IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 3, JUNE 2004

1073

On the Physics of Harmonic Injection
in a Traveling Wave Tube
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Abstract—The physics of signal injection to shape the output
spectrum in a traveling wave tube (TWT) is studied using an
analytic solution to the approximate nonlinear S-MUSE model
and with the large signal code LATTE. The results verify the
long-standing conjecture that a frequency canceled by signal
injection is composed of a component due to the injected signal
and a component due to the nonlinearity of the TWT. Further-
more, the structures of the solutions are exploited to explain
and predict behavior for various signal injection schemes. The
scenarios studied include second harmonic injection to reduce
the second harmonic and enhance the fundamental, multiple
harmonic injection to eliminate the sensitive output power de-
pendence on injected phase, second harmonic injection to reduce
intermodulation distortion, and multiple signal injection to reduce
the intermodulation spectrum. Insights are given regarding the
effectiveness of an injection depending on whether the injected
signal is within or outside the linear gain bandwidth of the TWT.

Index Terms—Harmonic injection, intermodulation, traveling
wave tube (TWT).

1. INTRODUCTION

RAVELING wave tubes (TWTs) are widely used as am-
plifiers in communications and electronic countermeasure
systems. Due to the nonlinear nature of the device, a signal am-
plified by a TWT is distorted, compromising the device per-
formance. In a communications application the distortion may
manifest as two channels producing energy in a third channel
via third-order intermodulation products (3IMs). In this case,
the channels must operate such that “cross talk” into other chan-
nels is at acceptable levels, which in some applications can be as
much as 60 dB below the fundamental signals [1]. In electronic
countermeasure applications, frequency agility is necessary and
harmonic generation can limit the usable amplifier bandwidth.
One way to avoid the TWT’s nonlinear effects is to reduce
the input drive power until the undesired spectral components
are at acceptable levels. This method is not an ideal solution
because it reduces the overall efficiency of the TWT. Another
widely used method for reducing undesired spectral content is
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harmonic injection. Harmonic injection has been studied experi-
mentally [2]-[6] and numerically [6]-[9]. It has been shown that
for two drive frequencies, injection of second harmonics of the
drive frequencies can reduce the 3IM spectra [3], [5], [9]. Since
it is typically the 3IM spectra that is responsible for the “cross
talk” between channels, harmonic injection allows one to drive
the channel carriers closer to saturation, thus increasing the am-
plifier efficiency. In electronic countermeasure applications one
can inject the second and higher harmonics to extend the usable
bandwidth of the amplifier [2], [4].

Mendel [10] claims that harmonic injection is a process of
cancellation “...whereby the injected second-harmonic signal
is such that it is 180° out of phase with the second harmonic
signal generated by the nonlinear processes inherent in the in-
teraction mechanism.” This view is supported by Garrigus and
Glick [4] who went as far as providing a speculative drawing of
what the waveforms might look like internal to the TWT. How-
ever, no quantitative nonlinear theories have been reported that
describe the second harmonic signal being made up of an “in-
jected” part and a part “generated by the nonlinear processes in-
herent in the interaction mechanism.” Large signal TWT codes
have predicted the phenomenon of canceling the second har-
monic with harmonic injection; however, the harmonic in these
models was not resolvable into separate components.

In this paper, we develop a general theory of “signal injec-
tion” using approximate analytic solutions to the spectral TWT
model S-MUSE [11]. The approximate solutions are sums of
“injected” terms and terms “generated by the nonlinear pro-
cesses inherent in the interaction mechanism.” Where appro-
priate, we test our insights from the approximate analytic solu-
tion in saturated conditions with the large signal code LATTE
[11]. LATTE is derived from the same starting equations as
S-MUSE and is therefore ideally suited for this purpose. We
study in detail two cases of signal injection. First, harmonic in-
jection to suppress the harmonic and enhance the fundamental
is considered. Included in this study is the effect of multiple
harmonic injection. Second, we study signal injection to cancel
third-order intermodulation products. Harmonic injection, dif-
ference frequency injection, 3IM injection, and combinations
of these schemes are considered.

In Section II, we develop the signal injection theory. The ap-
plications are given in Section III, and the paper is concluded
in Section IV. The appendixes provide formulas to compute the
analytic solutions.

II. THEORY

The S-MUSE model [11] is derived from a one-dimensional
(1-D) nonlinear model which uses transmission line equations

0093-3813/04$20.00 © 2004 IEEE



1074

to represent the slow wave circuit and Eulerian electron beam
equations. The model is steady state and assumes that all fre-
quencies present are integer multiples of some base frequency
wp. There are five quantities in the TWT description: transmis-
sion line voltage V, transmission line current /, space-charge
electric field F, electron beam velocity v, and electron beam
charge density p. The S-MUSE model is a system of ordinary
differential equations for the spatially dependent complex
Fourier coefficients of the five quantities Vi (z), I;(2), Ey(2),
0¢(2), and pg(z) where £ is a frequency index and z is the axial
distance. Circuit power and voltage phase are denoted as Py(z)
and p¢(z); see [11] for details of S-MUSE.

A. Analytic Solution Structure

S-MUSE can be solved analytically using a series solution
[12]. Similar to linear Pierce theory [13], the solution for a state
variable at a particular frequency is a sum of complex exponen-
tial modes. However, whereas the solution in the linear theory
has a finite number of modes, the analytic solution to S-MUSE
has an infinite number of modes. We use a finite number of
modes to form approximate solutions. Furthermore, when ap-
propriate, we consider only the modes that dominate the solu-
tion near the output of the TW'T, which are typically those modes
with the largest growth rates.

In general, the solution of the voltage at frequency fywo may
be approximated as

Vi(z,t) = {A?lr exp (ug" + ikg*) 2

+ Z A?l[q] exp (N?l[q] n mzﬂ[q]) z}
q

x gifewo((z/u0)—t) (1)

where the superscript dr refers to “driven” quantities and the
superscript nl refers to quantities generated by nonlinear inter-
actions.

The idea of all of the injection schemes is to adjust the am-
plitudes and phases of the inputs such that the bracketed term in
(1) is minimized at z = L, where L is the TWT output. This is
in contrast to the view that the undesired signal is canceled at all
points along the length of the TWT. In the sections of our paper
that describe the different injection schemes, we will identify
the structure of the different elements of (1). Appendix II pro-
vides formulas for computing the quantities appearing in (1).

Depending on the injection scheme, there may be no “driven”
portion of (1). For example, in harmonic injection to cancel a
3IM, the naturally generated (nonlinear) 3IM cancels with a
mode that is a nonlinear product of the injected harmonic and
one of the drive frequencies. In this case, the only dominant
modes present are represented in the sum over g, i.e., A‘gr =0.
For cases in which the injected harmonic is out of the linear gain
bandwidth, the driven portion of (1) may also need to be rep-
resented by a sum over modes. To compute the modes in these
cases the reader is referred to the general solution in Appendix I.

The solutions to the S-MUSE model of the form (1) are ap-
proximations which only apply prior to TWT saturation. By
using the large signal code LATTE we will show with simu-
lations that the large signal solutions also have a structure that
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is composed of modes due to the nonlinearity and modes due to
the injected signal.

B. Electron Beam Diagnostics

The electron beam current modulation is often considered an
important quantity in TWT physics. To study harmonics of the
electron beam current during harmonic injection, we will need
the following quantities. The instantaneous electron beam cur-
rent in Eulerian coordinates is given by

ibeam = SPU (2)
where S is the electron beam cross-sectional area. The Fourier
coefficient of this expression at frequency f,wy is

1
) 2))e=8S—
< beam( )>Z o

Substituting the Fourier series for p(z,%) and v(z,v), e.g.,
v(z, ) = > e Ue(2)et?? into (3), one gets

<iboam(2)>i =8 Z ﬁmf}n (4)

fm+fn=fe
where p,,,, v, are MUSE variables, i.e., spatially dependent
Fourier coefficients, and the sum is over frequency pairs such
that the frequencies add up to fewp.

For the Lagrangian model LATTE the beam current har-
monics are given by

<i})eam(2)>1’ — i/ ]0(,1/}0)e—ifé‘1’(zawo)d,l/}0 (5)
21 Jor
where 1 is the Lagrangian “disk” label and W(z,1)q) is the
function describing the phase of the disk vy as a function of
axial position. For an unmodulated beam Iy (1)g) = To.

In Section III, we will compute (ibeam(2))e for different
values of ¢ using the code LATTE/MUSE Numerical Suite.
Imsuite solves the MUSE models and the large signal code
LATTE for arbitrary TWT geometries.!

pve eV dip. 3)

27

III. APPLICATIONS

In this section, we provide several examples of the harmonic
injection theory. The first example is harmonic injection to
suppress the harmonic or enhance the fundamental, and the
second example is signal injection to suppress an intermodula-
tion product.2 We study various aspects of the physics that the
solutions afford.

For the studies, we use TWT parameters based on the
X-WING TWT [5]. The electron beam parameters are listed
in Table I and the relevant dispersion parameters (cold circuit
phase velocity, beam-averaged interaction impedance, and
space-charge reduction factor) are listed in Table II. For
frequencies not listed in Table II, dispersion parameters are
determined by a linear interpolation between neighboring fre-
quencies; see [11] for a full description of how the dispersion
parameters enter into the model equations. The TWT length is
L = 15 cm. Unless otherwise noted, we do not include a circuit

IThe code and the input files used in this paper are available at http://www.Im-
suite.org.

2We define a Kth-order intermodulation product of frequencies
fi.fas.. . fp as rifi + r2fs + --- + rpfp where r; are integers
(possibly zero) and X' = |ri| + |r2| + -+ + |r#|. This structure includes

fundamental and harmonic frequencies if all but one of the r; are zero.
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TABLE 1
XWING TWT ELECTRON BEAM AND CIRCUIT PARAMETERS
Parameter Value
Cathode voltage —2.75 kV
Beam current 0.22 A
Beam radius 0.55 mm
Helix radius 1.4 mm
TABLE 1I
XWING TWT DISPERSION PARAMETERS
f(GHz)  dpy (x107m/s) K () R
1.00 2.480 139.0 1.55 x 10~2
2.00 2.486 104.0  4.66 x 1072
3.00 2.498 64.0 840 x 1072
4.00 2.514 380 124 x 1071
5.00 2.533 24.0 1.65 x 1071
6.00 2.550 15.0 2.06 x 1071
7.00 2.563 10.0 245x 107!
8.00 2.577 40 283x107!

sever so that we consider only the essential physics of signal
injection. We treat separately the cases where the sever plays
an important role in the injection physics. The small signal gain
as a function of frequency for these parameters as computed by
S-MUSE is given in Fig. 1.

Throughout the remainder of the paper, circuit inputs are
specified by input power and phase. These values are used to
compute input circuit voltage and current amplitudes with (23)
and (24) of [11].

A. Fundamental and Harmonic Frequencies

First, we consider second harmonic injection in the presence
of one drive frequency. We study the effect of the injected
second harmonic on the fundamental and harmonic frequencies
in two cases. In the first case, the harmonic signal is in the
linear gain bandwidth, and in the second case the harmonic is
out of the linear gain bandwidth.?> We then consider injecting
the second and third harmonic to cancel the second harmonic.

1) Harmonic in Linear Gain Bandwidth: In the first ex-
ample, we use the fundamental input frequency of 2 GHz and
the injected second harmonic at 4 GHz. The voltage solution (1)
for each of these frequencies has a driven mode and a nonlinear
mode. There is a nonlinear mode at 2 GHz because 2 GHz is
the difference frequency of 4 and 2 GHz. The nonlinear mode
at 4 GHz is the second harmonic of 2 GHz. In Fig. 2, we show
solutions of (1) for this case. Fig. 2(a) shows that the output
power of the fundamental is maximized for an optimum input
harmonic phase. At 2 GHz, the nonlinear mode of (1) increases
monotonically with increasing harmonic input power at fixed
phase, and therefore the power output at the fundamental
increases monotonically for increasing harmonic input power
as seen in Fig. 2(a). The power enhancement at the fundamental
when the harmonic and fundamental have equal input powers
(5 dBm) is 1 dB for optimum phase.

3We define a frequency to be in the linear gain bandwidth if it has an exponen-
tially growing solution predicted by the linear theory [13]. For the parameters
provided in Tables I and II, the frequencies between 1 and 6 GHz are in the
linear gain bandwidth.

Fig. 1.
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(a) Output power at 2GHz as a function of injected harmonic power and
phase. The optimum second harmonic input phase is ¢2(0) = 244°. At
this input phase the fundamental output power increases monotonically with
increasing second harmonic input power until saturation effects set in.
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(b) Output power at 4 GHz as a function of injected harmonic power and phase
P, (L) is in dB with respect to output power at 4 GHz with no harmonic injection
The optimum cancellation harmonic inputs are B(0) = —8.86 dBm, ¢2(0) =
92.25°.

Fig. 2. Output power at (a) fundamental (2 GHz) and (b) second harmonic (4
GHz) as a function of injected harmonic power P»(0) and injected harmonic
phase ¢-(0) predicted by (1) for second harmonic injection. For both figures,
the fundamental input power and phase are P; (0) = 5 dBm, ¢1(0) = 0.0°.
With no harmonic injection the harmonic is 9.23 dB below the fundamental at
the TWT output.

Fig. 2(b) shows that for injected second harmonic powers
between —10 and —8 dBm and phases between 85° and 95°
the harmonic is suppressed by more than 18 dB. The center of
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Fig. 3. Magnitude and phase of (1) and component magnitudes of (1) for

second harmonic 4.0 GHz with second harmonic injection to achieve second
harmonic cancellation. Driven mode dominates the solution prior to z = 15 cm,
and the nonlinear mode dominates the solution after z = 15 cm. This can be
seen from the component magnitudes as well as the 180° phase change of the
total solution at z = 15 cm. Fundamental and second harmonic input powers
and phases are 5.0 and —8.86 dBm and 0.0° and 92.25°, respectively. Voltage
phase is with respect to the cold circuit wave at 4 GHz.

this range corresponds to total cancellation of the second har-
monic signal (—oo dB). Experimental realization of this theo-
retical perfect cancellation is not possible. Line-broadening ef-
fects such as phase jitter, shot noise, and voltage supply noise
will leave a small nonzero amplitude at the point of optimal sup-
pression. For a case similar to Fig. 2(b), Singh et al. have experi-
mentally realized harmonic suppression of approximately 30 dB
[6]. With improved instrumentation it is likely that the amount
of suppression could be increased.

From Fig. 2(b) and (1), we see that the optimum injected har-
monic power and phase are independent of each other. For any
injected harmonic power a scan of injected harmonic phase may
be made to determine the optimum phase. With the injected har-
monic phase set to this optimum value the harmonic injected
power may be scanned to determine the optimum cancellation
point. This method of detecting maximum cancellation has been
confirmed experimentally for nonsaturated operation [5].

In Fig. 3, we show the modes of (1) that make up the harmonic
solution for the optimum cancellation inputs of Fig. 2(b). Shown
are the magnitudes of the separate modes and the magnitude and
phase of the total solution (1). The figure clearly shows that the
axial position of harmonic cancellation (the TWT output) is the
point at which the dominant mode of the solution changes from
the driven mode to the nonlinear mode. The 180° phase change
in the composite solution also illustrates this point.

To test whether the qualitative conclusions about the struc-
ture of the solutions during harmonic injection hold more
generally, we next consider results of LATTE simulations for
input powers that produce power saturation at the fundamental
frequency. We find that for saturated operation a single global
minimum of harmonic output power versus input power and
phase [see Fig. 2(b)] ceases to exist. Rather, several local
minima form. To determine the global minimum requires
an extensive and highly resolved scan over input power and
phase. In Fig. 4, we show the second harmonic output power
as a function of injected second harmonic input power and
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Fig. 4. Fundamental and harmonic output power versus (a) harmonic input
phase and (b) harmonic input power predicted by LATTE. Fundamental input
power produces saturated output with no harmonic injection. Fundamental input
power and phase are 20.0 dBm and 0.0°, respectively, for (a) and (b). In (a),
harmonic input power is 18.75 dBm, and in (b) harmonic input phase is 26.475°.
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Fig. 5. (a) Output power and (b) voltage phase for fundamental through
fourth harmonic predicted by LATTE, with second harmonic injection to
cancel the second harmonic. Abrupt phase change of 180° in the second
harmonic is evidence that even for saturated operation the second harmonic
solution is comprised of two modes as in the approximate analytic solution (1).
Fundamental input power and phase of 20.0 dBm and 0.0° produce saturation
at z = 15 cm in absence of harmonic injection. Second harmonic input power
and phase are 18.75 dBm and 26.48°, respectively. Voltage phases are with
respect to the cold circuit waves at the respective frequencies.

phase for a fundamental input power that drives the TWT into
saturation. The simulations for saturated operation include the
fundamental through fourth harmonic spectral components in
the circuit wave and electron beam.

To show that the second harmonic voltage in the TWT has
the structure of (1) even for saturated operation, we can con-
sider the phase of the voltage predicted by LATTE simulations.
As in Fig. 3, we expect to see the driven mode character domi-
nate prior to the point of cancellation and the nonlinearly gener-
ated mode character after cancellation. If this is true in the satu-
rated case, then the voltage phase of the harmonic should jump
by 180° at the point of cancellation. In Fig. 5, we show output
powers and voltage phases for the fundamental through fourth
harmonic with second harmonic injection to cancel the second
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Fig. 6. (a) Beam current modulation magnitude and (b) phase at fundamental
and second harmonic for second harmonic injection to cancel the second
harmonic at = = 15 cm predicted by LATTE. Harmonic beam current
modulation “changes modes” at about z = 13 cm, as evidenced by magnitude
dip and phase change. However, the modes do not cancel to produce zero
beam current second harmonic modulation (—oc dB) at any point along the
TWT. Fundamental and second harmonic input power and phase are —20.0
and —57.5 dBm and 0.0° and 91.0°, respectively, well below powers which
produce saturation effects. Beam current modulation magnitudes are in decibels
with respect to 1 A, and beam current modulation phases are with respect to
cold circuit waves at the respective frequencies.

harmonic at z = 15 cm. The fundamental input power is such
that without harmonic injection the output power at the funda-
mental is saturated. With harmonic injection, the fundamental
output power at the output (z = 15 cm) is compressed by about
1 dB as the saturation point has shifted to z = 13.6 cm. One sees
that the output phase at the second harmonic abruptly changes
by 180° at the cancellation point. This matches the structure of
the two-mode analytic solution of the S-MUSE model.

For the same input frequencies, we next consider electron
beam current modulation magnitude and phase at the funda-
mental and second harmonic. Equation (4) gives the current
modulation at frequency fywo in MUSE variables. The beam
charge density p,, and beam velocity v,, have the form of (1),
where the exponents (/Lgf’n +ixd"  and ufi[%] + m?,i[?b will
be the same as those of the voltage, but the complex amplitudes
(Aif’n and A?&[ZI) will be different. For the case of second har-
monic injection with a single fundamental input, the solutions
for the charge density and beam velocity at the fundamental
p1 and v; are composed of a driven mode and a nonlinearly
generated mode. Therefore, the beam current modulation at the
second harmonic (ibeam(2))2, i.e., the product of p1 and o1,
may be written as a sum of three terms (the cross terms have
the same exponents and may be combined). There is no guar-
antee that since the inputs are set such that the circuit voltage
modes cancel at the TWT output, the modes making up the cur-
rent modulation will also cancel. In fact, in all of the cases that
we have studied, we have found that the current modulation is
not canceled for any point along the length of the TWT. How-
ever, the theory predicts that such a cancellation of the beam
modulation modes is possible for the proper inputs.

In Fig. 6, we show the beam current modulation magnitude
and phase of the fundamental and second harmonic components
during harmonic injection to cancel the harmonic voltage at z =
15 cm as predicted by LATTE. The fundamental input power
is small enough so that no saturation effects are encountered
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Fig. 7. Fundamental and second harmonic output power versus second

harmonic input power for harmonic input phase equal to (a) 47.9° and (b)
12.5° predicted by LATTE. In (a), harmonic input phase is set to minimize
output harmonic for injected harmonic power of 15 dBm, and in (b) harmonic
input phase is set to cancel output harmonic for injected harmonic power of
32.29 dBm. Fundamental input power and phase of 13.0 dBm and 0.0° produce
saturated output power of 54.1 dBm at the fundamental and 4.06 dBm at the
harmonic with no harmonic injection.

in the simulation region. The second harmonic beam current
modulation “changes modes” at about z = 13 cm as evidenced
by the dip in the magnitude and the phase change. However,
this is well before the voltage cancellation which occurs at z =
15 cm. The relationship between the changing of modes in the
beam current and the changing of modes in the circuit voltage
is a subject of future study.

It has been suggested that harmonic injection might be viewed
as input waveform “shaping” such that the beam current wave-
form is sinusoidal at the output [14]. Fig. 6 indicates that such
a view is incorrect, since the harmonic component of the beam
current is a large fraction of the fundamental component of the
beam current at z = 15 cm, where the second harmonic circuit
voltage is canceled.

2) Harmonic Out of Linear Gain Bandwidth: When the
second harmonic is out of the linear gain bandwidth, the
component of the analytic solution (1) corresponding to the
injected harmonic does not have an exponentially growing
form, hence does not grow to a level required to cancel the
nonlinearly generated harmonic at the output. Thus, in most
cases, modest injected harmonic powers will have a small
effect on reducing the second harmonic. To get cancellation
of the second harmonic, a large value of injected harmonic
power is required. For the analytic solution (1) to be a good
approximation, additional modes from the full solution in
Appendix I should be included to describe the harmonic.

Using LATTE we consider one case of second harmonic
injection with the fundamental frequency at 4 GHz and the
second harmonic at 8 GHz, where the fundamental input is
set to achieve saturation at z = 15 cm. In Fig. 7, we plot
fundamental and second harmonic output power versus har-
monic input power for two different values of fixed second
harmonic input phase. In Fig. 7(a), the harmonic input phase
is set so that the harmonic output power is minimized for a
harmonic input power of 15 dBm. For this injection (15 dBm,
47.9°), the amount of output harmonic reduction from its
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value of 4.06 dBm with no harmonic injection is about 4 dB.
On the other hand, in Fig. 7(b) one can see that cancellation
of the second harmonic is obtainable in principle. However,
the required injected harmonic power to do so is about 1%
of the fundamental output power. A comparison of Fig. 7
to Fig. 4, and their relative harmonic to fundamental input
powers to obtain cancellation (P, — Pr, = 19.29 dB and
Py, — Py, = —1.25 dB respectively), illustrates the substantial
difference between the case when the second harmonic is in the
linear gain bandwidth and when the second harmonic is out of
the linear gain bandwidth.

Almost all TWTs have circuit severs to control internal re-
flections. We expect that the presence of the sever will highly
attenuate, if not totally eliminate, the nongrowing injected har-
monic mode. Since the injected mode is the mode that allows
for reduction or cancellation of the second harmonic, we expect
that when a sever is included, reduction of the second harmonic
should be possible but a total cancellation is likely not possible
for reasonable harmonic injection powers. For LATTE simula-
tions including a sever where we restricted the harmonic input to
less than 10% of the fundamental output, the maximum amount
of harmonic suppression we obtained was 16.4 dB, from 38.8 to
22.4 dBm, for a fundamental input of 27.0 dBm and a harmonic
input of 34.5 dBm. The sever is modeled by a resistive loss in the
center section of the circuit. For details on how the sever is in-
corporated into the circuit equations, see [12, Appendix A]. For
details of the loss profile one can run the /msuite input decks.*

3) Second and Third Harmonic Injection: Next, we consider
injection of the second and the third harmonic to achieve can-
cellation of the second harmonic when the second and third har-
monics are both in the linear gain bandwidth. For this injection
scheme there are three terms in (1) for each of the three fre-
quencies: one driven term and two nonlinear terms. To achieve
cancellation for a particular frequency at the output, these three
terms should add to zero at z = L.

As an example, we solve the S-MUSE equations for a fun-
damental frequency of 1.5 GHz, second harmonic of 3.0 GHz,
and third harmonic of 4.5 GHz. The respective input powers
and phases for the fundamental, second, and third harmonics
are 10, —14.2, and —10.6 dBm, and 0.0°, 15.0°, and —45.0°.
When evaluated at z = [, the three terms in (1) for the second
harmonic frequency may be represented in a phasor diagram as
seen in Fig. 8. The phasor A represents the nonlinear product
of the fundamental with itself (the mode we wish to cancel),
B represents the driven second harmonic, and C represents the
nonlinear product of the third harmonic with the fundamental.
If a phasor X has magnitude |X| and phase fx = Arg{X},
then note from Fig. 8 that for cancellation |[A| = |B + C| and
that 9]3_;,_0 — 0 = .

For sufficiently small fixed fundamental input power and
fixed fundamental, second, and third harmonic input phases, if
0 < |fc — 6B| < 7 then the second and third harmonic input
powers can be adjusted to achieve second harmonic cancella-
tion. This replaces the necessity of having precise control of
the input phase of the injected harmonic in the case of single
harmonic injection with the necessity of having precise control

4Found at http://www.Imsuite.org.

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 3, JUNE 2004

N
\
B+C \
\

A

"
\
\
\
\
\
\
\
\
\
\
\
1
\
\

Fig. 8. Output phasor picture produced by analytic S-MUSE solution for
second and third harmonic injection. Phasor A represents the second harmonic
mode due to nonlinear product of fundamental with itself, phasor B represents
the injected second harmonic mode, and phasor C represents the mode due
to the nonlinear product of the third harmonic with the fundamental. Phasor
B + C cancels phasor A.

of the second and third harmonic input powers. In hardware it
is typically easier to precisely control input powers than phases.
By “sufficiently small input power” we mean, for example,
that when only the fundamental is injected that neither the
fundamental nor the nonlinearly generated second and third
harmonic show signs of onset of saturation at z = L. In fact,
the principle being described may hold for larger input powers,
but we have not tried to determine an upper limit on the input
powers for which it holds.

Using LATTE we found that for input phases identical to the
values used to generate Fig. 8, and respective input powers for
the fundamental, second, and third harmonics of 10, —13.3, and
—9.6 dBm, the second harmonic is canceled at z = 15 cm.

From the phasor diagram in Fig. 8, one can see that the rela-
tive amounts of injected second and third harmonic power (pro-
portional to the lengths of output phasors B and C) depend on
the relative choice of the input phases of the three injected sig-
nals. Judicious choice of the input phases may be used to mini-
mize the amount of injected power. In fact, the minimal injected
powers would correspond to inputs such that both phasors B
and C were 180° out of phase with respect to phasor A, and the
lengths of phasors B and C were split up such that their magni-
tudes add to the magnitude of phasor A. However, this situation
does require precise phase control on the input.

As in the case of second harmonic injection, one expects that
the voltage phase of the solution of the second harmonic at a
position z will correspond to the mode which dominates the so-
lution at that position. For inputs below those which produce
saturation, the dominant modes are growing exponentially and
the 180° degree phase change in the solution is clearly seen
(e.g., Fig. 3). For larger inputs the modes are no longer expo-
nentially growing after the point of cancellation, so the abrupt
change in phase may not be as evident in the solution. In Fig. 9,
we show the voltage phase of the second harmonic as a func-
tion of axial distance along the TWT for the fundamental input
powers of 10.0, 23.0, and 28.0 dBm, corresponding to linear be-
havior, 3-dB compression, and full saturation, respectively, as
predicted by LATTE. In each case, the input phases for the fun-
damental, second, and third harmonic are 0.0°, 15.0°, —45.0°
and the second and third harmonic input powers have been set
to cancel the second harmonic at z = 15 cm. For linear behavior
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Fig. 9. Voltage phase of the second harmonic with second and third harmonic
injection for fundamental input powers in the linear regime, output 3-dB
compressed, and output saturated as predicted by LATTE. Phase is with
respect to cold circuit phase velocity at 3.0 GHz. Second harmonic is canceled
at z = 15 cm. All traces show change in phase at cancellation point, but
characters are different due to different relative inputs. Fundamental, second,
and third harmonic power and phase inputs are: linear 10.0, —13.3, —9.6 dBm,
20.0°, 55.0°, 15.0°; 3-dB compressed 23.0, 11.086, —1.25 dBm, 0.0°15.0°,
—130.0°; saturated 28.0, 12.345, 12.55 dBm, 40.0°, 55.0°, 270.0°.

and saturation the 180° phase change is clearly seen, while for
3-dB compression a phase change is still evident, but not as dis-
tinct.

Finally, we provide a conjecture about the effect of injecting
harmonics higher than third order on canceling an undesired
harmonic. The properly phased injection of each additional
higher order harmonic results in one more output phasor (see
Fig. 8) that can be used to cancel the undesired phasor. This
could result in reducing the power required for each injected
signal. However, when the injected harmonics are out of the
linear gain bandwidth, their resulting phasors may be too
small to have an appreciable affect on canceling the undesired
harmonic.

B. Intermodulation Frequencies

Signal injection can also be used to suppress intermodula-
tion frequencies [3], [5], [9]. Consider two drive frequencies
fas fo with f, < fp, the second-order products 2f,, fo + fb,
2fy, fo — fa, and the third-order intermodulation frequencies
2fa — fv, 2fp — fa- Then, for example, injection of the second
harmonic 2 f, forms a nonlinear second-order product with the
fundamental f, which may be adjusted to cancel the nonlinear
third-order intermodulation frequency 2 f, — f,. Similarly, one
can inject 2f; to cancel 2f;, — f,. Furthermore, in principle,
one can inject the difference frequencies and form second-order
products with the fundamental frequencies to cancel the 3IM
frequencies, which has been shown experimentally in solid-state
amplifiers [15]. Lastly, one can inject the 3IM frequencies di-
rectly with the right amplitudes and phases to achieve cancella-
tion [16]. There are other third-order intermodulation frequen-
cies that we do not list since they are located near the third har-
monics and may be removed by filtering.

Similar to the case of multiple harmonic injection, one can
use two or more of the above injection frequencies simultane-
ously to eliminate the need for precise input phase control. The
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Fig. 10. Magnitude of (1) and component magnitudes of (1) for 3IM frequency
1.8 GHz with second harmonic injection to cancel the 3IM frequency. Canceling
mode (nonlinear difference product of 3.8 GHz and 2.0 GHz) dominates the
solution prior to z = 15 cm, and the nonlinear mode dominates the solution
after = = 15 cm. Fundamental (1.9, 2.0 GHz) and second harmonic (3.8 GHz)
input powers and phases are 0.0, 0.0, —18.32 dBm and 0.0°, 30.0°, 116.24°,
respectively.

effect of the different injection schemes on the intermodulation
frequencies other than those that are being canceled is a subject
of future work.

For the examples of Sections III-B1 and 4, we choose the
drive frequencies to be 1.9 and 2.0 GHz with input powers of
0.0 dBm and respective input phases of 0.0° and 30.0°. For the
examples of Sections I1I-B2 and 3, we choose the drive frequen-
cies to be 3.9 and 4.0 GHz with input powers of —5.0 dBm and
respective input phases of 0.0° and 30.0°. These inputs do not
produce saturation effects in any of the frequencies at the TWT
output. The behavior of the examples considered here with in-
puts which produce saturation is a subject of future work. In
all of the LATTE simulations, we have accounted for up to the
third-order products of the input frequencies. In general, signal
injection will result in additional intermodulation frequencies
beyond those which exist in the presence of the fundamental
frequencies alone.

1) Injection in Linear Gain Bandwidth: We consider first
single signal injection when the injected signal is in the linear
gain bandwidth. For second harmonic or difference frequency
injection, the form of the solution at the third-order intermod-
ulation frequency is given by (1) with A?r = 0 and two terms
in the sum over ¢. For 3IM injection A" # 0, and there is one
term in the sum over . Formulas for A" and A;ﬂ[q] are given
in Appendix II.

In Fig. 10, we show the mode amplitudes and composite so-
lution envelope from (1) for cancellation with second harmonic
injection, and in Fig. 11 we show the mode amplitudes and com-
posite solution for cancellation with 3IM injection. Notice that
the induced mode which accomplishes the cancellation in the
second harmonic injection case is growing much faster than the
driven mode which accomplishes the cancellation in the 3IM in-
jection case (the ranges on the vertical axes of Figs. 10 and 11
are identical). This is because in Fig. 10 the canceling mode is a
second-order mode and has a growth rate equal to the sum of the
growth rates of the driving frequencies (2.0 and 3.8 GHz) [17].
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Fig. 11. Magnitude of (1) and component magnitudes of (1) for 3IM
frequency 1.8 GHz with 3IM injection to cancel the 3IM frequency. Driven
mode dominates the solution prior to z = 15 cm, and the nonlinear mode
dominates the solution after z = 15 cm. Fundamental (1.9, 2.0 GHz) and 3IM
(1.8 GHz) input powers and phases are 0.0, 0.0, —36.36 dBm and 0.0°, 30.0°,
—146.56°, respectively.

In Fig. 11, the canceling mode is a drive frequency and grows
with its linear growth rate.

A subtlety in the case of 3IM injection is that with such an
injected signal, (1) for the 3IM frequency will have more terms
in the sum over q. For example, if f31y; is the injected 3IM and
fa> fo are the original fundamentals, then fs7\; is equal to the
third-order products (fsmn + fo) — fa and (fsna + fo) — fo (the
parentheses (-) indicate the formation of a second-order product,
and the subtraction forms a third-order product). That is, the
third-order nonlinear solution is now the sum of the original 3IM
mode (e.g., 2f, — f3) in addition to the modes produced by the
above third-order products. However, since the required injected
power of the 3IM is far smaller than the injected fundamental
powers, it was found that the solution was only slightly modified
by the inclusion of these additional modes.

2) Injection Out of Linear Gain Bandwidth With No
Sever: Similarly to Section III-A-II, we consider the impli-
cations of the injected signals being out of the linear gain
bandwidth. For narrow band TWTs it is likely that the second
harmonic is out of the linear gain bandwidth. For difference
frequency injection the difference frequency would be out of
the linear gain bandwidth for most drive frequency spacings;
however, for wideband TWTs one could construct pairs of
input frequencies such that the difference frequency is in the
linear gain bandwidth.

We showed in Section III-A2 that second harmonic injection
to cancel the second harmonic is much less effective when the
second harmonic is out of the linear gain bandwidth. This raises
the question of the effectiveness of second harmonic injection to
cancel an intermodulation product when the second harmonic is
out of the linear gain bandwidth. In this case, the injected second
harmonic exists in the circuit as a nongrowing mode. It com-
bines nonlinearly with one of the drive frequencies (via (9) of
Appendix I) resulting in a signal that has a growth rate equal to
that of the drive frequency [17]. The growth rate of the 3IM fre-
quency to be canceled in most cases will be on the order of three
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Fig. 12.  Output spectrum (a) near fundamentals and (b) near second harmonics
with and without second harmonic injection when second harmonic is out of
the linear gain bandwidth. Note additional “intermodulation frequencies” (e.g.,
at 7.7 GHz) due to injection of the second harmonic. Fundamental inputs 3.9,
4.0 GHz have input power —5.0 dBm and respective phases of 0.0° and 30.0°.
Injected harmonic 7.8 GHz has input power and phase of 10.6 dBm and 32.2°.
Note that there is also partial suppression of the second harmonic at 7.8 GHz.

times the growth rate of the fundamental frequency [17]. How-
ever, the net levels of the signals can be made comparable since
the 3IM starts at a much lower amplitude than the second-order
product (the injected second harmonic combined with the fun-
damental). Therefore, as shown in Fig. 12, harmonic injection
to suppress the 3IM when the harmonic is out of the linear gain
bandwidth can be effective. In general, the spectra in the re-
mainder of the paper have content near the second, third, and/or
fourth harmonics of the drive frequencies, but we have chosen
only to display the spectra near the fundamentals and second
harmonics.

When the injected second harmonic is out of the linear gain
bandwidth the level of the injected signal will generally need
to be larger relative to the fundamental input powers as com-
pared to when the injected second harmonic is in the linear gain
bandwidth. This can be seen by comparing the values of the
injected second harmonic powers relative to the fundamental
powers for Fig. 10 (Pyy, — Py, = —18.32 dB) and Fig. 12
(Pyy, — Py, = 15.6 dB). The reason is that when the second
harmonic is out of the linear gain bandwidth the second-order
mode used to cancel the 3IM grows at a rate about equal to the
drive frequency, whereas when the harmonic is in the gain band-
width the second-order mode used to cancel the 3IM grows at a
rate about twice that of the drive frequency [17]. Therefore, to
ultimately obtain the same relative power level in the canceling
mode, the injected power of the mode with the lower growth rate
must be relatively larger. That is, our theory and LATTE simula-
tions indicate that when the second harmonic is out of the linear
gain bandwidth, one needs a larger relative harmonic input.

3) Injection Out of Linear Gain Bandwidth With Sever: In
contrast to harmonic injection to control the second harmonic
when the injected harmonic is out of the linear gain bandwidth
as in Section III-A2, we expect from the theory that including
a circuit sever will not greatly affect the performance of the in-
jection schemes to control the intermodulation spectrum. The
reason is that the mode that cancels the 3IM is an exponen-
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Fig. 13. Output spectrum (a) near fundamentals and (b) near second

harmonics with and without difference frequency injection. Note additional
“intermodulation frequencies” due to injection of the difference frequency.
Fundamental inputs 1.9, 2.0 GHz have input power 0.0 dBm and respective
phases of 0.0° and 30.0°. Injected difference frequency 100.0 MHz has input
power and phase of 17.4 dBm and 134.45°.

tially growing mode that has a corresponding modulation in the
beam current. When the circuit field of this mode is damped by
the sever, the beam modulation reinitiates the circuit field mode
after the sever. This is in contrast to the case in Section III-A2
where the sever heavily damped the mode that performed the
harmonic reduction. In fact, in a LATTE simulation including a
circuit sever with fundamental inputs such that the C3IM ratio
(the relative level in decibels of the fundamental to the 3IM at
the TWT output) without second harmonic injection was the
same as those for the simulation that produced Fig. 12, we found
that the required harmonic injection power relative to the fun-
damental power was Pp¢, — Py, = 10.5 dB as compared to
Py, — Py, = 15.6 dB for the circuit with no sever.

Next, we consider cancellation of a 3IM with injection of the
difference frequency. Theoretically, this situation is similar to
second harmonic injection when the second harmonic is out of
the linear gain bandwidth. Even though the difference frequency
is out of the linear gain bandwidth, the second-order product of
the difference frequency and the fundamental will grow at a rate
equal to the fundamental frequency growth rate [17]. With suf-
ficiently large difference frequency input power, cancellation of
the 3IM can be obtained as shown in Fig. 13. Note that the re-
quired difference frequency input power relative to the funda-
mental (Pr,_y, — Py, = 17.4 dB) is similar to the required
second harmonic injection power relative to the fundamental
when the second harmonic is out of the linear gain bandwidth
(P2j, — Py, = 15.4dB). Also note that the difference frequency
can be used to cancel either 3IM frequency, but not both 3IMs
simultaneously. However, simultaneous reduction of both 3IMs
with difference frequency injection is likely possible.

There is some question as to whether difference frequency
injection will work in practice. Since the wavelength of the dif-
ference frequency is much longer than the physical TWT, it is
not clear as to whether the mode resulting from the product of
the difference frequency and the fundamental frequency will be
produced in the device. Ultimately, an experimental test of the
idea will be needed to determine if it works.

4) Multiple Signal Injection: Second and third harmonic in-
jection was shown in Section III-A3 to control the level of the
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Fig. 14. Output spectrum (a) near fundamentals and (b) near second
harmonics with and without 3IM and second harmonic injection. Note
additional “intermodulation frequencies” due to the injection of the signals.
Fundamental inputs 1.9, 2.0 GHz have input power 0.0 dBm and respective
phases of 0.0° and 30.0°. Injected 3IM and second harmonic 2.1, 4.0 GHz have
input powers and phases of —30.0 and —22.0 dBm and —13.0° and 35.0°.

second harmonic while eliminating the need for precise con-
trol of the injected signal phases. When using signal injection
to control the intermodulation spectrum, there are many cases
when one might wish to inject multiple signals. For example,
second harmonic and intermodulation injection or second har-
monic and difference frequency injection may be used to con-
trol the intermodulation level and eliminate the requirement of
precise phase control of the injected signals. Furthermore, one
could imagine that for multiple fundamental signals, second har-
monic and intermodulation pairs or second harmonic and dif-
ference frequency pairs could be used to control the many in-
termodulation products. However, the effects of injecting many
signals on the other spectral components and whether the re-
sulting spectra are improved over the original spectra are not
known. While we do not attempt to answer this question here,
we give a few examples of multiple signal injection for two fun-
damental frequencies using LATTE simulations.

In Fig. 14, we show the output spectrum with and without
injection of a 3IM (2.1 GHz) and second harmonic (4.0 GHz)
to cancel the 3IM. The targeted 3IM frequency is totally can-
celed while additional spectral components are produced near
the fundamentals and second harmonics. Since the new inter-
modulation products are more than 60 dB below the fundamen-
tals amplitudes, they may not represent a problem as a practical
matter. A determination of the importance of these new distor-
tion products would need to be made in the context of linearity
requirements for each specific application. As was the case in
second and third harmonic injection to control the second har-
monic (Section III-A3), this scheme eliminates the necessity
of precise phase control of the injected signals. This is accom-
plished by producing two output phasors whose lengths can be
controlled to cancel the undesired output phasor by adjusting the
injected signal input powers (see Fig. 8). Implementation of this
concept might simply require a passive predistortion equalizer
with an added “leg” to generate second harmonic content along
with the 3IM content that is conventionally generated with such
circuits.
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harmonics with and without second harmonic injection of both fundamentals.
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Fig. 16. Output spectrum (a) near fundamentals and (b) near second
harmonics with and without injection of both 3IMs (1.8, 2.1 GHz) and
both second harmonics (3.8, 4.0 GHz). Note additional “intermodulation
frequencies” due to injection the of the signals. Fundamental inputs 1.9, 2.0
GHz have input power 0.0 dBm and respective phases of 0.0° and 30.0°.
Injected 3IM and second harmonics 1.8, 2.1, 3.8, 4.0 GHz have input powers
and phases of —26.7, —30.0, —25.0, and —22.0 dBm and —150.0°, —13.0°,
—140.0°, and 35.0°. Large dynamic range of the figure is so that all of the
spectral components are shown.

Next, we consider injecting the second harmonics of both of
the fundamental frequencies. In Fig. 15, we show the output
spectra with and without injection of both second harmonics.
The original 3IM frequencies are totally canceled and there is
some cancellation at the second harmonic as well, while some
additional spectral components appear due to the additional
input signals. The levels of the additional signals near the
fundamentals are much lower than the original 3IM frequen-
cies. There are several components generated near the second
harmonics, although it is thought that these could be filtered
and would be less of a concern than the spectrum near the
fundamental.
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Finally, in Fig. 16 we show results of injecting the 3IMs and
second harmonics of both of the fundamental signals. The 3IM
frequencies are canceled without a requirement of precise input
phase control, but the number of additional spectral components
becomes quite large. However, all of the signals near the funda-
mentals are substantially lower than the 3IMs without the injec-
tion. If one can tolerate a complicated spectrum near the second
harmonics, it is thought that this scheme may be desirable.

We have done some testing of the above multiple signal in-
jection schemes for fundamental inputs of 5 dBm, which start to
show the onset of saturation effects in the intermodulation and
harmonic signals. For second harmonic injection of both fun-
damentals, simultaneous cancellation of both 3IM frequencies
was found to be possible. However, in the case of injecting both
3IMs and both second harmonics we were unable to find, with
a coarse search, injection input values to cancel both of the 3IM
frequencies simultaneously. The general existence of such in-
puts is a subject of future study.

IV. CONCLUSION

We present an interpretation of harmonic injection and, more
generally, “signal injection” in a TWT as the cancellation of
“driven” and “nonlinear” modes. The interpretations are based
on an approximate analytic solution to an approximate nonlinear
model. Furthermore, we use “large signal” simulations to test
whether the modal solution structure is valid in saturated condi-
tions. In general, we find that the large signal simulations indeed
show the abrupt phase change signature of the approximate an-
alytic solutions.

The idea has existed for some time that the physical mech-
anism of harmonic injection is cancellation of such modes [4],
[10]. However, we present the first quantitative theory to predict
the existence of the modes. Furthermore, the quantitative theory
provides further insights into harmonic injection. For example,
a phasor picture provided by the theory demonstrates how mul-
tiple harmonic injection can eliminate the sensitive dependence
of the output signals on the phase of the input signals. Also, the
analytic solutions elucidate the many effects of the injected sig-
nals being outside of the linear gain bandwidth of the TWT and
the role of circuit severs in these cases. Some experimentation is
still required to verify all of the notions put forward in the paper.

APPENDIX 1
S-MUSE GENERAL ANALYTIC SOLUTION

In this Appendix, we state the general analytic solution
to the S-MUSE model, referring the reader to [12], [17] for
the derivation. We use the vector nc%tation of [11] where

Xy = [X/l .. .Xp5]T: ‘7/I~/Eﬂ~}/ﬁ[
series used in the model, for each positive frequency f, there
is a corresponding negative frequency indexed by —/¢ with

f—¢ = —fi. Furthermore, x_, = x}. The differential equation
for x, is

. Due to the Fourier

).([ = A[X[ + Z H/m'n,(x'm-, Xn) (6)
Frtfu=10
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where matrix and tensor components qu.j and qu-mjnk are
listed in [11, Appendix II]. One can show that (6) may be solved
with a series solution
N @)
= Z Xe
a=1

and that this series converges under the appropriate conditions
[12], [17]. The index « is related to the order of intermodulation

product [17]. The formulas for the terms of the series are given
by

(N

(1)_8 *we a=1

- s 5

fm+f7z fe
Hopn (x(0(r) x070(0) ) dr. a22 )

where w, contains the initial values for frequency f,wg [11]
and e is the matrix exponential of the matrix A,z [18]. The
driven frequencies include the injected signals and each driven
frequency has a nonzero component in wy.

Due to the recursive structure of (9), it may be written as

2 M [N,
xéﬂ):/0 eAf(z—T)Z ZTTCZ

q=1 r=0

®)

€77 dr. (10)
In (10), a term of the forcing exponential, i.e., T’"c’{;e"qT, is
formed by the quadratic nonlinearity in (9) represented by
Hy,,,,. These terms arise from the mixing of driven frequencies
(including injected signals) and, depending on the injection
scheme, can correspond to the modes one wishes to cancel or
the modes performing the cancellation. If the exponent o, in
the integral formula (10) is equal to an eigenvalue of A, then
powers of z appear multiplying the exponentials in the result of
the integral for xé(’). The factor 7" appears in (10) to account
for the fact that xsf ) and xg’_ﬂ ) may contain such powers of
z. Cases when o is equal to an eigenvalue of A, are referred
to as “resonant forcing,” and the modes that result involving
powers of z are referred to as “secular modes.”

Modes are characterized by the arguments of their complex
exponentials. The result of the integral in (10) has modes charac-
terized by either o, or the eigenvalues of Ay, Ag;, 4 =1,...,5.
Formulas for these modes are given as follows.

The A\, mode of (10) is

1083
The o, modes of (10) are as follows.
1) Foro, # Xg,,i=1,...,5
Ny Nyg—r
Z Z P/S¢(oq, 7, k)P, ! H'k Z"e%d%, (12)
r=0 k=0
2) For oy = Ay,
PZ{T[(N )P ez Nt
+ Z ) Te(r — P el ™!
(Z Se(og,m, k)P 1 ’"+k)] }e”qz.
(13)

In (11)-(13), P, and P[l are the modal matrix of A, and its
inverse, respectively [18]. The matrices Ry, Sy, and T are de-
fined by the equations shown at the bottom of the page.

APPENDIX II
FIRST-, SECOND-, AND THIRD-ORDER MODE AMPLITUDES

In this Appendix, we provide special cases of the formulas in
Appendix I that are required to compute solutions of the domi-
nant modes for the cases discussed in the text.

The complex exponential modes of the vector Xe (see Ap-
pendix I) may be indexed by p
N
()= 3 al@lle (w7 i) (14)
p=1

with a(a)[p I'a complex vector and ,u( )lp] ( )P] real numbers.
Sums like (14) are ordered so that /L((’)m > ;L(“)[Q] > >

(a)[ N . The cases in the text do not require secular modes so
a factor of z does not appear in (14).

To keep the formalism as simple as possible, we provide for-
mulas only for the cases when the injected signals are in the
linear gain bandwidth of the TWT. In these cases, the solutions
for fixed o can be approximated by a single “dominant mode” in
the case of single signal injection, or several “dominant modes”
in the case of multisignal injection. The total solution (1) is then

M N, a sum of the dominant modes for the different values of a.
Z ZPiRi(k>7“> Uq)PZICZGA“\'Z, k=1,...,5. (11) When the injected signals are out of the linear gain band-
a=1r=0 width the number of modes required to represent the solutions
(D! i=i="Fkand)\
Ry, (kr,0,) = { sy i=d=kand A, # 0
7 0; otherwise
. (r+k)! . -
Si. (0g, 7 k)= (—1)k( t!) 7(%_/\16_)“1; i = j such that Ay, # o4
i,7 qr ' — 3 .
0; otherwise
L. j=jsuchthat \;, = o, andr # —1
T — ] 1 i=gsuc 0 q
£ (7) { 0; otherwise.
1 r>1
H(r) = { 0 r=
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increases substantially, and the formulas for the solutions in-
volve more caveats and technicalities. The general result al-
lowing computation of all modes is given in Appendix 1.

We give formulas for first-order (linear), second-order, and
third-order products. The formulas may be used to compute all
of the cases in the paper in which the injected signal is in the
linear gain bandwidth of the TWT.

A. First-Order (Linear) Solution

The p = 1 mode of the first-order («« = 1) drive frequencies
(including injected signals) is given by

Xﬁl)[l] _ a&l)[l]e"(zl)[llzei"gl)mz (15)
where
a"M =P,QP, 'w, (16)
gt =Re{A,,} (17)
rg M =Im{A, } (18)
and
Qi’j - {(1) Z)t;eiw_isi. (19)

We assume that Py, the modal matrix of A, has the eigenvector
associated with )y, , the eigenvalue of A, with the largest real
part, in its first column. Then, for (1) we have

A = a0l (20)
it = pHt @1
P Kél)[l]. (22)

For each frequency fywo with a nonzero input power there is an
equation (1) with a driven mode solution given by (20)—(22).

B. Second-Order Solution

Next, we solve for second-order products (« = 2) of the in-
jected signals. We give formulas for one mode in the sum over
q in (1) and note that the number of required modes and or-
dering of the modes is application dependent. A second-order
product has associated with it a pair of indexes m and n such
that f,, + fn = fe¢. Extracting only the dominant mode from
(12) of Appendix I we have

X§2)[q] — agz)[q] BHZQ)[q]ZeiNEQ)[q]Z (23)

(24)—(27), as shown at the bottom of the page, and we have as-
sumed that MS)[” + /A})“] > Re {A¢, }. The eigenvalues A, of
A, have the same ordering as the eigenvectors of A, appearing

in columns of P,. The matrix Sy is given in Appendix I.
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Then, for a mode of (1), we have

A?I[Q] — ag)[‘l] (28)
uzl[(l] — Mf)[‘l] (29)
hAZII[Q] _ K§2)[¢I]. (30)

This mode can describe sum and difference frequencies of the
injected signals.

C. Third-Order Solution

Lastly, we solve for third-order products (o« = 3) of the
injected signals. Given the dominant mode of the injected
signal xg) U from (15) and a dominant mode of a second-order
product xff)[l] from (23), one has

)OI — O] i1 a1
where
a§3)[1] —P,S, (uf)[l] + m§3)[1],0,0) PZlc/(f)’)[l] (32)
M —Hypn (agm]? ag)[u)
+ Hypn (a1, 200) (33)
/14§3)[1] = pO0 4,20 (34)
Kf)ﬂ]zzﬁg)U]+_ﬂg)UL (35)

Therefore, for (1), we have for the dominant mode of the third-
order product

A?l[l] — ag’)[l] (36)
u?l[l] :u§3)[1] (37)
rp ! = 0, (38)

Unlike the o = 2 case, we allow for only one third-order mode
in the total solution (1). Although a more general formalism is
possible, the examples provided in the paper do not require it.
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