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Abstract

In bulk electric power transfer capability computations, the transmission reliability margin accounts for uncertainties related to the

transmission system conditions, contingencies, and parameter values. We propose a formula which quantifies transmission reliability margin

based on transfer capability sensitivities and a probabilistic characterization of the various uncertainties. The formula is verified by

comparison with results from two systems small enough to permit accurate Monte Carlo simulations. The formula contributes to more

accurate and defensible transfer capability calculations.
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1. Introduction

Bulk power transfer capability computations have many

uses in electric power system operation and planning. In the

operation of bilateral markets, available transfer capability

is used to allocate reservations of transmission rights [1–3].

In the operation of pooled markets, transfer capability

combined with bid information can be used to help allocate

financial transmission rights or transmission congestion

contracts. In both planning and operations, transmission

capability can be used to assess power system security when

local power sources are replaced by imported power.

Finally, transfer capability can be used to provide capacity

data for simplified power system models suitable for

locational price forecasting. All of these applications are

reviewed in Ref. [4].

In many of these applications, it is desirable to quantify

the uncertainty in the transfer capability computation as a

safety margin so that if the computed transfer capability

minus the safety margin is used, it is likely that the

power system will remain secure despite the uncertainty.

The transmission reliability margin (TRM) accounts for
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the uncertainties associated with the transmission system.

Deregulation of power systems has increased the need for

defensible calculations of transfer capability and related

quantities such as the TRM.

This paper describes a straightforward method to

estimate the TRM. The method exploits formulas for

first order sensitivity of transfer capability [5–7]. These

formulas can be quickly and easily computed when

transfer capability is determined. The formulas determine

a linear model for changes in transfer capability in terms

of changes in any of the power system parameters. This

paper supposes that the uncertainty of the parameters can

be estimated or measured and shows how to estimate the

corresponding uncertainty in the transfer capability. A

formula for TRM is then developed based on the

uncertainty in the transfer capability and the desired or

agreed upon degree of safety.
2. Transfer capability and TRM

We summarize a generic transfer capability calculation

[5,4] and discuss TRM.

The time horizon of the transfer capability calculation is

established and a secure base case is chosen. A base case

transfer including existing transmission commitments is
Electrical Power and Energy Systems 26 (2004) 697–702
www.elsevier.com/locate/ijepes

http://www.elsevier.com/locate/ijepes


J. Zhang et al. / Electrical Power and Energy Systems 26 (2004) 697–702698
chosen. Then a transfer limited case is determined. One

method to determine the transfer limited case gradually

increases the transfer starting at the base case until the first

security violation is encountered. The real power transfer at

the first security violation is the transfer capability. The

calculation may be repeated for a short list of contingencies

and the minimum of these transfer capabilities is used.

In our framework [5], the following limits are accounted

for in the transfer capability computation:
†
 power flow or current limits (normal and emergency)
†
 voltage magnitude upper and lower limits (normal and

emergency)
†
 voltage collapse limit

Our framework accounts directly only for limits which

can be deduced from static model equations. Although

oscillation and transient stability limits can be studied

offline and approximated by surrogate power flow limits, the

sensitivities of the surrogate power flow limits will not be

the same as the sensitivities of the oscillation and transient

stability limits. Thus, our methods do not extend to the

estimation of uncertainties associated with oscillation and

transient stability limits.

According to the North American Electric Reliability

Council [2], ‘The determination of ATC must accommodate

reasonable uncertainties in system conditions and provide

operating flexibility to ensure the secure operation of the

interconnected network’. There are two margins defined to

allow for this uncertainty: The TRM is defined in Ref. [2] as

‘that amount of transmission capability necessary to ensure

that the interconnected transmission network is secure under

a reasonable range of uncertainties in system conditions’.

The capacity benefit margin ensures access to generation

from interconnected systems to meet generation require-

ments. The capacity benefit margin is calculated separately

from the TRM.

Since uncertainty increases as conditions are predicted

further into the future, the TRM will generally increase

when it is calculated for times further into the future.
3. Quantifying TRM

3.1. Parameters and their uncertainty

The transfer capability is a function A of many

parameters p1,p2,.,pm:

transfer capability Z Aðp1; p2;.; pmÞ (1)

Uncertainty in the parameters pi causes uncertainty in the

transfer capability and it is assumed that this uncertainty in

the transfer capability is the uncertainty to be quantified in

the TRM. The uncertain parameters pi can include factors

such as generation dispatch, customer demand, system
parameters and system topology. The parameters are

assumed to satisfy the following conditions:
(1)
 Each parameter pi is a random variable with known

mean m(pi) and known variance s2(pi). These statistics

are obtained from the historical record, statistical

analysis and engineering judgment.
(2)
 The parameters are statistically independent. This

assumption is a constraint that can be met in practice

by careful selection of the parameters [8]. For example,

if loads with the same weather have significant

temperature dependence, then the temperature should

be chosen as a random parameter and the loads should

be computed as function of temperature.
3.2. Transfer capability sensitivity

We assume that the nominal transfer capacity has been

calculated when all the parameters are at their mean values

The uncertainty U in the transfer capability due to the

uncertainty in all the parameters is:

U Z Aðp1; p2;.; pmÞKAðmðp1Þ;mðp2Þ;.;mðpmÞÞ (2)

The mean value of the uncertainty is zero:

mðUÞ Z 0 (3)

Approximating the changes in transfer capability linearly

in Eq. (2) gives:

U Z
Xm

iZ1

vA

vpi

ðpi KmðpiÞÞ (4)

(vA/vpi) is the small signal sensitivity of the transfer

capability to the parameter pi evaluated at the nominal

transfer capability.

When the transfer capability is limited by voltage

magnitude or thermal limits, the sensitivity of the transfer

capability to parameters can be computed using the

formulas of Refs. [5,6].

When the transfer capability is limited by voltage collapse,

the sensitivity of the transfer capability to parameters can

be computed using the formulas of Ref. [9]. (Topology

changes can also be accommodated with limited accuracy

using the fast contingency ranking techniques in Ref. [10].)

In each case a static, nonlinear power system model is

used to evaluate the sensitivities. The computation of

(vA/vpi) is very fast and the additional computational effort

to compute (vA/vpi) for many parameters pi is very small [5,

6,9]. For example, the sensitivity of the transfer capability to

all the line admittances can be calculated in less time than

one load flow in large power system models [5,9].

3.3. Approximate normality of U

Since the parameters are assumed to be independent

s
2ðUÞ Z

Xm

iZ1

s
2 vA

vpi

ðpi KmðpiÞÞ

� �
(5)
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s2ðUÞ Z
Xm

iZ1

vA

vpi

� �2

s2ðpiÞ (6)

and the standard deviation of U is:

sðUÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

iZ1

vA

vpi

� �2

s2ðpiÞ

s
(7)

The central limit theorem asserts that, under suitable

conditions which are discussed in Appendix A, the sum of n

independent random variables has an approximately normal

distribution when n is large. Ref. [11] states: ‘in practical

cases, more often than not, nZ10 is a reasonably large

number, while nZ25 is effectively infinite.’ Hence for

practical power system problems with many parameters, we

expect that the uncertainty U is approximately a normal

random variable with mean zero and standard deviation

given by Eq. (7). This approximation gives a basis on which

to calculate the TRM. The conditions described in Appendix

A are mild and require little knowledge of the distribution of

the parameters.

There are cases in which the central limit theorem

approximation does not work well: As stated in Ref. [11],

‘the separate random variables comprising the sum should

not have too disparate variances: for example, in terms of

variance none of them should be comparable with the sum of

the rest.’ This can occur in Eq. (4) when there are a few

parameters which heavily influence the transfer capability

(large(vA/vpi)) and the other parameters have little influence

on the transfer capability (small(vA/vpi)) and are insuffi-

ciently numerous. In these cases, accurate answers can be

obtained by using the central limit theorem to estimate the

combined effect of the numerous parameters of little

influence as a normal random variable and then finding the

distribution of U with the few influential parameters by

Monte Carlo or other means (cf. [12] in the context of

probabilistic transfer capacity). This partial use of the central

limit approximation dramatically reduces the dimension of

the problem and the computational expense of solving it.

In all cases the central limit theorem approximation

improves as the number of similar parameters increases and

thus the approximation generally improves as the power

system models become larger and more practical.
3.4. Formula for TRM

We want to define the TRM large enough so that it

accounts for the uncertainty in U with rare exceptions. More

precisely, we want

probabilityfKU%TRMg Z P (8)

where P is a given high probability. This can be achieved by

choosing the TRM to be a certain number K of standard

deviations of U:

TRM Z KsðUÞ (9)
K is chosen so that the probability that the normal

random variable of mean zero and standard deviation 1 is

less than K is P. (i.e. 1=
ffiffiffiffiffiffi
2p

p Ð k
KN eKt2=2 dtZP:) It is

straightforward to calculate K from P by consulting tables

of the cumulative distribution function of a normal

random variable [13]. For example, if it is decided that

the TRM should exceed the uncertainty KU with

probability PZ95%, then KZ1.65. (i.e. a normal random

variable is less than 1.65 standard deviations greater than the

mean 95% of the time.) If it is decided that the TRM should

exceed the uncertainty KU with probability PZ99%, then

KZ2.33.

Combining Eqs. (7) and (9) yields a formula for TRM:

TRM Z K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

iZ1

vA

vpi

� �2

s2ðpiÞ

s
(10)

In order to use formula (10) we need:
†
 A choice of uncertainty parameters p1, p2,.,pm satisfy-

ing the two conditions above.
†
 The variance s2(pi) of each parameter.
†
 Calculation of the sensitivity (vA/vpi) of the transfer

capability to each parameter pi.
4. Uncertainty parameters

The transfer capability is computed from a base case

constructed from system information available at a given

time. There is some uncertainty or inaccuracy in this

computation. There is additional uncertainty for future

transfer capabilities because the transfer capability com-

puted at the base case does not reflect evolving system

conditions or operating actions. These two classes of

uncertainty are detailed in Sections 4.1 and 4.2.

4.1. Uncertainties in the base case transfer capability

These uncertainties are:
†
 inaccurate or incorrect network parameters
†
 effects neglected in the data (e.g. the effect of ambient

temperature on line loading limits)
†
 approximations in transfer capability computation

4.2. Uncertainties due to evolving conditions

These uncertainties are:
†
 ambient temperature and humidity (contributes to

loading) and weather
†
 load changes not caused by temperature
†
 changes in network parameters
†
 change in dispatch



Fig. 1. Eight-bus test system.
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†
 topology changes. This is often referred to as ‘con-

contingencies.’ The probabilities of these contingencies

can be estimated.
†
 changes in scheduled transactions

These uncertainties generally increase when longer time

frames are considered. While some of these uncertainties

may be quite hard to characterize a priori, it is important to

note that it would be practical to collect empirical data on

the changes in base cases as time progresses. Then variances

of the uncertain parameters corresponding to various time

frames could be estimated.

It is important to satisfy the statistical independence

assumption when modelling parameter uncertainty. For

example, if the uncertainty of different loads has a common

temperature component, then this temperature component

should be a single parameter and the load variations should

be modelled as a function of temperature.
Table 1

Parameter distributions

Parameter Distribution

Line susceptance B25 Binary; prob{B25Z5.0}Z0.95,

prob{B25Z0}Z0.05

Line susceptance B38 Binary; prob{B38Z2.5}Z0.95,

prob{B38Z0}Z0.05

Line impedance X12 Uniform; mZ0.1, sZ0.0029

Line impedance X23 Uniform; mZ0.2, sZ0.0058

Line impedance X34 Uniform; mZ0.1, sZ0.0029

Line impedance X15 Uniform; mZ0.1, sZ0.0029

Line impedance X26 Uniform; mZ0.1, sZ0.0029

Line impedance X37 Uniform; mZ0.1, sZ0.0029

Line impedance X48 Uniform; mZ0.1, sZ0.0029

Line impedance X56 Uniform; mZ0.1, sZ0.0029

Line impedance X67 Uniform; mZ0.2, sZ0.0058

Line impedance X78 Uniform; mZ0.1, sZ0.0029

System loading p13 Normal; mZ0.0, sZ0.1

Bus 5 generation p14 Normal; mZ0.0, sZ0.1

Line 2–4 flow limit Normal; mZ1.5, sZ0.1

Line 6–7 flow limit Normal; mZ1.5, sZ0.1

Parameters are defined in Fig. 1. p13 and p14 are changes in load and

generation.
5. Simulation test results

This section tests the TRM formula by comparing it with

Monte Carlo simulations in two examples. The examples

are chosen to be small enough that comprehensive

validation against the formula is practical. However, the

formula is applicable to extremely large systems and

situations with numerous parameters. In these larger

examples, validation against extensive Monte Carlo anal-

ysis is impractical.

The first example uses the 8 bus system shown in Fig. 1.

The transfer capability from area 1 (buses 1, 2, 5 and 6) to

area 2 (buses 3, 4, 7 and 8) is limited by the power flow limit

on the line joining buses 2 and 3. Fig. 1 also defines the

parameters; for example, B25 is the susceptance of the line

joining buses 2 and 5 and p13 is the change in real power of

all the loads. The parameters are listed in Table 1.

Several simple types of models for the parameter

uncertainty are illustrated in the first example.

If a transmission line is assumed to be usually in service
with a nominal susceptance and occasionally out of service

with zero susceptance, then the probability distribution of its

susceptance is binary with a high probability for the nominal

value. If a transmission line has variable impedance due to

temperature and the maximum and minimum impedances

are known, then a conservative assumption for computing

the variance of the impedance is that its probability

distribution is uniform between the maximum and minimum

impedances. The uncertainty in changes in system loading,

generation, and line flow limits can take many forms, but

here we assume that these parameters are normally

distributed. The important points are that the TRM

calculation allows any modelling choice for the parameter

uncertainty as long as the variance of each parameter can be

computed and that the TRM calculation depends on the

parameter uncertainty only via these variances. Thus,

the TRM calculation is insensitive to much of the detail of

the modeling assumptions for parameter uncertainty. It also



Table 2

TRM for 8-bus system (p.u.)

P 90% 95% 99% 99.5%

TRM formula 0.6012 0.7750 1.0944 1.2118

Monte Carlo 0.6027 0.7846 1.1083 1.2171
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would be straightforward to estimate the variance directly

from historical records of the parameter.

The base case of the system assumes all parameters at

their mean values. At the base system, the transfer capability

is 2.8253 p.u. (with no contingency). Sensitivity of the

transfer capability to these parameters can be calculated

with no difficulty. Given a desired high, probability P, the

TRM defined in Eq. (8) is calculated using formula (10).

Table 2 lists TRMs with respect to different probabilities P.

Ten thousand samples are used in the Monte Carlo

simulation.

The second example uses the IEEE 118 bus system.

There are 186 lines and the real power flow limit was

assumed to be 1.0 p.u. at all lines except that the real power

flow limit for line 54 was assumed to be 3.0 p.u. We

consider a point to point power transfer from bus 6 to bus 45.

The uncertain parameters are the power injections to all

buses. The power injections are assumed to have a uniform

distribution between 95% and 105% of their nominal values.

An AC power flow model was used. At the base case, the

transfer capability is 1.8821 p.u. Given a desired probability

P, TRM defined in Eq. (8) is calculated using formula (10).

Table 3 lists TRMs with respect to different probabilities P.

Ten thousand samples were used in the Monte Carlo

simulation.

In both the 8 and 118 bus examples, the Monte Carlo

results confirm the TRM estimates from formula (10).
6. Probabilistic transfer capacity

Our approach is not limited to the determination of TRM.

Since our approach yields an approximately normal

distribution of transfer capability uncertainty U and an

estimate (7) of the standard deviation of U, this is an

alternative way to find the probabilistic transfer capacity as

presented in Refs. [8,12,14–16]. The probabilistic transfer

capacity can be used for system planning, system analysis,

contract design and market analysis. Ref. [14] suggests

promising applications of probabilistic transfer capacity in

the new market environment.
Table 3

TRM for 118-bus system (p.u.)

P 90% 95% 99% 99.5%

TRM formula 0.0803 0.1036 0.1462 0.1619

Monte Carlo 0.0795 0.1027 0.1427 0.1585
7. Conclusion

This paper presents a way to estimate TRM from

parameter uncertainties with a formula. The formula

requires estimates of the variances in independent par-

ameters, the evaluation of transfer capability sensitivities,

and specification of the degree of safety. The transfer

capability sensitivities with respect to many parameters are

easy and quick to evaluate once the transfer capability is

determined [5,9]. This ability to quickly obtain sensitivities

with respect to many parameters makes it practical to

account for the effects of many uncertain parameters in large

power system models. The validity of the formula has been

confirmed by comparison with Monte Carlo runs on 8 and

118 bus systems. However, the central limit theorem

approximation used to derive the formula improves as the

number of parameters increases so that the formula is most

applicable to larger power system models for which Monte

Carlo comparisons are impractical. No cost information is

used in the formula.

The approach includes estimating the statistics of the

uncertainty in the transfer capability and thus gives an

alternative way to obtain a probabilistic transfer capacity

with a more formal way of accounting for uncertainty than

is ordinarily used in such calculations. The formula provides

a defensible and transparent way to estimate TRM; in

particular, the degree of safety assumed and the sources of

uncertainty are apparent in the calculation. The improved

estimate of TRM will improve the accuracy of transfer

capabilities and could be helpful in resolving the tradeoff

between security and maximizing transfer capability. The

sensitivities used in the calculation highlight which

uncertain parameters are important. Indeed, the calculation

provides one way to put a value on reducing parameter

uncertainty because a given reduction in uncertainty yields a

calculable reduction in TRM and this can be related to the

monetary benefits that accrue from an increased transfer.
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Appendix A

Let X1,X2,.,Xm be independent, zero mean random

variables and write s2
m Z

Pm
kZ1 s2ðXkÞ for the variance ofPm

kZ1 Xk: The approximate normality of
Pm

kZ1 Xk requires a

central limit theorem. (Note that the most straightforward

version of the central limit theorem does not apply because

we do not assume that Xl,X2,.,Xm are identically

distributed.) A special case of the Lindeberg theorem [17]
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states that if

lim
m/N

Xm

kZ1

1

s2
m

ð
jXkjO2sm

X2
k dF Z 0 (11)

hold for all positive 2 then 1
sm

Pm
kZ1 Xk converges in

distribution to a normal random variable of mean zero and

variance unity.

One useful class of random variables satisfying the

Lindeberg condition (11) is random variables which are

both uniformly bounded and whose variance uniformly

exceeds some positive constant. It is also possible to

augment the random variables in this class with some

normal random variables.
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