, within the same cascade, after a time interval.

II. HISTORICAL OUTAGE DATA

The transmission line outage data consists of 10942 auto-
matic line outages recorded by a North American utility over
14 years starting in January 1999 [7]. These line outages range
over all grid conditions, and exclude maintenance outages. The
data includes the outage start time (to the nearest minute),
and names of the buses at both ends of the line. This data
is standard and routinely collected by utilities. For example,
this data is reported by North American utilities in NERC’s
Transmission Availability Data System (TADS) [8], [9], and is
also collected in other countries.

The historical outage data is grouped into cascades and
generations based on the outage start time using the method
of [5]. It produces 6687 cascades, and it involves 614 lines.
84% of the cascades only have one generation.

III. CONSTRUCTING THE INFLUENCE GRAPH

The first step in building an influence graph is to take
sequences of transmission line outage data and divide the
outages into individual cascades and then into generations of
outages, as mentioned above. From these data, we build the
influence graph by estimating parameters for two probability
distributions, f and g. This section closely follows the proce-
dures of [4], which should be consulted for details. f[k|i, m]
is defined as the probability that k additional outages occur
in the next generation m + 1, given that element ¢ outaged
(alone) in generation m of a cascade. g[j|i, m] is defined as
the probability that element j outages in the next generation
m + 1, given that element ¢ outaged (alone) in generation m.

We estimate the parameters for each f[k|i, m] by assuming
that f follows a Poisson distribution and then use a relatively
simple counting approach to find the Poisson parameter and
average propagation \; ,, for each ¢ and m. Since the data
become rather sparse for the later stages of cascading (larger
m), it is necessary to determine the extent to which f changes
with generation number and then estimate a single parameter
Ai,m for combined later generations. In order to understand the
extent to which the propagations A; ,,, change with generation
number m, Fig. 1 shows the survival function (1 — cumulative
probability distribution) of A,,. Clearly, the distribution of A; o
differs substantially from A; ,,, for m = 1,2, 3, ..., whereas the
distributions of A; ,, for m = 1,2,3,... are similar to one
another. Given this, we estimate from the data a single set of
parameters A; o from generations O and 1 and a second set of
parameters \; 1 for the subsequent generations 1,2, 3, ....

In order to estimate the elements of g[j|i, m], we counted
the number of times that element j outaged in the generation
after element ¢ outaged. When there are multiple outages in
either the parent generation m or the child generation m + 1
we assume that each parent contributes equally to each child
and adjust our counting procedure accordingly.

Finally, we combine f[k|i,m] and g[j|i,m] into two in-
fluence graph matrices, Hy and H;, with elements h; ; o and
h; .14 respectively:

hijo =1 —exp (=Xioglili]) ey
hijar =1 —exp(=Ai1tg[jli) @

Note that Hy and H;4 correspond to the choice above of A; o
describing f[-,]4,0] and X; 14 describing f[-, |4, 1+].



The element h;; of influence matrix H is the marginal
probability that line j fails in generation m + 1 given that
line ¢ fails over all values of the number of outaged lines in
generation m + 1. Fig. 2 shows the influence graph H; as
well as the original power network. Many self-loops appear in
the influence graph, and this is a major visual difference with
the influence graph constructed from simulation data in [4].
Self-loops show the same line outaging again in a subsequent
generation (the line has reclosed and then outaged again after
more than one minute). The inclusion of self-loops in the
influence graph model can be further studied in the future.
The influence graph has the Markov property and is essentially
a Markovian model driven by the real data. It should be
noted that in general multiple outages appear on the influence
graph at the same generation, and each of these outages can
propagate to the next generation.

IV. CONSISTENCY OF INFLUENCE GRAPH RESULTS WITH
OUTAGE DATA

The influence graph is a statistical model that can be
simulated by starting with some initial outages and repeatedly
sampling the cascading outcomes according to the influences
in the influence graph. This section performs this simulation
and checks the consistency of influence graph results with the
real outage data by comparing the distributions of cascade size.

The simulation using the influence graph is done by sam-
pling from f and g, starting with an initial line outage set
{Z(()l), ZéQ), ce Zé”)} of n multiple outages in generation 0.
Each cascade propagates by repeatedly sampling from both
f and g generation by generation until no more line outages
occur and the cascade stops. For each next generation, we draw
a sample from f to determine the number k£ of outaged lines
in the next generation, and then we draw k times from g to
determine which lines are failed in the next generation. The
simulation detail is shown in Algorithm 1.

Algorithm 1 Simulating cascades using the influence graph
1: Initialize: cascade index d <— 1; generation index m < 1;

2: for each cascade d <+ 1,n do

3 repeat

4: for each line ¢ in generation m of Z (D) do

5 Generate a random number k from f[k|i, m]

which is the number of outaged lines in generation m + 1;
Generate k random numbers from g[j|i] using
sampling with replacement from the lines;

a

7: Set m <+~ m+1;

8: end for

9: until No outaged lines in generation m
10: end for

There are two details that need to be mentioned. First,
we consider the initial line outage set that is the input of
simulation. For simulated data, prior work [4] used all double
contingencies as the initial line outage set. Since we derive the
influence graph from real outage data, the initial line outage
set needs to have the same distribution as that of real data.
Our straightforward way to do this is to use all the initial
line outages as they occur in the real data. However, in using
all the initial outages in the real data only once, there is a

problem that large cascades are rare and that the possibilities
for the larger cascades are not sufficiently sampled. So we run
the simulation using all the initial outages up to 200 times to
get better sampling of the larger cascades. In particular, this
reduces the variance of the probabilities of large cascades to a
certain extent. Indeed the influence graph has the important
advantage of being able to generate a much larger set of
cascades with statistically similar characteristics, relative to
the original data.

Second, since the influence graph simulator uses sampling
with replacement when sampling from g[j|é], it can generate
the same line outage more than once in the next generation.
We address this problem by taking the union of the sampled
lines (removing any duplicate lines) to ensure that any line
does not fail twice in one generation.

Fig. 3 compares the distribution of cascade sizes for the
simulated data and the real data. The cascade size is measured
by the number of outaged lines. The cascade sizes are grouped
into three categories: a small size with one to four lines
outaged, a medium size with five to fourteen lines outaged,
and a large size with fifteen or more lines outaged.

The distribution of cascade sizes from simulated data
matches well with that from real data for the small and medium
size cascades, but there is some discrepancy for the large
cascades. The simulated large cascades are 41% less likely
than the observed large cascades. There are several possible
causes for this discrepancy. We suggest that the discrepancy
may be caused by overlaps between true cascades when real
outages are grouped into cascades. This overlap happens when
a cascade that is plausibly a different cascade is initiated before
the preceding cascade stops. (For example, an outage very far
from the preceding cascade is sometimes better regarded as
a different cascade.) This limitation in classifying cascades
would have the effect of artificially prolonging some cascades,
and thus increasing the apparent frequency of long cascades
in the processed real data. Another suggested cause of the
discrepancy could be the difficulty of accurately estimating f
with the sparse data of rare large cascades. It is known that the
average number of offspring per parent outage increases with
generation in the real data [5] and insufficiently accounting
for this effect could decrease the apparent frequency of large
cascades in the simulated data.

The discrepancy for larger cascades can also be observed
in more detail in the survival functions of the cascade sizes
in Fig. 4, but it should be recognized that the variance in the
larger cascade sizes probabilities is much larger for both the
real and simulated data in the fine-grained Fig. 4 than for the
coarse-grained bins in Fig. 3.

However, for blackout risk analysis it is adequate to esti-
mate the probability of large cascades within a factor of two,
since the cost estimates for large blackouts are much more
uncertain than a factor of two. Therefore we leave potential
improvements in the match to future work, and regard the
influence graph as matching the real data well enough to
proceed further in this first analysis to determine the line
upgrades mitigating blackouts in the next section.
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Fig. 3. Distribution of cascade sizes in three categories, binned by the number
of lines failed, for real data and for the simulated data from influence graph.
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V. EVALUATING LINE UPGRADES MITIGATING
CASCADING WITH THE INFLUENCE GRAPH

The evaluation of line upgrades consists of two steps:
first identify the critical lines and then quantify the effect of
mitigation by simulating with the influence graph. Cascading
comprises initial outages and then subsequent propagation
which have different mechanisms. Initial outages are indepen-
dent events caused by bad weather, trees and other exoge-
nous causes, whereas propagation of failures occurs via the
protection and control systems and other interactions via the
electrical network. Therefore mitigation of the initial outages
and mitigation of the propagation are evaluated separately.

The critical lines in initial outages can be obtained from
real data according to the frequency of lines involved in the
initial outages. We identified eight lines with frequency larger
than 6.4 outages per year.

Upgrading the critical lines in initial outages will decrease
the outage rates of these lines. This upgrading can be done, for
example, by improving vegetation management, and strength-
ening the lines’ capability of tolerating lightning and other bad
weather. To simulate the effect of this upgrading by decreasing
the initial outage rate of the critical lines by 50%, we reduce
the frequency of appearance of these lines in the initial outages

by randomly discarding half of their occurrences in the initial
set of outaged lines. (If the initial set of lines contains more
than one line, then only the critical lines are considered for
the random discarding.)

Fig. 5 shows the distribution of cascade sizes before and
after upgrading the critical initial lines. As might be expected,
the distribution of cascade sizes is almost the same, since it
is simply a different sample of the possible cascades, but the
total number of cascades decreases by about 10%. That is,
upgrading the lines critical in initial outages decreases the line
outage rates and the cascade rate, but it has almost no influence
on the propagation of cascades, so that the distribution of
cascade sizes does not change.

0.500 Il Before
W After
0.100
2 0.050
i
©
Q
<] 0.010
o
0.005
5.x10°% ’ — -
Small size Medium size Large size
(1-4) (5-14) (>14)
Cascade size in number of line outages
Fig. 5. Comparison of cascade sizes before and after upgrading critical

lines in initial outages simulated using the influence graph. The distribution
of cascade sizes does not change, but the total number of cascades decreases
by about 10%.

To identify lines critical in cascade propagation, we con-
struct the influence matrix H according to equations (1) and
(2) and then calculate from H the line criticality index a. We
explain the procedure for the criticality index here and refer
to [4] for some of the details.

We define p,,, as the row vector whose element p, ; is the
probability that line ¢ outages in generation m. pg is given by
the initial line outage probabilities in the data. Then p; = pgHj
and p,, form = 2,3,4, ... is given by p,,, = ppm—1H14. Hence

pm = poHo(H14+)" 1,

Define a as the row vector whose element a; is the expected
number of times that line ¢ outages during a cascade. Then

m=1,23,.. 3)

a=""pm=po+poHo(I — Hiy)™". “4)

m=0

If cascade size is measured in number of line outagesl, then
the expected cascade size .S is the sum over the n lines of the
expected number of times each line outages in a cascade:

S = zn:ai 5)
i=1

ILines may outage more than once in different generations in the data, so
the number of line outages can exceed the number of outages of distinct lines.




Recall that the entry H;; of influence matrix H is the
probability that line j fails in the next generation given that
line ¢ fails. We can represent strengthening line j so that other
lines failing are less likely to outage line j by reducing the
probabilities in column j of the matrices Hy and H;, by
80%, as explained in detail in the appendix. Recalculating (4)
and (5) with these altered matrices Hy and H; yields S;, the
expected cascade size with line j strengthened. Defining

aj=5-5 (6)

gives the improvement in expected cascade size with line j
strengthened. Upgrading critical lines in propagation can
be achieved, for example, by improving protection, re-
conductoring to increase capacity, derating to give the lines
more operational margin, or distributing loading to new lines.

The lines most critical for propagation are those lines
with the largest reduction «; in expected cascade size. The
distribution of a; over the all the lines is shown in Fig. 6 in
order of decreasing «;. There is a gap in «; between the top
eight lines and the remaining lines. So we choose to upgrade
the eight lines with the largest a;.
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Fig. 6. «; for line j in descending order of size of ;. ; is the reduction

in expected cascade size for upgrade of line j. The red dots indicate the top
eight critical lines.

Now we test the effectiveness of upgrading the eight lines
by simulating the influence graph with the upgrades in place.
The changes to the simulation to represent the upgraded
lines are described in the appendix. Figs. 7 and 8 show
the distribution of cascade size before and after upgrading
critical lines in propagation. Fig. 7 shows that the probability
of a large size cascade is reduced by about 50%, while
the probability of small-size and medium-size cascades are
almost the same as before. Upgrading critical propagating
lines reduces the overall cascade propagation so that the risk
of large blackouts is reduced.

Upgrading critical lines in initial outages and in propaga-
tion have different effect on mitigating cascades. Upgrading
critical lines in initial outages does not influence the distribu-
tion of cascade sizes, but it does decrease the total number
of cascades. Upgrading critical lines in propagation does not
decrease the total number of cascades, but it does lower the
probability of large cascades. The eight lines identified as
critical for initial outages and the eight lines identified as
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Fig. 7.  Comparison of probabilities of cascade sizes before and after

upgrading critical lines in propagation simulated using the influence graph.
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upgrading critical lines in propagation simulated using the influence graph.

critical in propagation overlap in one line that is critical for
both initial outages and propagation.

VI. DISCUSSION AND FUTURE WORK

We regard our initial demonstration of large cascade miti-
gation with influence graphs driven with real data in this paper
as promising. However, there are a number of limitations and
uncertainties that we discuss in this section that should be
addressed in future work.

The construction of the influence graph relies on the
method of grouping the recorded outages into cascades and
generations. We use the simple method based on outage
timing in [5], which is subject to improvement. One challenge
is better distinguishing which outages are initiating outages
and which are subsequent propagation through the network,
particularly during bad weather when the initiating outage rate
increases [13] and there are more overlaps between cascades.
This challenge probably requires a better understanding of
the spatial spreading of cascades on the network so that the
initiating outages can be distinguished by their patterns in both
space and time.

The influence graph is Markovian and thus an approxima-



tion, and there are statistical challenges and fundamental trade-
offs when lumping together differing parameters. More lump-
ing gives more data and better lumped parameter estimates
but obscures differences between parameters. For example,
while we do distinguish the initial propagation in Hy from the
propagation in subsequent generations in [y, the propaga-
tions in the subsequent generations are lumped together. These
problems can be mitigated by better understanding and better
high-level models of the bulk statistics of cascading coupled
with improved statistical methods.

The historical data is inherently a sample of the cascading
possibilities. The influence graph based on the historical data
can represent cascading sequences that are not in the original
data set by combining pairwise line interactions that occur
in the data. However, the data-driven influence graph cannot
represent possible pairwise line interactions that are not present
in the data, or accurately estimate the probabilities of interac-
tions that are rare in the data. There is a persistent problem
that the large cascades are rare, giving a higher variance in
the estimates of the probability of the larger cascades. Our
methods do address this problem in part by starting with 14
years of data and by repeatedly simulating the influence graph
with the same initiating outages to explore more of the larger
cascades. However, further ways of mitigating this problem
should be developed.

VII. CONCLUSION

This paper provides initial evidence that an influence graph
can be constructed from historical line outage records and used
to identify critical lines most involved in the propagation of
cascading outages. Moreover, we can relate the upgrade of
the critical lines to the change in the distribution of cascade
size. In particular, we propose a data-driven method to mitigate
the chance of the largest cascades that cause the higher risk
large blackouts. This is a novel way to process and leverage
historical outage data that is already routinely collected by
utilities. Assessing mitigation with an influence graph also
allows comparison of the effects of mitigating the initiating
outages versus the mitigating the propagation by revealing
their different effects on the frequency of cascades and the
distribution of cascade size.

There are a number of uncertainties and limitations of the
approach that remain to be resolved in future work. Better
understanding of the statistical patterns in the spreading of
cascades in time and spatially on the network could enable
better data-driven estimation of the probability distributions
defining the influence graph. And we are still exploring the
ways in which the influence graph can be constructed and
simulated to extract useful engineering information. However,
given the initial results in this paper, we are optimistic that
answer to the question “Can an influence graph driven by
outage data determine transmission line upgrades mitigating
cascading blackouts?” will be yes.

APPENDIX: METHOD OF REDUCING LINE INTERACTIONS

This section describes the methods used for changing the
matrix H to represent lines that were upgraded to reduce their
outages due to other lines outaging. To simplify notation, it is
convenient to let H stand for both Hy and H; .

For computing the criticality index « and ranking the most
critical lines, it is straightforward to represent the upgrade of
line 5 by decreasing the jth column of H by multiplying it by
0.8. An efficient formula for this calculation is given in [4].

Simulating the influence graph using f and g while in-
cluding the upgrade of the eight most critical lines relies on
modifying the function g. To do this, we introduce a new
“ghost” line that can outage, but whose outage will be ignored.
gljl7] for j a regular line is modified to ¢'[j|i] = 0.2¢[j|¢] and
g'[7]7] for j the ghost line is set so that the sum of ¢'[j|i] over
all j is one. Sampling with f and ¢’ will sometimes choose
the ghost line, whose outage is then ignored, and this has the
effect of both reducing the number of outaged lines in the next
generation and reducing the probability of outaging a given
line in the next generation when ¢ outages. The effect on H of
changing g to ¢’ on H is evaluated using (1) and (2), and (1)
and (2) show that this effect varies somewhat depending on
Aio and A; 1. We computed the average effect of changing
g to ¢’ on the eight modified columns of H to be multiplying
these columns by 0.79, which is close enough to the factor of
0.8 used to rank the lines.
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