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Abstract—We derive from Eulerian electron beam equations
the multifrequency spectral Eulerian (MUSE) model, a new one-
dimensional (1-D) nonlinear multifrequency model of a traveling
wave tube (TWT). We also derive from the same equations a La-
grangian “disk” model, LATTE, so that MUSE may be directly
compared to a Lagrangian approach. The models are compared
to the large signal code Christine 1-D on a set of TWT parameters
which are based on a single section of the Hughes 8537H L-band
TWT. Aspects of the physics, nonlinearities, and simulation dimen-
sions of the MUSE model are discussed, as well as its relation to the
method of collective variables. A simplified MUSE model S-MUSE
useful for analysis is also presented and its applications are dis-
cussed.

Index Terms—Collective variables, Eulerian, Lagrangian, mul-
tifrequency, nonlinear, traveling wave tube (TWT).

I. INTRODUCTION

T RAVELING wave tubes (TWTs) continue to find wide-
spread application due to their inherently wide bandwidths

and their high-frequency high-power operating points. A com-
promising feature of the TWT (and the solid state amplifier)
is the nonlinear behavior of the device. The nonlinearity man-
ifests as a saturating mechanism and spectral distortion. Both
of these effects limit the efficiency of the TWT. For electronic
countermeasures, distortions put power into harmonics with a
concomitant, undesired reduction of power at the intended drive
frequency. For digital communications applications, the distor-
tions increase bit error rates, and this limits data rates.

Reducing nonlinear distortions in TWTs would increase
efficiency of electronic countermeasure systems, and would
increase data rates and efficiency in digital communications
applications. These objectives provide strong motivation for
approaches to understand nonlinear distortion mechanisms in
TWTs.

The nature of the distortion in TWTs is “intermodulation
distortion.” For steady-state input signals with multifrequency
content, an intermodulation product of orderfor frequencies

is of the form
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where are integers (possibly zero) and

This structure also includes harmonic frequencies if all but one
of the are zero. For a given set of steady-state input frequen-
cies, a nonlinear multifrequency TWT model will predict evolu-
tion of circuit power at the input, or drive, frequencies as well as
the intermodulation frequencies produced by the drive frequen-
cies.

Nonlinear modeling of steady-state inputs to TWTs has
been extensively studied with models that use Lagrangian
coordinates rather than Eulerian coordinates for the electron
beam equations. Six years after Pierce’s seminal Eulerian linear
theory [1], Nordsieck developed the Lagrangian nonlinear
theory to account for charge overtaking in the electron beam
and saturation of the circuit field [2]. The first multifrequency
TWT models [3], [4] also used the Lagrangian beam de-
scription so that they too would predict saturation. A modern
multifrequency code using such a Lagrangian description is
Christine 1-D [5], [6].

In this paper, we derive a new one-dimensional (1-D) non-
linear multifrequency Eulerian TWT model, the multifrequency
spectral Eulerian (MUSE) model. We also derive a Lagrangian
“disk” model, Lagrangian TWT Equations (LATTE), from the
same initial equations for comparison purposes as well as to
demonstrate the theoretical relation between MUSE and a disk
model. A simplified MUSE model, S-MUSE, more suitable for
analysis is also derived. These three models are compared to
each other and Christine 1-D for a set of TWT parameters which
are based on the Hughes (now Boeing) 8537H L-band TWT
design. The comparison to Christine 1-D is particularly useful
since this code is widely known and used, and it has been val-
idated against experiment for the Hughes TWT [7], [8]. The
nonlinearities of MUSE and LATTE are compared, and an ex-
ample of how MUSE can examine fundamental distortion mech-
anisms is provided. We also study how the dimensions of the
MUSE model and LATTE scale with number of frequencies,
an important issue for assessing the use of MUSE as a numer-
ical tool. Next, we discuss the relation of the MUSE model to
the “method of collective variables” in free-electron laser theory
[9]. Lastly, we briefly indicate results that come from analysis
of the S-MUSE model.

Some of the early work considering nonlinear effects in-
volving more than one frequency in TWTs was done using
Eulerian coordinates. Putz [10] considered two frequencies and
studied cross-modulation. Curtice [11] extended this work to
include space charge and finite Pierce gain parameter. Sobol
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[12] and DeGrasse [13] considered two input frequencies and
their harmonics. The group of Dattaet al. have published a
collection of articles using an approximate third order nonlinear
multifrequency Eulerian TWT model [14]–[16]. Their work
focuses on approximate analytic solutions to cases with a small
number of input frequencies, including studies of harmonic
generation and harmonic injection. The complexity of their
approximate solutions increases substantially with increasing
numbers of tones. In contrast, the MUSE model is a system of
first order ordinary differential equations that can in principle
handle an arbitrary number of tones. MUSE is the first “exact”
steady-state nonlinear Eulerian model in that it makes no
approximations in the nonlinearities. The S-MUSE model is an
approximate model that makes different approximations than
other models in the literature.

The fundamental Eulerian equations used to derive MUSE
are similar to those Pierce used for his linear single frequency
theory. However, our equations are nonlinear and accommodate
signals with multifrequency content. Our starting equations are
the same as the equations used by Dattaet al.except that where
we use the continuity equation, they use an integral of the con-
tinuity equation by assuming that for perturbed
quantities in Ampere’s law.

Section II presents the models to be considered. We derive
the MUSE model and discuss its numerical solution, discuss the
disk model LATTE whose derivation is given in Appendix I, and
derive the S-MUSE model. The models are compared to each
other and Christine 1-D in Section III. In particular, we look at
power versus axial distance, a constant of the motion and the
issue of electron overtaking. Section IV discusses the nonlin-
earities in MUSE, the dimensional dependence of MUSE and
LATTE on simulation parameters, and the relation of MUSE to
the “collective variable” theory of free electron lasers. Section V
indicates the applications of S-MUSE and Section VI concludes
the paper.

II. TWT M ODELS

A. MUSE

1) Derivation: For the MUSE model, the helix is modeled
as a lossless transmission line1 and Eulerian equations are used
for the electron beam. In particular, the time domain model
equations are

(1)

(2)

(3)

(4)

(5)

1Losses are incorporated in all of the models in the codeLATTE/MUSE Nu-
merical Suite. The code is available at http://lmsuite.org.

where is axial distance, is time, is transmission line
voltage, is transmission line current, is the space charge
electric field, is electron beam velocity, andis the volume
charge density of an electron beam with cross-sectional area

. The denotes convolution and this allows for frequency
dependence of circuit and beam parameters. The functions,

, and are the inverse Fourier transforms

(6)

(7)

(8)

where the functions , , and
are frequency domain circuit interaction impedance [17], cold
circuit phase velocity, and space charge reduction factor [18],
respectively. The inverse transforms areaperiodicfunctions of

and are functions of to allow for spatial variation of circuit
parameters. In the remainder of the paper, notation of thisde-
pendence is suppressed. The constants, , and are electron
charge, electron mass, and permittivity of free space, respec-
tively.

For reasons that will be made clear later, we first make the
coordinate transformation

(9)

Then

(10)

(11)

(12)

(13)

(14)

We assume all inputs to the system (signals at ) are peri-
odic in with fundamental frequency . This implies that so-
lutions as functions of are periodic in with fundamental
period and that solutions as functions of are peri-
odic in with fundamental period .

For a function periodic in we use the Fourier series
relations

(15)

(16)

where the are integers indexed by. The set of frequencies
is chosen to be the frequencies with nonzero Fourier co-

efficients, thus is the drive frequencies together with the
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frequencies produced from nonlinear interactions. We index the
frequencies so that and for . Since
our functions are real valued

(17)

Computing Fourier coefficients of (10)–(14) gives the MUSE
model

(18)

(19)

(20)

(21)

(22)

where . We have used that for and
periodic, multiplication becomes convolution

The summation notation should be read as “sum over integers
and such that .”
2) Method of Numerical Solution:For practical implemen-

tation one neglects higher frequencies and limitsto
. Then, the MUSE model has complex equa-

tions.
During integration of the MUSE model, one needs to solve

(21) and (22) for the derivatives and . Equations
(21) and (22) for are the linear systems

where , , , and are vectors and is a
matrix. The th entries of and are

and , respectively, theth entries of and are equal
to the right-hand sides of (21) and (22), respectively, and theth
row and th column entry of is where .

We choose the relation between the initial value of the circuit
current and the initial value of the circuit voltage as

(23)

One can show for the linearization of (18)–(22) that, up to a very
small correction, (23) ensures that only the three forward waves
of Pierce theory are excited [19]. If one includes modulations
on beam quantities, (23) is still the appropriate relation between
initial voltage and initial current so that only forward waves are
excited.

The circuit power at angular frequencyis due to both the
positive and negative frequencies, so

(24)

The negative sign in (24) is due to the form of the telegrapher
equations which are chosen to be consistent with [19]. Given
input power and phase at , the
initial value of circuit voltage is

If there are (periodic) modulations on any of the quantities
at the input, one can calculate the proper initial values using
(16). Otherwise, for , . Also, one has

, , and .
By treating this problem as an initial value problem with

the described initial conditions, we are assuming a perfectly
matched load and no reflections. When a sever and a mis-
matched load are included, one must treat the problem as a
boundary value problem and use an iterative scheme such as a
shooting method [20, Ch. 17]. In the boundary value problem,
the relation of circuit voltage to circuit current at the input [cf.
(23)] will be determined as part of the solution to be consistent
with the reflections.

B. LATTE

Appendix I derives LATTE starting from (10)–(14), which
are the same equations used to derive the MUSE model. Compa-
rable multifrequency disk models are well known, e.g. [3]–[5],
[21], but the derivation in Appendix I is unique in the way it rep-
resents the method of characteristics as a general transformation
between Eulerian and Lagrangian coordinates.

The transformation reveals interesting information about
the relation between MUSE and LATTE. For example, the
Lagrangian continuity equation [(46)] is often written as (see,
e.g., [17, p. 302])

where is beam current, is time, is initial beam current,
and is the Lagrangian initial time. However, it has not been
pointed out in the microwave device literature that

is the Jacobian of the transformation from Lagrangian to
Eulerian coordinates. We use this fact in Section III-C to
examine when electron overtaking occurs. Appendix I also
identifies a constant of the motion for MUSE and LATTE given
in (53).
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C. S-MUSE

1) Derivation: A simplification of MUSE results in the
S-MUSE model. S-MUSE is easier to analyze than MUSE
while it retains important nonlinear physics. The simplifications
are

1) approximating and as constants and ;
2) neglecting the ac portion of velocityin the convective

derivative,i.e., letting ;
3) ignoring nonlinearities higher than second order in the

continuity equation.
Since we have made the transformation , some
of the nonlinearity of the convective derivative is retained, i.e.,
the original term [as seen in (4) and (5)] splits into

and we only linearize the first of
these two nonlinear terms in (13) and (14). This is the motiva-
tion for introducing the coordinates in (9). The S-MUSE
model is

(25)

(26)

(27)

(28)

(29)

where , .
2) Vector Form: The S-MUSE model (25)–(29) may be

written in the following vector form that is particularly useful
for analysis:

(30)

where is a 5 2 -dimensional complex vector,
is a complex matrix, is a

complex 3-tensor, and overdot
represents . The detailed specification and indexing of,

, and as well as a formula to compute the components of
are found in Appendix II.

TABLE I
8537H PARAMETERS (CONSTANT PITCH SECTION)

Equation (30) shows the S-MUSE model in vector form as a
sum of a linear term and a quadratic nonlinearity. In this form,
they are well suited for a type of perturbation theory where the
zeroth order solution is that of a linear system.

III. N UMERICAL EXAMPLE

In this section, we consider a numerical example comparing
the models amongst themselves and Christine 1-D. First, we
look at circuit power as a function of axial distance. We use
LATTE as a benchmark and present deviations in decibels of the
other models from LATTE. For the simulations, we also check
the constant of the motion (53) and compare the terms making
up the constant of the motion. For the case of one drive fre-
quency, we consider the question of electron overtaking and its
correlation to the deviation of MUSE from LATTE. Lastly, we
discuss practical issues concerning the choice of frequencies for
a simulation comparison with Christine 1-D.

For our numerical study, we simulate one constant pitch sec-
tion of the 8537H TWT with no sever or circuit loss. The param-
eters for the 8537H are taken from [7] and are shown in Table I.
For the frequency dependent parameters , ,
and we use the outputs of Christine 1-D’s tape helix
model and space charge reduction factor calculation. These pa-
rameter values ensure that MUSE, LATTE, and S-MUSE use
the same dispersion parameters as Christine 1-D.

The set of frequencies includes two drive frequencies, the
second-order products, and the third-order intermodulation
(3IM) frequencies and . Table II lists the
frequencies and dispersion parameters (drive frequency data in
bold).

The calculations are done using a fixed step fourth-order
Runge–Kutta integrator.

A. Power Versus Axial Position

In Fig. 1, we plot axial power of the drive, harmonic, and
3IM frequencies for the MUSE model and LATTE. The models
agree extremely well for a majority of the TWT length, but there
is disagreement between the models at saturation. For a quan-
titative comparison of all of the models, we plot decibel differ-
ence of the models from LATTE. Figs. 2–4 show the decibel
difference from LATTE for the drive frequencies, harmonics,
sum frequency, and the 3IMs respectively. For each model, the
frequency pair having the largest maximum deviation is repre-
sented in the figure.
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TABLE II
SIMULATION FREQUENCIES ANDDISPERSIONPARAMETERS

Fig. 1. Power versus axial distance for LATTE and MUSE.

Fig. 2. Decibel difference of drive frequencies from LATTE versus axial
distance.

For small values, Figs. 3 and 4 exhibit large fluctuations in
the decibel difference from LATTE for the harmonics and 3IMs,
respectively. However, the numbers being compared are very
small and are below the numerical noise floor of the computa-
tions. The differences between the harmonics converge before
the differences between the 3IMs since the harmonics need to
rise above the numerical noise floor before the 3IMs may rise
above the numerical noise floor. For cm, steady-state dif-
ferences are achieved in both figures.

Inspection of Figs. 2–4 confirms that the agreement between
LATTE and MUSE is very good prior to the onset of saturation
(roughly cm). Up to cm, the discrepancy is
less than 0.1 dB. The constant level of the nonlinear products

Fig. 3. Decibel difference of harmonics and sum frequency from LATTE
versus axial distance.

Fig. 4. Decibel different 3IMs from LATTE versus axial distance.

confirms that growth rates of LATTE, MUSE, and S-MUSE are
the same, even though we see that S-MUSE is less accurate than
MUSE, especially for the higher order nonlinear products.

Finally, we see the difference between LATTE and Christine
1-D is 2 dB, 3 dB, and 5 dB in the drives, harmonics, and
3IMs, respectively for cm. One sees from Fig. 2 that the
linear growth rates of the drive frequencies are slightly different
for the two models, which results in a disagreement of predicted
power between the models which grows with axial distance. The
difference in gain predicted by the two models is about 1.5 dB
out of 72 dB. The differences in the nonlinear products are likely
due to the nonlinear amplification of the differences in the drive
frequencies.

Since Christine 1-D has been validated experimentally [7],
the disagreement between LATTE and Christine 1-D raises the
question of experimental validation of LATTE and MUSE. To
address this question, we studied the sensitivity of the output
power on certain input parameters. For the present case, we
found that less than a 1% change in beam voltage can pro-
duce a 1-dB difference in output power, and a 10% change in
“smeared” relative dielectric constant can produce more than a
2-dB difference in output power. In [7], beam voltage and rel-
ative dielectric constant were changed by more than 8% from
their experimental values. Therefore, we observe that the input
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parameters to our models could be changed within the same
bounds used in [7] to match Christine 1-D results.

B. Constant of the Motion

Appendix I shows that the total energy density (53) is a con-
stant of the motion for MUSE and LATTE when circuit pa-
rameters are independent of axial distance. This is confirmed in
Fig. 5, which also shows the energy density for S-MUSE. Since
S-MUSE is an approximation to MUSE, one would not expect
(53) to be a constant of the motion. However, as seen in Fig. 5,
S-MUSE predicts the value to be constant until cm.

Having a constant of the motion can be a useful aid in an
investigation of the physics in a model. For example, while
LATTE and MUSE predict the constant of the motion, MUSE
does not exhibit a saturation (see Fig. 1). This suggests that the
partitioning of the energy density is not consistent between the
models. In Fig. 6, we see that the energy density in the circuit
quantities of MUSE continues to rise where that of LATTE satu-
rates. We also see that the beam kinetic energy density continues
to decrease in MUSE where in LATTE it reaches a minimum
and starts to increase. Additionally, there is a difference in the
energy density in the space charge field not shown in Fig. 6.
Thus, the energy density terms from the constant of the motion
reveal another view of the deviation of the models. Furthermore,
the constant of the motion provides a means of checking the
error in numerical calculations.

C. Electron Overtaking

Nordsieck’s Lagrangian formulation was motivated by the
fact that “electrons overtake one another at or even considerably
before the point along the tube where the limiting power level is
obtained,” [2] in which case Eulerian functions become multi-
valued. However, Paschke wanted to “dispel the widespread be-
lief that, because of overtaking, the hydrodynamic model must
break down at large levels” [22] with nonlinear Eulerian treat-
ments of electron beams.2 Since LATTE and MUSE come from
the same “hydrodynamic” equations, they are ideally suited to
consider overtaking and its role in the deviation of MUSE from
LATTE.

The Jacobian of the transformation from Lagrangian to
Eulerian coordinates is (39)

If for all at some , then the electron beam, while
perhaps bunched, retains the same “disk ordering” (in time)
it had at . On the other hand, if for some we
have , then some disks in the beam have exchanged
positions. The at which electron overtaking occurs is such
that for exactly one value of . Beyond this value

has exactly two zeroes in (for simple overtaking).
While overtaking can be observed on a disk trajectory plot
such as Fig. 7, it may not be possible to establish the exact

2The view taken in this paper is that the Eulerian and Lagrangian models are
both “hydrodynamic,” i.e., they describe the electron beam as a fluid. However,
the functions in Lagrangian coordinates allow for the fluid to “fold” over on
itself. Only when one seeks approximate numerical solutions to the Lagrangian
equations does one get a “disk” model.

Fig. 5. Constant of the motion versus axial distance.

Fig. 6. Energy densities in circuit and beam versus axial distance for LATTE
and MUSE. Energy density in space charge field not shown.

axial position at which overtaking first occurs. Computing
such as in Fig. 8, one can precisely determine the exact

axial position where the overtaking starts.
To study if there is a correlation between electron overtaking

and the deviation of MUSE from LATTE, we consider a simula-
tion of one drive tone at GHz with the drive level such
that saturation occurs at cm. Detailed inspection of
Fig. 8 reveals that for one value of at cm.
Detailed study of Fig. 9, which shows a closeup of the point at
which MUSE and LATTE deviate, reveals the position of the de-
viation to be roughly cm. Therefore, it seems that the
deviation of MUSE and LATTE is correlated to electron over-
taking.

It is also interesting that the Eulerian model of Dattaet al.
[23] exhibits saturation for the cases they consider. The discrep-
ancies between the Datta model and MUSE will be a subject
of future investigation. Future studies will also attempt to use
recent developments in numerical analysis for computing mul-
tivalued solutions of Eulerian functions [24] to enable MUSE to
simulate charge overtaking.

D. Choosing Simulation Frequencies

Our implementations of MUSE, S-MUSE, and LATTE allow
the user to choose any frequency that is an integer multiple
of the base frequency. Alternatively, there are two methods of
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Fig. 7. Disk orbits versus axial distance.

Fig. 8. Jacobian versus for several axial positions.

Fig. 9. Power versus axial distance for LATTE and MUSE.

choosing simulation frequencies in the Christine 1-D code.
First, one can have the code create an array of frequencies
between specified minimum and maximum frequencies spaced
by the base frequency. This method alone, however, would
make it impractical to include harmonics of closely spaced
drive tones since all frequencies between the drive and the

harmonic frequencies that are spaced by the difference fre-
quency would be included. Therefore, the Christine 1-D code
provides an integer which allows the user to specify an array
for frequencies close to the drive frequencies only, and creates

“harmonic windows” which are frequency arrays containing
harmonics of the specified frequency array. The frequencies
generated by the use of the harmonic window function may
include additional frequencies that are not exactly harmonics
of the specified array.

The implications of Christine 1-D’s frequency selection
method meant that in our Christine 1-D simulations, we did
not include the difference frequency MHz. Also, due
to the use of the harmonic window function, we did include
a tone at GHz. First, we discuss the effect of the
difference frequency, then the tone at GHz which is
not a nonlinear product of the drive frequencies.

Because of the frequency convolutions in the MUSE model,
to predict the evolution of a particular frequency, in principal
all frequency pairs adding to the particular frequency need to be
accounted for. However, in practice only the dominant contribu-
tors are considered. For this example, we included the difference
frequency MHz since it had a 0.5-dB effect on the level
of the 3IM in the MUSE simulation.

To estimate the effect of leaving the difference frequency out
of the Christine 1-D simulation, we ran LATTE simulations in-
cluding and excluding MHz. For these simulations, we
observed that the level of the 3IM depends only slightly on the
inclusion of the difference frequency (0.05 dB). Hence, we
conclude similar behavior is likely in Christine 1-D. We do not
show results for the 1.0-MHz signal since it is so far out of the
bandwidth of the TWT.

For GHz, we ran LATTE simulations including
and excluding this frequency and found that the effect of in-
cluding GHz is negligible ( 0.02 dB difference in
3IMs, less in other tones). Furthermore, preliminary analytic
results from S-MUSE indicate that amplitudes of intermodu-
lation frequencies are determined primarily by the amplitudes
of frequencies mixing to make the product. Therefore, since

GHz is not related to the drives or intermodulation
frequencies, we expect that it will not have a significant effect.
For the difference frequency, we saw that even though it is a
nonlinear product related to the 3IM, it had a small effect on the
3IM in LATTE. An unrelated frequency can be expected to have
an even smaller effect.

In sum, we conclude that even though MHz was
excluded and GHz was included in the Christine
1-D simulations, it is still appropriate to compare these results
to those of MUSE and LATTE.

Finally, we discuss getting dispersion data for MHz
since Christine 1-D did not simulate MHz and, hence,
did not generate dispersion data for it. The circuit dispersion
parameters at MHz were calculated with an indepen-
dent tape helix solver and the space charge reduction factor is
an estimate based on the values for other frequencies. However,
based on MUSE simulations, the prediction of the difference
frequency does not seem to depend on the dispersion parame-
ters at MHz. This is consistent with preliminary ana-
lytic results from S-MUSE which suggest that when a nonlinear
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product frequency lies out of the linear gain-bandwidth its am-
plitude and growth rate are primarily determined by the drive
frequencies which mix to produce it.

IV. DISCUSSION

A. Nonlinearities

The nonlinearities of the MUSE model are different than
the nonlinearities of LATTE. The MUSE model has quadratic
nonlinearities that arise from the quadratic nonlinearities of
the Eulerian electron beam equations. In contrast, LATTE
has quadratic nonlinearities, nonlinearities, and complex
exponential nonlinearities. As the MUSE predictions agree
with LATTE for a majority of the tube length, one can argue
that the nonlinear behavior in this region can be described
by quadratic nonlinearities. As discussed in Section V, the
quadratic nonlinearity is easier to study analytically than the
nonlinearities in LATTE.

A quadratic nonlinearity in the time domain becomes a con-
volution in the frequency domain, as seen in the MUSE model
(18)–(22). This allows one to observe the origin of harmonic
and intermodulation frequencies based on the nonlinear combi-
nations of beam velocity and density. As a brief demonstration
of the physical insight to be gained from this fact, we consider
alternately linearizing and in the derivation of the MUSE
model from (1)–(5). We use the equations resulting from the
“partial linearizations” to examine whether nonlinearities in-
volving or nonlinearities involving in (4) and (5) play a larger
role in producing distortions.

In both partial linearizations, since (1)–(3) are linear,
(18)–(20) are reproduced. If we linearize in (4) and (5),
make the coordinate transformation (9), and compute Fourier
coefficients, we get instead of (21) and (22)

(31)

(32)

Notice that .
Similarly linearizing reproduces (21) and from (5), one gets

(33)

In (33), it is understood that .
Fig. 10 shows the result of integrating the MUSE model

(18)–(22), the -linearized equations (18)–(20), (31), (32), and
the -linearized equations (18)–(21), (33) in the 8537H constant
pitch section for a drive frequency of GHz. Linearizing
the velocity reduces the level of the circuit harmonic more than
linearizing the density. Therefore, the velocity has a larger role
in producing the harmonic. This observation appears to be valid
for many cases.

Fig. 10. Power versus axial distance for partially linearized equations.

B. Dimension Scaling of LATTE and MUSE

The computation time of systems of ordinary differential
equations (ODEs) such as LATTE, MUSE, and Christine 1-D
depends on the number of state variables in the simulation, i.e.,
the dimensionof the model. (The dimension of the model is
equal to the number of coupled ODEs in the system, and hence
equal to the number of derivatives that must be calculated at
each step of the integration.) The dimension of the MUSE
model depends only on the number of frequencies; however,
the set of frequencies in a simulation must be chosen with care
to assure that all nonlinear product frequencies are accounted
for correctly. In a disk model the majority of the dimensions are
those accounting for the disks. The number of disks depends
on several factors which we will discuss. To simplify the
discussion, we consider the dimensions of MUSE and LATTE,
noting that other disk models will have similar behavior to
LATTE.

LATTE has six complex dimensions per simulation frequency
plus 2 real dimensions for the disks. MUSE has ten complex
dimensions per simulation frequency plus five dimensions for
the DC quantities.

To compare dimensions of LATTE to MUSE, one needs a
formula for the number of disks based on simulation parame-
ters. An estimate for computing the number of disks is given
in the Christine 1-D documentation [5]. Depending on simula-
tion parameters, the number of disks may need to be increased
to obtain convergence of results. We provide a version of this
formula applicable to LATTE here. If is a “base” number
of disks, the number of tones in the simulation, and is
the number of harmonics present, then a starting point for the
number of disks in a simulation is given by

(34)

It is suggested that initially be chosen near 19 and that the
choice of always be a prime number.

To understand the dimensional dependence on frequency of
MUSE, one needs to account for the fact that to simulate a non-
linear product frequency, one may be required to simulate fre-
quencies one is not directly interested in. For example, due to the
frequency convolutions in the MUSE model, to simulate 3IMs
one needs to track all pairs that sum to these frequencies. Thus,
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to simulate the 3IMs and , one needs to ac-
count for , , , and in addition to the drive
frequencies.

For the example presented, we have

Thus, the dimension of LATTE is 960 (912 real, 48 complex).
For MUSE we have 85 complex dimensions.

As an example of using MUSE in cases with many frequen-
cies, we include results of a simulation modeled after the noise
power ratio simulations in [8], but using the lossless, constant
pitch TWT parameters from Section III. The input spectrum
consists of 101 evenly spaced frequencies (0.4 MHz spacing)
with a 3 MHz notch at the center. The total number of frequen-
cies when accounting for all sum and difference frequencies is
402. The nonzero input amplitudes are assigned randomly be-
tween 20 dBm and 30 dBm. The input and output spectra
are shown in Fig. 11. Not shown in Fig. 11 is the spectrum at
the sum and difference frequencies. Since the TWT simulation
parameters did not include circuit loss or a sever, the output was
taken at cm. The simulation ran for 5 h and 40 min on
a 1.3-GHz Gnu/Linux PC. As yet, there has been no attempt to
optimize the speed of the code.

C. Relation to Method of Collective Variables

In this section, we compare MUSE to a collective variable
model, and we outline a method for developing a MUSE type
model for free-electron lasers (FELs). Since the TWT may be
described by the same “nonlinear pendulum” equations as the
FEL, e.g., [26], we propose that the prescription would result in
a useful multifrequency analysis and simulation tool for FELs.

The majority of the initial collective variable work was done
for single frequency excitations, where “in the presence of mul-
tiple frequencies, it is extremely difficult to obtain a descrip-
tion of FEL dynamics in terms of a reduced set of equations
involving collective variables” [27]. With some simplifications
and normalizations, the MUSE model can be transformed into
such a multifrequency collective variable model, applicable at
least in the exponential growth region and potentially into the
oscillation region.

The method of collective variables [9] involves first defining
the “bunching parameter,” the first collective variable, as the
complex exponential average over particle phases, then differ-
entiating the definition which results in an equation containing
a higher “moment.” One defines this higher moment as the next
collective variable and differentiates this definition to get an
equation which contains the next higher moment. At this point,
a relation is employed to “close” the system of equations.

In contrast, the MUSE model recognizes the first collective
variable as the Fourier coefficient of the electron beam charge
density, and defines a “second collective variable” as the
Fourier coefficient of the electron beam velocity. To get a
multifrequency “collective variable model” using the MUSE

Fig. 11. (a) Input and (b) output spectra of a simulation with 402 frequencies.

theory one does a derivation similar to Section II. In particular,
one uses the Eulerian electron beam equations, neglecting space
charge, and a wave equation for only a forward wave. The
result is a system that closely resembles (after normalization) a
multifrequency collective variable model that does not need to
be “closed.”

Using the change of variable equations from Eulerian to La-
grangian coordinates one finds that the second collective vari-
able of [9] is related to beam current. Thus, by taking moments
the collective variable method misses having a collective vari-
able for electron beam velocity. This is the primary difference
between the approach of [9] and the MUSE approach.

V. ANALYSIS USING S-MUSE

The S-MUSE model has a form amenable to analysis and in-
sights. In particular, the quadratic nonlinearity of the S-MUSE
model is easier to analyze than the nonlinearities of LATTE and
enables a new view of the generation of harmonics and inter-
modulation products.

Under suitable conditions, the S-MUSE model in the vector
form (30) can be solved with a series solution

where each vector satisfies a differential equation that is
a linear system forced by quadratic terms formed by combi-
nations of with . For example, the drive frequen-
cies are in and they combine quadratically to force the
differential equation for so as to cause second harmonics
in . These second harmonics, in turn, combine nonlinearly
with the drive frequencies to force the differential equation for

so as to cause third order intermodulation frequencies in
. Further intermodulation frequencies appear as the process

continues. The key point is that intermodulation frequencies of
interest are generated in a systematic analytic procedure by the
effects of successive quadratic nonlinearities in the differential
equations for . By identifying the growth rates present in
the equations at each stage, the maximum growth rates of har-
monic and intermodulation frequencies can be predicted from
formulas [28]. The results from these formulas can differ from
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the conventional rules of thumb for narrow band TWTs that pre-
dict that third-order intermodulation frequencies are three times
the drive frequency.

This view from S-MUSE of the origin of harmonic and in-
termodulation frequencies also suggested how appropriate har-
monic injections could advantageously modify intermodulation
frequencies. In particular, it predicted that large reductions in
intermodulation products during multifrequency drive could be
realized by injection of the second harmonic at the right phase
and amplitude. This effect has been confirmed by experiment
[29]–[31].

VI. CONCLUSION

We have derived a new nonlinear multifrequency Eulerian
TWT model, the MUSE model. The MUSE model differs from
other available nonlinear multifrequency Eulerian models in
its suitability for analyzing larger numbers of input tones. The
MUSE model also has some similarities with the method of
collective variables in FEL theory [9], but one of the “collective
variables” of the MUSE model is a Fourier coefficient of
beam velocity and the MUSE model does not require a closure
relation.

To enable a direct comparison with Lagrangian methods, a
Lagrangian “disk” model LATTE is also derived. MUSE and
LATTE show excellent agreement before saturation when sim-
ulated on a constant pitch section of the Hughes (now Boeing)
8537H TWT. The discrepancy between MUSE and LATTE be-
gins at the start of electron overtaking, which can be quantified
by singularity in the coordinate transformation from Lagrangian
to Eulerian coordinates. Also, results for LATTE (and, hence,
MUSE before saturation) for the TWT parameters used are com-
parable with the Christine 1-D Lagrangian simulation (Christine
has been previously validated against experiment on the 8537H
TWT [7]).

The relative contributions of different nonlinearities in the
MUSE model to harmonic and intermodulation distortions
are demonstrated by simulating with selected nonlinearities
removed. In the constant pitch TWT example, the nonlinearities
due to the velocity contribute more strongly to the formation
of harmonics than the nonlinearities due to the density. In the
example studied, MUSE has about one-fifth the number of
equations compared with a Lagrangian model such as LATTE,
but this difference in the number of equations is not sufficient to
suggest a speed advantage of more than one order of magnitude
in simulation of this example with MUSE. However, as the
number of frequencies increases, there is potential for such a
speed advantage.

The MUSE model has only quadratic nonlinearities, whereas
Lagrangian models such as LATTE have more complicated non-
linearities. Indeed, a simplification of the MUSE model called
S-MUSE is well suited for analytic purposes. The growth rates
of S-MUSE agree with MUSE results in the example given, but
there is a significant difference in the power prediction, particu-
larly in the 3IMs ( 40%). S-MUSE has the form of vector dif-
ferential equations with linear and quadratic terms and we have
briefly indicated how insights into harmonic and intermodula-
tion generation, growth rates, and suppression can be pursued.

APPENDIX I
LATTE MODEL

This appendix details the coordinate change that derives the
Lagrangian “disk” model, LATTE, from the Eulerian equations
(10)–(14).

A. Derivation

The Eulerian independent variables are , where is
axial position and is phase. The Lagrangian independent vari-
ables are , where is axial position and is the phase
position of a fluid element with respect to the stream wave3

when the fluid element is at . and take values from
0 to 2 .

The transformation from Lagrangian to Eulerian coordinates
is given by functions and

(35)

is the axial position of fluid element at so

(36)

is the phase position of fluid element with respect
to the stream wave at.

A function of Eulerian variables is transformed to
a function of Lagrangian variables using

(37)

The linearization of coordinate transformation (35) is the ma-
trix

(38)

and its Jacobian is the determinant of (38)

(39)

Partial derivatives transform via

(40)

Consistent with the method of characteristics, we take

(41)

3The “stream wave” is a hypothetical wave of frequency! traveling with
speedu .



WÖHLBIER et al.: MULTIFREQUENCY SPECTRAL EULERIAN (MUSE) MODEL OF A TWT 1073

then the convective derivative [in coordinates] becomes

(42)

Applying the derivative transformations in (40) to the conti-
nuity equation (14), one gets

(43)

Taking of (41), one gets

(44)

Substitute (44) into (43) and integrate to get

(45)

where is a constant of integration. We setby using the values
of and on the axis [by definition

which implies ] which gives finally

(46)

As a last point regarding the coordinate transformation, we
change variables in an integral. Pulling the equation for the
Fourier coefficient of back to Lagrangian coordinates (for
fixed ) one gets

(47)

where we have used (46) to substitute for the Jacobian.
Finally, we derive LATTE from (10)–(14). Equations

(48)–(50) are (18)–(20) with (47) substituted for. Equation
(14) was used to get (47). For (13), one writesand using
(15) in Lagrangian coordinates. Equation (41) is also included
as model equation (52). The circuit equations, space charge
equation, Newton’s law, and phase relation are (leaving off the
superscript )

(48)

(49)

(50)

(51)

(52)

These equations are valid for an arbitrary periodic electron beam
modulation. Equations (51) and (52) are ordinary differential
equations parameterized by. For calculations, one represents
the beam as a finite number of “disks” and there are equations
(51) and (52) for each disk. In this case, the integration over

becomes the sum

B. Constant of the Motion

In Lagrangian coordinates, the time averaged linear energy
density is

(53)

The velocity integral is the time average linear beam kinetic
energy density. Expressed in Eulerian coordinates this is

(54)

In the MUSE variables, this term is

(55)

When the circuit parameters , , and
are not functions of , the energy density is a

constant of the motion. The most convenient way to show this
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is to compute the derivative in Lagrangian coordinates, then
change the result to Eulerian coordinates. Using

APPENDIX II
S-MUSE VECTORCOMPONENTS

This section provides details of the vector form of S-MUSE.
For elements , , and , the subscripts ( )
run from to excluding zero, and the subsubscripts
( ) run from 1 to 5. The subscript indexes frequencies
in the set .

We index with double subscripts such that
and

.
The matrix contains the linear parts of (25)–(29). It is block

diagonal with entry . The entries of the block
diagonal element are

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

Entries not listed are zero.
The three-tensor entries for are as fol-

lows.

Case 1 If and are such that , then

(68)

(69)

(70)

(71)

(72)

Entries for not listed are zero.
Case 2 If and are such that , then

(73)

for all .
For the th component of , we have

(74)

where the th component of the quadratic term is

(75)
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