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ABSTRACT

Traveling Wave Tubes (TWTs) are microwave and millimeter wave amplifiers used in radar,

satellite communications, and electronic countermeasure applications. On a satellite, the

TWT provides the final communications signal boost before transmitting the signal back to

earth. In electronic countermeasures, TWTs boost signals that are sent out to deny detection

by an enemy radar. The TWT, as with any amplifier, has a less than ideal behavior due to the

amplifier nonlinearities. The non-idealities typically result in decreased amplifier efficiencies

or reduced bandwidth. Such compromising behavior can be extremely expensive where a

1% increase in efficiency of a TWT could save $100, 000, 000 over the operating lifetime of a

communications satellite.

In this dissertation new advances in nonlinear modeling of TWTs are presented. These

advances include new techniques for calculating properties of nonlinear behavior, and new

insights into the physical processes responsible for the nonlinear distortions. In particular,

the physics of intermodulation distortion, phase distortion, and harmonic injection are stud-

ied in detail. The new ideas on intermodulation distortion and phase distortion presented in

the thesis revise long-standing assumptions about TWT nonlinearity, and should ultimately

play a role in improving TWT designs through improved understanding. The new ideas

and explanations of harmonic and signal injection may enable new technologies that would

increase efficiency, bandwidth, and linearity, and provide increased functionality and higher

data rates with large cost savings for electronic countermeasure and satellite communications

markets.
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Chapter 1

Introduction and background

1.1 Introduction

Traveling Wave Tubes (TWTs) are microwave and millimeter wave amplifiers that are
used extensively in communications, radar, and electronic countermeasure applications.
They continue to find wide-spread application due to their inherently wide bandwidths and
their high frequency, high power operating points. A compromising feature of the TWT is
the device nonlinearity. The nonlinearity manifests as a saturating mechanism and spec-
tral distortion; both of these effects limit TWT efficiency. For electronic countermeasures,
power produced in the harmonics of the fundamental limits the output powers obtainable
at the fundamental, and this limits the obtainable efficiency at the fundamental. For digital
communications applications, the distortions increase bit error rates, and this limits data
rates. Reducing nonlinear distortions in TWTs would increase efficiency and bandwidths of
electronic countermeasure systems, and would increase data rates and efficiency in digital
communications applications.

There are several examples of nonlinear effects that have long plagued TWTs and have
been the focus of much research, but are still not completely understood in terms of physical
mechanisms. Among these are harmonic injection, cross-modulation, and phase distortion.
Moreover, due to increased sophistication of modulation techniques in digital communica-
tions, there are new problems associated with TWT nonlinearities which also lack explana-
tions and remedies. For example, there is no general description based on TWT physics for
how statistics of the input signal translate to statistics of the output signal. Since improved
understanding inevitably leads to improved techniques and designs, wireless communications
systems and electronic countermeasure systems certainly stand to benefit from improved ex-
planations and insights into nonlinear TWT physics.

The methods available to study nonlinear TWT physics include experimentation, model-
ing, simulation, and analysis; this thesis focuses on modeling, simulation, and analysis. The
two primary methods for modeling TWT behavior are physics based models and generic
input-output models. There are a wide variety of available physics based models. On one
end of the spectrum are steady-state models which assume a Fourier series form for the RF in-
put and are usually systems of nonlinear ordinary differential equations. On the other end of
the spectrum are electromagnetic particle-in-cell (PIC) models that involve solving electron
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beam equations and Maxwell’s equations (partial differential equations) in the time-domain.
Models in this spectrum can be 1-d, 2-d, 3-d, or some mixture, i.e., different dimensions for
the electron beam and electromagnetic fields.

We have developed three new 1-d nonlinear steady-state TWT models, the MUSE model,
the S-MUSE model, and LATTE [82]. This “suite” of models provides a foundation for sim-
ulation and analysis that has led to a new understanding of many aspects of nonlinear TWT
physics. The LATTE model captures the largest amount of nonlinear physics, including RF
power saturation, and is ideally suited for simulation. By virtue of its construction, the
MUSE model fails to predict the same RF power saturation as LATTE, and is therefore
not considered to be as accurate at LATTE. However, the MUSE model has a mathemati-
cal structure that allows certain physical aspects of the device physics to be studied which
cannot easily be probed in LATTE or any other TWT model past or present. The S-MUSE
model is derived from the MUSE model by dropping certain nonlinear terms, and can be
considered an approximation to the LATTE solutions applicable prior to power saturation.
However, the S-MUSE model is analytically solvable and the structure of the solutions de-
scribes much about the underlying nonlinear physics of the TWT. Therefore, although the
MUSE and S-MUSE models sacrifice certain physical predictive capabilities and have a more
limited range of use, they are advantageous in other respects including speed of computation,
analytic tractability, and access to physics not available to other models.

In this thesis we apply LATTE, MUSE, and S-MUSE, derived and compared with the
large signal code Christine 1-d [4, 5] in Chapter 2, to some important nonlinear problems in
TWT physics. Christine 1-d predictions have been extensively validated with experiments,
and are therefore regarded as an acceptable validation benchmark for the new models. In
Chapter 3 the analytic solutions to S-MUSE are computed, and technical details are dis-
cussed. In Chapter 4 a process for generation of harmonic and intermodulation distortions
is given, along with a formula to compute exponential growth rates of the distortions. In
Chapter 5 we study phase distortion in the TWT. Using the models we offer a new view of
the physical mechanisms of phase distortion that is counter to a decades old view, and apply
the new insights to several phase distortion related problems. In Chapter 6 we study the
theory and simulation of harmonic injection, and more generally signal injection, for shap-
ing output spectra. The material gives unique insights into many aspects of many different
signal injection schemes. Such insights will probably play a role in the development of new
linearizer technologies. Finally, in Chapter 7 we give an overview of the entire thesis and
describe its impact on the field of vacuum electronics.

1.2 Literature review

In this section we review the TWT literature on the following topics:

1. physical TWT modeling using Eulerian coordinates,

2. physical TWT modeling using Lagrangian coordinates,
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3. TWT transfer functions,

4. harmonic injection in TWTs.

Unless otherwise specified the TWT models discussed below are steady-state “frequency
domain” models, i.e., inputs may be written as a Fourier series.

1.2.1 TWT modeling using Eulerian coordinates

1.2.1.1 Linear Eulerian theory

The classic linear TWT model was published by J.R. Pierce in 1947 [60]. The analysis
uses a one-dimensional transmission line to represent the slow-wave circuit, and models the
electron beam as a one dimensional fluid. The fluid equations for the electron beam are a
Newton’s Law relation and an equation of continuity, both expressed in Eulerian coordinates.
The theory, known as “Pierce theory” or “small-signal theory,” is widely used and the details
have been presented in several text books, for example [7, 39, 41, 48, 54, 61]. The linear
theory is a single frequency theory and does not predict saturation of the circuit field.

1.2.1.2 Nonlinear Eulerian theory

Several authors have modeled TWT nonlinearities using the Eulerian electron beam
equations that Pierce linearized to get the small-signal theory.

Brillouin [11] develops a single frequency nonlinear TWT theory based on the non-
linearized Pierce equations. He first re-derives the small signal results. However, he includes
relations for energy density and energy flux, as well as formal inequalities for the limitations
of the linear equations. He then considers “large amplitude” regimes of the nonlinear equa-
tions. Classes of “stable waves,” “shock waves,” and “oscillating waves of moderately large
amplitude” are considered.

Putz [64] is the first author to attempt an extension of the small signal theory to include
multiple frequencies. The following is a summary of [64] from Curtice [19]:

Putz’s method of analysis is to find, to a reasonable approximation, the power-
series expansion for the electric field of the slow-wave structure. Starting with an
analysis of electron bunching owing to an assumed helical field, the fundamental
alternating current can be evaluated and expressed in a power series. This power
series, together with the relationship between beam current and electric field
on a travelling-wave structure, leads to a power-series expansion for the electric
field, the first term of which is merely the usual small-signal result. Several
successive approximations are used to obtain a self-consistent solution which,
however, ignores space-charge forces in the beam and any transverse motions of
the electrons.

The analysis of bunching is done with a single-wave solution (the growing wave)
for each signal. This approximation is accurate in tubes of high gain, but will be
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erroneous in cases where the other waves cannot be neglected; e.g. it is not clear
how to analyse a t.w.t. with a lumped attenuator. However, if there is at least
20dB gain following the attenuator, the growing wave will adequately describe
the circuit field, and [intermodulation] and [cross modulation] effects will result
principally from the nonlinear effects after the attenuator. If the gain after the
attenuator is insufficient, new effects occur as Ober has shown.

Sobol [73] also attempts a multifrequency analysis. From El-Shandwily [29]:

Sobol used the same procedure [as DeGrasse] to derive four sets of equations (in
addition he neglected the second harmonic that was considered by DeGrasse),
and gave numerical solution only for the longitudinal beam parametric amplifier
case with the pump frequency at twice the signal frequency.

DeGrasse [26] uses a method similar to Sobol [73]. Again from El-Shandwily [29]:

DeGrasse gave an analysis of linear O-type amplifiers with two input signals.
. . . Five sets of equations which describe the operation of the traveling-wave am-
plifier were derived. One set was for each input signal and one set for the dif-
ference, the sum and the second harmonic of one of the input signals. To solve
the equations, DeGrasse assumed that both of the input signals propagate inde-
pendently according to Pierce’s linear theory. Knowing the solution for the two
input signals the other components could be obtained. Other intermodulation
components such as those at 2f2−f1 and 2f1−f2 which could be important were
not considered.

Curtice [19] extends Putz [64] to include space charge and larger values of the Pierce gain
parameter C. A series expansion of the beam current gives a series expansion for the circuit
field, the second term of which contains the “first-order nonlinear effects of t.w.t. operation.”
As in [64] the nonlinear term is normalized into a “normalized distortion factor.” This
factor is related to the cross-modulation factor, which is then related to output amplitude
and phase modulation, and intermodulation power ratio. The normalized distortion factor is
computed versus TWT parameters. The analysis however is limited to “the weakly saturated
condition.”

The group of Datta et al. have published a collection of articles using a third order
nonlinear model based on Eulerian electron beam equations. Following work by Paschke
[57, 58, 59] Datta et al. use “successive approximations” to obtain analytic solutions to the
nonlinear system. While a 1-d analysis, their model includes all relevant physics, although
nonlinearities above the third order are discarded [23]. However, they note that for their
results to be “fairly acceptable” [20] the beam plasma frequency must be much below the
operating frequency, referring to [59] for justification of this fact. In [20] they introduce the
model, solve it for a single frequency, and compare their results to a Lagrangian model for
a particular TWT. Interestingly, the Eulerian model demonstrates saturation effects for the
TWT parameters presented. In [23] they provide a slightly more detailed derivation and
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solution of their model again for a single frequency. In this article they compare their model
to a Lagrangian model for two different TWTs and establish a “regime of correctness.” In
[22] they again study their third-order model, but now consider the generation of harmonics
and their control. The effects of dispersion parameters, circuit loss, and harmonic injection
on the amount of harmonic content present in the output are studied. For the generation
of a harmonic from a drive frequency they consider only the second order nonlinearity, but
the third-order nonlinearities are included in the computation of the fundamental frequency.
However, in the case of second harmonic injection they include second and third order
nonlinearities for both the fundamental and harmonic signals. Reference [24] is similar to
[22] although they do not treat harmonic injection. Lastly, in [21] they study harmonic
injection to reduce third order intermodulation frequencies using the same formalism as
their other papers.

Finally, a paper containing the derivations of the Multifrequency Spectral Eulerian (MUSE)
model, S-MUSE model, and a Lagrangian disk model LATTE, all presented in this thesis,
appears in [82]. It is worth noting that the MUSE model is the only “exact” steady-state
Eulerian model in the literature in that no approximations on the nonlinearities are made.
As such, there does not seem to be an analytic solution to the MUSE model and numerical
integration must be used to solve it. However, numerical integration of the MUSE model
seems to be easier to perform than implementation of the analytic solutions given by Datta
et al., especially as the number of frequencies increases.

1.2.2 TWT modeling using Lagrangian coordinates

The impetus for original work using Lagrangian coordinates for the electron beam was
that “electrons overtake one another at or even considerably before the point along the
tube where the limiting power level is obtained,”[56] in which case Eulerian functions be-
come multi-valued. Codes using such formulations have been quite successful in accurately
predicting TWT behavior. Since these models must be numerically integrated, paramet-
ric studies of various physical phenomena are more challenging and time consuming than
analogous parametric studies of an analytic solution, even if the analytic solution is for an
approximate model.

1.2.2.1 Single frequency

The original paper using Lagrangian coordinates to model the electron beam was by
Nordsieck [56]. This work ignores space charge effects and circuit loss. Several authors
followed Nordsieck with similar Lagrangian models including more physics. From Tien [75]:

Poulter [62] has extended Nordsieck equations to include space charge, finite
C and circuit loss, although he has not perfectly taken into account the space
charge and the backward wave. Recently Tien, Walker, and Wolontis [77] have
published a small C theory in which “electrons” are considered in the form of
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uniformly charged discs and the space charge field is calculated by computing the
force exerted on one disc by the others. Results extended to finite C, have been
reported by Rowe [66], and also by Tien and Walker [76]. Rowe, using a space
charge expression similar to Poulter’s, computed the space charge field based on
the electron distribution in time instead of the distribution in space. This may
lead to appreciable error in his space charge term, although its influence on the
final results cannot be easily evaluated.

Tien [75] takes the model by Tien, Walker, and Wolontis [77] and extends it to finite C.
Additionally, a method for calculating a backward wave contribution is provided and the
effect of the backward wave is studied. This analysis however ignores circuit loss.

For a summary of these papers and those that followed, the reader is referred to the book
by Rowe [67]. Multi-dimensionality of the electron beam is also covered in [67].

1.2.2.2 Multiple frequencies

To extend the 1-d single frequency models to handle input signals with multifrequency
content, and the associated intermodulation frequencies due to the TWT nonlinearity, models
using Fourier series for circuit quantities were developed. Among the original models were
El-Shandwily [29] and Giarola [40]. References [71, 78, 27] also develop such models. The
papers by Srivastava and Joshi [74] and Datta et al. [25] are similar to the earlier papers
in how they treat the electron beam, but each handles the circuit and space charge fields
differently.

More recently, another collection of such models have appeared in the literature. The
models compute the RF quantities using electromagnetic field representations and Maxwell’s
equations rather than the equivalent circuit models. Antonsen and Levush present a 1-d
frequency domain model [4, 5] which is extended to 3-d by Chernin et al. [17]. Freund et
al. formulate 3-d models in both the time domain [37, 36, 34, 35] and the frequency domain
[32, 33]. The time domain models are restricted to single or multifrequency sinusoids with a
slowly varying envelope.

1.2.3 TWT transfer functions

From the perspective of a system engineer, the TWT can be characterized by input-
output transfer functions. Most commonly these include an AM/AM curve relating the
output power to the input power, and an AM/PM curve relating the output phase to the
input power. The character of these curves captures some of the nonlinearity of the TWT.

Putz [65] considers nonlinear effects in TWTs based on analysis of a physical model,
using graphical methods, and using a power series transfer function. In particular, cross-
modulation effects are considered with the output of the physical model as well as rules of
thumb; harmonic outputs are predicted with graphical methods; intermodulation products
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are predicted using a mixture of empirical formulas and graphical methods. Harmonic injec-
tion is discussed noting that the harmonic and drive frequencies mix to produce a signal at
the drive frequency that adds to the original drive signal. By substituting a multifrequency
signal into a power series transfer characteristic, he derives expressions for the nonlineari-
ties present in the output signals at the drive, harmonic, and intermodulation frequencies.
Based on these formulas he discusses how the output voltage at intermodulation frequencies
depends on products of the input voltages making the intermodulation frequencies. He also
discusses the presence of cross-modulation terms and how they indicate a linear proportion-
ality of the change in output voltage (for small input voltages) to interfering signal power.
He then compares the power series outputs to the equation derived from the physical model
(presumably from [64]) and notes how the forms agree. Lastly, based on the physically de-
rived equation, he claims that nonlinear effects will be least for TWTs with highest values
of C and lowest values of circuit loss.

Saleh [69] proposes empirical frequency independent amplitude-phase and quadrature
models as well as a frequency dependent quadrature model. For multiple phase modulated
carriers he solves the frequency-independent quadrature model for intermodulation frequen-
cies. The two carrier case gives a complete analytic time domain solution while the many
carrier solution contains an integral that must be evaluated numerically. He proposes the
frequency-dependent quadrature model as an extension to the frequency-independent model,
but does no studies using the model. The introductory paragraphs of [69] give a nice sum-
mary of amplitude-phase and quadrature models prior to [69]. Abuelma’atti [3] gives a
frequency-dependent quadrature model for the TWT basing it on a frequency-independent
quadrature model, and gives an example of its use in computing intermodulation products
of two frequencies. Guida [42, 43] provides methods for computing intermodulation power
for given input signals using specific TWT input-output models. Reference [42] summarizes
previous methods for doing such calculations.

Several authors study the physical mechanisms behind the AM/AM and AM/PM transfer
curves with large signal codes. The AM/AMmechanism is due to the saturation of the device,
while the AM/PM mechanism is “shown” to be related to decrease of electron velocities and
the phase of the electron bunch with respect to the voltage wave. Ezura and Kano [30] study
the dependence of the AM/PM curves on TWT parameters, amplitudes of circuit waves, and
average electron velocities theoretically and experimentally. Hirata and Kanai [46] and Hirata
[45] study the relation of AM/PM conversion to the generation of intermodulation products.
It is found that the in-phase component of the fundamental charge density modulation with
respect to the circuit voltage dominates the generation of intermodulation products.

Carter et al. [12] developed a code for predicting intermodulation distortions based on
the single carrier transfer characteristics of a TWT. Although details of their input-output
model are not given, it is frequency-independent in that it assumes TWT characteristics
do not vary appreciably over the band of frequencies under consideration. They compare
this model to the output of a multifrequency large signal TWT model for the case of two
carriers, three carriers, and eight carriers. To achieve the effect of uncorrelated carriers,
several runs of the large signal code with random initial phases are averaged. The results
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are generally favorable and all differences are attributed to the frequency-independence of
the input-output model.

1.2.4 Harmonic injection in TWTs

By injecting harmonics of drive signals the TWT output spectrum can be advantageously
shaped. In the case of single frequency drive, harmonic injection can suppress the output
harmonic and boost the fundamental relative to the harmonic. In the case of multifrequency
drive, harmonic injection can reduce the intermodulation spectrum.

1.2.4.1 Single drive frequency

Mendel [55] states that enhancement by injecting harmonics

. . . was discovered quite some time ago when it was observed that the wrong
type of second-harmonic input would seriously degrade the power output at the
fundamental frequency. . . . This process is is one of cancellation, whereby the
injected second-harmonic signal is such that it is 180◦ out of phase with the second
harmonic signal generated by the nonlinear processes inherent in the interaction
mechanism.

Early articles discussing harmonic injection mechanisms and hardware implementations in-
clude [65, 44, 38]. We have provided a refinement to the mechanistic picture given in these
references. Later, Datta et al. [22] give numerical studies of harmonic injection where they
compare predictions of Eulerian and Lagrangian models.

1.2.4.2 Multiple drive frequencies

Sauseng et al. [70] show that intermodulation distortions can be reduced with harmonic
injection by 6 dB to 18 dB below the fundamentals. More recently, Wirth et al. [79] have
done similar experiments in which they were able to attain 24 dB of suppression. Datta et
al. [21] have done simulations demonstrating this phenomenon.
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Chapter 2

Steady state TWT models

2.1 Introduction

In this chapter we derive a new 1-d nonlinear multifrequency Eulerian TWT model,
the MUSE (Multifrequency Spectral Eulerian) model. We also derive a Lagrangian “disk”
model LATTE (Lagrangian TWT Equations) from the same initial equations for comparison
purposes as well as to demonstrate the theoretical relation between MUSE and a disk model.
A simplified MUSE model S-MUSE more suitable for analysis is also derived. These three
models are compared to each other and Christine 1-d for a set of TWT parameters which are
based on the Hughes (now Boeing) 8537H L-band TWT design. The comparison to Christine
1-d is particularly useful since this code is widely known and used, and it has been validated
against experiment for the Hughes TWT [2, 68]. The nonlinearities of MUSE and LATTE are
compared, and an example of how MUSE can examine fundamental distortion mechanisms
is provided. We also study how the dimensions of the MUSE model and LATTE scale with
number of frequencies, an important issue for assessing the use of MUSE as a numerical tool.
Results from a simulation with 402 frequencies are provided. Lastly, we discuss the relation
of the MUSE model to the “method of collective variables” in free electron laser theory [10].

Section 2.2 presents the models to be considered. We derive the MUSE model and discuss
its numerical solution, derive the disk model LATTE, and derive the S-MUSE model. The
models are compared to each other and Christine 1-d in Section 2.3. In particular we look
at circuit power versus axial distance, a constant of the motion and the issue of electron
overtaking. Section 2.4 discusses the nonlinearities in MUSE, the dimensional dependence of
MUSE and LATTE on simulation parameters, and the relation of MUSE to the “collective
variable” theory of free electron lasers.



10

2.2 TWT models

2.2.1 MUSE

2.2.1.1 Derivation

For the MUSE model the helix is modeled as a lossless transmission line1 and Eulerian
equations are used for the electron beam. In particular, the time domain model equations
are

∂V

∂z
= h1 ∗

∂I

∂t
(2.1)

∂I

∂z
= h2 ∗

∂V

∂t
− A∂ρ

∂t
(2.2)

∂E

∂z
=

ρ

ε0
(2.3)

∂v

∂t
+ v

∂v

∂z
= − e

me

h1 ∗
∂I

∂t
+

e

me

R ∗ E (2.4)

∂ρ

∂t
+ v

∂ρ

∂z
= −ρ∂v

∂z
. (2.5)

where z is axial distance, t is time, V is transmission line voltage, I is transmission line
current, E is the space charge electric field, v is electron beam velocity, and ρ is the volume
charge density of an electron beam with cross sectional area A. The ∗ denotes convolution
and this allows for frequency dependence of circuit and beam parameters. The functions
h1, h2 and R are the inverse Fourier transforms

h1(z, t) = F−1
{

K̃(z, f`ω0)

ṽph(z, f`ω0)

}

(2.6)

h2(z, t) = F−1
{

1

K̃(z, f`ω0)ṽph(z, f`ω0)

}

(2.7)

R(z, t) = F−1
{

R̃(z, f`ω0)
}

(2.8)

where the functions K̃(z, f`ω0), ṽph(z, f`ω0) and R̃(z, f`ω0) are frequency domain circuit in-
teraction impedance [39], cold circuit phase velocity, and space charge reduction factor [48]
respectively. The inverse transforms are aperiodic functions of t and are functions of z to
allow for spatial variation of circuit parameters. In the remainder of the thesis notation of
the z dependence is suppressed. The constants e,me, and ε0 are electron charge, electron
mass, and permittivity of free space respectively.

1See Appendix A for formulations of the models with circuit loss included.
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For reasons that will be made clear later we first make the coordinate transformation
[

z
ψ

]

=

[

1 0
ω0

u0
−ω0

] [

z
t

]

. (2.9)

Then

∂V

∂z
= −ω0

u0

∂V

∂ψ
− ω0h1 ∗

∂I

∂ψ
(2.10)

∂I

∂z
= −ω0h2 ∗

∂V

∂ψ
− ω0
u0

∂I

∂ψ
+ Aω0

∂ρ

∂ψ
(2.11)

∂E

∂z
= −ω0

u0

∂E

∂ψ
+
ρ

ε0
(2.12)

v
∂v

∂z
=

ω0e

me

h1 ∗
∂I

∂ψ
+

e

me

R ∗ E + ω0

(

1− v

u0

)

∂v

∂ψ
(2.13)

v
∂ρ

∂z
= ω0

(

1− v

u0

)

∂ρ

∂ψ
− ρ

(

∂v

∂z
+
ω0
u0

∂v

∂ψ

)

. (2.14)

We assume all inputs to the system (signals at z = 0) are periodic in t with fundamental
frequency ω0. This implies that solutions as functions of (z, t) are periodic in t with funda-
mental period 2π

ω0
and that solutions as functions of (z, ψ) are periodic in ψ with fundamental

period 2π.
For a function x(z, ψ) periodic in ψ we use the Fourier series relations

x(z, ψ) =
∞
∑

`=−∞

x̃`(z)e
if`ψ (2.15)

x̃`(z) =
1

2π

∫

2π

x(z, ψ)e−if`ψdψ (2.16)

where the f` are integers indexed by `. The set of frequencies {f`} is chosen to be the
frequencies with nonzero Fourier coefficients, thus {f`} is the drive frequencies together with
the frequencies produced from nonlinear interactions. We index the frequencies so that
f−` = −f` and fm > fn for m > n. Since our functions are real valued,

x̃−` = x̃∗` . (2.17)

Computing Fourier coefficients of (2.10)–(2.14) gives the MUSE model:

dṼ`
dz

= − if`ω0
u0

Ṽ` −
if`ω0K̃(f`ω0)

ṽph(f`ω0)
Ĩ` (2.18)

dĨ`
dz

= − if`ω0

K̃(f`ω0)ṽph(f`ω0)
Ṽ` −

if`ω0
u0

Ĩ` + if`ω0Aρ̃` (2.19)

dẼ`
dz

= − if`ω0
u0

Ẽ` +
ρ̃`
ε0

(2.20)
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∑

m,n
fm+fn=f`

ṽm
dṽn
dz

=
if`ω0eK̃(f`ω0)

meṽph(f`ω0)
Ĩ` +

e

me

R̃(f`ω0)Ẽ`

+ if`ω0ṽ` −
∑

m,n
fm+fn=f`

ifnω0
u0

ṽmṽn (2.21)

∑

m,n
fm+fn=f`

ṽm
dρ̃n
dz

= if`ω0ρ̃` −
if`ω0
u0

∑

m,n
fm+fn=f`

ṽmρ̃n

−
∑

m,n
fm+fn=f`

dṽm
dz

ρ̃n (2.22)

where −∞ ≤ ` ≤ ∞. We have used that for x(z, ψ) and y(z, ψ) periodic, multiplication
becomes convolution:

x(z, ψ)y(z, ψ) F
←→

∑

m,n
f`=fm+fn

x̃m(z)ỹn(z). (2.23)

The summation notation should be read as “sum over integers m and n such that fm+ fn =
f`.”

2.2.1.2 Method of numerical solution

For practical implementation one neglects higher frequencies and limits ` to −M ≤ ` ≤
M . Then the MUSE model has 5(2M + 1) complex equations.

During integration of the MUSE model one needs to solve (2.21) and (2.22) for the
derivatives dṽ`

dz
and dρ̃`

dz
.2 Equations (2.21) and (2.22) for −M ≤ ` ≤ M are the linear

systems

Swv = bv (2.24)

Swρ = bρ (2.25)

where wv,wρ,bv, and bρ are 2M + 1 vectors and S is a (2M + 1)× (2M + 1) matrix. The
`th entries of wv and wρ are

dṽ`
dz

and dρ̃`
dz

respectively, the `th entries of bv and bρ are equal to
the right hand sides of (2.21) and (2.22) respectively, and the `th row and nth column entry
of S is ṽm where fm + fn = f`.

We choose the relation between the initial value of the circuit current and the initial
value of the circuit voltage as

Ĩ`(0) = − Ṽ`(0)

K̃(f`ω0)
. (2.26)

2For better numerical performance one should solve a normalized system of equations. See Appendix A
for normalized versions of the TWT models.
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We show in Appendix B that for the linearization of (2.18)–(2.22), (2.26) ensures that only
the three forward waves of Pierce theory are excited [41]. If one includes modulations on
beam quantities, (2.26) is still the appropriate relation between initial voltage and initial
current so that only forward waves are excited.

The circuit power at angular frequency ω is due to both the positive and negative fre-
quencies, so3

Pω(z) = −
[

Ṽ`(z)Ĩ
∗
` (z) + Ṽ ∗` (z)Ĩ`(z)

]

. (2.27)

The negative sign in (2.27) is due to the form of the telegrapher equations which are chosen
to be consistent with [41]. Given input power Pω(0) and phase φω(0) at ω = f`ω0 > 0, the
initial value of circuit voltage is

Ṽ`(0) =

√

Pω(0)K̃(f`ω0)

2
eiφω(0) (2.28)

Ṽ−`(0) = Ṽ ∗` (0). (2.29)

If there are (periodic) modulations on any of the quantities at the input, one can calculate
the proper initial values using (2.16). Otherwise for ` 6= 0, Ẽ` = ṽ` = ρ̃` = 0. Also one has
ṽ0(0) = u0, ρ̃0(0) = ρ0, and Ṽ0 = Ĩ0 = Ẽ0 = 0.

By treating this problem as an initial value problem with the described initial conditions
we are assuming a perfectly matched load and no reflections. When a sever and a mismatched
load are included, one must treat the problem as a boundary value problem and use an
iterative scheme such as a shooting method [63, Ch. 17]. In the boundary value problem the
relation of circuit voltage to circuit current at the input [cf. eqn. (2.26)] will be determined
as part of the solution to be consistent with the reflections.

2.2.2 LATTE

2.2.2.1 Derivation

We derive LATTE (Lagrangian TWT Equations) from the Eulerian equations (2.10)–
(2.14). The Eulerian independent variables are (z, ψ), where z is axial position and ψ is
phase. The Lagrangian independent variables are (z, ψ0), where z is axial position and ψ0 is
the phase position of a fluid element with respect to the stream wave4 when the fluid element
is at z = 0. ψ0 takes values from 0 to −2π.

3In Pierce’s book [61] he states that the power is
Ṽ`Ṽ ∗

`

2K̃(f`ω0)
. Since this result comes from substituting

Ĩ`(z) = − Ṽ`(z)

K̃(f`ω0)
, which is only valid for source-free transmission line equations, into equation (2.27), it is

not valid for the TWT model.
4The “stream wave” is a hypothetical wave of frequency ω0 traveling with speed u0.
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The transformation from Lagrangian to Eulerian coordinates is given by functions Z
and Ψ

[

z
ψ

]

=

[

Z(z, ψ0)
Ψ(z, ψ0)

]

. (2.30)

Z(z, ψ0) is the axial position of fluid element ψ0 at z so

Z(z, ψ0) = z. (2.31)

Ψ(z, ψ0) is the phase position of fluid element ψ0 with respect to the stream wave at z.
A function gE of Eulerian variables (z, ψ) is transformed to a function gL of Lagrangian

variables (z, ψ0) using

gL(z, ψ0) = gE(Z(z, ψ0),Ψ(z, ψ0))

= gE(z,Ψ(z, ψ0)). (2.32)

The linearization of coordinate transformation (2.30) is the matrix

[

1 0
∂Ψ
∂z

∂Ψ
∂ψ0

]

(2.33)

and its Jacobian J is the determinant of (2.33)

J =
∂Ψ

∂ψ0
. (2.34)

Partial derivatives transform via

[

∂
∂z

∂
∂ψ

]

=
[

∂
∂z

∂
∂ψ0

]

[

1 0
∂Ψ
∂z

∂Ψ
∂ψ0

]−1

. (2.35)

Consistent with the method of characteristics we take

∂Ψ

∂z
=
ω0
u0

(

1− u0
vL

)

(2.36)

then the convective derivative [in (z, ψ) coordinates] becomes

vE
∂vE

∂z
+ ω0

(

vE

u0
− 1

)

∂vE

∂ψ
= vL

∂vL

∂z
. (2.37)

Applying the derivative transformations in (2.35) to the continuity equation (2.14) one
gets

∂Ψ

∂ψ0

∂ρLvL

∂z
= −ω0

ρL

vL
∂vL

∂ψ0
. (2.38)
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Taking ∂
∂ψ0

of (2.36) one gets

∂

∂z

∂Ψ

∂ψ0
=

ω0
(vL)2

∂vL

∂ψ0
. (2.39)

Substitute (2.39) into (2.38) and integrate to get

∂Ψ

∂ψ0
ρLvL = κ (2.40)

where κ is a constant of integration. We set κ by using the values of ρLvL and ∂Ψ
∂ψ0

on the

ψ0 axis [by definition Ψ(0, ψ0) = ψ0 which implies ∂Ψ
∂ψ0

(0, ψ0) = 1] which gives finally

∣

∣

∣

∣

∂Ψ

∂ψ0

∣

∣

∣

∣

ρLvL = ρL(0, ψ0)v
L(0, ψ0) (2.41)

=
I0(ψ0)

A
. (2.42)

The absolute value is added to the Jacobian since it would appear in an integral form of
conservation of mass.

As a last point regarding the coordinate transformation we change variables in an integral.
Pulling the equation for the Fourier coefficient of ρ back to Lagrangian coordinates (for fixed
z) one gets

ρ̃E` =
1

2π

∫

2π

ρEe−if`ψ dψ (2.43)

=
1

2π

∫

2π

ρL
∣

∣

∣

∣

∂Ψ

∂ψ0

∣

∣

∣

∣

e−if`Ψ(z,ψ0)dψ0 (2.44)

=
1

2π

∫

2π

I0(ψ0)e
−if`Ψ(z,ψ0)

AvL(z, ψ0)
dψ0 (2.45)

where we have used (2.41) to substitute for the Jacobian.
Finally we derive LATTE from (2.10)–(2.14). Equations (2.46)–(2.48) are (2.18)–(2.20)

with (2.45) substituted for ρ̃`. Equation (2.14) was used to get (2.45). For (2.13) one
writes E and I using the Fourier series synthesis equation (2.15) in Lagrangian coordinates.
Equation (2.36) is also included as model equation (2.50). The circuit equations, space
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charge equation, Newton’s law, and phase relation are (leaving off the superscript L)

dṼ`
dz

= − if`ω0
u0

Ṽ` −
if`ω0K̃(f`ω0)

ṽph(f`ω0)
Ĩ` (2.46)

dĨ`
dz

= − if`ω0

K̃(f`ω0)ṽph(f`ω0)
Ṽ` −

if`ω0
u0

Ĩ`

+ if`ω0
1

2π

∫

2π

I0(ψ0)e
−if`Ψ(z,ψ0)

v(z, ψ0)
dψ0 (2.47)

dẼ`
dz

= − if`ω0
u0

Ẽ` +
1

ε0A

1

2π

∫

2π

I0(ψ0)e
−if`Ψ(z,ψ0)

v(z, ψ0)
dψ0 (2.48)

∂v

∂z
=

1

v

∞
∑

`=−∞

{

if`ω0eK̃(f`ω0)

meṽph(f`ω0)
Ĩ` +

e

me

R̃(f`ω0)Ẽ`

}

eif`Ψ(z,ψ0) (2.49)

∂Ψ

∂z
=

ω0
u0

(

1− u0
v

)

. (2.50)

These equations are valid for an arbitrary periodic electron beam modulation. Equations
(2.49) and (2.50) are ordinary differential equations parameterized by ψ0. For calculations
one represents the beam as a finite number of “disks” and there are equations (2.49) and
(2.50) for each disk. In this case the integration over ψ0

1

2π

∫

2π

I0(ψ0)e
−if`Ψ(z,ψ0)

vL(z, ψ0)
dψ0 (2.51)

becomes the sum
1

N

N
∑

j=1

I0(ψ0j)e
−if`Ψ(z,ψ0j)

vL(z, ψ0j)
. (2.52)

The transformation reveals interesting information about the relation between MUSE
and LATTE. For example, the Lagrangian continuity equation (2.41) is often written as (see
e.g. [39, pg. 302])

Idt = I0dt0 (2.53)

where I is beam current, t is time, I0 is initial beam current, and t0 is the Lagrangian initial
time. However, it has not been pointed out in the microwave device literature that

dt

dt0
=

I0
I

(2.54)

is the Jacobian of the transformation from Lagrangian to Eulerian coordinates. We use this
fact in Section 2.3.3 to examine when electron overtaking occurs.
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2.2.2.2 Constant of the motion

In Lagrangian coordinates the time averaged linear energy density is

W =
me

e

1

2π

∫

2π

I0(ψ0)
v

2
dψ0 +

1

4

∞
∑

`=−∞

{

K̃(f`ω0)

ṽph(f`ω0)
Ĩ`Ĩ
∗
`

+
1

ṽph(f`ω0)K̃(f`ω0)
Ṽ`Ṽ

∗
` − ε0AR̃(f`ω0)Ẽ`Ẽ∗`

}

. (2.55)

The velocity integral is the time average linear beam kinetic energy density. Expressed in
Eulerian coordinates this is

me

e

1

2π

∫

2π

I0(ψ0)
vL

2
dψ0 =

meA

e

1

2π

∫

2π

ρE(vE)2

2
dψ. (2.56)

In the MUSE variables this term is

meA

e

1

2π

∫

2π

ρE(vE)2

2
dψ =

meA

2e

∑

`,m,n
f`+fm+fn=0

ρ̃`ṽmṽn. (2.57)

When the circuit parameters K̃(f`ω0), ṽph(f`ω0), R̃(f`ω0) are not functions of z the energy
density W is a constant of the motion. The most convenient way to show this is to compute
the derivative in Lagrangian coordinates, then change the result to Eulerian coordinates.
Using v = v∗,

∂

∂z
4W =

me

e

1

2π

∫

2π

I0(ψ0)

[

∂v

∂z
+

(

∂v

∂z

)∗]

dψ0 +
∞
∑

`=−∞

{

K̃(f`ω0)

ṽph(f`ω0)

[

dĨ`
dz
Ĩ∗`

+ Ĩ`
dĨ∗`
dz

]

+
1

ṽph(f`ω0)K̃(f`ω0)

[

dṼ`
dz

Ṽ ∗` + Ṽ`
dṼ ∗`
dz

]

− ε0AR̃(f`ω0)
[

dẼ`
dz

Ẽ∗` + Ẽ`
dẼ∗`
dz

]}

=

[

∞
∑

`=−∞

{

if`ω0AK̃(f`ω0)

ṽph(f`ω0)
Ĩ`ρ̃
∗
` + AR̃(f`ω0)Ẽ`ρ̃

∗
`

}

+
∞
∑

`=−∞

{

− if`ω0AK̃(f`ω0)

ṽph(f`ω0)
Ĩ∗` ρ̃` + AR̃(f`ω0)Ẽ

∗
` ρ̃`

}]

+
∞
∑

`=−∞

{

if`ω0AK̃(f`ω0)

ṽph(f`ω0)

[

Ĩ∗` ρ̃` − Ĩ`ρ̃∗`
]

− AR̃(f`ω0)
[

Ẽ∗` ρ̃` + Ẽ`ρ̃
∗
`

]

}

= 0. (2.58)
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2.2.3 S-MUSE

2.2.3.1 Derivation

A simplification of MUSE results in the S-MUSE model. S-MUSE is easier to analyze
than MUSE while it retains important nonlinear physics. The simplifications are:

1. approximating ρ̃0(z) and ṽ0(z) as constants ρ0 and u0

2. neglecting the AC portion of velocity in the convective derivative, i.e. letting v ∂
∂z
≈ u0

∂
∂z

3. ignoring nonlinearities higher than second order in the continuity equation.

Since we have made the transformation (z, t) → (z, ψ), some of the nonlinearity of the
convective derivative is retained, i.e. the original v ∂

∂z
term [as seen in (2.4) and (2.5)] splits

into v ∂
∂z

+ v ω0

u0

∂
∂ψ

and we only linearize the first of these two nonlinear terms in (2.13) and

(2.14). This is the motivation for introducing the (z, ψ) coordinates in (2.9). The S-MUSE
model is:

dṼ`
dz

= − if`ω0
u0

Ṽ` −
if`ω0K̃(f`ω0)

ṽph(f`ω0)
Ĩ` (2.59)

dĨ`
dz

= − if`ω0

K̃(f`ω0)ṽph(f`ω0)
Ṽ` −

if`ω0
u0

Ĩ` + if`ω0Aρ̃` (2.60)

dẼ`
dz

= − if`ω0
u0

Ẽ` +
ρ̃`
ε0

(2.61)

dṽ`
dz

=
if`ω0eK̃(f`ω0)

meu0ṽph(f`ω0)
Ĩ` +

e

meu0
R̃(f`ω0)Ẽ`

− 1

u20

∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn (2.62)

dρ̃`
dz

= − if`ω0eρ0K̃(f`ω0)

meu20ṽph(f`ω0)
Ĩ` −

eρ0
meu20

R̃(f`ω0)Ẽ` −
if`ω0ρ0
u20

ṽ`

− e

meu20

∑

m6=0,n6=0
fm+fn=f`

ifmω0K̃(fmω0)

ṽph(fmω0)
Ĩmρ̃n

− e

meu20

∑

m6=0,n6=0
fm+fn=f`

R̃(fmω0)Ẽmρ̃n

+
ρ0
u30

∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn −
if`ω0
u20

∑

m6=0,n6=0
fm+fn=f`

ṽmρ̃n

(2.63)

where −M ≤ ` ≤M, ` 6= 0.
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2.2.3.2 Vector form

The S-MUSE model (2.59)–(2.63) may be written in the following vector form that is
particularly useful for analysis

ẋ = Ax + H(x,x) (2.64)

where x is a 5(2M) dimensional complex vector, A is a 5(2M)× 5(2M) complex matrix, H
is a 5(2M)× 5(2M)× 5(2M) complex 3-tensor, and overdot represents d

dz
.

For elements x`i , A`ij , and H`imjnk the subscripts (`,m, n) run from −M toM excluding
zero, and the subsubscripts (i, j, k) run from 1 to 5. The subscript ` indexes frequencies in
the set {f`}. We index x with double subscripts such that x = [x−M . . .x−1x1 . . .xM ]T and
x` = [x`1x`2x`3x`4x`5 ]

T = [Ṽ` Ĩ` Ẽ` ṽ` ρ̃`]
T.

The matrix A contains the linear parts of (2.59)–(2.63). It is block diagonal with entry
A` ≡ A``. The entries A`ij of the block diagonal element A` are

A`11 = − if`ω0
u0

(2.65)

A`12 = − if`ω0K̃(f`ω0)

ṽph(f`ω0)
(2.66)

A`21 = − if`ω0

K̃(f`ω0)ṽph(f`ω0)
(2.67)

A`22 = − if`ω0
u0

(2.68)

A`25 = if`ω0A (2.69)

A`33 = − if`ω0
u0

(2.70)

A`35 =
1

ε0
(2.71)

A`42 =
if`ω0eK̃(f`ω0)

meu0ṽph(f`ω0)
(2.72)

A`43 =
eR̃(f`ω0)

meu0
(2.73)

A`52 = − if`ω0eρ0K̃(f`ω0)

meu20ṽph(f`ω0)
(2.74)

A`53 = −eρ0R̃(f`ω0)
meu20

(2.75)

A`54 = − if`ω0ρ0
u20

. (2.76)

Entries A`ij not listed above are zero.
The 3-tensor entries H`imjnk for (`,m, n) are
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Case 1 If `,m, n are such that f` = fm + fn then

H`4m4n4 = − ifnω0
u20

(2.77)

H`5m2n5 = − e

meu20

ifmω0K̃(fmω0)

ṽph(fmω0)
(2.78)

H`5m3n5 = −eR̃(fmω0)
meu20

(2.79)

H`5m4n4 =
ρ0
u30
ifnω0 (2.80)

H`5m4n5 = − if`ω0
u20

. (2.81)

Entries for (i, j, k) not listed are zero.

Case 2 If `,m, n are such that f` 6= fm + fn then

H`imjnk = 0 (2.82)

for all (i, j, k).

For the `th component of ẋ we have

ẋ` = A`x` +
∑

m,n
fm+fn=f`

H`mn(xm,xn) (2.83)

where the ith component of the quadratic term is







∑

m,n
fm+fn=f`

H`mn(xm,xn)







i

=
∑

m,n
f`=fm+fn

5
∑

j=1

5
∑

k=1

H`imjnkxmj
xnk . (2.84)

2.3 Numerical example

In this section we consider a numerical example comparing the models amongst them-
selves and Christine 1-d. First we look at circuit power as a function of axial distance.
We use LATTE as a benchmark and present deviations in dB of the other models from
LATTE. For the simulations we also check the constant of the motion (2.55) and compare
the terms making up the constant of the motion. For the case of one drive frequency we
consider the question of electron overtaking and its correlation to the deviation of MUSE
from LATTE. Lastly, we discuss practical issues concerning the choice of frequencies for a
simulation comparison with Christine 1-d.
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For our numerical study we simulate one constant pitch section of the 8537H TWT with
no sever or circuit loss. The parameters for the 8537H are taken from [2] and are shown in
Table 2.1. For the frequency dependent parameters ṽph(f`ω0), K̃(f`ω0), and R̃(f`ω0) we use
the outputs of Christine 1-d’s tape helix model and space charge reduction factor calculation.
These parameter values ensure that MUSE, LATTE, and S-MUSE use the same dispersion
parameters as Christine 1-d.

The set of frequencies includes two drive frequencies, the second order products, and the
third order intermodulation (3IM) frequencies 2f1 − f2 and 2f2 − f1. Table 2.2 lists the
frequencies and dispersion parameters.

The calculations are done using a fixed step 4th order Runge-Kutta integrator.

Table 2.1 8537H Parameters (Constant Pitch Section)

Parameter Model Value
Helix mean radius 0.2353 cm
Helix wire width 0.0305 cm
Pitch 0.13 cm
Cathode voltage −3.1 kV
Beam current 65.5 mA
Min. beam radius 0.0962 cm
BN (εr = 5.4) support rods 1.21
smeared permittivity

2.3.1 Circuit power versus axial position

In Fig. 2.1 we plot axial power of the drive, harmonic, and 3IM frequencies for the MUSE
model and LATTE. The models agree extremely well for a majority of the TWT length, but
there is disagreement between the models at saturation. For a quantitative comparison of
all of the models we plot dB difference of the models from LATTE. Figures 2.2–2.4 show the
dB difference from LATTE for the drive frequencies, harmonics and sum frequency, and the
3IMs respectively. For each model, the frequency pair having the largest maximum deviation
is represented in the figure.

For small z values Figs. 2.3 and 2.4 exhibit large fluctuations in the dB difference from
LATTE for the harmonics and 3IMs respectively. However, the numbers being compared
are very small and are below the numerical noise floor of the computations. The differences
between the harmonics converge before the differences between the 3IMs since the harmonics
need to rise above the numerical noise floor before the 3IMs may rise above the numerical
noise floor. For z = 5cm steady state differences are achieved in both figures.

Inspection of Figs. 2.2–2.4 confirms that the agreement between LATTE and MUSE
is very good prior to the onset of saturation (roughly z ≤ 35cm). Up to z = 30cm the
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Figure 2.1 Power versus axial distance for LATTE and MUSE.
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Figure 2.2 dB difference of drive frequencies from LATTE versus axial distance.



23

0 10 20 30 40
Axial distance (cm)

-6

-4

-2

0

2

4

6

dB
 d

iff
er

en
ce

 fr
om

 L
A

T
T

E

MUSE - 3.202 GHz
S-MUSE - 3.202 GHz
Christine - 3.200 GHz

(Harmonics)

Figure 2.3 dB difference of harmonics and sum frequency from LATTE versus axial distance.
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Table 2.2 Simulation Frequencies and Dispersion Parameters

f (GHz) K̃ (Ω) ṽph (×107m/s) R̃
0.001 365.40 3.2845 0.00100
1.599 225.13 2.9983 0.04529
1.600 224.98 2.9980 0.04535
1.601 224.82 2.9977 0.04540
1.602 224.67 2.9974 0.04545
3.200 42.68 2.6460 0.14945
3.201 42.62 2.6459 0.14952
3.202 42.57 2.6458 0.14959

discrepancy is less than 0.1dB. The constant level of the nonlinear products confirms that
growth rates of LATTE, MUSE and S-MUSE are the same, even though we see that S-MUSE
is less accurate than MUSE, especially for the higher order nonlinear products.

Finally we see the difference between LATTE and Christine 1-d is < 2dB, ≤ 3dB, and
≤ 5dB in the drives, harmonics, and 3IMs respectively for z ≤ 35cm. One sees from Fig. 2.2
that the linear growth rates of the drive frequencies are very slightly different for the two
models, which results in a disagreement of predicted power between the models which grows
with axial distance. The difference in gain predicted by the two models is about 1.5dB out of
72dB. The differences in the nonlinear products are likely due to the nonlinear amplification
of the differences in the drive frequencies.

Since Christine 1-d has been validated experimentally [2], the disagreement between
LATTE and Christine 1-d raises the question of experimental validation of LATTE and
MUSE. To address this question we studied the sensitivity of the output power on certain
input parameters. For the present case we found that less than a 1% change in beam
voltage can produce a 1dB difference in output power, and a 10% change in “smeared”
relative dielectric constant can produce more than a 2 dB difference in output power. In
[2] beam voltage and relative dielectric constant were changed by more than 8% from their
experimental values. Therefore, we observe that the input parameters to our models could
be changed within the same bounds used in [2] to match Christine 1-d results.

2.3.2 Constant of the motion

The total energy density (2.55) is a constant of the motion for MUSE and LATTE when
circuit parameters are independent of axial distance. This is confirmed in Fig. 2.5 which
also shows the energy density for S-MUSE. Since S-MUSE is an approximation to MUSE
one would not expect (2.55) to be a constant of the motion. However, as seen in Fig. 2.5,
S-MUSE predicts the value to be constant until z = 30 cm.
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Figure 2.5 Constant of the motion versus axial distance.
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Having a constant of the motion can be a useful aid in an investigation of the physics in
a model. For example, while LATTE and MUSE predict the constant of the motion, MUSE
does not exhibit a saturation (see Fig. 2.1.) This suggests that the partitioning of the energy
density is not consistent between the models. In Fig. 2.6 we see that the energy density in
the circuit quantities of MUSE continues to rise where that of LATTE saturates. We also
see that the beam kinetic energy density continues to decrease in MUSE where in LATTE
it reaches a minimum and starts to increase. Additionally there is a difference in the energy
density in the space charge field not shown in Fig. 2.6. Thus the energy density terms from
the constant of the motion reveal another view of the deviation of the models. Furthermore,
the constant of the motion provides a means of checking the error in numerical calculations.

2.3.3 Electron overtaking

Nordsieck’s Lagrangian formulation was motivated by the fact that “electrons overtake
one another at or even considerably before the point along the tube where the limiting
power level is obtained,”[56] in which case Eulerian functions become multi-valued. However,
Paschke wanted to “dispel the widespread belief that, because of overtaking, the hydrody-
namic model must break down at large levels” [59] with nonlinear Eulerian treatments of
electron beams.5 Since LATTE and MUSE come from the same “hydrodynamic” equations,
they are ideally suited to consider overtaking and its role in the deviation of MUSE from
LATTE.

The Jacobian of the transformation from Lagrangian to Eulerian coordinates is [equation
(2.34)]

J =
∂Ψ

∂ψ0
.

If J > 0 for all ψ0 at some z, then the electron beam, while perhaps bunched, retains the
same “disk ordering” (in time) it had at z = 0. On the other hand if for some (z, ψ0) we
have J < 0, then some disks in the beam have exchanged positions. The z at which electron
overtaking occurs is such that J = 0 for exactly one value of ψ0. Beyond this z value J(z, ψ0)
has exactly two zeroes in ψ0 (for simple overtaking). While overtaking can be observed on
a disk trajectory plot such as Fig. 2.7, it may not be possible to establish the exact axial
position at which overtaking first occurs. Computing J such as in Fig. 2.8 one can precisely
determine the exact axial position where the overtaking starts.

To study if there is a correlation between electron overtaking and the deviation of MUSE
from LATTE, we consider a simulation of one drive tone at f = 1.6 GHz with the drive
level such that saturation occurs at z = 39.5 cm. Detailed inspection of Fig. 2.8 reveals that
J = 0 for one value of ψ0 at z = 36.43 cm. Detailed study of Fig. 2.9, which shows a close-up

5The view taken here is that the Eulerian and Lagrangian models are both “hydrodynamic,” i.e., they
describe the electron beam as a fluid. However, the functions in Lagrangian coordinates allow for the fluid
to “fold” over on itself. Only when one seeks approximate numerical solutions to the Lagrangian equations
does one get a “disk” model.
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of the point at which MUSE and LATTE deviate, reveals the position of the deviation to
be roughly z = 36.3 cm. Therefore, it seems that the deviation of MUSE and LATTE is
correlated to electron overtaking.

It is also interesting that the Eulerian model of Datta et al. [20] exhibits saturation for
the cases they consider. The discrepancies between the Datta model and MUSE will be a
subject of future investigation. Future studies will also attempt to use recent developments in
numerical analysis for computing multi-valued solutions of Eulerian functions [53] to enable
MUSE to simulate charge overtaking.

2.3.4 Choosing simulation frequencies

Our implementations of MUSE, S-MUSE, and LATTE allow the user to choose any fre-
quency that is an integer multiple of the base frequency. Alternatively, there are two methods
of choosing simulation frequencies in the Christine 1-d code. First, one can have the code
create an array of frequencies between specified minimum and maximum frequencies spaced
by the base frequency. This method alone however would make it impractical to include
harmonics of closely spaced drive tones since all frequencies between the drive and the har-
monic frequencies that are spaced by the difference frequency would be included. Therefore
the Christine 1-d code provides an integer n which allows the user to specify an array for
frequencies close to the drive frequencies only, and creates n “harmonic windows” which
are frequency arrays containing harmonics of the specified frequency array. The frequencies
generated by the use of the harmonic window function may include additional frequencies
that are not exactly harmonics of the specified array.

The implications of Christine 1-d’s frequency selection method meant that in our Chris-
tine 1-d simulations we did not include the difference frequency f = 1.0 MHz. Also, due to
the use of the harmonic window function we did include a tone at f = 3.203 GHz. First we
discuss the effect of the difference frequency, then the tone at f = 3.203 GHz which is not a
nonlinear product of the drive frequencies.

Because of the frequency convolutions in the MUSE model, to predict the evolution of a
particular frequency, in principal all frequency pairs adding to the particular frequency need
to be accounted for. However, in practice only the dominant contributors are considered.
For this example we included the difference frequency f = 1.0 MHz since it had a 0.5dB
effect on the level of the 3IM in the MUSE simulation.

To estimate the effect of leaving the difference frequency out of the Christine 1-d simula-
tion we ran LATTE simulations including and excluding f = 1.0 MHz. For these simulations
we observed that the level of the 3IM depends only slightly on the inclusion of the difference
frequency (< 0.05dB). Hence, we conclude similar behavior is likely in Christine 1-d. We do
not show results for the 1.0 MHz signal since it is so far out of the bandwidth of the TWT.

For f = 3.203 GHz we ran LATTE simulations including and excluding this frequency
and found that the effect of including f = 3.203 GHz is negligible (< 0.02dB difference in
3IMs, less in other tones.) Furthermore, preliminary analytic results from S-MUSE indicate
that amplitudes of intermodulation frequencies are determined primarily by the amplitudes
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of frequencies mixing to make the product. Therefore, since f = 3.203 GHz is not related to
the drives or intermodulation frequencies we expect that it will not have a significant effect.
For the difference frequency we saw that even though it is a nonlinear product related to the
3IM, it had a small effect on the 3IM in LATTE. An unrelated frequency can be expected
to have an even smaller effect.

In sum, we conclude that even though f = 1.0 MHz was excluded and f = 3.203 GHz
was included in the Christine 1-d simulations, it is still appropriate to compare these results
to those of MUSE and LATTE.

Finally, we discuss getting dispersion data for f = 1.0 MHz since Christine 1-d did
not simulate f = 1.0 MHz and hence did not generate dispersion data for it. The circuit
dispersion parameters at f = 1.0 MHz were calculated with an independent tape helix solver
and the space charge reduction factor is an estimate based on the values for other frequencies.
However, based on MUSE simulations the prediction of the difference frequency does not
seem to depend on the dispersion parameters at f = 1.0 MHz. This is consistent with
preliminary analytic results from S-MUSE which suggest that when a nonlinear product
frequency lies out of the linear gain-bandwidth its amplitude and growth rate are primarily
determined by the drive frequencies which mix to produce it.

2.4 Discussion

2.4.1 Nonlinearities

The nonlinearities of the MUSE model are different than the nonlinearities of LATTE.
The MUSE model has quadratic nonlinearities that arise from the quadratic nonlinearities
of the Eulerian electron beam equations. In contrast, LATTE has quadratic nonlinearities,
1
v
nonlinearities, and complex exponential nonlinearities. As the MUSE predictions agree

with LATTE for a majority of the tube length, one can argue that the nonlinear behavior
in this region can be described by quadratic nonlinearities. As discussed in Chapter 3, the
quadratic nonlinearity is easier to study analytically than the nonlinearities in LATTE.

A quadratic nonlinearity in the time domain becomes a convolution in the frequency
domain, as seen in the MUSE model (2.18)–(2.22). This allows one to observe the origin
of harmonic and intermodulation frequencies based on the nonlinear combinations of beam
velocity and density. As a brief demonstration of the physical insight to be gained from
this fact, we consider alternately linearizing v and ρ in the derivation of the MUSE model
from (2.1)–(2.5). We use the equations resulting from the “partial linearizations” to examine
whether nonlinearities involving v or nonlinearities involving ρ in (2.4) and (2.5) play a larger
role in producing distortions.

In both partial linearizations since (2.1)–(2.3) are linear (2.18)–(2.20) are reproduced. If
we linearize v in (2.4) and (2.5), make the coordinate transformation (2.9), and compute
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Fourier coefficients we get instead of (2.21) and (2.22)

dṽ`
dz

=
if`ω0eK̃(f`ω0)

meṽph(f`ω0)u0
Ĩ` +

e

meu0
R̃(f`ω0)Ẽ` (2.85)

dρ̃`
dz

= − 1

u0

∑

m,n
fm+fn=f`

ρ̃m

[

dṽn
dz

+
ifnω0
u0

ṽn

]

. (2.86)

Notice that dρ̃0
dz
6= 0.

Similarly linearizing ρ reproduces (2.21) and from (2.5) one gets

∑

m,n
fm+fn=f`

ṽm
dρ̃n
dz

= if`ω0ρ̃` −
1

u0

∑

m,n
fm+fn=f`

ifnω0ṽmρ̃n

−ρ0
[

dṽ`
dz

+
if`ω0
u0

ṽ`

]

. (2.87)

In (2.87) it is understood that dρ̃0
dz

= 0.
Figure 2.10 shows the result of integrating the MUSE model (2.18)–(2.22), the v-linearized

equations (2.18)–(2.20), (2.85), (2.86), and the ρ-linearized equations (2.18)–(2.21), (2.87)
in the 8537H constant pitch section for a drive frequency of f = 1.6 GHz. Linearizing the
velocity reduces the level of the circuit harmonic more than linearizing the density. Therefore,
the velocity has a larger role in producing the harmonic. This observation appears to be
valid for many cases.

2.4.2 Dimension scaling of LATTE and MUSE

The computation time of systems of ODEs such as LATTE, MUSE, and Christine 1-
d depends on the number of state variables in the simulation, i.e., the dimension of the
model. (The dimension of the model is equal to the number of coupled ODEs in the system,
and hence equal to the number of derivatives that must be calculated at each step of the
integration.) The dimension of the MUSE model depends only on the number of frequencies;
however, the set of frequencies in a simulation must be chosen with care to assure that all
nonlinear product frequencies are accounted for correctly. In a disk model the majority of
the dimensions are those accounting for the disks. The number of disks depends on several
factors which we will discuss below. To simplify the discussion we consider the dimensions
of MUSE and LATTE, noting that other disk models will have similar behavior to LATTE.

LATTE has six complex dimensions per simulation frequency plus 2N real dimensions for
the disks. MUSE has ten complex dimensions per simulation frequency plus five dimensions
for the DC quantities.

To compare dimensions of LATTE to MUSE one needs a formula for the number of disks
based on simulation parameters. An estimate for computing the number of disks is given in
the Christine 1-d documentation [4]. Depending on simulation parameters, the number of
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disks may need to be increased to obtain convergence of results. We provide a version of this
formula applicable to LATTE here. If Nbase is a “base” number of disks, Nf the number of
tones in the simulation, and NH is the number of harmonics present, then a starting point
for the number of disks N in a simulation is given by

N = 1.5NbaseNfNH . (2.88)

It is suggested that Nbase initially be chosen near 19 and that the choice of Nbase always be
a prime number.

To understand the dimensional dependence on frequency of MUSE, one needs to account
for the fact that to simulate a nonlinear product frequency, one may be required to simulate
frequencies one is not directly interested in. For example, due to the frequency convolutions
in the MUSE model, to simulate 3IMs one needs to track all pairs that sum to these frequen-
cies. Thus to simulate the 3IMs 2f1−f2 and 2f2−f1 one needs to account for 2f1, 2f2, f1−f2
and f2 − f1 in addition to the drive frequencies.

For the example presented we have

Nbase = 19

Nf = 8

NH = 2

N = 456.

Thus the dimension of LATTE is 960 (912 real, 48 complex). For MUSE we have 85 complex
dimensions.

As an example of using MUSE in cases with many frequencies we include results of
a simulation modeled after the noise power ratio simulations in [68], but using the lossless,
constant pitch TWT parameters from Section 2.3. The input spectrum consists of 101 evenly
spaced frequencies (0.4 MHz spacing) with a 3 MHz notch at the center. The total number
of frequencies when accounting for all sum and difference frequencies is 402. The nonzero
input amplitudes are assigned randomly between −20 dBm and −30 dBm. The input and
output spectra are shown in Fig. 2.11. Not shown in Fig. 2.11 is the spectrum at the sum
and difference frequencies. Because the TWT simulation parameters did not include circuit
loss or a sever, the output was taken at z = 26cm. The simulation ran for 5 hours and 40
minutes on a 1.3 GHz Gnu/Linux PC. As yet there has been no attempt to optimize the
speed of the code.

2.4.3 Relation to method of collective variables

In this section we compare MUSE to a collective variable model, and we outline a method
for developing a MUSE type model for free electron lasers (FELs). Since the TWT may be
described by the same “nonlinear pendulum” equations as the FEL, e.g. [80], we propose
that the prescription would result in a useful multifrequency analysis and simulation tool for
FELs.
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The majority of the initial collective variable work was done for single frequency exci-
tations, where “In the presence of multiple frequencies, it is extremely difficult to obtain
a description of FEL dynamics in terms of a reduced set of equations involving collec-
tive variables” [9]. With some simplifications and normalizations the MUSE model can
be transformed into such a multifrequency collective variable model, applicable at least in
the exponential growth region and potentially into the oscillation region.

The method of collective variables [10] involves first defining the “bunching parameter,”
the first collective variable, as the complex exponential average over particle phases, then
differentiating the definition which results in an equation containing a higher “moment.” One
defines this higher moment as the next collective variable and differentiates this definition to
get an equation which contains the next higher moment. At this point a relation is employed
to “close” the system of equations.

In contrast, the MUSE model recognizes the first collective variable as the Fourier coef-
ficient of the electron beam charge density, and defines a “second collective variable” as the
Fourier coefficient of the electron beam velocity. To get a multifrequency “collective variable
model” using the MUSE theory one does a derivation similar to Section 2.2. In particular,
one uses the Eulerian electron beam equations, neglecting space charge, and a wave equation
for only a forward wave. The result is a system that closely resembles (after normalization)
a multifrequency collective variable model that does not need to be “closed.”

Using the change of variable equations from Eulerian to Lagrangian coordinates one
finds that the second collective variable of [10] is related to beam current. Thus, by taking
moments the collective variable method misses having a collective variable for electron beam
velocity. This is the primary difference between the approach of [10] and the MUSE approach.



36

Chapter 3

Analysis of S-MUSE

3.1 Introduction

Much of the work presented in Chapters 4–6 is based on the analysis of the S-MUSE
model. The S-MUSE model has a formal analytic solution which allows many insights not
obtainable from models which must be numerically solved. For example, analysis of the
solution structure of S-MUSE has led to a simple formula for the exponential growth rates
of the intermodulation frequencies, a new view of the mechanisms behind nonlinear phase
distortion, and a new view of the mechanisms of signal injection for spectrum shaping.

In this chapter we prove that a series solution to the S-MUSE model exists and give
a criterion for when the series converges. We also provide the formal analytic solution to
the model. Next, we derive formulas which give the vector coefficients of the various modes
of the solution. This is particularly important since many of the modes do not contribute
substantially to the solution, and using the formulas we can choose and study only the
important modes.

3.2 Series solution to S-MUSE

We propose a series solution to the nonlinear equation [see equation (2.64)]

ẋ = Ax + H(x,x) z ∈ [0, L], x(0) = w. (3.1)

Write x as

x =
∞
∑

α=1

x(α) (3.2)

where superscript (α) is an index not an exponent. This leads to the following differential
equations for x(α)

ẋ(1) = Ax(1) x(1)(0) = w (3.3)

ẋ(α) = Ax(α) +
α−1
∑

β=1

H
(

x(β),x(α−β)
)

(3.4)

x(α)(0) = 0 α = 2, 3, 4, . . . .
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First we show that the series
∑

α x(α) converges uniformly to x, then we will check that the
series solves (3.1). When combinations of α, β appear superscripted without parentheses
they are to be taken as powers.

We attempt to find a summable bound on the |x(α)| so that we may conclude by the
Weierstrass test [51, pg. 230] that

∑

α x(α)(z) converges uniformly to x(z) on [0, L]. To show
convergence we use an inductive argument. We propose a bound for |x(β)|

|x(β)| ≤ |w|
β||H||β−1
||A||β−1 e||A||z

(

e||A||z − 1
)β−1

(3.5)

where || · || represents a norm on a matrix or a tensor induced by the vector norm | · | (see
Appendix C). Notice

|x(1)| ≤ e||A||z|w|. (3.6)

Then using the induction hypothesis estimate for α ≥ 2

|ẋ(α)| ≤ ||A|||x(α)|+ ||H||
α−1
∑

β=1

|x(β)||x(α−β)| (3.7)

≤ ||A|||x(α)|+ |w|
α||H||α−1
||A||α−2 e2||A||z(α− 1)

(

e||A||z − 1
)α−2

. (3.8)

We use the integrating factor e−||A||z to integrate with x(α)(0) = 0
∫ z

0

[

|ẋ(α)| − ||A|||x(α)|
]

e−||A||τ dτ

≤ |w|α||H||α−1
||A||α−2

∫ z

0

(α− 1)e||A||τ
(

e||A||τ − 1
)α−2

dτ (3.9)

which gives

|x(α)| ≤ |w|α||H||α−1
||A||α−1 e||A||z

(

e||A||z − 1
)α−1

. (3.10)

Thus for values of z such that

|w|||H||
||A||

(

e||A||z − 1
)

< 1 (3.11)

the series converges uniformly to x.
Next we check that the sum solves the original equation. Using equations (3.8) and (3.10)

one gets

|ẋ(α)| ≤ ||A|||x(α)|+ |w|
α||H||α−1
||A||α−2 e2||A||z(α− 1)

(

e||A||z − 1
)α−2

(3.12)

≤ |w|α||H||α−1
||A||α−2 e||A||z

(

e||A||z − 1
)α−2 [

αe||A||z − 1
]

. (3.13)
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The above bound is a convergent sequence when (3.11) holds so
∑

α ẋ(α)(z) converges uni-
formly to ẋ(z). Therefore due to a theorem from analysis [51, pg. 241] we may differentiate
the infinite sum term by term.

First note
∑

α x(α)(0) = w, then consider

ẋ =
∞
∑

α=1

ẋ(α) (3.14)

= A
∞
∑

α=1

x(α) +
∞
∑

α=2

α−1
∑

β=1

H
(

x(β),x(α−β)
)

(3.15)

= Ax +
∞
∑

α=1

∞
∑

β=1

H
(

x(α),x(β)
)

(3.16)

= Ax + H (x,x) . (3.17)

We may rearrange the infinite sums above since we have absolute convergence at each z ∈
[0, L] [51, pg. 226]. Therefore (3.2) solves (3.1) where the differential equations for the terms
of (3.2) are given by (3.3) and (3.4).

3.2.1 Practical computation of (3.11)

For the vector form of the S-MUSE equations (2.64), ||A|| is of the order of 1
ε0
∼ 1011

since ||A|| is of the order of the largest entry of A. Therefore by (3.11) the values of z for
which one gets convergence of the series are much smaller than those of practical interest. To
improve on the range of z values for which one gets convergence we consider a diagonalization
of (2.64).1

Let P be the modal matrix of A and consider the transformation

y = Px. (3.18)

Equation (2.64) in y coordinates is

ẏ = Ãy + H̃(y,y) y(0) = w̃. (3.19)

If the series solution
∑

α y(α) is convergent on some interval 0 < z < L, then since

∞
∑

α=1

y(α) = P

{

∞
∑

α=1

x(α)

}

(3.20)

we have
∑

α x(α) convergent on the same interval.

1Lemma 5.6.10 of [47, pg. 297] ensures that the magnitude of the largest eigenvalue of A is a lower bound
on matrix norms on A.
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In (3.19) we have

w̃ = Pw (3.21)

Ã = PAP−1. (3.22)

To compute H̃ let Q = P−1 and note

x = Qy. (3.23)

The `i
th component of H(x,x) is2

[H(x,x)]`i =
M
∑

m,n=−M
m,n 6=0

5
∑

j,k=1

H`imjnkxmj
xnk . (3.24)

Transforming the vector H(x,x) by P the pa
th component is

M
∑

`=−M
`6=0

5
∑

i=1

Ppa`i [H(x,x)]`i

=
M
∑

`,m,n=−M
`,m,n 6=0

5
∑

i,j,k=1

Ppa`iH`imjnkxmj
xnk

=
M
∑

`,m,n=−M
`,m,n 6=0

M
∑

q,r=−M
q,r 6=0

5
∑

b,c=1

5
∑

i,j,k=1

Ppa`iH`imjnkQmjqbQnkrcyqbyrc . (3.25)

Therefore

H̃paqbrc =
M
∑

`,m,n=−M
`,m,n6=0

5
∑

i,j,k=1

Ppa`iH`imjnkQmjqbQnkrc . (3.26)

Since A is block diagonal P and Q are also block diagonal. Therefore, for fixed p, q, r the
matrix P has one contributing block and Q has two contributing blocks, i.e., Ppp ≡ Pp,
Qqq ≡ Qq, and Qrr ≡ Qr. So finally

H̃paqbrc =
5
∑

i,j,k=1

PpaiHpiqjrkQqjbQrkc . (3.27)

Since Ã is diagonal ||Ã||1 is equal to the largest of the absolute values of the eigenvalues
of A (see Appendix C for a definition of || · ||1). In many cases ||Ã|| will be of the order of
10− 50 implying much more realistic values of z may satisfy (3.11).

2The structure of H implies that the sum
∑M

m,n=−M is equivalent to the sum
∑

m 6=0,n6=0
fm+fn=f`

.
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3.3 Computation of mode amplitudes

The solution to S-MUSE may be written as a sum of complex exponentials, or modes,
analogous to the Pierce solution of the linear TWT equations [41]. However, since S-MUSE
is a nonlinear system of equations the mode structure of the solutions is much more com-
plicated than the Pierce solution to the linear equations. The number of modes required to
represent the solution of a intermodulation frequency grows rapidly as the order intermodu-
lation frequency increases. However, since many of the modes are not “growing modes,” or
grow more slowly than the fastest growing mode, they do not contribute appreciably to the
solution. Therefore, a theory is desired to compute the coefficients of any mode so that the
dominant modes may be computed while ignoring modes that do not contribute appreciably
to the solution. This theory will be the basis for the work on harmonic injection and phase
distortion.

The solution to the `th component of equations (3.3) and (3.4) is

x
(1)
` = eA`zw` (3.28)

x
(α)
` =

∫ z

0

eA`(z−τ)

α−1
∑

β=1

∑

m,n
fm+fn=f`

[

x(β)m (τ),x(α−β)n (τ)
]

dτ

α = 2, 3, . . . (3.29)

where eA`z is the matrix exponential [13]. Due to the recursive structure of (3.29), it may
be written as

x
(α)
` =

∫ z

0

eA`(z−τ)

M
∑

q=1

(

Nq
∑

r=0

τ rcrq

)

eµqτdτ. (3.30)

If an exponent of the forcing exponentials in the integral formula for x
(β)
m , β < α, m 6= `,

i.e., a µq in the integral formula for x
(β)
m , is equal to an eigenvalue of Am, then powers of

z appear multiplying the exponentials in the result of the integral for x
(β)
m . The factor τ r

appears in (3.30) to account for the fact that x
(β)
m and x

(α−β)
n may contain such powers of z.

Cases when µq is equal to an eigenvalue of A` will be referred to as “resonant forcing” and
the modes that result involving powers of z will be referred to as “secular modes.”

Modes are characterized by the arguments of their complex exponentials. The result
of the integral in (3.30) has modes characterized by either µq or the eigenvalues of A`,
λ`i , i = 1, . . . , 5. Formulas for these modes are given below. The derivation of the formulas
is provided in Appendix D.

The λ`k mode is

M
∑

q=1

Nq
∑

r=0

P`R`(k, r, µq)P
−1
` crqe

λ`kz, k = 1, . . . , 5. (3.31)

The µq modes are:
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1. For µq 6= λ`i , i = 1, . . . , 5

Nq
∑

r=0

[

Nq−r
∑

k=0

P`S`(µq, r, k)P
−1
` cr+kq

]

zreµqz. (3.32)

2. For µq = λ`i

P`

{

T`(Nq)P
−1
` cNqq zNq+1 +

Nq
∑

r=0

[

H(r)T`(r − 1)P−1` cr−1q

+

(

Nq−r
∑

k=0

S`(µq, r, k)P
−1
` cr+kq

)]

zr

}

eµqz. (3.33)

In (3.31)–(3.33) P` and P−1` are the modal matrix of A` and its inverse respectively [13].
The matrices R`,S`, and T` are defined by their elements

R`i,j(k, r, µq) ≡
{

(−1)r+1r!
(µq−λ`k )

r+1 i = j = k and λ`i 6= µq

0 otherwise
(3.34)

S`i,j(µq, r, k) ≡
{

(−1)k (r+k)!
r!

1
(µq−λ`j )

k+1 i = j such that λ`i 6= µq

0 otherwise
(3.35)

T`i,j(r) ≡
{

1
r+1

i = j such that λ`i = µq and r 6= −1
0 otherwise

(3.36)

with

H(r) =

{

1 r ≥ 1
0 r = 0.

(3.37)

A Mathematica implementation of the above theory first determines the integrand in
(3.30) using solutions to frequencies combining to make the desired frequency. Modal am-
plitudes for the desired frequency are then computed from the formulas.
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Chapter 4

Generation and growth rates of nonlinear distortions

4.1 Introduction

Figure 2.1 shows circuit power versus axial distance for two drive tones, their second
harmonics and sum frequency, and the third order intermodulation products 2f1 − f2 and
2f2 − f1. The simulation data in Fig. 2.1 indicate that the nonlinear product frequencies
may be characterized by an exponential growth rate prior to saturation, which suggests that
only one of the modes of (3.30) is dominant in the respective solutions. In this Chapter
we provide a formula for computing the exponential growth rate of this dominant mode for
any desired intermodulation product. During development of the theory a mathematical
construct for generation mechanisms of nonlinear distortions is developed, which results in
an improved understanding of harmonic and intermodulation distortion generation. The
growth rate theory and insights into generation mechanisms turn out to be extremely useful
intuition builders for the theories presented in Chapters 5 and 6.

4.2 Theory

The `th component of equation (3.4) which describes the growth of the intermodulation
frequencies is

ẋ
(α)
` = A`x

(α)
` +

α−1
∑

β=1

∑

m,n
fm+fn=f`

H`mn

(

x(β)m ,x(α−β)n

)

α = 2, 3, 4, . . . (4.1)

The quadratic term in (4.1) governs how frequency components of x(1), x(2), . . . , x(α−1)

combine to produce frequency components of x(α). In particular, the solutions for the drive
frequencies produce components in x(2) for frequencies that are all possible additions of pairs
of drive frequencies (and the negatives of the drive frequencies). Then, components of x(1)

and x(2) produce components in x(3) for frequencies which are all possible additions of pairs
of frequencies from x(1) and x(2). Similarly, components of x(1) and x(3) and components of
x(2) and x(2) combine to produce components of x(4) and so on.
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To keep track of the frequencies generated in this process we construct sets Ω(α) that con-
tain the frequencies generated in the term x(α). For example, if fa and fb are drive frequencies
then we define Ω(1) to contain the drive frequencies and the negative drive frequencies, i.e.,

Ω(1) = {−fb,−fa, fa, fb} . (4.2)

From (4.1), the frequencies produced in the second series term are

Ω(2) = {−2fb,−fa − fb,−2fa, fa − fb,
−fa + fb, 2fa, fa + fb, 2fb} . (4.3)

Similarly, frequencies in x(3) are all possible additions of frequency pairs including one from
Ω(1) and one from Ω(2):

Ω(3) = {−3fb,−fa − 2fb,−2fa − fb,−3fa,
fa − 2fb,−fb,−fa,−2fa + fb,

2fa − fb, fa, fb,−fa + 2fb,

3fa, 2fa + fb, fa + 2fb, 3fb}. (4.4)

Notice Ω(3) contains 3rd harmonics and 3IMs, but also contains the drive frequencies.
In general Ω(1) contains the positive and negative drive frequencies, and we define Ω(α), α =

2, 3, 4, . . . by

Ω(α) = {f + g | f ∈ Ω(β), g ∈ Ω(α−β), 1 ≤ β ≤ α− 1, f + g 6= 0}. (4.5)

In applications we truncate the frequency generation process described above. Since the
highest order of IMP in Ω(α) is equal to α, we let S be the highest order IMP of interest and
then define Ω to be all of the frequencies in Ω(1), . . . ,Ω(S). Order Ω as

Ω = {f−M f−M+1 . . . f−1 f1 . . . fM−1 fM} (4.6)

where f` > fm if ` > m and f−` = −f`. The indices of Ω are then used to index x.

Based on the integral form of the solution for x
(α)
` given in (3.30), and the solutions of

the integral computed in Section 3.3 (which were represented as mode contributions), x
(α)
`

is the linear combination of complex exponentials

x
(α)
` (z) =

M
(α)

∑̀

p=1

N
(α)[p]

∑̀

r=0

a
(α)[p]{r}
` zr exp

(

µ
(α)[p]
` + iσ

(α)[p]
`

)

z (4.7)

where a
(α)[p]{r}
` is a complex vector and µ

(α)[p]
` , σ

(α)[p]
` are real. Sums such as (4.7) are ordered

so that µ
(α)[1]
` is the maximum of µ

(α)[1]
` , µ

(α)[2]
` , . . . , µ

(α)[M
(α)
`
]

` . We call µ
(α)[1]
` the maximum

growth rate of x
(α)
` . The arguments of the complex exponentials in (4.7) are either eigenvalues
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of A` or additions of the arguments of complex exponentials formed in the quadratic term
of (4.1). Because of the dispersion and eigenvalue structure in the matrix A` the dominant

mode is never a “secular mode,” i.e., N
(α)[1]
` = 0 for all `, α.

Using the form (4.7) and the integral solutions (3.28) and (3.29) of the previous chapter

a recursive formula for µ
(α)[1]
` in terms of µ

(1)[1]
` , µ

(2)[1]
` , . . . , µ

(α−1)[1]
` is

µ
(α)[1]
` = max

m,n,β
fm+fn=f`
1≤β≤α−1

{

µ(β)[1]m + µ(α−β)[1]n , ν
[1]
`

}

(4.8)

where ν
[1]
` is the largest of the real parts of the eigenvalues of A`.

It is important to notice the maximum growth rate is a function of α. A frequency f`
may appear in several of the series terms, and each term in the series in which f` appears has
a maximum growth rate µ

(α)[1]
` . In many cases the observed growth rate in a simulation will

be the maximum growth rate for the first term in the series which the frequency appears, i.e.,
the smallest value of α for which the frequency appears in Ω(α). However, as we demonstrate
later, this is not always the case.

4.3 Applications

Next we present examples illustrating the IMP generation and the application of formula
(4.8). The TWT dispersion and beam parameters are based on a slightly modified XWING
wideband TWT [79]. Formula (4.8) is checked against growth rates obtained from Christine
1-d [5].

First we consider two drive frequencies fa and fb separated by 1.1GHz. In the bandwidth
between 0.8−9.0GHz twelve IMPs of order five and lower are generated; all of the IMPs are
of the form mfa − nfb. For the IMP frequencies and dispersion parameters in this example,
(4.8) predicts the growth rate as m times the growth rate of fa plus n times the growth rate
of fb:

mµ(1)[1]a + nµ
(1)[1]
b . (4.9)

That is, for the frequencies that make up these IMPs, the linear growth rates ν
[1]
` in (4.8)

are always less than the forcing growth rates µ
(β)[1]
m + µ

(α−β)[1]
n . For a large class of TWT

dispersion parameters (4.9) is the correct formula for the maximum growth rate of IMPs of
the form mfa − nfb.

In Table 4.1 we compare Christine 1-d data to (4.9) 1. The agreement is excellent for input
power 30 dB below the input power that produces saturation at the output (−30 dBsat). The
agreement is less close for input powers of −10 dBsat and 0 dBsat and this is probably due to
the nonlinearities neglected in deriving the S-MUSE model [82]. In all cases the agreement
is very good (< 10% error), indicating that the theory may be used for quantitative and

1Since we measure growth rates from power versus axial position data, we actually compare two times
equation (4.9) to the data. However, we do not make this distinction in the text of the chapter.
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− 30 dBsat − 10 dBsat 0 dBsat
Order f (GHz) µChr % diff. µChr % diff. µChr % diff.

1 fa = 3.0 0.744 – 0.764 – 0.770 –
fb = 4.1 0.696 – 0.728 – 0.733 –

2 fb − fa 1.443 0.30 1.514 1.44 1.543 2.53
2fa 1.487 0.03 1.515 0.83 1.555 0.89
fa + fb 1.438 0.07 1.443 3.37 1.457 3.23
2fb 1.387 0.27 1.361 6.99 1.338 9.62

3 2fa − fb 2.185 0.10 2.239 0.75 2.326 2.21
2fb − fa 2.135 0.01 2.170 2.29 2.225 0.57
3fa 2.227 0.15 2.239 2.38 2.249 2.78

4 2fb − 2fa 2.885 0.24 2.930 1.86 3.041 1.10
3fa − fb 2.923 0.09 2.966 1.80 3.037 0.26

5 3fa − 2fb 3.625 0.09 3.678 1.91 3.864 2.22
3fb − 2fa 3.583 0.27 3.664 1.30 3.833 2.39
4fa − fb 3.665 0.12 3.724 1.61 3.807 0.22

Table 4.1 Growth rates for two drive frequencies and nonlinear products up to order five for
the bandwidth 0.8− 9.0GHz. Results for input powers of −30 dBsat, −10 dBsat and 0 dBsat
are given. µChr is growth rate fit to Christine 1-d power versus axial distance data at an
axial position in the “small-signal” regime, i.e., after the power curves have reached their
asymptotic exponential growth state, but prior to saturation of any of the power curves (see
Fig. 4.2). The percent difference columns compare µChr to formula (4.9) using % diff. =
|µChr − Eq. (4.9)| /µChr.
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Figure 4.1 Circuit power versus distance for fourteen tones with Pin = −30 dBsat.

qualitative studies of IMPs. Figure 4.1 shows power versus axial distance predicted by
LATTE for the fourteen tones of the example with Pin = −30 dBsat.

Next we consider a particular case with the drive frequency at the low end of the band
such that the second and third harmonics are within the linear gain bandwidth. We consider
the frequencies 1, 2, and 3GHz. In Case 1, the drive frequency is f1 = 1GHz. In Case 2,
we also include f2 = 2GHz and f3 = 3GHz as drive frequencies as one might when using
second and third harmonic injection.

In Case 1, the frequency generation scheme (4.5) gives

Ω(1) = {−f1, f1} = {−1, 1} (4.10)

Ω(2) = {−2, 2} (4.11)

Ω(3) = {−3,−1, 1, 3}. (4.12)

Formula (4.8) gives the growth rate of the 2GHz term as

µ
(2)[1]
2 = max

{

2µ
(1)[1]
1 , ν

[1]
2

}

= ν
[1]
2

since the linear growth rate ν
[1]
2 for 2GHz is greater than two times the linear growth rate

µ
(1)[1]
1 = ν

[1]
1 for 1GHz. Moreover, the growth rate for 3GHz is

µ
(3)[1]
3 = max

{

µ
(1)[1]
1 + µ

(2)[1]
2 , ν

[1]
3

}

= µ
(1)[1]
1 + µ

(2)[1]
2 .

That is, the growth rate for the third harmonic is the growth rate for the second harmonic
plus the growth rate of the drive. Simulations of this case show that the second and third
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harmonics do not achieve their asymptotic growth rates prior to saturation. However, an-
alytic solutions of (2.64) confirm that the growth rates predicted by (4.8) are those of the
dominant terms.

In general application of (4.8), it is important to notice that the maximum growth rate

µ
(α)[1]
` is a function of α. A frequency f` may appear in several terms of the series, and each

of these terms has a maximum growth rate µ
(α)[1]
` . In many cases the observed growth rate

in a simulation will be the maximum growth rate for the first term in the series for which
the frequency appears, i.e., corresponding to the smallest α for which the frequency appears
in Ω(α). For example, in Case 1, (4.10) and (4.12) show that f1 = 1GHz is in both Ω(1)

and Ω(3) and the corresponding growth rates of these terms are µ
(1)[1]
1 and µ

(3)[1]
1 . Although

µ
(3)[1]
1 > µ

(1)[1]
1 , in simulations µ

(3)[1]
1 is never observed and µ

(1)[1]
1 characterizes the solution.

However, a similar conclusion does not hold in Case 2.
In Case 2, the frequency generation scheme (4.5) gives

Ω(1) = {−f3,−f2,−f1, f1, f2, f3} = {−3,−2,−1, 1, 2, 3}
Ω(2) = {−6,−5,−4,−3,−2,−1, 1, 2, 3, 4, 5, 6}.

Now f1 = 1GHz is in both Ω(1) and Ω(2). Since it is common for second order products to
reach the level of drive frequencies before the TWT saturates, in simulations we do see the
α = 2 term for large enough drive levels of 2GHz and 3GHz. This phenomenon is shown in
Fig. 4.2 for a Christine 1-d simulation. Both the α = 1 and α = 2 maximum growth rates
are observed and the α = 2 maximum growth rate is equal to the theoretically predicted
sum of the growth rates driving it to within 1%.

By a mathematical treatment of an approximate nonlinear TWT model, we have yielded
a new view of IMP generation and provided estimates for IMP growth rates. In this view, the
generation of IMP frequencies is a sequential process wherein higher order IMPs are produced
by combining lower order IMPs (and drive frequencies) via a quadratic nonlinearity. The
quadratic nonlinearities are the velocity nonlinearity v ∂v

∂z
in Newton’s law and the definition

of current ρv in the continuity equation [82]. We note that certain models of the klystron
and free electron laser can be expressed in the same form (2.64) as S-MUSE, and therefore
a similar method for understanding and predicting IMPs could be applied to these devices.

Formula (4.8) indicates that the growth rate of an IMP is the greater of the sum of the
growth rates of the frequencies combining to make the IMP and the linear growth rate of the
IMP frequency. In most cases the former growth rate applies but there can be exceptions
for very wide band TWTs. The analysis refines and gives insight into the conventional rule
of thumb [6] of estimating the growth rate of a K th order IMP as K times the growth rate
of the drive frequency.
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Chapter 5

On the mechanisms of phase distortion in a TWT

5.1 Introduction

Conventionally, TWT nonlinearity has been quantified via single frequency input-output
transfer characteristics. In particular AM/AM (output power vs. input power) curves and
AM/PM (the derivative of output phase vs. input power) curves are used (see Fig. 5.1).
AM/AM curves exhibit a “linear gain” region, followed by “nonlinear” gain compression
and saturation for increasing input powers. In a linear amplifier the AM/PM curve is a
flat line, i.e., the difference in phase between the output and the input does not depend on
input power. In the TWT, as with any amplifier, the output phase does depend on input
power as seen in Fig. 5.1. The physics of this dependence is the subject of this chapter. One
sees in Fig. 5.1 that the AM/PM curve deviates from linear behavior for input powers much
smaller than those that first produce compression in the AM/AM curve. This shows that
phase distortion in TWTs is significant even in the regime defined as the linear gain region
based on the AM/AM characteristics.

From a systems perspective the AM/AM and AM/PM nonlinearities are said to “cause”
undesirable output spectral content such as intermodulation products [8]. However, since the
transfer curves typically come from a measurement they do not contain explicit information
about the physics internal to the TWT. In fact, from a physics perspective it is better to
say that the transfer curves “capture” aspects of TWT nonlinearity, and thus can be used
to predict input-output behavior of the TWT. For example, an input-output model such
as an amplitude-phase model [69] using the single frequency TWT transfer characteristics
predicts intermodulation spectrum around closely spaced carriers [12], but the amplitude-
phase model does not predict harmonics of the carrier frequencies. Since it is well established
that the carrier harmonics (and sum frequencies) exist in the output spectrum of a TWT,
one concludes that the single frequency transfer characteristics capture certain nonlinear
physics of the TWT, but fail to capture other nonlinear physics.

The physics behind the AM/AM curve can be understood in terms of power saturation,
which is a result of electron bunches falling into accelerating phases of the RF wave and
hence taking energy from the RF wave. The physics of phase nonlinearity, we claim, is less
well understood. Several authors have claimed that phase distortion is due to the reduction
of the average electron beam velocity. For example Gilmour [41] claims that phase distortion
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Figure 5.1 AM/AM and AM/PM curves at 14GHz generated by LATTE, MUSE, and S-
MUSE for the TWT parameters in Tables 5.1 and 5.2. The vertical lines at Pin = −19.5 dBm
and Pin = −26.5 dBm correspond to 1 dB gain compression (3.8 dB backed off from satura-
tion) and 10 dB backed off from saturation respectively, as predicted by LATTE. The sim-
ulations to generate the results accounted for circuit frequencies up to the third harmonic
and electron beam frequencies up to the tenth harmonic.
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“occurs because, as drive level is increased, more power is extracted from the electron beam
and the velocity of the beam is reduced. As beam velocity decreases, the velocity of the RF
wave on the circuit is reduced and this increases the phase length of the TWT.” Furthermore,
Ezura and Kano [30] state “in [Refs. [1–5]] where saturation was excluded, one may easily
grasp the physical image of the phase distortion due to the decrease of the electron velocities,
but not quantitatively.” However, in this chapter we show using several arguments that, at
least prior to 1 dB of gain compression, that the slowing down of the electron beam is not
the dominant mechanism for phase distortion.

In this chapter we offer a new view of phase distortion provided by the new spectral TWT
models MUSE and S-MUSE [82]. By artificially suppressing harmonic and dc effects in the
electron beam equations of the MUSE model, we show that the beam second harmonic plays
a far greater role in the AM/PM distortion prior to gain compression and power saturation
than the average slowing down of electrons. Next, using an approximate analytic solution of
the output phase for the approximate nonlinear model S-MUSE [82], we conclude that the
phase distortion prior to gain compression is mostly a result of the fact that the fundamental
frequency is an intermodulation frequency of itself. We also compare the spectrum of an
amplitude-phase model using the output phase of the analytic solution to the spectrum
predicted by simulation of the S-MUSE model. Furthermore, since it is found that phase
distortion depends primarily on the second harmonic existing in the electron beam, we study
the dependence of the phase distortion on circuit dispersion and electron beam parameters
at the second harmonic. Lastly, using insights developed throughout the chapter, we propose
a physical explanation for a new technique of TWT linearization [14] that is counter to that
proposed in [14].

In Section 5.2 we present simulation, theory, and physical arguments to support the case
that the majority of phase distortion, at least prior to 1 dB of gain compression, is due
to beam harmonics and intermodulation distortion of the fundamental with itself, and not
due to the slowing down of electrons in the beam. In Section 5.3 we compare S-MUSE
simulations of two frequency inputs to results from an amplitude-phase model that uses
the analytic solution of output phase for the S-MUSE model. Section 5.4 presents results
from parametric studies of phase distortion as a function of circuit dispersion and beam
parameters at the second harmonic. We investigate mechanisms for a new technique of
TWT linearization [14] in Section 5.5. Sections 5.7 and 5.8 provide theoretical detail to
support Section 5.2.

For this work there are two primary benefits of the Eulerian models over Lagrangian mod-
els such as LATTE. First, the spectral representation of the electron beam in MUSE allows
one to investigate how electron beam frequencies, including “dc” effects such as the reduc-
tion of the average electron beam velocity, affect phase distortion. In principle, Lagrangian
simulations may also be modified to eliminate spectral components from the electron beam’s
description by generalizing a method we present in this chapter. However, such modifica-
tions are far more cumbersome than the analogous MUSE simulations. Second, S-MUSE
possesses an analytic solution which has a direct physical interpretation of phase distortion
not afforded by either MUSE or LATTE.
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5.2 Phase distortion mechanisms

In this section we study using simulation and analysis the mechanisms of phase distortion.
We define Φ(Pin) as the phase difference between the TWT output and input of the “hot”
circuit voltage wave at frequency f`ω0, where the “small signal” phase difference is subtracted
off. Using this definition, any nonzero value of Φ is considered a “distortion” from the linear
behavior. The term “hot” refers to the fact that the spatially dependent local velocity and
local wavenumber of the voltage wave at frequency f`ω0 are in general not equal to the
“cold circuit” quantities, i.e., the velocity and wavenumber of a voltage wave with no beam
present, nor are they in general equal to the electron beam velocity or effective electron
stream wavenumber (i.e. f`ω0/u0). Rather, the local velocity and wavenumber of the “hot”
wave must be computed from analytic theory or simulation.

If we define βlin as the hot wavenumber predicted by linear theory [61], i.e., the wave
number corresponding to the exponentially growing mode of the solution, and βnl(Pin, z) as
a local hot wavenumber predicted by either analytic theory or simulation, then we have

Φ(Pin) =

∫ L

0

[βnl(Pin, z)− βlin] dz (5.1)

where z = L is the TWT output. Notice that βlin is independent of input power Pin and
axial position z. For small input powers βnl tends to βlin.

Rewriting (5.1) in terms of linear and nonlinear hot phase velocities vhotlin and vhotnl (Pin, z)
we get

Φ(Pin) = f`ω0

∫ L

0

[

1

vhotnl (Pin, z)
− 1

vhotlin

]

dz. (5.2)

Therefore, by definition phase distortion is the result of the nonlinear velocity change of the
hot circuit wave. When the cold circuit velocity is less than the dc electron beam velocity
(Pierce velocity parameter b > 0), the hot velocity usually first slows down relative to vhotlin ,
increasing the electrical length of the TWT relative to the linear behavior, and can speed
back up in saturation. When the cold circuit velocity is greater than the dc electron beam
velocity (Pierce velocity parameter b < 0), the hot velocity usually first speeds up relative to
vhotlin , decreasing the electrical length of the TWT relative to the linear behavior, and can slow
back down in saturation (see for example Fig. 1 of [30]). In general the factors influencing
vhotnl (Pin, z) are not fully understood for all operating regimes of the TWT.

It will be useful to define hot phase velocity using the model variables we have introduced.
For frequency f`ω0 we write

∣

∣

∣Ṽ`(z)
∣

∣

∣ eiθ`(z)e
if`ω0

(

z
u0
−t
)

(5.3)

and from this one can find that

vhot` (z) =
f`ω0

βe +
dθ`
dz

(5.4)

where βe = f`ω0/u0 is the “stream wavenumber.”
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5.2.1 Simulation results

For the first set of simulation studies we choose parameters for a representative Ku-
band TWT. The electron beam parameters are listed in Table 5.1 and the cold circuit phase
velocity ṽph, interaction impedance K̃, and space charge reduction factor R̃ [41, 61] are found
in Table 5.2. The parameters represent a single lossless, constant pitch section. AM/AM
and AM/PM curves at 14GHz are given in Fig. 5.1. Space charge reduction factors for
harmonics higher than the third are computed by (23b) of [5].

Table 5.1 Ku-band TWT electron beam and circuit parameters.
Parameter Value
Cathode voltage −4.92 kV
Beam current 0.177 A
Beam radius 0.3175 mm
Helix radius 0.60 mm

Table 5.2 Ku-band TWT dispersion parameters.
f (GHz) ṽph (×107m/s) K̃ (Ω) R̃
14.0 3.858 32.625 0.156
28.0 3.673 1.161 0.389
42.0 3.591 0.061 0.547

Since the Eulerian models apply only prior to electron overtaking, we restrict our atten-
tion in this section to input powers smaller than the 1 dB gain compression point. From the
AM/AM curve we find that for our TWT design this corresponds to 3.8 dB backed off from
saturation. According to [41] the maximum point of AM/PM distortion typically occurs
anywhere between 3 and 10 dB backed off from saturation, indicating that the input powers
to which we restrict our attention are relevant to real devices.

The spectral structure of the MUSE model allows one to artificially suppress electron
beam frequencies as a diagnostic tool to discover where various nonlinearities manifest in
TWT behavior. In the following MUSE simulations we include and exclude “dc” effects
[time average electron beam velocity ṽ0(z) and time average electron beam charge density
ρ̃0(z)], second harmonics, and higher order harmonics. A frequency f`ω0 is excluded from a
simulation by forcing derivatives of the TWT state variables at that frequency (e.g. Ṽ`, ρ̃`,
etc.) to zero in the simulation.

Figure 5.2 shows output phase versus input power curves from MUSE simulations with
varying frequencies included. When the fundamental frequency (“f”) is the only frequency
in the simulation the model reduces to a linear model, and there is no phase distortion.
Alternatively including the dc frequency and the second harmonic with the fundamental
alone (“dc +f” and “f + 2f” respectively) indicates that most of the phase distortion is
associated with the inclusion of the second harmonic. Furthermore including all frequencies
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up to the 10th harmonic (“dc +f + · · · + 10f”) supports the conclusion that most of the
phase distortion is associated with the second harmonic content in the electron beam.

Since the circuit voltage hot phase velocity is the physical quantity internal to the TWT
that defines phase distortion [see (5.2)], we look at MUSE predictions of hot phase velocity
for Pin = −19.5 dBm including and excluding different frequencies. The results shown in
Fig. 5.3 confirm that the inclusion of the second harmonic accounts for most of the change
in hot phase velocity, which in turn accounts for most of the phase distortion in Fig. 5.2 via
(5.2).

Next we provide more evidence that the average velocity reduction in the electron beam
is not the primary cause of phase distortion by using MUSE and LATTE simulations as well
as a physical argument. First we consider a large signal LATTE simulation that has been
modified to remove the average velocity reduction using the approach given in Section 5.8.
In Fig. 5.4 we show the phase distortion produced by LATTE simulations with and without
the average velocity adjustment. The result confirms that average velocity reduction, at
least prior to gain compression, is not the primary cause of the phase distortion.

We limit the maximum power in Fig. 5.4 to Pin = −23 dBm for computational reasons.
As discussed in Section 5.8, we use (5.49) to compute the evolution of the average disk
velocity in a LATTE simulation. For input powers greater than or equal to Pin = −23 dBm,
the number of space charge harmonics required for (5.49) to converge can become quite large.
For convergence at Pin = −23 dBm one hundred space charge harmonics were required.

To verify that the average velocity computed from the Lagrangian calculation of (5.49)
agrees with the MUSE computation of the dc component of the beam velocity ṽ0(z), we com-
pare the average beam velocities of both models before and after the removal of the spatially
evolving average velocity for Pin = −23 dBm in Fig. 5.5. For this input power note that
the average electron beam velocities predicted by MUSE and LATTE are virtually identical.
Furthermore, the average of the modified LATTE velocities given in (5.50) computed by
(5.51) verify the removal of the average velocity reduction.

Finally we consider how the reduction of the average beam velocity could not account for
the majority of phase distortion. First we consider a comparison of the hot phase velocity
predicted by MUSE and LATTE [computed using (5.4)] to the average beam velocity com-
puted by MUSE in Fig. 5.6 for Pin = −20 dBm. According to Fig. 5.2, the phase distortion
for this input power is about 10◦ which according to Fig. 5.6 corresponds to a change in hot
phase velocity of about 1%. As seen in Fig. 5.6 the average velocity for this input power
only reduces from its initial value by 0.2%. If the reduction in beam velocity was related
to the percent to which the hot phase velocity could change to cause phase distortion, then
over the length of 0.5 cm1 (5.2) indicates that this could only account for about 1.3◦ of phase

1We estimate a constant value of 0.2% reduction, which is the maximum reduction achieved, over half of
the entire length for which the reduction takes place.
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Figure 5.2 Output phase versus input power curves generated by MUSE simulations with
varying frequencies included in the simulation. The legend indicates which frequencies were
included in the simulation generating the trace. The maximum power represented on the
graph corresponds to the 1 dB gain compression point as seen in Fig. 5.1. For the input
powers in this figure LATTE and MUSE have nearly identical phase predictions accounting
for dc through the tenth harmonic, as seen in Fig. 5.1.
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Figure 5.3 MUSE computations of the hot phase velocity (5.4) at the fundamental frequency
with varying frequencies included in the simulation. The legend indicates which frequencies
were included in the simulation generating the trace. The input power Pin = −19.5 dBm
corresponds to the 1 dB gain compression point shown in Fig. 5.1. For this input power the
phase difference as predicted by LATTE is nearly identical to MUSE when accounting for
dc through the tenth harmonic.
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Figure 5.4 Output phase for LATTE simulations with and without removal of the average
beam velocity reduction as described in Section 5.8. One hundred space charge harmonics
were used to compute 〈v〉0 from (5.49).
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Figure 5.5 Average electron beam velocities computed by LATTE and MUSE. LATTE traces
were computed by (5.49), MUSE traces are the dc frequency of the velocity ṽ0(z). Shown
are computations with and without the velocity adjusted to remove the average change in
the dc component. The input power used to generate the traces is Pin = −23 dBm, which is
the maximum power appearing in Fig. 5.4.
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distortion, far below the 10◦ seen in Fig. 5.2 and computed thusly

Φ = ω

∫ 0.5cm

0

[

1

v

(

1− ∆v

v

)

− 1

v

]

dz (5.5)

=
2π14GHz

3.85× 107cm/s
× 0.002× 0.005 (5.6)

= 1.3◦. (5.7)
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Figure 5.6 Average electron beam velocity computed by MUSE, and hot phase velocity at
the fundamental computed by LATTE and MUSE for Pin = −20 dBm. The ranges of values
on both axes are 3% of the value of the respective curve at z = 5 cm.

5.2.2 Analytic results

We can use the analytic solution of Chapter 3 to probe further into the physical mech-
anisms of phase distortion. Because of the approximations made in deriving the S-MUSE
model, the phase distortion predicted by MUSE, S-MUSE, and LATTE agree qualitatively
but not quantitatively. However, we postulate that the physical interpretations made for the
S-MUSE model are also true for the MUSE and LATTE models for input powers prior to
gain compression.

The structure of the S-MUSE solution for a physical variable at a particular frequency is
a linear combination of z dependent complex exponentials [83]. For example, the voltage at
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the fundamental may be approximated as

Ṽ1(z, t) =

{

Adr exp (µdr + iκdr) z +
∑

q

Aqnl exp (µ
q
nl + iκqnl) z

}

e
if1ω0

(

z
u0
−t
)

(5.8)

where the dr subscript refers to the driven portion of the solution, i.e., the exponentially
growing mode due to the fundamental input, and the nl subscript refers to quantities occur-
ring as a result of the nonlinear interactions. The subscript 1 appearing in Ṽ1 and f1 refer to
the fundamental frequency. Forms similar to (5.8) apply to the other TWT state variables
at the fundamental frequency.

In (5.8) each complex exponential is related to a particular order of intermodulation
product, and each successive term in the sum over q accounts for the next higher order odd
intermodulation product (3rd, 5th, etc.). For example, the fundamental frequency is an odd
order intermodulation product of itself, e.g. 2f1 − f1 = f1, 3f1 − 2f1 = f1, etc., and we can
write (5.8) as

Ṽ1(z, t) =
{

Adre
γdrz + A3IMnl e

γ3IM
nl z + A5IMnl e

γ5IM
nl z + . . .

}

e
if1ω0

(

z
u0
−t
)

(5.9)

where we have written the growth rates µ and phase angles κ in (5.8) together as complex
propagation constants γ.

The complete solution to S-MUSE is made up of an infinite number of complex exponen-
tials (see Chapter 3). In (5.8) and (5.9) we only express the dominant terms and ignore the
terms that do not contribute appreciably to the solution near the output of the TWT. Due to
the neglect of non-growing or weakly growing modes in (5.8) and (5.9), both from the linear
and nonlinear portions of the solution, evaluation of the equations at z = 0 does not give the
correct value of the input. The equations are therefore only good approximations, both in
amplitude and phase, for lengths such that the exponentially growing modes dominate the
total solution (for example z ≥ 4 cm in Fig. 5.6). In Section 5.7 we provide more details for
the solution of S-MUSE in order to compute (5.8) and (5.9).

In Fig. 5.7 we compare the output phase computed with (5.8) to the output phase ob-
tained by simulation of the S-MUSE equations [82] for input powers up to the 1 dB com-
pression point. We show the output phase of (5.8) accounting for only the 3IM and also
accounting for the 3IM and the 5IM. The analytic prediction accounting for the 5IM matches
the simulation almost identically.

Comparing the AM/PM curves (derivatives of the output phase) of S-MUSE and LATTE
in Fig. 5.1 we see that S-MUSE predicts most of the phase distortion of the large signal
simulation prior to gain compression. Then from Fig. 5.7 we conclude that the majority of the
large signal TWT phase distortion prior to gain compression is predicted by (5.8). Hence the
primary mechanism for the large signal phase distortion is that the fundamental frequency
is an intermodulation product of itself, which is the view that comes from the analytic
solution to the S-MUSEmodel. We attribute the output phase discrepancies between LATTE
and S-MUSE to the nonlinearities that were neglected in deriving S-MUSE, including the
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Figure 5.7 Simulation and analytic predictions of S-MUSE output phase. For the analytic
formula to match the simulation the contributions from the 5IM term need to be included.
The maximum power represented on the graph corresponds to the 1 dB gain compression
point as seen in Fig. 5.1. The simulation accounts for circuit frequencies up to the third
harmonic and electron beam frequencies up to the tenth harmonic.
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approximation of the average beam velocity and the average charge density as constants,
and the resulting under predictions of intermodulation spectra by S-MUSE as can be seen
in [82].

Based on the above comparison of large signal simulations to the analytic solution to
S-MUSE, and supported by the simulations of Section 5.2.1, we submit the following view
of TWT phase distortion valid prior to gain compression, and speculatively into saturation.
The fundamental drive frequency induces harmonic distortions on the electron beam, and
these harmonic distortions combine back with the fundamental to produce distortions in the
circuit voltage at the fundamental frequency. Furthermore, the third harmonic distortions
in the electron beam combine with the second harmonic distortions to produce distortions
in the circuit voltage at the fundamental frequency. This process also occurs for higher
order harmonics, but to a more limited extent as the order becomes higher. Therefore the
fundamental frequency is composed of the driven mode, the 3IM and 5IM distortion modes,
as well as higher order odd intermodulation modes. The relative weights of the driven mode
and the distortion modes determine the evolving phase of the fundamental circuit voltage,
and hence the evolving hot phase velocity of the fundamental circuit voltage. The hot phase
velocity then determines the phase distortion as described in the beginning of Section 5.2.

For more insight into the how the hot phase velocity at the fundamental changes to
produce phase distortion, we can consider the evolution of the fundamental voltage phase
θ1(z) as defined in (5.3) and computed from (5.8). For simplicity we consider input powers for
which only the 3IM contribution to the analytic solution is required to match the simulation
(e.g. Pin less than −28 dBm in Fig. 5.7). For such inputs we have

θ1(z) = tan−1
{

Adre
µdrz sinκdrz + Anle

µnlz sinκnlz

Adreµdrz cosκdrz + Anleµnlz cosκnlz

}

. (5.10)

Working through the calculations in Section 5.7 one can show that for the input powers
under consideration Adr À Anl. However, for large enough values of z the terms Adre

µdrz

and Anle
µnlz can become comparable since µnl = 3µdr. In the limiting cases of small and

large z one has dθ1
dz

= κdr and
dθ1
dz

= κnl respectively, implying constant values of hot phase
velocity via (5.4). The limiting case of small z is seen, for example, between 4 cm and 7 cm in
Fig. 5.6, where the behavior for z < 4 cm is due to the complex exponential modes neglected
in (5.8). Since 3IMs rarely attain comparable power levels to the fundamental before power
saturation, the limiting case of large z is not attained. Therefore the change in hot phase
velocity as a function of distance along the TWT, as seen for z > 7 cm in Fig. 5.6 for example,
is due to the evolution of the relative weights of the modes in (5.8) and (5.10).

In Fig. 5.8 we show S-MUSE simulation and analytic predictions of the evolution of the
hot phase velocity for Pin = −20 dBm. Consistent with Fig. 5.7 the contribution from the
5IM is required for this input power to accurately model the evolution of the hot phase
velocity seen in the simulation.
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Figure 5.8 Analytic and simulation predictions of S-MUSE hot phase velocity at the funda-
mental frequency. Inclusion of the 5IM contribution to the analytic solution (5.8) is required
to match the simulation result. All of the complex exponentials from the linear portion of
the solution are included to get the correct behavior of the hot phase velocity for z < 4 cm.
The simulation includes circuit frequencies up to the third harmonic and electron beam
frequencies up to the tenth harmonic.
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5.3 Amplitude-phase model & S-MUSE

A popular model for predicting amplifier performance using the nonlinear input-output
amplitude and phase transfer characteristics is the so-called amplitude-phase (AP) model
[69]. In this section we compare an AP model that uses the analytic prediction of the output
phase from (5.8) to S-MUSE simulations with two frequency inputs. While AP models have
been proposed and studied, none have used analytic solutions to nonlinear physics based
models for the transfer curves. As in Section 5.2, we restrict our attention to input powers
to the “linear gain region” of the AM/AM curve.

For an input voltage

x(t) = A(t) cos(ωct) (5.11)

the output voltage in the linear portion of the AM/AM curve for the AP model is

y(t) = γA(t) cos(ωct+ Φ̃(A(t))) (5.12)

where γ is a constant gain factor, and Φ̃(Vin) is the voltage phase difference between the
output and input for an input of Vin cosωct. Φ̃(Vin) is related to Φ(Pin) in (5.1) by using [82]

Pin =
2V 2in
K̃

(5.13)

where K̃ is the circuit interaction impedance at ωc.
If we choose

A(t) = 4Vin cos(ωmt) (5.14)

then x(t) can be equivalently written

x(t) = 2Vin {cos [(ωc + ωm)t] + cos [(ωc − ωm)t]} (5.15)

and the output of the AP model is

y(t) = γ4Vin cos(ωmt) cos(ωct+ Φ̃(4Vin cos(ωmt))). (5.16)

Using Φ̃ predicted by (5.8) we compute the output spectrum of (5.16) and compare it to
a simulation of the S-MUSE equations with the input given by (5.15). We perform the
calculations for two different input powers and two different values of ωm.

First we fix the input power to −30 dBm and compute the spectra for ωm/2π = 1.0MHz
and ωm/2π = 100.0MHz. The results for the narrow spacing are shown in Fig. 5.9 and the
results for the wide spacing are shown in Fig. 5.10. For ωm/2π = 1.0MHz the 3IM and
5IM the predictions of the AP model are 2.3 dB and 4.2 dB below those of the simulation
respectively. For ωm/2π = 100.0MHz the 3IM and 5IM the predictions of the AP model
are 2.9 dB and 4.7 dB below those of the simulation respectively. Since Φ̃ is computed at a
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Figure 5.9 Comparison of S-MUSE simulation and the AP model output spectra for two
input tones. The input power is Pin = −30 dBm and the modulation frequency is ωm/2π =
1.0MHz.
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Figure 5.10 Comparison of S-MUSE simulation and the AP model output spectra for two
input tones. The input power is Pin = −30 dBm and the modulation frequency is ωm/2π =
100.0MHz.
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single frequency, namely ωc, the AP model is expected to apply only over a narrow band of
frequencies about ωc. We see that the AP model with a narrow frequency spacing is in closer
agreement with the simulation, but both frequency spacings are similar in their errors.

For the same frequency spacings we repeated the above calculations with an input power
Pin = −23 dBm. The results for the narrow spacing are given in Fig. 5.11 and the results for
the wide spacing are given in Fig. 5.12. In both cases the AP model predictions of the 3IM
are about 5 dB lower than the simulation results, whereas the 5IM predictions are greater
than the simulation results by about 2 dB. While the reason for this discrepancy is not
entirely understood, we believe that it might lie in the gain compression that the simulation
inherently contains and is ignored in our AP model. Relative to Pin = −50 dBm an input
of Pin = −30 dBm corresponds to 0.11 dB of gain compression, whereas an input of Pin =
−23 dBm corresponds to 0.5 dB of gain compression predicted by S-MUSE simulations. To
test this hypothesis an AP model accounting for the gain compression could be constructed
and tested.
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Figure 5.11 Comparison of S-MUSE simulation and the AP model output spectra for two
input tones. The input power is Pin = −23 dBm and the modulation frequency is ωm/2π =
1.0MHz.

It is instructive to note that the AP model does not predict spectral content at the
harmonics of the carrier frequency ωc, even though it is well known that such spectral
distortion exists. This fact is inherent in the construction of the AP model since when
transfer curves are measured or simulated, attention is restricted to the TWT behavior at
only the fundamental frequency which is observable at the input and output terminals. The
relation between the transfer curve distortions to the harmonic spectrum is important if
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Figure 5.12 Comparison of S-MUSE simulation and the AP model output spectra for two
input tones. The input power is Pin = −23 dBm and the modulation frequency is ωm/2π =
100.0MHz.
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one is designing devices such as linearizers based only on TWT transfer curves, where the
temptation might be to restrict one’s attention to only the fundamental frequency. In the
case of phase distortion Section 5.2 provides what we believe to be the key connections
between harmonic distortions and phase distortion at the fundamental.

5.4 Parametric dependence of phase distortion

In Section 5.2 we showed that the second harmonic frequency influences output phase at
the fundamental frequency through an intermodulation process. Therefore, it is of interest
to know how phase distortion at the fundamental depends on circuit dispersion and elec-
tron beam parameters at the second harmonic. Using LATTE we look at the dependence
of the AM/PM distortion at the fundamental on the cold circuit phase velocity ṽph, circuit
interaction impedance K̃, and electron beam space charge reduction factor R̃ at the second
harmonic. We independently set these parameters to five values and generate AM/AM and
AM/PM curves for each parameter value. The values are evenly spaced between the respec-
tive parameter value at the fundamental and the parameter value at the third harmonic.
The parameter values chosen are not necessarily physically realizable since we are directly
changing the parameter, not the circuit dimensions or electron beam dimensions to attain
the set of parameters. However, the results give a good indication of the relative role the
parameters play in phase distortion.

We expect the phase distortion to behave differently when the second harmonic is in
the linear gain bandwidth of the TWT, since the second harmonic will then have a larger
amplitude and produce a larger fundamental intermodulation. Therefore we choose two
TWT designs for this study, one in which the second harmonic is in the linear gain bandwidth,
and one in which the second harmonic is out of the linear gain bandwidth. For the “narrow
band” TWT we use the Ku-band design of Section 5.2, and for the “wide band” design we
use simulation parameters based on the experimental Wisconsin Northrup Grumman (X-
WING) 1.5 octave C-band TWT [79]. The electron beam parameters for X-WING are listed
in Table 5.3 and the relevant dispersion parameters for X-WING are listed in Table 5.4.

Table 5.3 XWING TWT electron beam and circuit parameters.
Parameter Value
Cathode voltage −2.75 kV
Beam current 0.22 A
Beam radius 0.55 mm
Helix radius 1.4 mm

In Figs. 5.13–5.15 we show the simulation results for the Ku-band TWT. From Fig. 5.13
we see that the phase distortion is relatively unaffected by the phase velocity at the second
harmonic. We see from Fig. 5.14 that the interaction impedance at the second harmonic
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Table 5.4 XWING TWT dispersion parameters.
f (GHz) ṽph (×109 cm/s) K̃ (Ω) R̃
2.00 2.487 103.094 2.787× 10−2

4.00 2.515 38.132 9.802× 10−2

6.00 2.552 15.411 1.846× 10−1

can affect the input power at which the maximum AM/PM conversion occurs and the maxi-
mum value of AM/PM conversion. Furthermore, larger values of interaction impedance can
produce AM/PM conversion coefficients of zero. Finally, from Fig. 5.15 we see that smaller
values of space charge reduction factor have a larger maximum AM/PM conversion coeffi-
cient, but the input power where the maximum AM/PM conversion is attained is unchanged.

In Figs. 5.16–5.18 we show the simulation results for the C-band TWT. From Fig. 5.16
we see that the phase distortion is relatively unaffected by the phase velocity at the second
harmonic as was the case for the narrow band TWT. The interaction impedance at the
second harmonic for the wide band TWT displays the clearest trend and has the greatest
effect on AM/PM distortion as seen in Fig. 5.17. Larger values of interaction impedance
produce the largest AM/PM distortion, most likely because larger interaction impedance
produces larger harmonic power which results in larger intermodulation at the fundamental.
Finally, from Fig. 5.18 we see that the space charge reduction factor does not have much
effect on either the location or value of the maximum AM/PM coefficient.

5.5 Insights into TWT linearization

Chen et al. [14] have recently presented a new method of linearizing TWTs. The method
involves applying small bias voltages to the helix based on either “direct feed” or feedback
processing of the input signal. The bias voltage is a function of the input power “envelope,”
and has the effect of adjusting the electron beam velocity by changing the potential an
electron sees as it enters the helix. The change in electron beam velocity can be equivalently
viewed as a change in electron beam voltage. The explanation for how the linearization
technique works offered in [14] is based on the view that phase distortion is due to slowing
down of electrons in the beam. Our new view of phase distortion led us to doubt their
explanation, and attempt to offer our own. The experimental results given in Figs. 4 and 5
of [14] are for TWT input conditions 9 dB backed off from saturation, well within the range
of applicability of our theory.

We submit that linearization using the technique of [14] of a two tone input signal as
shown in Figs. 4 and 5 of [14], and similar to the input spectra of Section 5.3, should not
be explained in terms of phase distortion. Firstly, we claim that a constant voltage applied
to the helix to compensate for phase distortion for single frequency sine wave inputs can
be explained in terms of linear TWT theory. Secondly, we claim that the linearization of a
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Figure 5.13 AM/AM and AM/PM distortion for the Ku-band design at 14GHz for five
values of cold circuit phase velocity at the second harmonic. The legend represents the five
values ranging from the minimum parameter value (min) to the maximum parameter value
(max).
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Figure 5.14 AM/AM and AM/PM distortion for the Ku-band design at 14GHz for five
values of cold circuit interaction impedance at the second harmonic. The legend represents
the five values ranging from the minimum parameter value (min) to the maximum parameter
value (max).
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Figure 5.15 AM/AM and AM/PM distortion for the Ku-band design at 14GHz for five
values of space charge reduction factor at the second harmonic. The legend represents the
five values ranging from the minimum parameter value (min) to the maximum parameter
value (max).
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Figure 5.16 AM/AM and AM/PM distortion for the C-band design at 2GHz for five values
of cold circuit phase velocity at the second harmonic. The legend represents the five values
ranging from the minimum parameter value (min) to the maximum parameter value (max).
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Figure 5.17 AM/AM and AM/PM distortion for the C-band design at 2GHz for five values
of cold circuit interaction impedance at the second harmonic. The legend represents the five
values ranging from the minimum parameter value (min) to the maximum parameter value
(max).
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Figure 5.18 AM/AM and AM/PM distortion for the C-band design at 2GHz for five values
of space charge reduction factor at the second harmonic. The legend represents the five
values ranging from the minimum parameter value (min) to the maximum parameter value
(max).
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two tone input signal with the new technique should be viewed as the injection of a beam
velocity modulation at the difference frequency of the two input frequencies.

Applying a dc voltage bias to the helix compensates for the nonlinear output phase
distortion by changing the electrical length of the TWT, i.e., the number of wavelengths in
the TWT, based on the linear Pierce theory [61]. That is, the dependence of the linear “hot
wavenumber” βlin (see Section 5.2) on input voltage is sensitive enough such that a small
change in beam voltage can account for a non-negligible phase change at the output of the
TWT. Using the driven term of (5.8) one gets

βlin = κdr(V0) + f1ω0

√

me

2eV0
(5.17)

where V0 is beam voltage,me is electron mass, and e is electron charge. In (5.17) κdr(V0) is the
imaginary part of the eigenvalue of A1 (see Section 5.7) corresponding to the exponentially
growing solution, and we have used that eV0 = (1/2)meu

2
0. One can show that for small

changes in V0 (5.17) is approximately a linear function of V0 and that the accumulated phase
βlin(V0)L can change by as much as 25◦ for less than a 1% change in V0.

In Fig. 5.19 we show LATTE calculations of output phase versus input power for five
values of beam voltage. The total range of beam voltages spans less than 1% of the design
beam voltage, but the phase difference between these values, which to leading order can be
predicted by linear theory, is about 25◦. To obtain a constant output phase for any value of
input power, one can select from the parameterized output phase versus input power curves.
One chooses the curve that passes through the desired value of output phase and input
power, and sets the bias voltage, by a feedback loop for example, such that the beam voltage
is equal to the value labeling the intersecting curve. In this manner the phase distortion,
which is a single frequency input measurement, can be compensated for. Note that the input
power used for the experiment in [14] would correspond approximately to Pin = −26 dBm in
Fig. 5.19, i.e., 9 dB backed off from saturation (see Fig. 5.1). To show that the phase offset
for different helix voltages is well approximated by linear theory for all input powers, we
include input powers up to and beyond saturation.

We saw in Section 5.3 that an input signal consisting of two frequencies with a spacing
of 2ωm centered about ωc could be written as

x(t) = cos(ωmt) cos(ωct) (5.18)

where typically ωm ¿ ωc. If such a signal is passed through a diode for envelope detection,
the diode output signal will have a frequency of 2ωm due to the diode rectification. If this
low frequency signal is then used for the helix bias, one effectively has an input modulation
on the electron beam voltage at the difference frequency 2ωm. Furthermore, this signal is
applied to a “grid compensation circuit” in [14] which would also have the effect of an input
modulation on the electron beam voltage at the difference frequency 2ωm. Therefore, we
claim that the new technique of linearization put forward by Chen et al. [14] is equivalent
to injecting a difference frequency modulation on the beam velocity.
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Figure 5.19 Output phase versus input power for several values of dc beam voltage for the
Ku-band TWT design. The range of the bias voltages spans 48V, less than 1% of the design
beam voltage.
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A recent theory of harmonic injection in a TWT [81] has shown that it is theoretically
possible to obtain intermodulation cancellation by injection of the difference frequency in
the circuit voltage. However, because the difference frequency is typically outside of the
linear gain bandwidth, substantial input powers at the difference frequency are expected to
be required. Since the electron beam has no such bandwidth limitations, it is expected that
modest difference frequency modulations of the beam velocity, such as with the proposed
scheme, may be more effective than difference frequency injection of circuit voltage. This
topic will be explored further in a future work.

5.6 Conclusions

Phase distortion has been said to “dominate TWT nonlinearity” [14] in TWTs. In the lit-
erature many authors have attributed phase distortion to the slowing down of electrons in the
electron beam, i.e., the reduction of the average electron beam velocity (see e.g. [41, 30, 14]).
Through simulation and analysis we offer evidence that phase distortion, at least prior to
1 dB gain compression, is not due to slowing down of electrons in the beam. Rather, we at-
tribute phase distortion to harmonic generation in the electron beam and an intermodulation
process that results in distortions at the fundamental.

The implications of the new understanding of phase distortion are many. Firstly, provided
with a new view of nonlinear TWT physics, one may be led to consider alternative parametric
dependencies and explanations for physical phenomenon. We have provided examples of
such studies in Sections 5.3–5.5. Furthermore, the new understanding may possibly lead to
improved TWT designs, since the notions that a designer has about how a device works
inevitably influence how they proceed with a design.

Using the MUSE, S-MUSE, and LATTE TWT models we explore phase distortion in a
TWT. The unique ability of the MUSE model to systematically suppress the effects of differ-
ent frequencies in the nonlinear TWT behavior shows that the second harmonic distortion in
the electron beam is the most dominant factor in causing phase distortion, at least prior to
gain compression. Furthermore, we show that the average slowing down of electrons is not
the primary cause of phase distortion using MUSE simulations in addition to large signal
LATTE simulations that were corrected to remove the average velocity reduction.

With the approximate analytic solution to the S-MUSE model we give an insightful
picture of the fundamental frequency also being a self-intermodulation product. We show
that prior to 1 dB gain compression the analytic solution accounting for the 3IM and 5IM
contributions has a phase distortion that closely matches the phase distortion from simulation
of the S-MUSE equations. We also show that the change in voltage hot phase velocity which
causes phase distortion is due to an evolving balance of the driven and intermodulation
modes in the solution.

Leveraging off of our new understanding of phase distortion we consider several applica-
tions. First, we compare S-MUSE simulations to an amplitude-phase model that uses the
approximate analytic solution to S-MUSE for the output phase versus input power. We se
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that there were discrepancies in the intermodulation spectra predicted by the two meth-
ods, and that the disagreement is worse for wider frequency spacings and for larger input
powers. The study reinforces our view that the amplitude-phase model is an incomplete
picture of nonlinear TWT physics, and that measuring single frequency phase distortion
characteristics captures only a part of the harmonic and intermodulation physics happening
internal to the TWT. Second, we study how phase distortion depends on circuit and electron
beam parameters at the second harmonic. We find that circuit interaction impedance at the
second harmonic has the greatest effect on AM/PM distortion, especially when the second
harmonic is within the linear gain bandwidth of the TWT. Lastly, we consider a new tech-
nique of linearization [14] and offer a physical explanation for the linearization mechanism.
In this case again we propose that phase distortion was not the proper way of looking at
the linearization, and that a view of the intermodulation and difference frequency physics is
required.

5.7 Analytic formulas for equation (5.8)

In this section we provide a formalism for solving the S-MUSE model for the components
necessary to compute (5.8). We use the vector notation of [82] where x` = [x`1 . . .x`5 ]

T =
[

Ṽ` Ĩ` Ẽ` ṽ` ρ̃`

]T

. The differential equation for x` is

ẋ` = A`x` +
∑

m,n
fm+fn=f`

H`mn(xm,xn) (5.19)

where matrix and tensor components A`ij and H`imjnk are listed in Appendix II of [82].
Equation (5.19) may be solved with a series solution

x` =
∞
∑

α=1

x
(α)
` (5.20)

and that this series converges under the appropriate conditions (see Chapter 3). The index
α is related to the order of intermodulation product [83]. The formulas for the terms of the
series are given by

x
(1)
` = eA`zw` α = 1 (5.21)

x
(α)
` =

∫ z

0

eA`(z−τ)

α−1
∑

β=1

∑

m,n
fm+fn=f`

H`mn

[

x(β)m (τ),x(α−β)n (τ)
]

dτ, α ≥ 2 (5.22)

where w` contains the initial values for frequency f`ω0 [82] and e
A`z is the matrix exponential

of the matrix A`z [18].
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The complex exponential modes of the vector x
(α)
` are indexed by p

x
(α)
` (z) =

N
(α)

∑̀

p=1

a
(α)[p]
` e

(

µ
(α)[p]
`

+iσ
(α)[p]
`

)

z
(5.23)

with a
(α)[p]
` a complex vector. Sums like (5.23) are ordered so that µ

(α)[1]
` is the largest of all

the µ
(α)[p]
` .

For brevity we only provide details to compute the 3IM contribution to (5.8) and refer the
reader to Chapter 3 for details on how to compute higher order contributions. To compute
the terms of (5.8) and the input-output phase difference Φ we need to compute in order the

p = 1 modes x
(1)[1]
1 , x

(2)[1]
2 , x

(3)[1]
1 .

5.7.1 Series term x
(1)
1

The dominant term in the first order (α = 1) drive frequency (` = 1) solution is

x
(1)[1]
1 = a

(1)[1]
1 eµ

(1)[1]
1 zeiσ

(1)[1]
1 z (5.24)

where

a
(1)[1]
1 = P1QP−11 w1 (5.25)

µ
(1)[1]
1 = Re{λ11}, (5.26)

σ
(1)[1]
1 = Im{λ11}, (5.27)

and

Qi,j =

{

1 i = j = 1
0 otherwise

(5.28)

assuming that P1, the modal matrix of A1, has the eigenvector associated with λ11 , the
eigenvalue of A1 with the largest real part, in its first column. Then for (5.8) we have

Adr =
∣

∣

∣a
(1)[1]
11

∣

∣

∣ (5.29)

µdr = µ
(1)[1]
1 (5.30)

κdr = σ
(1)[1]
1 +Arg

{

a
(1)[1]
11

}

. (5.31)

5.7.2 Series term x
(2)
2

For x
(2)[1]
2 we have

x
(2)[1]
2 = dominant mode of

{∫ z

0

eA2(z−τ)H211

(

x
(1)[1]
1 (τ),x

(1)[1]
1 (τ)

)

dτ

}

. (5.32)
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Let

c2 = H211

(

a
(1)[1]
1 , a

(1)[1]
1

)

(5.33)

then

x
(2)[1]
2 = P2S2(2λ11)P

−1
2 c2e

2λ11z (5.34)

= a
(2)[1]
2 e2µ

(1)[1]
1 zei2σ

(1)[1]
1 z (5.35)

where

S`i,j(γ) ≡
{

1
γ−λ`j

i = j

0 otherwise
. (5.36)

The eigenvalues λ`j of A` have the same order as the eigenvectors of A` appearing in columns
of P`. We have assumed that the real part of 2λ11 is larger than the real part of λ21 , the
eigenvalue of A2 with the largest real part, and that 2λ11 6= λ2j for j = 1, . . . , 5, as is most
often the case.

5.7.3 Series term x
(3)
1

The third order term at the drive frequency is

x
(3)[1]
1 = dominant mode of

{∫ z

0

eA1(z−τ)
[

H1,2,−1

(

x
(2)[1]
2 (τ),x

(1)[1]
−1 (τ)

)

+ H1,−1,2

(

x
(1)[1]
−1 (τ),x

(2)[1]
2 (τ)

)]

dτ
}

. (5.37)

Let

c1 = H1,2,−1

(

a
(2)[1]
2 , a

(1)[1]
−1

)

+ H1,−1,2

(

a
(1)[1]
−1 , a

(2)[1]
2

)

(5.38)

with a−1 = a∗1 then

x
(3)[1]
1 = P1S1(2λ11 + λ∗11)P

−1
1 c1e

(2λ11+λ
∗
11
)z (5.39)

= a
(3)[1]
1 e3µ

(1)[1]
1 zeiσ

(1)[1]
1 z. (5.40)

Therefore

Anl =
∣

∣

∣
a
(3)[1]
11

∣

∣

∣
(5.41)

µnl = 3µ
(1)[1]
1 (5.42)

κnl = σ
(1)[1]
1 +Arg

{

a
(3)[1]
11

}

. (5.43)

Any of the TWT state variables may be computed by choosing the appropriate vector
components from a

(1)[1]
1 and a

(3)[1]
1 .

Similarly to compute the 5IM contribution to (5.8) one needs to compute α = 4 and
α = 5 terms.
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5.8 Effect of average beam velocity in LATTE

In this section we provide the theory necessary to remove the effect of the reduction of
the average beam velocity in the large signal code LATTE. We first need an expression to
compute the average velocity from a LATTE simulation, then a way to remove this effect
from a subsequent simulation.

In Eulerian coordinates the electron beam average velocity is

〈v(z)〉0 =
1

2π

∫

2π

vE(z, ψ) dψ (5.44)

which in Lagrangian coordinates becomes [82]

〈v(z)〉0 =
1

2π

∫

2π

vL(z, ψ0)

∣

∣

∣

∣

∂Ψ

∂ψ0

∣

∣

∣

∣

dψ0 (5.45)

=
1

2π

∫

2π

I0(ψ0)

AρL(z, ψ0)
dψ0 (5.46)

where ψ = ω0(z/u0 − t) is a phase variable, I0(ψ0) is the dc beam current, A is the beam
cross sectional area, and the other quantities are defined in Section 2.2.2. We can write ρL

using the Fourier synthesis equation in Lagrangian coordinates

ρL(z, ψ0) =
∞
∑

`=−∞

ρ̃`e
if`Ψ(z,ψ0) (5.47)

where

ρ̃` =
1

2π

∫

2π

I0(ψ0)

Av(z, ψ0)
e−if`Ψ(z,ψ0) dψ0. (5.48)

For computations the integrals become sums over N “disks,” we consider a finite number of
positive frequencies M , and we can combine (5.46), (5.47), and (5.48) to get

〈v(z)〉0 =
N
∑

i=1

[

M
∑

`=−M

N
∑

j=1

eif`(Ψi−Ψj)

vj

]−1

(5.49)

where we have assumed I0(ψ0) = I0 and used the notation Ψ(z, ψ0i) = Ψi and v(z, ψ0i) = vi
where ψ0i is an initial disk phase. For a simulation with small enough input power we can
confirm that (5.49) is correct by comparing it to the average electron beam velocity ṽ0(z)
computed by the MUSE model.

To remove the effect of 〈v(z)〉0 in a subsequent LATTE simulation, we first compute the
adjusted disk velocities

ṽi = vi − 〈v〉0 + u0. (5.50)
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We confirm by computation that for the power levels we are interested in we have

〈ṽi〉0 = u0, (5.51)

then given the adjusted velocities we compute new disk phase trajectories Ψ̃i using [82]

∂Ψ̃i

∂z
=

ω0
u0

(

1− u0
ṽi

)

. (5.52)

From the adjusted velocities and phase trajectories we can compute the adjusted electron
beam density coefficient given by (5.48) where the integral is replaced by a sum over disks.
Finally, one can compute a circuit voltage at the fundamental frequency corresponding to
the adjusted beam charge density from the LATTE lossless circuit equations [82]

dṼ`
dz

= − if`ω0
u0

Ṽ` −
if`ω0K̃`

ṽph`
Ĩ` (5.53)

dĨ`
dz

= − if`ω0

K̃`ṽph`
Ṽ` −

if`ω0
u0

Ĩ` + if`ω0Aρ̃` (5.54)

where Ṽ` and Ĩ` are the complex circuit voltage and circuit current envelopes as defined in
(2.15), K̃` is the circuit interaction impedance at frequency f`ω0, ṽph` is the circuit phase
velocity at frequency f`ω0, and A is the electron beam cross sectional area.



83

Chapter 6

On the physics of harmonic injection in a TWT

6.1 Introduction

Traveling Wave Tubes (TWTs) are widely used as amplifiers in communications and elec-
tronic countermeasure (ECM) systems. Due to the nonlinear nature of the device, spectra
amplified by a TWT are distorted, compromising the device performance. In a communica-
tions application the distortion may manifest as two channels producing energy in a third
channel via third order intermodulation products (3IMs). In this case the channels must
operate such that “cross-talk” into other channels is at acceptable levels, which in some
applications can be as much as 60 dB below the fundamental signals [49]. In ECM applica-
tions, frequency agility is necessary and harmonic generation can limit the usable amplifier
bandwidth.

One way to avoid the TWT’s nonlinear effects is to reduce the input drive power until
the undesired spectral components are at acceptable levels. This method is not an ideal
solution because it reduces the overall efficiency of the TWT. Another widely used method
for reducing undesired spectral content is harmonic injection. Harmonic injection has been
studied experimentally [44, 70, 38, 79] and numerically [28, 22, 21]. It has been shown that
for two drive frequencies, injection of second harmonics of the drive frequencies can reduce
the 3IM spectra [70, 79, 21]. Since it is typically the 3IM spectra that is responsible for the
“cross-talk” between channels, harmonic injection allows one to drive the channel carriers
closer to saturation, thus increasing the amplifier efficiency. In ECM applications one can
inject the second and higher harmonics to extend the usable bandwidth of the amplifier
[44, 38].

Mendel [55] claims that harmonic injection is a process of cancellation, “. . . whereby the
injected second-harmonic signal is such that it is 180◦ out of phase with the second harmonic
signal generated by the nonlinear processes inherent in the interaction mechanism.” This
view is supported by Garrigus and Glick [38] who went as far providing a speculative drawing
of what the waveforms might look like internal to the TWT. However, no quantitative non-
linear theories have been reported that retain the view of the second harmonic signal being
made up of an “injected” part and a part “generated by the nonlinear processes inherent
in the interaction mechanism.” Large signal TWT codes have predicted the phenomenon of
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canceling the second harmonic with harmonic injection, however the harmonic frequency in
these models was not resolvable into separate components.

In this chapter we develop a general theory of “signal injection” using approximate an-
alytic solutions to the spectral TWT model S-MUSE [82]. The approximate solutions are
indeed sums of “injected” terms and terms “generated by the nonlinear processes inherent
in the interaction mechanism” as previous authors have speculated. In fact, this is the case
in general for various signal injection schemes. Where appropriate we test our insights from
the approximate analytic solution in saturated conditions with the large signal code LATTE
[82]. LATTE is derived from the same starting equations as S-MUSE and is therefore ideally
suited for this purpose. We study in detail two cases of signal injection. First, harmonic
injection to suppress the harmonic and enhance the fundamental is considered. Included in
this study is the effect of multiple harmonic injection. Secondly we study signal injection
to cancel third order intermodulation products. Harmonic injection, difference frequency
injection, 3IM injection, and combinations of these schemes are considered.

In Section 6.2 we develop the signal injection theory. The applications are given in Section
6.3, and the chapter is concluded in Section 6.4. Section 6.5 provides the necessary formulas
to compute the analytic solutions.

6.2 Theory

6.2.1 Analytic solution structure

S-MUSE can be solved analytically using a series solution (see Chapter 3). Similar to
linear Pierce theory [61], the solutions for a state variable at a particular frequency is a sum
of complex exponential modes. However, the number of modes required to represent the full
solution of an intermodulation product grows rapidly with increasing order of intermodula-
tion product. When possible we consider only the modes that dominate the solution near
the output of the TWT, which are typically those modes with the largest growth rates.

In general the solution of the voltage at frequency f` may be approximated as

V`(z, t) =

{

Adr` exp
(

µdr` + iκdr`
)

z +
∑

q

A
nl[q]
` exp

(

µ
nl[q]
` + iκ

nl[q]
`

)

z

}

e
if`ω0

(

z
u0
−t
)

(6.1)

where the superscript dr refers to “driven” quantities and the superscript nl refers to quan-
tities generated by nonlinear interactions.

The idea of all of the injection schemes is to adjust the amplitudes and phases of the inputs
such that the bracketed term in (6.1) is minimized at z = L, where L is the TWT output.
This is in contrast to the view put forth in [38] that the undesired signal (the harmonic
in their case) is cancelled at all points along the length of the TWT. In the sections of
the chapter that describe the different injection schemes, we will identify the structure of
the different elements of the solution (6.1). In the appendix, formulas for computing the
quantities appearing in (6.1) are provided.
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Depending on the injection scheme there may be no “driven” portion of (6.1). For
example, in harmonic injection to cancel a 3IM, the naturally generated 3IM cancels with a
mode that is a nonlinear product of the injected harmonic and one of the drive frequencies.
In this case the only modes present are represented in the sum over q, i.e., Adr = 0. For cases
when the injected harmonic is out of the linear gain bandwidth the driven portion of (6.1)
may also be a sum over modes. To compute the modes in these cases the reader is referred
to Chapter 3 for the required formulas.

The solutions to the S-MUSE model of the form (6.1) are approximations that only
apply prior to TWT saturation. By using the large signal code LATTE we will argue with
simulations that the large signal solutions also have a structure that is composed of modes
due to the nonlinearity and modes due to the injected signal.

6.2.2 Electron beam diagnostics

The electron beam current modulation is often considered an important quantity in
TWT physics. To study harmonics of the electron beam current during harmonic injection
we will need the following quantities. The instantaneous electron beam current in Eulerian
coordinates is given by

ibeam = Sρv (6.2)

where S is the electron beam cross sectional area. The Fourier coefficient of this expression
at frequency f` is

〈ibeam(z)〉` = S
1

2π

∫

2π

ρve−if`ψ dψ. (6.3)

Substituting the Fourier synthesis form of ρ(z, ψ) and v(z, ψ), e.g. v(z, ψ) =
∑∞

`=−∞ ṽ`(z)e
if`ψ,

into (6.3) one gets

〈ibeam(z)〉` = S
∑

m,n
fm+fn=f`

ρ̃mṽn (6.4)

where ρ̃m, ṽn are MUSE variables, i.e., spatially dependent Fourier coefficients, and the sum
is over frequency pairs such that the frequencies add to f`.

For the Lagrangian model LATTE the beam current harmonics are given by

〈ibeam(z)〉` =
1

2π

∫

2π

I0(ψ0)e
−if`Ψ(z,ψ0) dψ0 (6.5)

where ψ0 is the Lagrangian “disk” label and Ψ(z, ψ0) is the function describing the phase of
the disk ψ0 as a function of axial position. For an unmodulated beam I0(ψ0) = I0.

In Section 6.3 we will compute 〈ibeam(z)〉` for different values of ` using the code lmsuite.1

1The code LATTE/MUSE Numerical Suite solves the MUSE models and the large signal code LATTE
for arbitrary TWT geometries. The code and the input files used in this chapter are available at
http://www.lmsuite.org.
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6.3 Applications

In this section we provide several examples of the harmonic injection theory. The first
example is harmonic injection to suppress the harmonic or enhance the fundamental, and
the second example is signal injection to suppress an intermodulation product. We study
various aspects of the physics that the solutions afford.

For the studies we use TWT parameters based on the X-WING TWT [79]. The electron
beam parameters are listed in Table 6.1 and the relevant dispersion parameters are listed in
Table 6.2. For frequencies not listed in Table 6.2, dispersion parameters are determined by
a linear interpolation between neighboring frequencies. See [82] for a full description of how
the dispersion parameters enter into the model equations. The TWT length is L = 15 cm.
For much of the present study we do not include a circuit sever2 so that we are considering
only the essential physics of signal injection. The small signal gain as a function of frequency
for these parameters as computed by S-MUSE is given in Fig. 6.1.

Table 6.1 XWING TWT electron beam and circuit parameters.
Parameter Value
Cathode voltage −2.75 kV
Beam current 0.22 A
Beam radius 0.55 mm
Helix radius 1.4 mm

Table 6.2 XWING TWT dispersion parameters.
f (GHz) ṽph (×107m/s) K̃ (Ω) R̃
1.00 2.480 139.0 1.55× 10−2

2.00 2.486 104.0 4.66× 10−2

3.00 2.498 64.0 8.40× 10−2

4.00 2.514 38.0 1.24× 10−1

5.00 2.533 24.0 1.65× 10−1

6.00 2.550 15.0 2.06× 10−1

7.00 2.563 10.0 2.45× 10−1

8.00 2.577 4.0 2.83× 10−1

For sinusoids with frequencies fa and fb, we define the phase difference between the signals
relative to the sinusoid at fa. If the phase difference between the sinusoid with frequency
fa and the sinusoid with frequency fb is said to be ∆θ where the phase of the sinusoid with
frequency fa is θa, then the phase of the signal at fb is (fb/fa)(θa + ∆θ). For example, for
harmonically related signals fb = 2fa, if the input phase is θa = 10◦ and ∆θ = 30◦, then the

2There are a few cases when the effect of a sever is important, and for those cases we do include a sever
and discuss its effect.
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Figure 6.1 Small signal gain of XWING TWT parameters as a function of frequency. Curve
was computed with the S-MUSE model.
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input phase of the sinusoid at the second harmonic fb is θb = 80◦. For harmonically related
signals we will always define phase differences at the fundamental frequency. When there
are multiple drive frequencies we will specify at which frequency the phase differences are
defined.

6.3.1 Fundamental and harmonic frequencies

First we consider second harmonic injection in the presence of one drive frequency. We
study the effect of the injected second harmonic on the fundamental and harmonic frequencies
in two cases. In the first case the harmonic signal is in the linear gain bandwidth, and in the
second case the harmonic is out of the linear gain bandwidth.3 We then consider injecting
the second and third harmonic to cancel the second harmonic.

6.3.1.1 Harmonic in linear gain bandwidth

In the first example we use the fundamental input frequency of 2GHz and the injected
second harmonic at 4GHz. The voltage solution (6.1) for each of these frequencies has a
driven mode and a nonlinear mode. There is a nonlinear mode at 2GHz because 2GHz is
the difference frequency of 4GHz and 2GHz. The nonlinear mode at 4GHz is because 4GHz
is the second harmonic of 2GHz. Figure 6.2(a) shows that the output of the fundamental
is maximized for an optimum input harmonic phase. At 2GHz the second term of (6.1)
increases monotonically with increasing harmonic input power at fixed phase, therefore the
power output at the fundamental increases monotonically for increasing harmonic input
power as seen in Fig. 6.2(a). The power enhancement at the fundamental when the harmonic
and fundamental have equal input powers (5 dBm) is 1 dB for optimum phase.

Figure 6.2(b) shows that for injected second harmonic powers between −10 dBm and
−8 dBm and phases between 85◦ and 95◦ the harmonic is suppressed by more than 18 dB. The
center of this range corresponds to total cancellation of the second harmonic signal (−∞ dB).
It should be noted that experimental realization of this theoretical perfect cancellation is not
possible. Line-broadening effects such as phase jitter, shot noise, and voltage supply noise
will leave a small, nonzero amplitude at the point of optimal suppression.

From Fig. 6.2(b) and (6.1) we see that the optimum injected harmonic power and phase
are independent of each other. That is, for any injected harmonic power a scan in injected
harmonic phase may be made to determine the optimum phase. With the injected har-
monic phase set to this value the harmonic injected power may be scanned to determine
the optimum cancellation point. This method of detecting maximum cancellation has been
confirmed experimentally for non-saturated operation [79].

In Fig. 6.3 we show the modes that make up the harmonic solution for the optimum
cancellation inputs of Fig. 6.2(b). Shown are the magnitudes of the separate modes, and

3We define a frequency to be in the linear gain bandwidth if it has an exponentially growing solution
predicted by the linear theory [61]. For the parameters provided in Tables 6.1 and 6.2, the frequencies
between 1GHz and 6GHz are in the linear gain bandwidth.
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(a) Output power at 2GHz as a function of injected harmonic power and phase. The optimum second
harmonic input phase is ϕ2(0) = 244◦. At this input phase the fundamental output power increases
monotonically with increasing second harmonic input power until saturation effects set in.
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(b) Output power at 4GHz as a function of injected harmonic power and phase. P2(L) is in dB with
respect to output power at 4GHz with no harmonic injection. The optimum cancellation harmonic
inputs are P2(0) = −8.86 dBm, ϕ2(0) = 92.25

◦.

Figure 6.2 Output power at (a) fundamental (2GHz) and (b) second harmonic (4GHz) as a
function of injected harmonic power P2(0) and injected harmonic phase ϕ2(0) for second har-
monic injection. For both figures the fundamental input power and phase are P1(0) = 5 dBm,
ϕ1(0) = 0.0◦. With no harmonic injection the harmonic is 9.23 dB below the fundamental at
the TWT output.
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the magnitude and phase of the total solution (6.1). The figure clearly shows that the axial
location of harmonic cancellation (the TWT output) is the point at which the dominant
mode of the solution changes from the driven mode to the nonlinear mode. The 180◦ phase
change in the composite solution also illustrates this point.

To test whether the qualitative conclusions about the structure of the solutions during
harmonic injection hold more generally, we next consider results of LATTE simulations for
input powers that produce power saturation at the fundamental frequency. We find that
for saturated operation a single global minimum of harmonic output power versus input
power and phase [see Fig. 6.2(b)] ceases to exist. Rather, several local minima form. To
determine the global minimum requires an extensive and highly-resolved scan over input
power and phase. In Fig. 6.4 we show the second harmonic output power as a function of
injected second harmonic input power and phase for a fundamental input power that drives
the TWT into saturation. The simulations for saturated operation include the fundamental
through fourth harmonic spectral components in the circuit wave and electron beam.

To show that the second harmonic voltage in the TWT has the structure of (6.1) even
for saturated operation, we can consider the phase of the voltage predicted by LATTE sim-
ulations. Similarly to Fig. 6.3 we expect to see the driven mode character dominate prior to
the point of cancellation, and the nonlinearly generated mode character after cancellation.
If this is true in the saturated case, then the voltage phase of the harmonic should jump
by 180◦ at the point of cancellation. In Fig. 6.5 we show output powers and voltage phases
for the fundamental through fourth harmonic with second harmonic injection to cancel the
second harmonic at z = 15 cm. The fundamental input power is such that without harmonic
injection the output power at the fundamental is saturated. With harmonic injection, the
fundamental output power at the output (z = 15 cm) is compressed by about 1 dB as the
saturation point has shifted to z = 13.6 cm. One sees that the output phase at the sec-
ond harmonic abruptly changes by 180◦ at the cancellation point, similar to the two-mode
analytic solution of the S-MUSE model.

For the same input frequencies we next look at electron beam current modulation mag-
nitude and phase at the fundamental and second harmonic. Equation (6.4) gives the current
modulation at frequency f`ω0 in MUSE variables. The beam charge density ρ̃m and beam
velocity ṽn have the form of (6.1) where the growth rates (µdrm,n and µ

nl[q]
m,n ) will be the same

as those of the voltage, but the magnitudes (Adrm,n and A
nl[q]
m,n ) and phases (κdrm,n and κ

nl[q]
m,n )

will be different. For the case of second harmonic injection with a single fundamental input,
the solutions for the charge density and beam velocity at the fundamental, ρ̃1 and ṽ1, are
composed of a driven mode and a nonlinearly generated mode. Therefore the beam current
modulation at the second harmonic 〈ibeam(z)〉2, i.e. the product of ρ̃1 and ṽ1, may be written
as a sum of three terms (the cross terms have the same growth rates and may be combined).
There is no guarantee that since the inputs are set such that the circuit voltage modes cancel
at the TWT output, the modes making up the current modulation will also cancel. In fact,
in all of the cases that we have studied, we have found that the current modulation is not
cancelled for any point along the length of the TWT. However, the theory predicts that such
a cancellation of the beam modulation modes is possible for the proper inputs.
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Figure 6.3 Magnitude and phase of (6.1) and component magnitudes of (6.1) for second
harmonic 4.0GHz with second harmonic injection to achieve second harmonic cancellation.
The driven mode dominates the solution prior to z = 15 cm, and the nonlinear mode dom-
inates the solution after z = 15 cm. This can be seen from the component magnitudes, as
well as the 180◦ phase change of the total solution at z = 15 cm. Fundamental and second
harmonic input powers and phases are 5.0,−8.86 dBm and 0.0◦, 92.25◦ respectively. Voltage
phase is with respect to the cold circuit wave at 4GHz.
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Figure 6.4 Fundamental and harmonic output power versus (a) harmonic input phase and
(b) harmonic input power for fundamental input power which produces saturated output
with no harmonic injection. Fundamental input power and phase are 20.0 dBm and 0.0◦

respectively for (a) and (b). In (a) harmonic input power is 18.75 dBm, and in (b) harmonic
input phase is 26.475◦.
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Figure 6.5 Output power (a) and voltage phase (b) for fundamental through fourth harmonic
with second harmonic injection to cancel the second harmonic. The abrupt phase change
of 180◦ in the second harmonic is evidence that even for saturated operation the second
harmonic solution is comprised of two modes as in the approximate analytic solution (6.1).
Fundamental input power and phase of 20.0 dBm and 0.0◦ produce saturation at z = 15 cm
in absence of harmonic injection. Second harmonic input power and phase are 18.75 dBm
and 26.48◦ respectively. Voltage phase is with respect to cold circuit wave at the respective
frequency.



94

In Fig. 6.6 we show the beam current modulation magnitude and phase of the fundamental
and second harmonic components during harmonic injection to cancel the harmonic voltage
at z = 15 cm, as predicted by LATTE. The fundamental input power is small enough so
that no saturation effects are encountered in the simulation region. The second harmonic
beam current modulation “changes modes” at about z = 13 cm as evidenced by the dip in
the magnitude and the phase change. However, this is well before the voltage cancellation
which occurs at z = 15 cm. The relationship between the changing of modes in the beam
current and the changing of modes in the circuit voltage is a subject of future study.

6.3.1.2 Harmonic out of linear gain bandwidth: no sever

When the second harmonic is out of the linear gain bandwidth, the component of the
analytic solution (6.1) corresponding to the injected harmonic does not have an exponentially
growing form, and hence does not grow to a level required to cancel the nonlinearly generated
harmonic at the output. Thus in most cases modest injected harmonic powers will have a
small effect on reducing the second harmonic. To get cancellation of the second harmonic,
a large value of injected harmonic power is required. For the analytic solution (6.1) to be a
good approximation, additional modes from the full solution should be included to describe
the harmonic.

We consider one case of second harmonic injection with the fundamental frequency at
4GHz and the second harmonic at 8GHz, where the fundamental input is set to achieve
saturation at z = 15 cm. In Fig. 6.7 we plot fundamental and second harmonic output
power versus harmonic input power for two different values of fixed second harmonic input
phase. In Fig. 6.7(a) the harmonic input phase is set so that the harmonic output power is
minimized for a harmonic input power of 15 dBm. The amount of output harmonic reduction
from its value of 40.6 dBm with no harmonic injection is about 4 dB. On the other hand in
Fig. 6.7(b) one can see that cancellation of the second harmonic is obtainable in principle.
However, the required injected harmonic power to do so is about 1% of the fundamental
output power. Comparison of Fig. 6.7 to Fig. 6.4, and their respective relative harmonic to
fundamental input powers, illustrates the substantial difference between the case when the
second harmonic is in the linear gain bandwidth and when the second harmonic is out of the
linear gain bandwidth.

6.3.1.3 Harmonic out of linear gain bandwidth: with sever

Almost all TWTs have circuit severs to control internal reflections. We expect that the
presence of the sever will highly attenuate, if not totally eliminate, the non-growing injected
harmonic mode. Since the injected mode is the mode that allows for reduction or cancella-
tion of the second harmonic, we expect that when a sever is included reduction of the second
harmonic should be possible but a total cancellation is likely not possible for reasonable
harmonic injection powers. For simulations including a sever where we restricted the har-
monic input to less than 10% of the fundamental output, the maximum amount of harmonic
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Figure 6.6 Beam current modulation (a) magnitude and (b) phase at fundamental and
second harmonic for second harmonic injection to cancel the second harmonic at z = 15 cm
predicted by LATTE. Harmonic beam current modulation “changes modes” at about z =
13 cm as evidenced by magnitude dip and phase change. However, the modes do not cancel
to produce zero beam current second harmonic modulation (−∞ dB) at any point along the
TWT. Fundamental and second harmonic input power and phase are −20.0,−57.5 dBm and
0.0◦, 91.0◦ respectively, well below powers which produce saturation effects. Beam current
modulation magnitudes are in dB with respect to 1A, and beam current modulation phases
are with respect to cold circuit waves at the respective frequencies.
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Figure 6.7 Fundamental and second harmonic output power versus second harmonic input
power for harmonic input phase equal to (a) 47.9◦ and (b) 12.5◦. In (a) harmonic input
phase is set to minimize output harmonic for injected harmonic power of 15 dBm, and in
(b) harmonic input phase is set to cancel output harmonic for injected harmonic power of
32.29 dBm. Fundamental input power and phase of 13.0 dBm and 0.0◦ produce saturated
output power of 54.1 dBm at the fundamental and 40.6 dBm at the harmonic with no har-
monic injection.
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suppression we obtained was 16.4 dB, from 38.8 dBm to 22.4 dBm, for a fundamental input
of 27.0 dBm and a harmonic input of 34.5 dBm.

6.3.1.4 Second and third harmonic injection

Next we consider injection of the second and the third harmonic to achieve cancellation
of the second harmonic when the second and and third harmonics are both in the linear
gain bandwidth. For this injection scheme there are three terms in (6.1) for each of the
three frequencies: one driven term and two nonlinear terms. To achieve cancellation for a
particular frequency at the output, these three terms should add to zero at z = L.

As an example we solve the S-MUSE equations of Section 6.5 for a fundamental fre-
quency of 1.5GHz, second harmonic of 3.0GHz, and third harmonic of 4.5GHz. The re-
spective input powers and phases for the fundamental, second, and third harmonics are
10,−14.2,−10.6 dBm and 0.0◦, 15.0◦,−45.0◦. When evaluated at z = L the three terms in
(6.1) for the second harmonic frequency may be represented in a phasor diagram as seen
in Fig. 6.8. Phasor A represents the nonlinear product of the fundamental with itself (the

A

B

C

B+C

Figure 6.8 Output phasor picture produced by analytic S-MUSE solution for second and
third harmonic injection. Phasor A represents the second harmonic mode due to nonlinear
product of fundamental with itself, phasor B represents the injected second harmonic mode,
and phasor C represents the mode due to the nonlinear product of the third harmonic with
the fundamental. Phasor B + C cancels phasor A.

mode we wish to cancel), phasor B represents the driven second harmonic, and phasor C
represents the nonlinear product of the third harmonic with the fundamental. If a phasor X
has magnitude |X| and phase θX = Arg {X}, then note from Fig. 6.8 that for cancellation
|A| = |B + C| and that θB+C − θA = π.
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For sufficiently small fixed fundamental input power4 and fixed fundamental, second,
and third harmonic input phases, if 0 < |θC − θB| < π then the second and third harmonic
input powers can be adjusted to achieve second harmonic cancellation. This replaces the
necessity of having precise control of the input phase of the injected harmonic in the case of
single harmonic injection with the necessity of having precise control of the second and third
harmonic input powers. In hardware it is typically easier to precisely control input powers
than it is to precisely control input phases.

Using LATTE we found that for input phases identical to the values used to generate
Fig. 6.8, and respective input powers for the fundamental, second, and third harmonics of
10,−13.3,−9.6 dBm the second harmonic is cancelled at z = 15 cm.

From the phasor diagram in Fig. 6.8 one can see that the relative amounts of injected
second and third harmonic power (proportional to the lengths of output phasors B and C)
depend on the relative choice of the input phases of the three injected signals. Judicious
choice of the input phases may be used to minimize the amount of injected power. In fact,
the minimal injected powers would correspond to inputs such that both phasors B and C
were 180◦ out of phase with respect to phasor A, and the lengths of phasors B and C were
split up such that their magnitudes add to the magnitude of phasor A. (This situation
however does require precise phase control on the input.) However, a phasor diagram as in
Fig. 6.8 is only predicted by the analytic theory we are presenting in this chapter, and is an
approximation to the results produced by a large signal code such as LATTE. Therefore, to
obtain the minimum input powers with a large signal code such as LATTE detailed input
power and phase scans are required.

As in the case of second harmonic injection, one expects that the voltage phase of the
solution at the second harmonic will correspond to the mode which dominates the solution.
For inputs below those which produce saturation, the dominant modes are growing expo-
nentially and the 180◦ degree phase change in the solution is clearly seen (e.g. Fig.6.3). For
larger inputs the modes are no longer exponentially growing after the point of cancellation,
so the abrupt change in phase may not be as evident in the solution. In Fig. 6.9 we show
the voltage phase of the second harmonic as a function of axial distance along the TWT
for the fundamental input powers of 10.0, 23.0, 28.0 dBm, corresponding to linear behavior,
3 dB compression, and full saturation respectively as predicted by LATTE. In each case the
input phases for the fundamental, second, and third harmonic are 0.0◦, 15.0◦,−45.0◦ and the
second and third harmonic input powers have been set to cancel the second harmonic at
z = 15 cm. For linear behavior and saturation the 180◦ phase change is clearly seen, while
for 3 dB compression the phase change is still evident, but not as distinct.

Finally we conjecture about the effect of injecting harmonics higher than third order on
canceling an undesired harmonic. The properly phased injection of each additional higher
order harmonic will result in one more output phasor (see Fig. 6.8) that can be used to

4By “sufficiently small” we mean, for example, that when only the fundamental is injected that neither
the fundamental nor the nonlinearly generated second and third harmonic show signs of onset of saturation
at z = L. In fact, the principle being described may in fact hold for larger input powers, but we have not
tried to determine an upper limit on the input powers for which it holds.
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Figure 6.9 Voltage phase of the second harmonic with second and third harmonic injection
for fundamental input powers in the linear regime, output 3 dB compressed, and output
saturated. Phase is with respect to cold circuit phase velocity at 3.0GHz. The second
harmonic is cancelled at z = 15 cm. All traces show change in phase at cancellation point,
but characters are different due to different relative inputs. Fundamental, second, and third
harmonic power and phase inputs are: linear 10.0,−13.3,−9.6 dBm, 20.0◦, 55.0◦, 15.0◦; 3 dB
compressed 23.0, 11.086,−1.25 dBm, 0.0◦, 15.0◦,−130.0◦; saturated 28.0, 12.345, 12.55 dBm,
40.0◦, 55.0◦, 270.0◦.
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cancel the undesired phasor. This could result in reducing the power required for each
injected signal. However, when the injected harmonics are out of the linear gain bandwidth,
their resulting phasors may be too small to have an appreciable affect on canceling the
undesired harmonic. This is an area for potential future study.

6.3.2 Intermodulation frequencies

Signal injection can also be used to suppress intermodulation frequencies [70, 79, 21].
Consider two drive frequencies fa, fb with fa < fb, the second order products 2fa, fa +
fb, 2fb, fb− fa, and the third order intermodulation frequencies 2fa− fb, 2fb− fa.5 Then for
example, injection of the second harmonic 2fa forms a nonlinear second order product with
the fundamental fb which may be adjusted to cancel the nonlinear third order intermodu-
lation frequency 2fa − fb. Similarly one can inject 2fb to cancel 2fb − fa. Furthermore, in
principle, one can inject the difference frequencies and form second order products with the
fundamental frequencies to cancel the 3IM frequencies, which has been shown experimentally
in solid-state amplifiers [31]. Lastly, one can inject the 3IM frequencies directly with the
right amplitudes and phases to achieve cancellation [72].

Similar to the case of multiple harmonic injection, one can use two or more of the above
injection frequencies simultaneously to eliminate the need for precise input phase control.
The effect of the different injection schemes on the intermodulation frequencies other than
those that are being cancelled is a subject of future work.

For the examples of Sections 6.3.2.1 and 6.3.2.4 we choose the drive frequencies to be 1.9
and 2.0GHz with input powers of 0.0 dBm and respective input phases of 0.0◦ and 30.0◦. For
the examples of Section 6.3.2.2 we choose the drive frequencies to be 3.9 and 4.0GHz with
input powers of −5.0 dBm and respective input phases of 0.0◦ and 30.0◦. These inputs do not
produce saturation effects in any of the frequencies at the TWT output. The behavior of the
examples considered here with inputs which produce saturation is a subject of future work.
In all of the simulations we have accounted for up to the third order products of the input
frequencies. In general, signal injection results in additional intermodulation frequencies
beyond those which exist in the presence of the fundamental frequencies alone.

6.3.2.1 Injection in linear gain bandwidth

We consider first single signal injection when the injected signal is in the linear gain
bandwidth. For second harmonic or difference frequency injection, the form of the solution
at the third order intermodulation frequency is given by (6.1) with Adr` = 0 and two terms
in the sum over q.6 For 3IM injection, Adr` 6= 0 and there is one term in the sum over q.

Formulas for Adr` , A
nl[q]
` are given in Section 6.5.

5There are other third order intermodulation frequencies that we do not list since they are located near
the third harmonics, and may be removed by filtering.

6Even though the mode which enables the cancellation for these cases is a nonlinear product mode, we
will still refer to it as a “driven mode” as its existence depends on having the signal injected.
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In Fig. 6.10 we show the mode amplitudes and composite solution envelope from (6.1) for
cancellation with second harmonic injection, and in Fig. 6.11 we show the mode amplitudes
and composite solution for cancellation with 3IM injection. Notice that the induced mode
which accomplishes the cancellation in the second harmonic injection case is growing much
faster than the driven mode which accomplishes the cancellation in the 3IM injection case
(the ranges on the vertical axes of the figures are identical). This is because in the former
case the mode is a second order mode and has a growth rate equal to the sum of the growth
rates of the driving frequencies (2.0 and 3.8GHz) [83]. In the latter case, the mode is a drive
frequency and grows with its linear growth rate.

A subtlety in the case of 3IM injection is that with such an injected signal the solution
(6.1) for the 3IM frequency will have more terms in the sum over q. For example, if f3IM is
the injected 3IM and fa, fb are the original fundamentals, then f3IM is equal to the third order
products (f3IM + fa)− fa and (f3IM + fb)− fb [the parentheses ( · ) indicate the formation of
a second order product, and the subtracted off term results in a third order product]. That
is, the third order nonlinear solution is now the sum of the original 3IM mode (e.g. 2fa− fb)
in addition to the modes produced by the above third order products. However, since the
required injected power of the 3IM is so much less than the injected fundamental powers, it
was found that the solution was only slightly modified by the inclusion of these additional
modes.

6.3.2.2 Injection out of linear gain bandwidth: no sever

Similarly to Section 6.3.1.2, we consider the implications of the injected signals being out
of the linear gain bandwidth. For narrow band TWTs it is likely that the second harmonic is
out of the linear gain bandwidth. For difference frequency injection the difference frequency
would be out of the linear gain bandwidth for most drive frequency spacings; however, for
wideband TWTs one could construct pairs of input frequencies such that the difference
frequency is in the linear gain bandwidth.

We showed in Section 6.3.1.2 that second harmonic injection to cancel the second har-
monic is much less effective when the second harmonic is out of the linear gain bandwidth.
This raises the question of the effectiveness of second harmonic injection to cancel an inter-
modulation product when the second harmonic is out of the linear gain bandwidth. In this
case, the injected second harmonic exists in the circuit as a non-growing mode. It combines
nonlinearly with one of the drive frequencies resulting in a signal that has a growth rate
equal to that of the drive frequency [83]. The growth rate of the 3IM frequency to be can-
celled in most cases will be on the order of three times the growth rate of the fundamental
frequency [83]. However, the net levels of the signals can be made comparable since the
3IM starts at a much lower amplitude than the second order product (the injected second
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Figure 6.10 Magnitude of (6.1) and component magnitudes of (6.1) for 3IM frequency
1.8GHz with second harmonic injection to cancel the 3IM frequency. The canceling mode
(nonlinear difference product of 3.8GHz and 2.0GHz) dominates the solution prior to
z = 15 cm, and the nonlinear mode dominates the solution after z = 15 cm. Fun-
damental (1.9, 2.0GHz) and second harmonic (3.8GHz) input powers and phases are
0.0, 0.0,−18.32 dBm and 0.0◦, 30.0◦, 116.24◦ respectively.
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Figure 6.11 Magnitude of (6.1) and component magnitudes of (6.1) for 3IM frequency
1.8GHz with 3IM injection to cancel the 3IM frequency. The driven mode dominates
the solution prior to z = 15 cm, and the nonlinear mode dominates the solution after
z = 15 cm. Fundamental (1.9, 2.0GHz) and 3IM (1.8GHz) input powers and phases are
0.0, 0.0,−36.36 dBm and 0.0◦, 30.0◦,−146.56◦ respectively.
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harmonic combined with the fundamental). Therefore, as shown in Fig. 6.12, harmonic in-
jection to suppress the 3IM when the harmonic is out of the linear gain bandwidth can be
effective.7

When the injected second harmonic is out of the linear gain bandwidth the level of the
injected signal will generally need to be larger relative to the fundamental input powers
as compared to when the injected second harmonic is in the linear gain bandwidth. This
can be seen by comparing the values of the injected second harmonic powers relative to the
fundamental powers for Fig. 6.10 (−18.32 dB) and Fig. 6.12 (15.6 dB). The reason is that
when the second harmonic is out of the linear gain bandwidth the second order mode used
to cancel the 3IM grows at a rate about equal to the drive frequency, whereas when the
harmonic is in the gain bandwidth the second order mode used to cancel the 3IM grows
at a rate about twice that of the drive frequency [83]. Therefore, to ultimately obtain the
same relative power level in the mode, the injected power of the mode with the lower growth
rate must be relatively larger. That is, when the second harmonic is out of the linear gain
bandwidth, one needs a larger relative harmonic input.

6.3.2.3 Injection out of linear gain bandwidth: with sever

In contrast to harmonic injection to control the second harmonic when the injected
harmonic is out of the linear gain bandwidth as in Section 6.3.1.2, we expect from the theory
that including a circuit sever will not greatly affect the performance of the injection schemes
to control the intermodulation spectrum. The reason is that the mode that cancels the 3IM
is an exponentially growing mode that has a corresponding modulation in the beam current.
When the circuit field of this mode is damped by the sever, the beam modulation re-initiates
the circuit field mode after the sever. This is in contrast to the case in Section 6.3.1.2 where
the sever heavily damped the mode that performed the harmonic reduction. In fact, in a
simulation including a circuit sever with fundamental inputs such that the C3IM ratio (the
relative level in dB of the fundamental to the 3IM at the TWT output) without second
harmonic injection was the same as those for the simulation that produced Fig. 6.12, we
found that the required harmonic injection power relative to the fundamental power was
10.5 dB as compared to 15.6 dB for the circuit with no sever.

Next we consider cancellation of a 3IM with injection of the difference frequency. Theo-
retically this situation is similar to second harmonic injection when the second harmonic is
out of the linear gain bandwidth. Even though the difference frequency is out of the linear
gain bandwidth, the second order product of the difference frequency and the fundamental
will grow at a rate equal to the fundamental frequency growth rate [83]. With sufficiently
large difference frequency input power, cancellation of the 3IM can be obtained as shown
in Fig. 6.13. Note that the required difference frequency input power relative to the funda-
mental (Pf2−f1 − Pf1 = 17.4 dB) is similar to the required second harmonic injection power

7In general the spectra we present have content near the second, third and/or fourth harmonics of the drive
frequencies, but we have chosen only to display the spectra near the fundamentals and second harmonics.
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Figure 6.12 Output spectrum (a) near fundamentals and (b) near second harmonics with
and without second harmonic injection when second harmonic is out of the linear gain
bandwidth. Note additional “intermodulation frequencies” (e.g., at 7.7GHz) due to injection
of the second harmonic. Fundamental inputs 3.9, 4.0GHz have input power −5.0 dBm and
respective phases of 0.0◦ and 30.0◦. Injected harmonic 7.8GHz has input power and phase
of 10.6 dBm and 32.2◦. Note that there is also partial suppression of the second harmonic
at 7.8GHz.
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relative to the fundamental when the second harmonic is out of the linear gain bandwidth
(P2f1 − Pf1 = 15.4 dB). Also note that the difference frequency can be used to cancel either
3IM frequency, but not both 3IMs simultaneously.

There is some question as to whether difference frequency injection will work in practice.
Since the wavelength of the difference frequency is much longer than the physical TWT, it
is not clear as to whether the mode resulting from the product of the difference frequency
and the fundamental frequency will be produced in the device. Ultimately an experimental
test of the idea will be needed to determine if it works.

6.3.2.4 Multiple signal injection

Second and third harmonic injection was shown in Section 6.3.1.4 to control the level
of the second harmonic while eliminating the need for precise control of the injected signal
phases. When using signal injection to control the intermodulation spectrum there are many
cases when one might wish to inject multiple signals. For example second harmonic and
intermodulation injection or second harmonic and difference frequency injection may be used
to control the intermodulation level and eliminate the requirement of precise phase control of
the injected signals. Furthermore, one could imagine that for multiple fundamental signals,
second harmonic and intermodulation pairs or second harmonic and difference frequency
pairs could be used to control the many intermodulation products. However, the effects of
injecting many signals on the other spectral components, and whether the resulting spectra
are improved over the original spectra is not known. While we do not attempt to answer
this question here, we give a few examples of multiple signal injection for two fundamental
frequencies using LATTE simulations.

In Fig. 6.14 we show the output spectrum with and without injection of a 3IM (2.1GHz)
and second harmonic (4.0GHz) to cancel the 3IM. The targeted 3IM frequency is totally
cancelled while additional spectral components are produced near the fundamentals and
second harmonics. Since the new intermodulation products are more than 60 dB below
the fundamentals amplitudes, they may not represent a problem as a practical matter. A
determination of the importance of these new distortion products would need to be made in
the context of linearity requirements for each specific application. As was the case in second
and third harmonic injection to control the second harmonic (Section 6.3.1.4), this scheme
eliminates the necessity of precise phase control of the injected signals. This is accomplished
by producing two output phasors whose lengths can be controlled to cancel the undesired
output phasor by adjusting the injected signal input powers (see Fig. 6.8).

Next we consider injecting the second harmonics of both of the fundamental frequencies.
In Fig. 6.15 we show the output spectra with and without injection of both second harmonics.
The original 3IM frequencies are totally cancelled and there is some cancellation at the second
harmonic, as well, while some additional spectral components appear due to the additional
input signals. The level of the additional signals near the fundamentals are much lower
than the original 3IM frequencies. There are several components generated near the second
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Figure 6.13 Output spectrum (a) near fundamentals and (b) near second harmonics with
and without difference frequency injection. Note additional “intermodulation frequencies”
due to injection of the difference frequency. Fundamental inputs 1.9, 2.0GHz have input
power 0.0 dBm and respective phases of 0.0◦ and 30.0◦. The injected difference frequency
100.0MHz has input power and phase of 17.4 dBm and 134.45◦.
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Figure 6.14 Output spectrum (a) near fundamentals and (b) near second harmonics with
and without 3IM and second harmonic injection. Note additional “intermodulation frequen-
cies” due to the injection of the signals. Fundamental inputs 1.9, 2.0GHz have input power
0.0 dBm and respective phases of 0.0◦ and 30.0◦. The injected 3IM and second harmonic
2.1, 4.0GHz have input powers and phases of −30.0,−22.0 dBm and −13.0◦, 35.0◦.
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Figure 6.15 Output spectrum (a) near fundamentals and (b) near second harmonics with and
without second harmonic injection of both fundamentals. Note additional “intermodulation
frequencies” due to the injection of the harmonic signals. Fundamental inputs 1.9, 2.0GHz
have input power 0.0 dBm and respective phases of 0.0◦ and 30.0◦. The injected harmonics
3.8, 4.0GHz have input powers and phases of −23.25,−19.4 dBm and 66.5◦, 136.1◦.
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harmonics, although it is thought that these could be filtered and would be of less a concern
than the spectrum near the fundamental.

Finally, in Fig. 6.16 we show results of injecting the 3IMs and second harmonics of both
of the fundamental signals. The 3IM frequencies are cancelled without a requirement of
precise input phase control, but the number of additional spectral components becomes
quite large. However, all of the signals near the fundamentals are substantially lower than
the 3IMs without the injection. If one can tolerate a complicated spectrum near the second
harmonics, it is thought that this scheme may be desirable.

We have done some testing of the above multiple signal injection schemes for fundamental
inputs of 5 dBm, which start to show the onset of saturation effects in the intermodulation
and harmonic signals. For second harmonic injection of both fundamentals simultaneous
cancellation of both 3IM frequencies was found to be possible. However, in the case of
injecting both 3IMs and both second harmonics we were unable to find, with a coarse search,
injection input values to cancel both of the 3IM frequencies simultaneously. The general
existence of such inputs is a subject of future study.

6.4 Conclusions

We present an interpretation of harmonic injection, and more generally “signal injection,”
in a TWT as the cancellation of “driven” and “nonlinear” modes. The interpretations are
based on an approximate analytic solution to an approximate nonlinear model. Furthermore,
we use “large signal” simulations to test whether the modal solution structure is valid in
saturated conditions. In general we find that the large signal simulations indeed show the
abrupt phase change signature of the approximate analytic solutions.

The idea has existed for some time that the physical mechanism of harmonic injection
is cancellation of such modes [55, 38]. However, we present the first quantitative theory
to predict the existence of the modes. Furthermore, the quantitative theory has provided
insights into harmonic injection that the intuited notions could not. For example, a phasor
picture provided by the theory demonstrates how multiple harmonic injection can eliminate
the sensitive dependence of the output signals on the phase of the input signals. Also the
analytic solutions elucidate the many effects of the injected signals being outside of the
linear gain bandwidth of the TWT. Some experimentation is still required to verify all of
the notions put forward in the chapter.

6.5 Formulas for mode amplitudes

In this section we provide formulas required to compute solutions of the dominant modes
for the cases discussed in the chapter. We use the vector notation of [82] where x` =

[x`1 . . .x`5 ]
T =

[

Ṽ` Ĩ` Ẽ` ṽ` ρ̃`

]T

. Due to the Fourier series used in the model, for each positive

frequency f` there is a corresponding negative frequency indexed by −` with f−` = −f`.
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Figure 6.16 Output spectrum (a) near fundamentals and (b) near second harmonics with
and without injection of both 3IMs (1.8, 2.1GHz) and both second harmonics (3.8, 4.0GHz).
Note additional “intermodulation frequencies” due to injection the of the signals. Funda-
mental inputs 1.9, 2.0GHz have input power 0.0 dBm and respective phases of 0.0◦ and 30.0◦.
The injected 3IM and second harmonics 1.8, 2.1, 3.8, 4.0GHz have input powers and phases
of −26.7,−30.0,−25.0,−22.0 dBm and −150.0◦,−13.0◦,−140.0◦, 35.0◦. The large dynamic
range of the figure is so that all of the spectral components are shown.
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Furthermore x−` = x∗` . The differential equation for x` is

ẋ` = A`x` +
∑

m,n
fm+fn=f`

H`mn(xm,xn) (6.6)

where matrix and tensor components A`ij and H`imjnk are listed in Appendix II of [82]. One
can show that (6.6) may be solved with a series solution

x` =
∞
∑

α=1

x
(α)
` (6.7)

and that this series converges under the appropriate conditions. The index α is related to
the order of intermodulation product [83]. The formulas for the terms of the series are given
by

x
(1)
` = eA`zw` α = 1 (6.8)

x
(α)
` =

∫ z

0

eA`(z−τ)

α−1
∑

β=1

∑

m,n
fm+fn=f`

H`mn

(

x(β)m (τ),x(α−β)n (τ)
)

dτ, α ≥ 2 (6.9)

where w` contains the initial values for frequency f` [82] and e
A`z is the matrix exponential

of the matrix A`z [18]. The complex exponential modes of the vector x
(α)
` may be indexed

by p

x
(α)
` (z) =

N
(α)

∑̀

p=1

a
(α)[p]
` e

(

µ
(α)[p]
`

+iσ
(α)[p]
`

)

z
(6.10)

with a
(α)[p]
` a complex vector, and µ

(α)[p]
` , σ

(α)[p]
` real numbers. Sums like (6.10) are ordered

so that µ
(α)[1]
` ≥ µ

(α)[2]
` ≥ · · · ≥ µ

(α)[N
(α)
`
]

` .
To keep the formalism as simple as possible, we provide formulas only for the cases when

the injected signals are in the linear gain bandwidth of the TWT. In these cases the solutions
for fixed α can be approximated by a single “dominant mode” in the case of single signal
injection, or several “dominant modes” in the case of multisignal injection. The total solution
(6.1) is a sum of the dominant modes for the different values of α.

When the injected signals are out of the linear gain bandwidth the number of modes
required to represent the solutions increases substantially, and the formulas for the solutions
involve more caveats and technicalities. A complete formulation accounting for all modes is
given in Chapter 3.

We give formulas for first order (linear), second order, and third order products. The
formulas may be used to compute all of the cases in the chapter in which the injected signal
is in the linear gain bandwidth of the TWT.
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6.5.1 First order (linear) solution

The p = 1 mode of the first order (α = 1) drive frequencies (including injected signals)
is given by

x
(1)[1]
` = a

(1)[1]
` eµ

(1)[1]
`

zeiσ
(1)[1]
`

z (6.11)

where

a
(1)[1]
` = P`QP−1` w` (6.12)

µ
(1)[1]
` = Re{λ`1}, (6.13)

σ
(1)[1]
` = Im{λ`1}, (6.14)

and

Qi,j =

{

1 i = j = 1
0 otherwise.

(6.15)

We assume that P`, the modal matrix of A`, has the eigenvector associated with λ`1 , the
eigenvalue of A` with the largest real part, in its first column. Then for (6.1) we have

Adr` =
∣

∣

∣a
(1)[1]
`1

∣

∣

∣ (6.16)

µdr` = µ
(1)[1]
` (6.17)

κdr` = σ
(1)[1]
` +Arg

{

a
(1)[1]
`1

}

. (6.18)

6.5.2 Second order solution

Next we solve for second order products (α = 2) of the injected signals. We give formulas
for one mode in the sum over q in (6.1) and note that the number of required modes and
ordering of the modes is application dependent. A second order product has associated with
it a pair of indices m and n such that fm + fn = f`. We have

x
(2)[q]
` = a

(2)[q]
` eµ

(2)[q]
`

zeiσ
(2)[q]
`

z (6.19)
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where

a
(2)[q]
` = P`S`

(

µ
(2)[q]
` + iσ

(2)[q]
`

)

P−1` c
(2)[q]
` (6.20)

c
(2)[q]
` =



























H`mn

(

a
(1)[1]
m , a

(1)[1]
n

)

m=n
fm+fn=f`

H`mn

(

a
(1)[1]
m , a

(1)[1]
n

)

+ H`nm

(

a
(1)[1]
n , a

(1)[1]
m

)

m6=n
fm+fn=f`

(6.21)

µ
(2)[q]
` = µ(1)[1]m + µ(1)[1]n (6.22)

σ
(2)[q]
` = σ(1)[1]m + σ(1)[1]n (6.23)

S`i,j(γ) ≡
{

1
γ−λ`j

i = j

0 otherwise
(6.24)

and we have assumed that µ
(1)[1]
m + µ

(1)[1]
n > Re {λ`1}. The eigenvalues λ`j of A` have the

same ordering as the eigenvectors of A` appearing in columns of P`.
Then for a mode of (6.1) we have

A
nl[q]
` =

∣

∣

∣
a
(2)[q]
`1

∣

∣

∣
(6.25)

µ
nl[q]
` = µ

(2)[q]
` (6.26)

κ
nl[q]
` = σ

(2)[q]
` +Arg

{

a
(2)[q]
`1

}

. (6.27)

This mode can describe sum and difference frequencies of the injected signals.

6.5.3 Third order solution

Lastly we solve for third order products (α = 3) of the injected signals. Given the

dominant mode of the injected signal x
(1)[1]
m from (6.11) and a dominant mode of a second

order product x
(2)[1]
n from (6.19) one has8

x
(3)[1]
` = a

(3)[1]
` eµ

(3)[1]
`

zeiσ
(3)[1]
`

z (6.28)

where

a
(3)[1]
` = P`S`

(

µ
(3)[1]
` + iσ

(3)[1]
`

)

P−1` c
(3)[1]
` (6.29)

c
(3)[1]
` = H`mn

(

a(1)[1]m , a(2)[1]n

)

+ H`nm

(

a(2)[1]n , a(1)[1]m

)

(6.30)

µ
(3)[1]
` = µ(1)[1]m + µ(2)[1]n (6.31)

σ
(3)[1]
` = σ(1)[1]m + σ(2)[1]n . (6.32)

8Unlike the α = 2 case we allow for only one third order mode in the total solution (6.1). Although a
more general formalism is possible the examples provided in this chapter do not require it.



115

Therefore for (6.1) we have for the dominant mode of the third order product

A
nl[1]
` =

∣

∣

∣
a
(3)[1]
`1

∣

∣

∣
(6.33)

µ
nl[1]
` = µ

(3)[1]
` (6.34)

κ
nl[1]
` = σ

(3)[1]
` +Arg

{

a
(3)[1]
`1

}

. (6.35)
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Chapter 7

Conclusions

This thesis provides a fresh view of nonlinear TWT modeling and analysis. We present
major theoretical advances on several important nonlinear problems whose solutions have
remained elusive for many years. This work comes during a time when the focus of the
research in the TWT community is largely on producing advanced design codes, and using
these codes to improve TWT performance and reduce the time and cost of development.
While the latter activities are essential to the progress of the field, one cannot discount the
importance of new theoretical notions of the physical mechanisms at play in the device. One
could argue that such notions are as important as a design code since it is the designer’s
ideas and intuitions that guide their use of codes.

A major theme emerging from this thesis is that in pursuing nonlinear problems one
should think twice before discarding a nonlinear model that is not “exact.” In fact, the
thesis makes a clear case for using several nonlinear models on the same problem, even
if some of the models are “limited.” In this work useful models are produced by trading
off model accuracy for desirable model “structure” as well as analytic tractability. Having
several models is critical because often a nonlinear problem does not have a clear “answer,”
and instead one must resort to presenting evidence to support a hypothesis. The more varied
the sources of evidence the better.

The modeling in Chapter 2 presents a comprehensive, pedagogical view of 1-d nonlinear
steady-state TWT modeling. The mathematical connection between models using Eulerian
and Lagrangian electron beam descriptions is clearly outlined in terms of a coordinate trans-
formation using the method of characteristics. An extensive comparison of the new models
to each other and to the well known TWT code Christine 1-d is given. This comparison of
the Eulerian models to the “correct” Lagrangian models serves to establish the limitations
of the Eulerian models. The advantages of the Eulerian models are also indicated. However,
these advantages are increasingly clear throughout the remaining chapters of the thesis.

The models of Chapter 2 have been incorporated into a code named LATTE/MUSE
Numerical Suite, or lmsuite [1]. This code represents a first in TWT design codes in that
it is totally open1 and available to the broader research community. TWT codes in the
past have largely been either proprietary, or simply not made available. The existence of

1By “open” we mean that the source code is available for users to modify as they choose.
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such a code could benefit both education and research. For education of undergraduate and
graduate students, lmsuite provides a tool for learning TWT physics that is very similar
to the tools they would find in an industrial setting. This benefits both the students and
employers since it would reduce the training time required in a new job setting. The code has
been designed with education in mind and includes such features as the ability to animate
results. In the research community lmsuite could potentially provide a common platform on
which researchers can compare their ideas and designs.

In Chapter 3 we give the formal details of the analytic solution to the S-MUSE model.
These mathematical details form an important foundation for the remainder of the thesis
work. However, what is more important is how these calculations are used in the subsequent
chapters to arrive at new physical understanding.

In Chapter 4 we use the structure of the S-MUSE analytic solutions to develop a new
view of the generation of intermodulation distortion. For subsequent work we have relied
extensively on the intuitions built by this theory. In the theory second order products are
produced by mixing of input frequencies, third order products are produced from mixing
second order products with drive frequencies, fourth order products are produced by mixing
third order products with drive frequencies and mixing second order products with second
order products, and so on. The generation process is compactly summarized in an equation
for intermodulation frequency generation [equation (4.5)]. A subtle insight coming from this
generating structure is that an input frequency is also an intermodulation product of itself.
This fact proves to be very important when considering TWT phase distortion.

Furthermore, the structure of the S-MUSE solutions yields a formula for growth rates of
intermodulation products [equation (4.8)]. To test the universality of this result, we compare
the predicted growth rate formulas to Christine 1-d data. We show that even though the
quantitative values of the growth rates predicted by our theory and the Christine 1-d code
do not agree, the structures of the growth rate formulas are manifest in the Christine 1-d
data. Formula (4.8) indicates that the growth rate of an IMP is the greater of the sum of the
growth rates of the frequencies combining to make the IMP and the linear growth rate of the
IMP frequency. In most cases the former growth rate applies but there can be exceptions for
very wide band TWTs. The analysis refines and gives insight into the conventional rule of
thumb [6] of estimating the growth rate of a K th order IMP as K times the growth rate of
the drive frequency. The structure of the solutions given in this chapter, and their associated
growth rates, turn out to be very important when one considers signal injection where the
injected frequencies are out of the linear gain bandwidth.

In Chapter 5 we study the physical mechanisms for phase distortion in a TWT. Phase
distortion has been said to “dominate TWT nonlinearity” [14] in TWTs. In the literature,
many authors have attributed phase distortion to the slowing down of electrons in the electron
beam, i.e., the reduction of the average electron beam velocity (see e.g. [41, 30, 14]). Through
simulation and analysis we offer evidence that phase distortion, at least prior to 1 dB gain
compression, is not due to slowing down of electrons in the beam. Rather, we attribute phase
distortion to harmonic generation in the electron beam and an intermodulation process that
results in distortions at the fundamental.
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The implications of the new understanding of phase distortion are many. Firstly, provided
with a new view of nonlinear TWT physics, one may be led to consider alternative parametric
dependencies and explanations for physical phenomenon. We have provided examples of
such studies in Sections 5.3–5.5. Furthermore, the new understanding may possibly lead to
improved TWT designs, since the notions that a designer has about how a device works
inevitably influence how they proceed with a design.

Using the MUSE, S-MUSE, and LATTE TWT models we explore phase distortion in a
TWT. The unique ability of the MUSE model to systematically suppress the effects of differ-
ent frequencies in the nonlinear TWT behavior shows that the second harmonic distortion
in the electron beam is the most dominant factor in causing phase distortion, at least prior
to gain compression. Furthermore, we show that the average slowing down of electrons is
not the primary cause of phase distortion using MUSE simulations and large signal LATTE
simulations that were corrected to remove the average velocity reduction.

With the approximate analytic solution to the S-MUSE model we give an insightful
picture of the fundamental frequency also being a self-intermodulation product. We show
that prior to 1 dB gain compression the analytic solution accounting for the 3IM and 5IM
contributions has a phase distortion that matches almost identically to the phase distortion
from simulation of the S-MUSE equations. We also show that the change in voltage hot
phase velocity which causes phase distortion is due to an evolving balance of the driven and
intermodulation modes in the solution.

Leveraging off of our new understanding of phase distortion we consider several applica-
tions of the theory. First, we compare S-MUSE simulations to an amplitude-phase model
that uses the approximate analytic solution to S-MUSE for the output phase versus input
power. We see that there are discrepancies in the intermodulation spectra predicted by
the two methods, and that the disagreement is worse for wider frequency spacings and for
larger input powers. The study reinforces our view that the amplitude-phase model is an
incomplete picture of nonlinear TWT physics, and that measuring single frequency phase
distortion characteristics captures only a part of the harmonic and intermodulation physics
happening internal to the TWT. Second, we study how phase distortion depends on circuit
and electron beam parameters at the second harmonic. We find that circuit interaction
impedance at the second harmonic has the greatest effect on AM/PM distortion, especially
when the second harmonic is within the linear gain bandwidth of the TWT. Lastly, we
consider a new technique of linearization [14] and offer a physical explanation for the lin-
earization mechanism. In this case again we propose that phase distortion is not the proper
way of looking at the linearization, and that a view of the intermodulation and difference
frequency physics is required.

In Chapter 6 we study signal injection to shape TWT output spectra. Harmonic injec-
tion is used in ECM TWTs to extend usable device bandwidths. In such a setting extended
bandwidths have implications in terms of cost savings, e.g., replacing two or three transmit-
ters by one ultra-wideband transmitter, and improved functionality in small systems such as
Unmanned Aerial Vehicles where only one transmitter is permitted. We show theoretically,
and it has been shown experimentally, that harmonic and signal injection can be used to
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reduce intermodulation spectrum. The incorporation of such ideas into TWT linearizer tech-
nologies will allow devices to be run closer to saturation. This could have a major impact on
the TWT marketplace since it has been said that 1% increase in TWT amplifier efficiency
can result in a savings of $100, 000, 000 over the life of a satellite [50]. In this sense we are
viewing our contribution to the understanding of harmonic and signal injection as “enabling
theory” to achieve increased efficiencies and dollar savings.

We present an interpretation of harmonic injection, and more generally “signal injection,”
in a TWT as the cancellation of “driven” and “nonlinear” modes. The interpretations are
based on an approximate analytic solution to an approximate nonlinear model. Furthermore,
the insights provided by the analytic solutions suggest methods of inquiry into “large signal”
simulations to test whether the modal solution structure is valid in saturated conditions.
In general we find that the large signal simulations indeed show the abrupt phase change
signature of the approximate analytic solutions.

The idea has existed for some time that the physical mechanism of harmonic injection
is cancellation of such modes [55, 38]. However, we present the first quantitative theory to
predict the existence of the modes. Furthermore, the quantitative theory provides insights
into harmonic injection that the intuited notions could not. For example, a phasor picture
provided by the theory demonstrates how multiple harmonic injection can eliminate the
sensitive dependence of the output signals on the phase of the input signals. Also the
analytic solutions elucidate the many effects of the injected signals being outside of the
linear gain bandwidth of the TWT. Some experimentation is still required to verify all of
the notions that we have put forward.
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Appendix A: Normalization, attenuation, and slowly

varying envelopes in MUSE, S-MUSE,

and LATTE

In this appendix we introduce the terms necessary to model circuit loss in the starting
model equations (2.10)–(2.14), and re-derive the models MUSE, S-MUSE, and LATTE from
these equations. Simultaneously we introduce a variable normalization scheme that is desir-
able for computing solutions numerically. Lastly, to avoid dealing with reflections in TWTs
with severs, we re-derive the models using a slowly varying envelope approximation. The
model equations found in this appendix are those that are used in the code LATTE/MUSE
Numerical Suite, or lmsuite [1].

To incorporate circuit loss into the models of Chapter 2, we modify starting equations
(2.1), (2.2), and (2.4), and perform analogous derivations. For a transmission line with
series inductance L, series resistance R1, shunt capacitance C, and shunt conductance G we
have [15]2

∂V

∂z
= RI + L

∂I

∂t
(A.1)

∂I

∂z
= GV + C

∂V

∂t
. (A.2)

In general we assume that L,R, C, and G are frequency dependent as well as functions of
axial position z.3 We proceed with writing the TWT models in terms of L,R, C, and G,
and provide relationships between these parameters and the more familiar parameters loss,
phase velocity, and interaction impedance in Section A.2.

1We will use bold R to denote resistance as unbolded R is being used for space charge reduction factor.
2Equations (A.1) and (A.2) differ from (9-31) and (9-32) of [15] by a factor of −1 on the left hand side.

We have chosen (A.1) and (A.2) to remain consistent with the model equations in Chapter 2.
3We have forgone the convolution notation found in equations (2.1), (2.2), and (2.4).
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A.1 TWT models

Equations (2.10)–(2.14) with the loss terms added become (again forgoing the convolution
notation)

∂V

∂z
= RI − ω0

u0

∂V

∂ψ
− ω0L

∂I

∂ψ
(A.3)

∂I

∂z
= GV − ω0C

∂V

∂ψ
− ω0
u0

∂I

∂ψ
+ Aω0

∂ρ

∂ψ
(A.4)

∂E

∂z
= −ω0

u0

∂E

∂ψ
+
ρ

ε0
(A.5)

v
∂v

∂z
=

e

me

(

ω0L
∂I

∂ψ
−RI

)

+
e

me

RE + ω0

(

1− v

u0

)

∂v

∂ψ
(A.6)

v
∂ρ

∂z
= ω0

(

1− v

u0

)

∂ρ

∂ψ
− ρ

(

∂v

∂z
+
ω0
u0

∂v

∂ψ

)

. (A.7)

A.1.1 Normalization

For normalization we define the following characteristic quantities for the independent
coordinates

Z = L (A.8)

U = u0 (A.9)

T =
Z

U
(A.10)

where L is the TWT circuit length, u0 is the DC beam velocity, and hence T is a characteristic
time. If we define normalized space and time variables

ẑ =
z

Z
(A.11)

t̂ =
t

T
(A.12)

this implies a normalized phase variable via (2.9)

ψ̂ =
1

ω0T
ψ = (ẑ − t̂). (A.13)

Derivatives with respect to z and ψ then become

∂

∂z
=

1

Z

∂

∂ẑ
(A.14)

∂

∂ψ
=

1

ω0T

∂

∂ψ̂
. (A.15)
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For dependent variables we define

D = ρ0 (A.16)

and choose the following normalizations

V̂ =
C

KI0
V (A.17)

Î =
C

I0
I (A.18)

Ê =
ε0
ZD

E (A.19)

v̂ =
v

U
(A.20)

ρ̂ =
ρ

D
(A.21)

where ρ0 is the DC linear charge density, I0 is the DC beam current (I0 = ρ0u0A), V0 is the
DC beam voltage, and C is the Pierce gain parameter defined by4

C3 =
KI0
4V0

. (A.22)

Since the parameters K and C are frequency dependent, the normalizations of V and I
are frequency dependent. Furthermore, since K and C are spatially dependent we choose
to normalize V and I with the values of K and C at the input of the TWT, z = 0. The
normalizations for V and I in (A.17) and (A.18) follow historical choices (e.g. [56, 40]) and
account for the frequency dependent TWT gain.

Substitution of (A.14), (A.15), and (A.17)–(A.21) into (A.3)–(A.7) result in the following
set of normalized equations

∂V̂

∂ẑ
= R̂Î − ∂V̂

∂ψ̂
− L̂ ∂Î

∂ψ̂
(A.23)

∂Î

∂ẑ
= ĜV̂ − Ĉ ∂V̂

∂ψ̂
− ∂Î

∂ψ̂
+ C

∂ρ̂

∂ψ̂
(A.24)

∂Ê

∂ẑ
= −∂Ê

∂ψ̂
+ ρ̂ (A.25)

v̂
∂v̂

∂ẑ
= 2C2

(

L̂
∂Î

∂ψ̂
− R̂Î

)

+ R̂Ê + (1− v̂) ∂v̂
∂ψ̂

(A.26)

v̂
∂ρ̂

∂ẑ
= (1− v̂) ∂ρ̂

∂ψ̂
− ρ̂

(

∂v̂

∂ẑ
+
∂v̂

∂ψ̂

)

(A.27)

4Bold faced C is used for the Pierce parameter to distinguish from capacitance C.
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where we have defined the normalized quantities

R̂ = R
Z

K
(A.28)

L̂ = L
U

K
(A.29)

Ĝ = G(ZK) (A.30)

Ĉ = C(UK) (A.31)

R̂ =
eDT 2

meε0
R = ω2pT

2R (A.32)

In the remainder of the appendix we omit the hat (̂ ) from normalized variables when
one can deduce from the equations whether or not the variables are normalized [e.g. compare
(A.3)–(A.7) to (A.23)–(A.27)].

A.1.2 MUSE

To derive MUSE we compute the Fourier coefficient formulas for (A.23)–(A.27). The
Fourier series (2.15) in normalized variables is

x̂(ẑ, ψ̂) =
∞
∑

`=−∞

ˆ̃x`(ẑ)e
if`ω̂0ψ̂. (A.33)

where

ω̂0 = ω0T. (A.34)

The normalized fundamental frequency ω̂0 is the result of the time scaling t̂ = t/T . From
(A.33) one sees that ∂

∂ψ̂
→ if`ω̂0. Quantities with tildes (̃ ) are considered to be in the

frequency domain and have a frequency subscript `, e.g., R̃(z, f`ω0) will be written as R̃`.
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The normalized MUSE model with circuit loss is

dṼ`
dz

= −if`ω0Ṽ` +
(

R̃` − if`ω0L̃`
)

Ĩ` (A.35)

dĨ`
dz

=
(

G̃` − if`ω0C̃`
)

Ṽ` − if`ω0Ĩ`
+ if`ω0C̃`ρ̃` (A.36)

dẼ`
dz

= −if`ω0Ẽ` + ρ̃` (A.37)

∑

m,n
fm+fn=f`

ṽm
dṽn
dz

= 2C̃2
`

(

if`ω0L̃` − R̃`

)

Ĩ` + R̃`Ẽ`

+ if`ω0ṽ` −
∑

m,n
fm+fn=f`

ifnω0ṽmṽn (A.38)

∑

m,n
fm+fn=f`

ṽm
dρ̃n
dz

= if`ω0ρ̃` − if`ω0
∑

m,n
fm+fn=f`

ṽmρ̃n

−
∑

m,n
fm+fn=f`

dṽm
dz

ρ̃n (A.39)

where −∞ ≤ ` ≤ ∞.
For computing solutions to MUSE we use the following vector form. Equations (A.35)–

(A.37) are linear and can be represented by a linear system of the form ẏ = Ay.5 Equations
(A.38) and (A.39) are written as

Vẇ = Mw + S(w,w) (A.40)

so

ẇ = V−1Mw + V−1S(w,w). (A.41)

We have

w = [wṽ wρ̃]
T (A.42)

and

wṽ = [ṽ−M . . . ṽ−2 ṽ−1 ṽ0 ṽ1 ṽ2 . . . ṽM ]T (A.43)

wρ̃ = [ρ̃−M . . . ρ̃−2 ρ̃−1 ρ̃0 ρ̃1 ρ̃2 . . . ρ̃M ]T . (A.44)

For purposes of indexing the vector w and the matrix V we note that w has 2(2M + 1)
elements. The entries ṽ`, ` = −M . . .M correspond to entries w`, ` = 1 . . . 2M + 1; the
entries ρ̃`, ` = −M . . .M correspond to entries w`+3M+2, ` = 1 . . . 2M + 1.

5The vector, matrix, and tensor notation used in this appendix does not match that used in Chapter 2.
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The matrix V has the block structure

V =

[

I 0
II III

]

(A.45)

where the blocks are of size (2M + 1)× (2M + 1). The indices of the blocks follow.

• Block I:
ith row jth column entry
i = 1 . . . 2M + 1 j = 1 . . . 2M + 1 let ` = i−M − 1, n = j −M − 1,

for m such that fn + fm = f`:
if m > 0 then ṽm, if m < 0 then ṽ∗|m|,

if m = 0 (` = n) then ṽ0

• Block II:
i+ (2M + 1)th row jth column entry
i = 1 . . . 2M + 1 j = 1 . . . 2M + 1 let ` = i−M − 1, n = j −M − 1,

for m such that fn + fm = f`:
if m > 0 then ρ̃m, if m < 0 then ρ̃∗|m|,

if m = 0 (` = n) then ρ̃0

• Block III:
i+ (2M + 1)th row j + (2M + 1)th column entry
i = 1 . . . 2M + 1 j = 1 . . . 2M + 1 let ` = i−M − 1, n = j −M − 1,

for m such that fn + fm = f`:
if m > 0 then ṽm, if m < 0 then ṽ∗|m|,

if m = 0 (` = n) then ṽ0.

In the coding of MUSE (as found in lmsuite) the linear and nonlinear terms on the
right hand side of (A.40) are formed explicitly rather than via the matrix M and tensor S.
Therefore in this appendix we do not define the elements of M and S.

A.1.3 S-MUSE

The S-MUSE model is derived similarly to Section 2.2.3. The assumptions accounting
for normalizations are:

1. approximating ρ̃0(z) and ṽ0(z) as equal to 1

2. neglecting the AC portion of velocity in the convective derivative, i.e., letting v̂ ∂
∂ẑ
≈ ∂

∂ẑ

3. ignoring nonlinearities higher than second order in the continuity equation.
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The normalized S-MUSE model with circuit loss is

dṼ`
dz

= −if`ω0Ṽ` +
(

R̃` − if`ω0L̃`
)

Ĩ` (A.46)

dĨ`
dz

=
(

G̃` − if`ω0C̃`
)

Ṽ` − if`ω0Ĩ`
+ if`ω0C̃`ρ̃` (A.47)

dẼ`
dz

= −if`ω0Ẽ` + ρ̃` (A.48)

dṽ`
dz

= 2C̃2
`

(

if`ω0L̃` − R̃`

)

Ĩ` + R̃`Ẽ` −
∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn (A.49)

dρ̃`
dz

= 2C̃2
`

(

R̃` − if`ω0L̃`
)

Ĩ` − R̃`Ẽ` − if`ω0ṽ`

+ 2
∑

m6=0,n6=0
fm+fn=f`

C̃2
m

(

R̃m − ifmω0L̃m
)

Ĩmρ̃n −
∑

m6=0,n6=0
fm+fn=f`

R̃mẼmρ̃n

+
∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn − if`ω0
∑

m6=0,n6=0
fm+fn=f`

ṽmρ̃n (A.50)

where −∞ ≤ ` ≤ ∞, ` 6= 0.

A.1.4 LATTE

This derivation follows closely Section 2.2.2 differing in that the starting equations are
the normalized equations (A.23)–(A.27). We define the transformation

[

ẑ

ψ̂

]

=

[

Ẑ(ẑ, ψ̂0)

Ψ̂(ẑ, ψ̂0)

]

(A.51)

with

Ẑ(ẑ, ψ̂0) = ẑ. (A.52)

The linearization of coordinate transformation (A.51) is the matrix

[

1 0
∂Ψ̂
∂ẑ

∂Ψ̂

∂ψ̂0

]

(A.53)

and its Jacobian Ĵ is the determinant of (A.53)

Ĵ =
∂Ψ̂

∂ψ̂0
. (A.54)
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Partial derivatives transform via

[

∂
∂ẑ

∂

∂ψ̂

]

=
[

∂
∂ẑ

∂

∂ψ̂0

]

[

1 0
∂Ψ̂
∂ẑ

∂Ψ̂

∂ψ̂0

]−1

. (A.55)

Consistent with the method of characteristics we take

∂Ψ̂

∂ẑ
= 1− 1

v̂L
(A.56)

then the convective derivative [in (ẑ, ψ̂) coordinates] becomes

v̂E
∂v̂E

∂ẑ
+
(

v̂E − 1
) ∂v̂E

∂ψ̂
= v̂L

∂v̂L

∂ẑ
(A.57)

where a superscript E refers to a function in Eulerian coordinates and a superscript L refers
to a function in Lagrangian coordinates.

Applying the derivative transformations in (A.55) to the continuity equation (A.27) one
gets

∂Ψ̂

∂ψ̂0

∂ρ̂Lv̂L

∂ẑ
= − ρ̂

L

v̂L

∂v̂L

∂ψ̂0
. (A.58)

Taking ∂

∂ψ̂0
of (A.56) one gets

∂

∂ẑ

∂Ψ̂

∂ψ̂0
=

1

(v̂L)2

∂v̂L

∂ψ̂0
. (A.59)

Substitute (A.59) into (A.58) and integrate to get
∣

∣

∣

∣

∣

∂Ψ̂

∂ψ̂0

∣

∣

∣

∣

∣

ρ̂Lv̂L = κ (A.60)

where κ is a constant of integration. We set κ by using the values of ρ̂Lv̂L and ∂Ψ̂

∂ψ̂0
on the

ψ̂0 axis [by definition Ψ̂(0, ψ̂0) = ψ̂0 which implies ∂Ψ̂

∂ψ̂0
(0, ψ̂0) = 1] which gives finally

∣

∣

∣

∣

∣

∂Ψ̂

∂ψ̂0

∣

∣

∣

∣

∣

ρ̂Lv̂L = ρ̂L(0, ψ̂0)v̂L(0, ψ̂0) (A.61)

=
I0(ψ̂0)

I0
. (A.62)

If there is a modulated beam current I0(ψ̂0) the constant I0 is chosen to be the DC component
for example. For no beam modulation the right hand side of (A.62) is equal to one.
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The change of variable equation for the Fourier coefficient integral is (having changed
from ψ to ψ̂ which accounts for a factor of ω̂0 in several places)

˜̂ρ
E

` =
ω̂0
2π

∫

2π
ω̂0

ρ̂Ee−if`ω̂0ψ̂ dψ̂ (A.63)

=
ω̂0
2π

∫

2π
ω̂0

ρ̂L

∣

∣

∣

∣

∣

∂Ψ̂

∂ψ̂0

∣

∣

∣

∣

∣

e−if`ω̂0Ψ̂(ẑ,ψ̂0)dψ̂0 (A.64)

=
ω̂0
2π

∫

2π
ω̂0

I0(ψ̂0)e
−if`ω̂0Ψ̂(ẑ,ψ̂0)

I0v̂L(ẑ, ψ̂0)
dψ̂0 (A.65)

where we have used (A.62) to substitute for the Jacobian.
Finally we derive LATTE from (A.23)–(A.27). Equations (A.66)–(A.68) are (A.35)–

(A.37) with (A.65) substituted for ρ̃`. Equation (A.27) was used to get (A.65). For (A.26) one
writes E and I using a normalized Fourier series synthesis equation in Lagrangian coordinates
and gets (A.69). Equation (A.56) is also included as model equation (A.70). The circuit
equations, space charge equation, Newton’s law, and phase relation are [leaving off the
superscript L and normalization hats (̂ )]

dṼ`
dz

= −if`ω0Ṽ` +
(

R̃` − if`ω0L̃`
)

Ĩ` (A.66)

dĨ`
dz

=
(

G̃` − if`ω0C̃`
)

Ṽ` − if`ω0Ĩ`

+ if`ω0C̃`
ω0
2π

∫

2π
ω0

I0(ψ0)e
−if`ω0Ψ(z,ψ0)

I0v(z, ψ0)
dψ0 (A.67)

dẼ`
dz

= −if`ω0Ẽ` +
ω0
2π

∫

2π
ω0

I0(ψ0)e
−if`ω0Ψ(z,ψ0)

I0v(z, ψ0)
dψ0 (A.68)

∂v

∂z
=

1

v

∞
∑

`=−∞

{

2C̃2
`

(

if`ω0L̃` − R̃`

)

Ĩ` + R̃`Ẽ`

}

eif`ω0Ψ(z,ψ0) (A.69)

∂Ψ

∂z
= 1− 1

v
. (A.70)

As discussed in Section 2.2.2 for numerical implementation the integrals become sums over
disk phases, and the factor in front of the Fourier integral transforms to one over the number
of disk phases. Notice however that where the unnormalized initial disk phases ψ0 were
distributed over 2π, the normalized initial disk phases ψ̂0 are distributed over 2π

ω̂0
.6

6This only applies to a beam with initially uniform density. For a modulated current that is comprised of
a density and velocity modulation, one would have to compute the corresponding initial phase distribution.
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A.2 Relation of L,R, C, and G to vph, K, and α.

In this section we develop relationships between unnormalized model circuit parameters
L,R, C, and G and commonly supplied cold TWT parameters phase velocity, interaction
impedance, and loss. It is important to note that the relations developed in this section only
strictly apply to a transmission line circuit with uniform parameters and no electron beam,
i.e., a cold circuit. An analogous theory for a non-uniform cold circuit based on the present
theory is not thought to exist, since the present analysis is based on autonomous linear
system theory [18], and with non-uniform parameters the system becomes non-autonomous.
Therefore, the following equations are to be considered approximations. In this section
quantities with a tilde (̃ ) depend on frequency and axial distance z; frequency and distance
notation will be suppressed.

Equations (A.1) and (A.2) in (z, ψ) coordinates [see (2.9)] are

∂V

∂z
= RI − ω0

u0

∂V

∂ψ
− ω0L

∂I

∂ψ
(A.71)

∂I

∂z
= GV − ω0

u0

∂I

∂ψ
− ω0C

∂V

∂ψ
. (A.72)

Using the frequency domain relations

V = Ṽ eif`ψ (A.73)

I = Ĩeif`ψ (A.74)

in (A.71) and (A.72) and letting f`ω0 = ω one gets the ordinary differential equations

d

dz

[

Ṽ

Ĩ

]

=

[

−i ω
u0

R̃− iωL̃
G̃− iωC̃ −i ω

u0

]

[

Ṽ

Ĩ

]

. (A.75)

The eigenvalues of the matrix in (A.75) give the “propagation constants.” The eigenvalues
γ± are given by

γ+ = −i ω
u0

+

√

(

R̃− iωL̃
)(

G̃− iωC̃
)

(A.76)

γ− = −i ω
u0
−
√

(

R̃− iωL̃
)(

G̃− iωC̃
)

(A.77)

where γ+ corresponds to a “forward wave.”
To find the interaction impedance we assume a forward voltage wave of the form V +0 e

γ+z

and a forward current wave of the form I+0 e
γ+z and compute their relation via (A.75). One

finds that

Z̃ =

√

R̃− iωL̃
G̃− iωC̃

. (A.78)
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We will relate the impedance Z̃ to the impedance K̃ shortly.
Lastly we would like to compute L̃, R̃, C̃, and G̃ in terms of supplied parameters ṽph, K̃,

and α̃ where α̃ is loss in Np/m. Although K̃ is usually defined as a real quantity (e.g. [16,
Eq. (46)]) we allow for it to be complex as does Pierce [61, pp. 110–111]. To return to (z, t)
coordinates from (z, ψ) coordinates one forms the quantity eγ

+zeif`ψ and inserts the definition
of ψ from (2.9). Looking at the argument of this expression one can identify the propagation

constant

√

(

R̃− iωL̃
)(

G̃− iωC̃
)

. One can check that due to the choice of e−iωt (implicit

in the definition of ψ) rather than eiωt, the interaction impedance and propagation constant
in the present theory are conjugates of the conventional definitions [15]. We assume that the
conventional propagation constant γ = α+ iβ is given where α = α̃ and β = ω

ṽph
. If we let

X = R̃− iωL̃ (A.79)

Y = G̃− iωC̃ (A.80)

then one has

γ∗ =
√

XY (A.81)

Z̃ = K̃∗ (A.82)

=

√

X

Y
(A.83)

or

X = γ∗K̃∗ (A.84)

Y =
γ∗

K̃∗
. (A.85)

Finally the quantities we desire in terms of given data are

R̃ = Re
{

γ∗K̃∗
}

(A.86)

L̃ = − 1

ω
Im
{

γ∗K̃∗
}

(A.87)

G̃ = Re

{

γ∗

K̃∗

}

(A.88)

C̃ = − 1

ω
Im

{

γ∗

K̃∗

}

. (A.89)

A.3 Slowly varying envelope models

The models of Sections A.1.2, A.1.3, and A.1.4 implicitly include backward waves since
there are two circuit wave equations, one for voltage and one for current. When a sever is
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included in the TWT circuit, the presence of the backward wave can complicate computations
since small values of the backward wave at the input correspond to large values of the
backward wave at the output (for no backward wave interaction). In cases when the total
sever loss is larger than the forward gain, the backward wave can become larger than the
forward wave at the TWT output. In principle one can choose the phasing of the input
voltage and current such that the backward wave is minimized resulting in only the desired
forward wave solution. However, since the proper phasing is not known a priori, an iterative
numerical method is required to find the desired phase relation. An example of a method
one might use is a “shooting method” [63, Ch. 17].

Unfortunately, shooting can become very computationally expensive for large numbers of
input frequencies. Each “shooting iteration” amounts to integrating the differential equations
a certain number of times using “guesses” for what the unknown inputs should be, and
subsequently modifying those guesses so that the outputs tend towards the desired output
boundary conditions (e.g. no reflections on the output end). More specifically for N unknown
input parameters the differential equations must be integrated N + 1 times per shooting
iteration. If one had 100 input frequencies with nonzero inputs for which the forward wave
solutions were desired, and for example it took ten shooting iterations to converge to the
desired solution, one would need to solve the differential equations roughly 1000 times! Even
at several minutes per integration the computational times become prohibitive.

As an alternative to solving the equations with shooting, we develop yet another set of
model equations that do not include a backward wave. We use the “slowly varying envelope”
approximation which assumes that for a function A(z, t) of the form

A(z, t) = a(z)ei(ωt−βz) (A.90)

one has
∣

∣

∣

∣

da

dz

∣

∣

∣

∣

¿ |βa| . (A.91)

That is, the envelope a(z) changes on a length scale which is much less than the wavelength
of the perturbation. The following inequality for the rate of change of the growth rate

∣

∣

∣

∣

d2a

dz2

∣

∣

∣

∣

¿
∣

∣β2a
∣

∣ (A.92)

is also often used when making the slowly varying envelope approximation. The use of these
inequalities eliminates the backward wave while having only a minor affect on the linear
growth rates and predicted amplitudes of the resulting models.

To proceed with the modeling we start with the circuit equations

∂V

∂z
= RI + L

∂I

∂t
(A.93)

∂I

∂z
= GV + C

∂V

∂t
− A∂ρ

∂t
. (A.94)
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Taking ∂
∂z

of (A.93) and ∂
∂t

of (A.94) gives

∂2V

∂z2
=

dR

dz
I +

dL

dz

∂I

∂t
+ RGV + RC

∂V

∂t
−RA

∂ρ

∂t
+ L

∂2I

∂z∂t
(A.95)

∂2I

∂z∂t
= G

∂V

∂t
+ C

∂2V

∂t2
− A∂

2ρ

∂t2
. (A.96)

We combine (A.95) and (A.96) to get

∂2V

∂z2
=

dR

dz
I +

dL

dz

∂I

∂t

+ RGV + (RC +GL)
∂V

∂t
+ LC

∂2V

∂t2

−RA
∂ρ

∂t
− LA∂

2ρ

∂t2
. (A.97)

The appearance of I in (A.97) is a complication that has to be dealt with [67, pg. 66]7. In
portions of the TWT with uniform parameters the terms involving I are zero. However,
the terms are nonzero when parameters are changing, such as in a sever region. As a first
approximation we simply ignore the terms. As a next order approximation one could let
I = − V

K
.

We assume a solution structure of the form

A(z, t) = Ã`(z)e
i(βc`z−f`ω0t) (A.98)

= Ã`(z)e
i∆β`zeif`(βe0z−ω0t) (A.99)

where

βc` =
f`ω0
ṽph`

(A.100)

βe0 =
ω0
u0

(A.101)

∆β` = βc` − f`βe0. (A.102)

The relationship to the phase factor eif`(βe0z−ω0t) via ∆β` is given so that we can connect the
electron beam equations in this description to those of the previous description. Using the

7While Rowe discusses this complication, the setting is slightly different in that he does not use a con-
ductance in his circuit equations.
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definitions we have

∂A

∂t
= −if`ω0Ã`ei(βc`z−f`ω0t) (A.103)

∂2A

∂t2
= −(f`ω0)2Ã`ei(βc`z−f`ω0t) (A.104)

∂A

∂z
=

(

dÃ`
dz

+ iβc`Ã`

)

ei(βc`z−f`ω0t) (A.105)

∂2A

∂z2
=

(

d2Ã`
dz2

+ i2βc`
dÃ`
dz
− β2c`Ã`

)

ei(βc`z−f`ω0t). (A.106)

Substituting these derivatives into (A.97) one gets

d2Ṽ`
dz2

+ i2βc`
dṼ`
dz

=
[

R̃`G̃` − if`ω0
(

R̃`C̃` + G̃`L̃`

)

+ β2c` − (f`ω0)
2L̃`C̃`

]

Ṽ`

+
[

if`ω0R̃`A+ (f`ω0)
2L̃`A

]

ρ̃`. (A.107)

Making the slowly varying envelope approximation (A.107) becomes

dṼ`
dz

=

− i

2f`ω0
ṽph`

[

R̃`G̃` − if`ω0
(

R̃`C̃` + G̃`L̃`

)

+

(

f`ω0
ṽph`

)2

− (f`ω0)
2L̃`C̃`

]

Ṽ`

− i

2f`ω0
ṽph`

[

if`ω0R̃`A+ (f`ω0)
2L̃`A

]

ρ̃`. (A.108)

To normalize (A.108) we use

d

dz
=

1

Z

d

dẑ
(A.109)

and

Ṽ` =
K̃`I0

C̃`

ˆ̃V` (A.110)

ρ̃` = D ˆ̃ρ`. (A.111)

The expression for cold circuit phase velocity is

ṽph` =
f`ω0

Im

{√

(

R̃` − if`ω0L̃`
)(

G̃` − if`ω0C̃`
)

} . (A.112)
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Substituting normalized variables gives

ṽph`
U

=
f`ω̂0

Im

{
√

(

ˆ̃R` − if`ω̂0 ˆ̃L`
)(

ˆ̃G` − if`ω̂0 ˆ̃C`
)

} . (A.113)

Thus we define the normalized phase velocity to be ˆ̃vph` = ṽph`/U and compute it from the
normalized circuit parameters using (A.113).

Equation (A.108) becomes [leaving hats (ˆ) off normalized quantities, including ω̂0 = ω0T ]

dṼ`
dz

=
ṽph`
2

[

if`ω0

(

L̃`C̃` −
1

ṽ2ph`

)

− iR̃`G̃`

f`ω0
−
(

R̃`C̃` + G̃`L̃`

)

]

Ṽ`

+
ṽph`
2

[

R̃` − if`ω0L̃`
]

C̃`ρ̃`. (A.114)

The Fourier coefficients of ρ need to be related to those used in previous formulations
so that minimal changes may be made to previous electron beam equations. We relate the
present case to previous cases in the following steps

ρ̃c` =
ω0
2π

∫ 2π
ω0

0

ρe−i(βc`−f`ω0t) dt (A.115)

=
ω0
2π

∫ 2π
ω0

0

ρei(βe−βc`)ze
−if`ω0(

z
u0
−t)

dt (A.116)

= e−i∆β`zρ̃b` (A.117)

where the c and b subscripts on ρ̃c` and ρ̃b` represent “circuit” and “beam” respectively.
Equation (A.114) implicitly uses ρ̃c` where previous formulations use ρ̃b`. In normalized
variables (A.117) becomes

ˆ̃ρc` = e
if`ω̂0

(

1− 1
ṽph`

)

z
ˆ̃ρb` (A.118)

= Z̃`(z)ˆ̃ρb` (A.119)

where we have defined the phase factor Z̃`(z)

Z̃`(z) = e
if`ω̂0

(

1− 1
ṽph`

)

z
. (A.120)

In Newton’s equation we will need the circuit field

∂V

∂z
=

∞
∑

`=−∞

(

dṼ`
dz

+ iβc`Ṽ`

)

ei(βc`z−f`ω0t). (A.121)
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Using the slowly varying envelope approximation we can ignore the dṼ`
dz

term in (A.121).
Alternatively this term may be kept to establish the extent to which this portion of the
approximation affects results. Again we relate this expression to the previous formulation
via the phase factor Z̃`(z)

∂V

∂z
=

∞
∑

`=−∞

(

dṼ`
dz

+ i
f`ω0
ṽph`

Ṽ`

)

Z̃∗` (z)e
if`ψ. (A.122)

Note that the phase information contained in the complex Fourier amplitudes of the
voltage is with respect to the cold circuit wave for this slowly varying envelope formulation.
In contrast, the phase information in the complex Fourier amplitudes of the space charge
field is with respect to the frequency dependent stream wave, i.e., the wave with the complex
phase factor eif`ω0(z/u0−t). This must be considered when one interprets results or reconstructs
waveforms. The following model equations are solved in the code lmsuite when the input
variable svea is set equal to true.

A.3.1 MUSE

The MUSE model using the slowly varying envelope approximation becomes

dṼ`
dz

=
ṽph`
2

[

if`ω0

(

L̃`C̃` −
1

ṽ2ph`

)

− iR̃`G̃`

f`ω0
−
(

R̃`C̃` + G̃`L̃`

)

]

Ṽ`

+
ṽph`
2

[

R̃` − if`ω0L̃`
]

C̃`Z̃`(z)ρ̃` (A.123)

dẼ`
dz

= −if`ω0Ẽ` + ρ̃` (A.124)

∑

m,n
fm+fn=f`

ṽm
dṽn
dz

= −2C̃2
`

if`ω0
ṽph`

Z̃∗` (z)Ṽ` + R̃`Ẽ`

+ if`ω0ṽ` −
∑

m,n
fm+fn=f`

ifnω0ṽmṽn (A.125)

∑

m,n
fm+fn=f`

ṽm
dρ̃n
dz

= if`ω0ρ̃` − if`ω0
∑

m,n
fm+fn=f`

ṽmρ̃n

−
∑

m,n
fm+fn=f`

dṽm
dz

ρ̃n (A.126)

where −∞ ≤ ` ≤ ∞. The matrix V is the same as for the original MUSE model. We do

not state the model with retention of the dṼ`
dz

term in (A.125).
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A.3.2 S-MUSE

The S-MUSE model using the slowly varying envelope approximation becomes

dṼ`
dz

=
ṽph`
2

[

if`ω0

(

L̃`C̃` −
1

ṽ2ph`

)

− iR̃`G̃`

f`ω0
−
(

R̃`C̃` + G̃`L̃`

)

]

Ṽ`

+
ṽph`
2

[

R̃` − if`ω0L̃`
]

C̃`Z̃`(z)ρ̃` (A.127)

dẼ`
dz

= −if`ω0Ẽ` + ρ̃` (A.128)

dṽ`
dz

= −2C̃2
`

if`ω0
ṽph`

Z̃∗` (z)Ṽ` + R̃`Ẽ` −
∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn (A.129)

dρ̃`
dz

= 2C̃2
`

if`ω0
ṽph`

Z̃∗` (z)Ṽ` − R̃`Ẽ` − if`ω0ṽ`

+ 2
∑

m6=0,n6=0
fm+fn=f`

C̃2
m

ifmω0
ṽphm

Z̃∗m(z)Ṽmρ̃n −
∑

m6=0,n6=0
fm+fn=f`

R̃mẼmρ̃n

+
∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn − if`ω0
∑

m6=0,n6=0
fm+fn=f`

ṽmρ̃n (A.130)

where −∞ ≤ ` ≤ ∞, ` 6= 0. We do not state the model with retention of the dṼ`
dz

term in
(A.129) and hence (A.130).

A.3.3 LATTE

The LATTE model using the slowly varying envelope approximation becomes

dṼ`
dz

=
ṽph`
2

[

if`ω0

(

L̃`C̃` −
1

ṽ2ph`

)

− iR̃`G̃`

f`ω0
−
(

R̃`C̃` + G̃`L̃`

)

]

Ṽ`

+
ṽph`
2

[

R̃` − if`ω0L̃`
]

C̃`Z̃`(z)
ω0
2π

∫

2π
ω0

I0(ψ0)e
−if`ω0Ψ(z,ψ0)

I0v(z, ψ0)
dψ0

(A.131)

dẼ`
dz

= −if`ω0Ẽ` +
ω0
2π

∫

2π
ω0

I0(ψ0)e
−if`ω0Ψ(z,ψ0)

I0v(z, ψ0)
dψ0 (A.132)

∂v

∂z
=

1

v

∞
∑

`=−∞

{

−2C̃2
`

if`ω0
ṽph`

Z̃∗` (z)Ṽ` + R̃`Ẽ`

}

eif`ω0Ψ(z,ψ0) (A.133)

∂Ψ

∂z
= 1− 1

v
. (A.134)
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Retaining the dṼ`
dz

term in (A.133) gives alternatively

∂v

∂z
=

1

v

∞
∑

`=−∞

{

−2C̃2
`

(

dṼ`
dz

+
if`ω0
ṽph`

Ṽ`

)

Z̃∗` (z) + R̃`Ẽ`

}

eif`ω0Ψ(z,ψ0).

(A.135)
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Appendix B: Matched input impedance

In this appendix we provide a method for deriving the ratio of the input transmission line
voltage to the input transmission line current such that the backward wave is suppressed.
The calculation is only strictly applicable if the circuit parameters are uniform. If the circuit
has non-uniform parameters, such as a sever, the calculation may be used to estimate the
input impedance, and the impedance would then be modified by the differential equation
solver so that the output boundary conditions are satisfied.

Let v1, . . . ,v5 be the eigenvectors of A` with v5 associated with the backward wave
eigenvalue. The linear systems view of the problem is to find, for a given input voltage
Ṽ`(0), the input current Ĩ`(0) such that the input vector [Ṽ`(0) Ĩ`(0) 0 0 0]T is in the subspace
spanned by v1,v2,v3,v4. Relating voltage to current by Ṽ` = ZĨ` this may be written as

[

v1 v2 v3 v4
]









a1
a2
a3
a4









=













1
Z−1

0
0
0













(B.1)

where the vi are 5-dimensional column vectors and we wish to solve for Z. Write this as












v1 v2 v3 v4 0
−1
0
0
0

























a1
a2
a3
a4
Z−1













=













1
0
0
0
0













. (B.2)

Define the matrix on the left hand side of (B.2) to be V, then the lower left entry of V−1 is
Z−1.

If there are nonzero modulations on beam quantities the problem is solved similarly. In
this case the problem is over determined and the pseudo-inverse must be used rather than
the inverse. The pseudo-inverse minimizes the projection of the initial vector onto the v5

vector.
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Appendix C: Induced norms

C.1 Matrix norm

The following results come from Horn and Johnson [47]. Given a vector norm | · |, an
induced norm on the matrix A is

||A|| ≡ sup
x6=0

|Ax|
|x| (C.1)

= sup
|x|=1

|Ax|. (C.2)

For the vector norms | · |1, | · |2, and | · |∞ we have the following formulas for the induced
matrix norms.

1. The 1 norm for vectors is defined as |x|1 =
∑n

i=1 |xi| where | · | of a scalar is absolute
value. For the matrix A

||A||1 = max
j

n
∑

i=1

|aij|. (C.3)

2. The 2 norm for vectors is defined as |x|2 =
√
∑n

i=1 x
2
i . For the matrix A

||A||2 =
√

λmax (A∗A) (C.4)

where A∗ is the complex conjugate transpose of A and λmax (A
∗A) denotes the largest

eigenvalue of A∗A.

3. The ∞ norm for vectors is defined as |x|∞ = maxi |xi| where | · | of a scalar is absolute
value. For the matrix A

||A||∞ = sup
|x|∞=1

max
i

n
∑

j=1

|aij| |xj| (C.5)

= max
i

n
∑

j=1

|aij|. (C.6)

C.2 Tensor norm

We define the tensor norm as

||H|| ≡ sup
x,y 6=0

|H(x,y)|
|x| |y| (C.7)

= sup
|x|,|y|=1

|H(x,y)|. (C.8)
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To see that (C.8) follows from (C.7) let p = supx,y 6=0
|H(x,y)|
|x||y|

and q = sup|x|,|y|=1 |H(x,y)|.
Since |x|, |y| = 1 is a subset of x,y 6= 0 and when |x|, |y| = 1 we have |H(x,y)|

|x||y|
= |H(x,y)| it

follows that q ≤ p. Conversely for each x,y 6= 0 with supremum p, there are vectors x̂ = x
|x|
,

ŷ = y

|y|
with |x̂| = |ŷ| = 1 and |H(x,y)|

|x||y|
= |H(x̂, ŷ)|, following from the multilinear nature of

H. Since x̂, ŷ might not be the vectors at which the supremum is obtained p ≤ q.
To be a norm (C.7), (C.8) must satisfy 1.–3. on pg. 57 of [13].

1. ||H|| ≥ 0 follows since | · | ≥ 0. (⇐) H = 0 implies H(x,y) = 0 for all x,y. (⇒,
by contrapositive) H 6= 0 implies for some i, j, k that Hijk 6= 0. Then there are
x,y with xj,k 6= 0 and yj,k 6= 0, all other components zero, such that (H(x,y))i =
Hijkxjyk + Hikjxkyj 6= 0.1

2. ||αH|| = sup|x|,|y|=1 |αH(x,y)| = |α| ||H|| following from the vector norm | · |.

3. For this we need |H(x,y)| ≤ ||H|| |x| |y| which follows from the definition (C.7) (and
1. for H = 0). Then for ||H1 + H2||, from the vector norm |(H1 + H2)(x,y)| ≤
|H1(x,y)|+|H2(x,y)| ≤ (||H1||+||H2||)|x| |y|. Taking the supremum of this inequality
on the balls |x|, |y| = 1 gives the desired result.

Now calculate the norm for the three vector norms.

1. The 1 norm for vectors is defined as |x|1 =
∑n

i=1 |xi| where | · | of a scalar is absolute
value. Compute

||H||1 = sup
|x|1,|y|1=1

n
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

n
∑

k=1

Hijkxjyk

∣

∣

∣

∣

∣

. (C.9)

For fixed i the sum over j, k is maximized when one chooses the largest Hijk, i.e. lets
x,y have ones in the jth and kth positions and zeros in the other positions. Then take
a maximum over j, k to maximize the sum over i, so

||H||1 = max
j,k

n
∑

i=1

|Hijk|. (C.10)

2. No formula for ||H||2 was found by the author. Using the representation H(x,y) =
xTHy and trying to follow the matrix result leaves the matrix xT

∗
xT between H∗ and

H. Even though this matrix is hermitian, it seems to change (in a simple example)
the eigenvalues of H∗H.

1If one tries to define the tensor norm with just one vector x rather than two vectors x,y then this
condition fails as one can construct a nonzero tensor that gives ||H|| = 0.
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3. The ∞ norm for vectors is defined as |x|∞ = maxi |xi| where | · | of a scalar is absolute
value. Compute

||H||∞ = sup
|x|∞,|y|∞=1

max
i

∣

∣

∣

∣

∣

n
∑

j=1

n
∑

k=1

Hijkxjyk

∣

∣

∣

∣

∣

. (C.11)

For each i choose xj,yk = ±1 such that Hijkxjyk > 0, then

||H||∞ = sup
|x|∞,|y|∞=1

max
i

n
∑

j=1

n
∑

k=1

|Hijk| |xj| |yk| (C.12)

= max
i

n
∑

j=1

n
∑

k=1

|Hijk|. (C.13)

C.3 Results for double indices

The vector formulation of the S-MUSE model in Section 2.2.3 uses a double index nota-
tion, e.g. x`i ,A`ij ,H`imjnk . For the case of the 1-norm we modify the above results to reflect
this notation. The vector 1-norm becomes

|x|1 =
M
∑

`=−M
`6=0

5
∑

i=1

|x`i | (C.14)

where | · | of a scalar is absolute value. Using this one gets for the matrix and tensor 1-norms

||A||1 = max
`,j

5
∑

i=1

|A`ij | (C.15)

||H||1 = max
m,n,j,k

M
∑

`=−M
`6=0

5
∑

i=1

|H`imjnk |. (C.16)
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Appendix D: Derivation of modal amplitudes

In this appendix we derive the formulas given in Section 3.3 for the modes of the integral

∫ z

0

eA`(z−τ)

M
∑

q=1

(

Nq
∑

r=0

τ rcrq

)

eµqτ dτ. (D.1)

We assume that A` is diagonalizable with eigenvalues λ`j . First we compute one term of the
sum in the integrand, then we compute the sum.

D.1 One term of equation (D.1)

One term of (D.1) is
∫ z

0

eA`(z−τ)τ pcpqe
µqτ dτ (D.2)

where we have changed indexing from r to p for convenience at a later point in the calculation.
In general the integral may be written as

P`



















∫ z

0











eλ`1ze(µq−λ`1 )ττ p 0 . . . 0
0 eλ`2ze(µq−λ`2 )ττ p . . . 0
...

...
. . . 0

0 0 . . . eλ`5ze(µq−λ`5 )ττ p











dτ



















P−1` cpq . (D.3)

We consider an entry of the diagonal matrix in the integrand. When µq 6= λ`j
∫ z

0

eλ`j ze(µq−λ`j )ττ pdτ =

eµqz
p
∑

n=0

(−1)n p!

(p− n)!
zp−n

(µq − λ`j)n+1
+ eλ`j z

(−1)p+1p!
(µq − λ`j)p+1

(D.4)

If λ`j = µq for some j, then

∫ z

0

eλ`j ze(µq−λ`j )ττ pdτ =

∫ z

0

eλ`j zτ pdτ

= eµqz
zp+1

p+ 1
. (D.5)
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To keep track of the modal contributions we define the matrices

R`i,j(k, p, µq) ≡
{

(−1)p+1p!
(µq−λ`k )

p+1 i = j = k and λ`i 6= µq

0 otherwise
(D.6)

S̃`i,j(µq, p, n) ≡
{

(−1)n p!
(p−n)!

1
(µq−λ`j )

n+1 i = j such that λ`i 6= µq

0 otherwise
(D.7)

T`i,j(p) ≡
{

1
p+1

i = j such that λ`i = µq and p 6= −1
0 otherwise.

(D.8)

Next we compute the coefficients for the different modes of (D.2). The λ`k mode is

P`R`(k, p, µq)P
−1
` cpqe

λ`kz, k = 1 . . . 5. (D.9)

The µq mode is

1. If µq 6= λ`j , j = 1, . . . , 5

p
∑

n=0

P`S̃`(µq, p, n)P
−1
` cpqz

p−neµqz. (D.10)

2. If µq = λ`i for some i, then

P`

[

T`(p)z
p+1 +

p
∑

n=0

S̃`(µq, p, n)z
p−n

]

P−1` cpqe
µqz. (D.11)

The matrix R` has been constructed so that if λ`k = µq equation (D.9) is zero; if λ`k = µq
the λ`k mode is given by (D.11). One can check that the matrix S̃`(µq, p, n) is different in
(D.10) and (D.11); in (D.10) it is a diagonal matrix, and in (D.11) one of the diagonal entries
is zero.

D.2 Equation (D.1)

We now compute the entire integral (D.1), repeated here

∫ z

0

eA`(z−τ)

M
∑

q=1

(

Nq
∑

p=0

τ pcpq

)

eµqτ dτ.

By linearity this is
M
∑

q=1

Nq
∑

p=0

∫ z

0

eA`(z−τ)τ pcpqe
µqτ dτ. (D.12)
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From (D.9) the λ`k mode is

M
∑

q=1

Nq
∑

r=0

P`R`(k, r, µq)P
−1
` crqe

λ`kz, k = 1, . . . , 5. (D.13)

If λ`k = µq for some q, the sum from r = 0 to r = Nq is zero due to the matrix R`. For the
µq modes we compute the sum over p

1. If µq 6= λ`j , j = 1, . . . , 5, from (D.10) we have

Nq
∑

p=0

p
∑

n=0

P`S̃`(µq, p, n)P
−1
` cpqz

p−neµqz. (D.14)

2. If µq = λ`i for some i, from (D.11) we have

Nq
∑

p=0

P`

[

T`(p)z
p+1 +

p
∑

n=0

S̃`(µq, p, n)z
p−n

]

P−1` cpqe
µqz. (D.15)

In (D.14) and (D.15) the power of z depends on p and n. For convenience we reindex to
collect terms multiplying similar powers of z. Let

r = p− n (D.16)

k = n (D.17)

and

S`i,j(µq, r, k) ≡ S̃`i,j(µq, r + k, k)

=

{

(−1)k (r+k)!
r!

1
(µq−λ`j )

k+1 i = j such that λ`i 6= µq

0 otherwise.
(D.18)

Then (D.14) and (D.15) become

1. If µq 6= λ`j , j = 1, . . . , 5,

Nq
∑

r=0

[

Nq−r
∑

k=0

P`S`(µq, r, k)P
−1
` cr+kq

]

zreµqz (D.19)

2. If µq = λ`i for some i,

P`

{

T`(Nq)P
−1
` cNqq zNq+1 +

Nq
∑

r=0

[

H(r)T`(r − 1)P−1` cr−1q

+

(

Nq−r
∑

k=0

S`(µq, r, k)P
−1
` cr+kq

)]

zr

}

eµqz (D.20)
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where

H(r) =

{

1 r ≥ 1
0 r = 0.

(D.21)
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Appendix E: Application of MUSE and LATTE meth-

ods to klystron modeling

In this appendix we apply the methodology of Chapter 2 to a simple klystron model. In
fact the scope of the present work will be restricted to a modulated electron beam, leaving
an extension of the treatment to include intermediate and output cavities as the subject of
future work. The cavity modeling would follow [52].

We present the equations for the electron beam, derive the MUSE, S-MUSE and LAKE
(Lagrangian Klystron Equations) models, and finally present the analytic solution of the
S-MUSE klystron model.

E.1 Modulated electron beam models

E.1.1 Equations

We choose to write the electron beam equations in (z, ψ) coordinates as opposed to (z, t)
coordinates for the same reason we did in the TWT model; (z, ψ) coordinates allow the
derivation of S-MUSE and hence analytic solutions which provide physical insights. The
electron beam equations in (z, ψ) coordinates are1

∂E

∂z
= −ω0

u0

∂E

∂ψ
+
ρ

ε0
(E.1)

v
∂v

∂z
=

e

me

RE + ω0

(

1− v

u0

)

∂v

∂ψ
(E.2)

v
∂ρ

∂z
= ω0

(

1− v

u0

)

∂ρ

∂ψ
− ρ

(

∂v

∂z
+
ω0
u0

∂v

∂ψ

)

. (E.3)

Gauss’ law (E.1) predicts the space charge field based on the electron beam charge density,
Newton’s law (E.2) gives the force on the electrons due to the space charge field, and the
continuity equation (E.3) ensures conservation of charge. The factor R in (E.2) is the space
charge reduction factor which accounts for the finite beam radius by reducing the force
applied to an electron.

For the case of an initially unmodulated electron beam it is assumed that the first cavity
imparts a velocity modulation [52]

v(0, t) = u0

(

1 +
ε(t)

2

)

(E.4)

so

v(0, ψ) = u0



1 +
ε
(

− ψ
ω0

)

2



 . (E.5)

1The convolution notation of Chapter 2, which is strictly required in the time domain, is forgone here.



147

Furthermore we have

E(0, ψ) = 0 (E.6)

ρ(0, ψ) = ρ0. (E.7)

It is often the case of interest that ε(t) is periodic and given as a Fourier series.

E.1.2 Normalization

For normalization purposes we define the following characteristic quantities for the inde-
pendent coordinates

Z = L (E.8)

U = u0 (E.9)

T =
Z

U
(E.10)

where L is the klystron length (e.g. λq/4), u0 is the DC beam velocity, and hence T is a
characteristic time. If we define normalized space and time variables

ẑ =
z

Z
(E.11)

t̂ =
t

T
(E.12)

this implies a normalized phase variable via (2.9)

ψ̂ =
1

ω0T
ψ = (ẑ − t̂). (E.13)

Derivatives with respect to z and ψ then become

∂

∂z
=

1

Z

∂

∂ẑ
(E.14)

∂

∂ψ
=

1

ω0T

∂

∂ψ̂
. (E.15)

For dependent variables we define

D = ρ0 (E.16)

and choose the following normalizations

Ê =
ε0
ZD

E (E.17)

v̂ =
v

U
(E.18)

ρ̂ =
ρ

D
(E.19)
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where ρ0 is the DC linear charge density, I0 is the DC beam current (I0 = ρ0u0A), and V0 is
the DC beam voltage.

Substitution of (E.14), (E.15), and (E.17)–(E.19) into (E.1)–(E.3) result in the following
set of normalized equations

∂Ê

∂ẑ
= −∂Ê

∂ψ̂
+ ρ̂ (E.20)

v̂
∂v̂

∂ẑ
= R̂Ê + (1− v̂) ∂v̂

∂ψ̂
(E.21)

v̂
∂ρ̂

∂ẑ
= (1− v̂) ∂ρ̂

∂ψ̂
− ρ̂

(

∂v̂

∂ẑ
+
∂v̂

∂ψ̂

)

(E.22)

where we have defined

R̂ =
eDT 2

meε0
R = ω2pT

2R. (E.23)

For boundary data one has

Ê(0, ψ) = 0 (E.24)

v̂(0, ψ) =
v(z, ψ)

U
(E.25)

ρ̂(0, ψ) = 1. (E.26)

In the remainder of the appendix we omit the hat (̂ ) from normalized variables when
one can deduce from the equations whether or not the variables are normalized [e.g. compare
(E.1)–(E.3) to (E.20)–(E.22)].

E.1.3 MUSE

To derive MUSE we compute the Fourier coefficient formulas for (E.20)–(E.22). The
Fourier series (2.15) in normalized variables is

x̂(ẑ, ψ̂) =
∞
∑

`=−∞

ˆ̃x`(ẑ)e
if`ω̂0ψ̂. (E.27)

where

ω̂0 = ω0T. (E.28)

The normalized fundamental frequency ω̂0 is the result of the time scaling t̂ = t/T . From
(E.27) one sees that ∂

∂ψ̂
→ if`ω̂0. Quantities with tildes (̃ ) are considered to be in the

frequency domain and have a frequency subscript `, e.g., R̃(z, f`ω0) will be written as R̃`.
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The normalized MUSE model for a modulated electron beam is

dẼ`
dz

= −if`ω0Ẽ` + ρ̃` (E.29)

∑

m,n
fm+fn=f`

ṽm
dṽn
dz

= R̃`Ẽ` + if`ω0ṽ` −
∑

m,n
fm+fn=f`

ifnω0ṽmṽn (E.30)

∑

m,n
fm+fn=f`

ṽm
dρ̃n
dz

= if`ω0ρ̃` − if`ω0
∑

m,n
fm+fn=f`

ṽmρ̃n

−
∑

m,n
fm+fn=f`

dṽm
dz

ρ̃n (E.31)

where −∞ ≤ ` ≤ ∞.

E.1.4 S-MUSE

The S-MUSE model is derived similarly to Section 2.2.3. The assumptions accounting
for normalizations are:

1. approximating ρ̃0(z) and ṽ0(z) as equal to 1

2. neglecting the AC portion of velocity in the convective derivative, i.e., letting v̂ ∂
∂ẑ
≈ ∂

∂ẑ

3. ignoring nonlinearities higher than second order in the continuity equation.

The normalized S-MUSE klystron model is

dẼ`
dz

= −if`ω0Ẽ` + ρ̃` (E.32)

dṽ`
dz

= R̃`Ẽ` −
∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn (E.33)

dρ̃`
dz

= −R̃`Ẽ` − if`ω0ṽ` −
∑

m6=0,n6=0
fm+fn=f`

R̃mẼmρ̃n

+
∑

m6=0,n6=0
fm+fn=f`

ifnω0ṽmṽn − if`ω0
∑

m6=0,n6=0
fm+fn=f`

ṽmρ̃n (E.34)

where −∞ ≤ ` ≤ ∞, ` 6= 0.

E.1.5 LAKE (Lagrangian Klystron Equations)

For the derivation of the required elements of the Lagrangian coordinate theory, account-
ing for normalizations, we refer to Section A.1.4. We derive LAKE from (E.17)–(E.19).
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Equation (E.35) is (E.29) with (A.65) substituted for ρ̃`. For (E.2) one writes E using
a normalized Fourier series synthesis equation in Lagrangian coordinates and gets (E.36).
Equation (A.56) is also included as model equation (E.37). The space charge equation,
Newton’s law, and phase relation are [leaving off the superscript L and normalization hats
(̂ )]

dẼ`
dz

= −if`ω0Ẽ` +
ω̂0
2π

∫

2π
ω̂0

e−if`ω0Ψ(z,ψ0)

v(z, ψ0)
dψ0 (E.35)

∂v

∂z
=

1

v

∞
∑

`=−∞

R̃`Ẽ`e
if`ω0Ψ(z,ψ0) (E.36)

∂Ψ

∂z
= 1− 1

v
. (E.37)

As discussed in Section 2.2.2 for numerical implementation the integrals become sums over
disk phases, and the factor in front of the Fourier integral transforms to one over the number
of disk phases. Notice however that where the unnormalized initial disk phases ψ0 were
distributed over 2π, the normalized initial disk phases ψ̂0 are distributed over 2π

ω̂0
. The

velocity boundary data is given by

v(0, ψ0) = 1 +
ε(−T ψ̂0)

2
(E.38)

where ε is the function given with the original time t as the independent coordinate.

E.2 Analysis of S-MUSE

As in the case of the TWT we can compute analytically the solution to the klystron
S-MUSE equations. A substantial difference however is that the klystron “action” is not an
exponential growth of an electron beam modulation, rather a “ballistic” current bunching
due to the velocity modulation. The intensity of current bunching is ultimately limited by
the repulsive space charge forces. Based on this difference it may not be easy to pick out
“dominant modes” of nonlinear product frequencies as it was in the S-MUSE TWT theory.

E.2.1 Vector form

We write the S-MUSE model (E.32)–(E.34) in the following vector form that is particu-
larly useful for analysis

ẋ = Ax + H(x,x) (E.39)

where x is a 3(2M) dimensional complex vector, A is a 3(2M)× 3(2M) complex matrix, H
is a 3(2M)× 3(2M)× 3(2M) complex 3-tensor, and overdot represents d

dz
.
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For elements x`i , A`ij , and H`imjnk the subscripts (`,m, n) run from −M toM excluding
zero, and the subsubscripts (i, j, k) run from 1 to 3. The subscript ` indexes frequencies in
the set {f`}. We index x with double subscripts such that x = [x−M . . .x−1x1 . . .xM ]T and
x` = [x`1x`2x`3 ]

T = [Ẽ` ṽ` ρ̃`]
T.

The matrix A contains the linear parts of (E.32)–(E.34). It is block diagonal with entry
A` ≡ A``. The entries A`ij of the block diagonal element A` are

A`11 = −if`ω0 (E.40)

A`13 = 1 (E.41)

A`21 = R̃` (E.42)

A`31 = −R̃` (E.43)

A`32 = −if`ω0 (E.44)

Entries A`ij not listed above are zero. All parameters represent their normalized values.
The 3-tensor entries H`imjnk for (`,m, n) are

Case 1 If `,m, n are such that f` = fm + fn then

H`2m2n2 = −ifnω0 (E.45)

H`3m1n3 = −R̃m (E.46)

H`3m2n2 = ifnω0 (E.47)

H`3m2n3 = −if`ω0. (E.48)

Entries for (i, j, k) not listed are zero.

Case 2 If `,m, n are such that f` 6= fm + fn then

H`imjnk = 0 (E.49)

for all (i, j, k).

For the `th component of ẋ we have

ẋ` = A`x` +
∑

m,n
fm+fn=f`

H`mn(xm,xn) (E.50)

where the ith component of the quadratic term is







∑

m,n
fm+fn=f`

H`mn(xm,xn)







i

=
∑

m,n
f`=fm+fn

3
∑

j=1

3
∑

k=1

H`imjnkxmj
xnk . (E.51)
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[80] J.G. Wöhlbier. Modeling and analysis of a traveling wave tube under multitone excita-
tion. Master’s thesis, University of Wisconsin–Madison, 2000.
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