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Abstract—We derive from Eulerian electron beam equations wherer; are integers (possibly zero) and
the multifrequency spectral Eulerian (MUSE) model, a new one-
dimensional (1-D) nonlinear multifrequency model of a traveling K =|ri|+|r2|+ -+ |rpl.
wave tube (TWT). We also derive from the same equations a La-
grangian “disk” model, LATTE, so that MUSE may be directly  This structure also includes harmonic frequencies if all but one
compared to a Lagrangian approach. The models are compared of ther; are zero. For a given set of steady-state input frequen-
to the large signal code Christine 1-D on a set of TWT parameters cies, a nonlinear multifrequency TWT model will predict evolu-

which are based on a single section of the Hughes 8537H L-bandt. f circuit tthei t ordrive. f . I
TWT. Aspects of the physics, nonlinearities, and simulation dimen- lon ot circuit power at the input, or arive, frequencies as well as

sions of the MUSE model are discussed, as well as its relation to the the intermodulation frequencies produced by the drive frequen-
method of collective variables. A simplified MUSE model S-MUSE cies.

useful for analysis is also presented and its applications are dis-  Nonlinear modeling of steady-state inputs to TWTs has
cussed. been extensively studied with models that use Lagrangian
Index Terms—Collective variables, Eulerian, Lagrangian, mul- coordinates rather than Eulerian coordinates for the electron

tifrequency, nonlinear, traveling wave tube (TWT). beam equations. Six years after Pierce’s seminal Eulerian linear
theory [1], Nordsieck developed the Lagrangian nonlinear
|. INTRODUCTION theory to account for charge overtaking in the electron beam

) _ ~and saturation of the circuit field [2]. The first multifrequency
T RAVELING wave tubes (TWTs) continue to find wide-T\wT models [3], [4] also used the Lagrangian beam de-

spread application due to their inherently wide bandwidtiigription so that they too would predict saturation. A modern

and thgw high-frequency high-power operating points. A Corpliifrequency code using such a Lagrangian description is
promising feature of the TWT (and the solid state amplifiei}nristine 1-D 5], [6].
is the nonlinear behavior of the device. The nonlinearity man- |, this paper, we derive a new one-dimensional (1-D) non-
ifests as a saturating mechanism and spectral distortion. Bgffgar multifrequency Eulerian TWT model, the multifrequency
of these effects limit the efficiency of the TWT. For eIectronlgpectra| Eulerian (MUSE) model. We also derive a Lagrangian
countermeasures, distortions put power into harmonics with@sk” model, Lagrangian TWT Equations (LATTE), from the
concomitant, undesired reduction of power at the intended driygme initial equations for comparison purposes as well as to
frequency. For digital communications applications, the distoemonstrate the theoretical relation between MUSE and a disk
tions increase bit error rates, and this limits data rates. model. A simplified MUSE model, S-MUSE, more suitable for

Reducing nonlinear distortions in TWTs would increasgnajysis is also derived. These three models are compared to
efficiency of electronic countermeasure systems, and Wowgch other and Christine 1-D for a set of TWT parameters which
increase data rates and efficiency in digital communicatiogges pased on the Hughes (now Boeing) 8537H L-band TWT
applications. These objectives provide strong motivation f@esign. The comparison to Christine 1-D is particularly useful
approaches to understand nonlinear distortion mechanismsiifce this code is widely known and used, and it has been val-
TWTs. o o _ idated against experiment for the Hughes TWT [7], [8]. The

The nature of the distortion in TWTs is “intermodulationgnlinearities of MUSE and LATTE are compared, and an ex-
distortion.” For steady-state input signals with multifrequencympie of how MUSE can examine fundamental distortion mech-
content, an intermodulation product of ordé€rfor frequencies gpisms is provided. We also study how the dimensions of the

fi, f2, ..., fpis of the form MUSE model and LATTE scale with number of frequencies,
an important issue for assessing the use of MUSE as a numer-
rifitrefet o +refe ical tool. Next, we discuss the relation of the MUSE model to

the “method of collective variables” in free-electron laser theory
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[12] and DeGrasse [13] considered two input frequencies amthere z is axial distancef is time, V' is transmission line

their harmonics. The group of Dattt al. have published a voltage, I is transmission line curreng is the space charge

collection of articles using an approximate third order nonlineatectric field,v is electron beam velocity, andis the volume

multifrequency Eulerian TWT model [14]-[16]. Their workcharge density of an electron beam with cross-sectional area

focuses on approximate analytic solutions to cases with a sméall The « denotes convolution and this allows for frequency

number of input frequencies, including studies of harmontependence of circuit and beam parameters. The functipns

generation and harmonic injection. The complexity of thefi,, andR are the inverse Fourier transforms

approximate solutions increases substantially with increasing f(( 2. fowo)

numbers of tones. In contrast, the MUSE model is a system of hi(z, t) =F~! {%}

first order ordinary differential equations that can in principle Uph (2, fowo)

handle an arbitrary number of tones. MUSE is the first “exact” 1

steady-state nonlinear Eulerian model in that it makes no ha(z, t) :.7-"1{ = — } )]

approximations in the nonlinearities. The S-MUSE model is an K(z, fewo)tpn(z, fewo)

approximate model that makes different approximations than (=

other models in the literature. Rz t) =7~ {R(z’ f‘wo)} 8)
The fundamental Eulerian equations used to derive MUSfhere the functions (z, Fewo), Tpn(2, fewo), andR(z, fowo)

are similar to those Pierce used for his linear single frequengye frequency domain circuit interaction impedance [17], cold

theory. However, our equations are nonlinear and accommodgi@uit phase velocity, and space charge reduction factor [18],

signals with multifrequency content. Our starting equations afgspectively. The inverse transforms apeeriodicfunctions of

the same as the equations used by Deitt&l. except that where ; and are functions of to allow for spatial variation of circuit

we use the continuity equation, they use an integral of the cQflzrameters. In the remainder of the paper, notation of:tHis-

tinuity equation by assuming that x B = 0 for perturbed pendence is suppressed. The constants , ande, are electron

quantit?es in Ampere’s law. _ charge, electron mass, and permittivity of free space, respec-
Section Il presents the models to be considered. We deryg|y.

the MUSE model and discuss its numerical Solution, discuss thq:c)r reasons that will be made clear |ater, we first make the
disk model LATTE whose derivation is given in Appendix |, an@¢ggrdinate transformation
derive the S-MUSE model. The models are compared to each 1 0
other and Christine 1-D in Section Ill. In particular, we look at [z} = [wg ] {7} ) 9)
. . . 1/} e —Wwo t
power versus axial distance, a constant of the motion and the Uo
issue of electron overtaking. Section IV discusses the nonlifiken

(6)

earities in MUSE, the dimensional dependence of MUSE and 9V wo OV . or (10)
LATTE on simulation parameters, and the relation of MUSEto 92— wo 99 —°'' " 8y
the “collective variable” theory of free electron lasers. Section V oI OV wn OI P
indicates the applications of S-MUSE and Section VI concludes — =—wgho *x — — D4 Awg Ip (12)
th 0z oY wug OY oY
e paper.
OF oF
9gE__wor P (12)
II. TWT MODELS 0z ug 0P €
I
A. MUSE vgv:%hl*g——k ‘ R*E+w0<1—i>g—v
1) Derivation: For the MUSE model, the helix is modeled Z e Y me uo ) O
as a lossless transmission lirend Eulerian equations are used (13)
for the electron beam. In particular, the time domain model 9p v\ Op ov  wy Ov
: V— =Wy - = —p|l=*+— - (14)
equations are 9z up ) 9 9z ' ug O
oV oI We assume all inputs to the system (signals &t 0) are peri-
e hy * 5 (1) odic int with fundamental frequenay,. This implies that so-
z lutions as functions ofz, t) are periodic int with fundamental
o1 — hy % ov A 9p @) period2w /wy and that solutions as functions@f, ) are peri-
0z ot ot odic in ) with fundamental perio@r.
oE _p 3 For a functionz(z, ¢) periodic iny we use the Fourier series
s () relations
(9_’() +v @ __ ¢ hy * g + € R+ E 4) x(z, ) = Z :ftp(z)eif/w (15)
ot 0z Me ot m, oo
ap ap ov ~ 1 / —ife
- -, 5 To(z) = — x(z, YP)e dy (16)
8t+vaz paz ©®) (=) 27 Jor ( )

where thef, are integers indexed b The set of frequencies

1L osses are incorporated in all of the models in the dodBTE/MUSE Nu- {2} 1S chosen to be the frequencies with nonzero Fourier co-
merical Suite The code is available at http://Imsuite.org. efficients, thus{ f,} is the drive frequencies together with the
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frequencies produced from nonlinear interactions. We index tame can show for the linearization of (18)—(22) that, up to a very
frequencies so that_, = — f, and f,,, > f, for m > n. Since small correction, (23) ensures that only the three forward waves
our functions are real valued of Pierce theory are excited [19]. If one includes modulations
on beam quantities, (23) is still the appropriate relation between

T = ay. @n - >
) ) . ) initial voltage and initial current so that only forward waves are
Computing Fourier coefficients of (10)—(14) gives the MUS%xcited
quel ) ) . The circuit power at angular frequeneyis due to both the
dVe _ _ifewo o ifewoK(fewo) i (18) Positive and negative frequencies, so
dz U Uph (fewo) ~ - o
. | | P.(2) = - [V () + Vi)L()] . (29)
dly i frwo v, i fowo Do+ ifowoAp
dz = K(fowo)ipn(fawo) o tewoApe The negative sign in (24) is due to the form of the telegrapher
(19) equations which are chosen to be consistent with [19]. Given
~ input powerP,,(0) and phase),,(0) atw = fwy > 0, the
dE N - ~ e . . .
alie _ _ifewo B+ Pe (20) initial value of circuit voltage is
dz (N €0 —
> 7e(0) = | LK) oo
Uy —— 2
m,n dZ ~ ~
FtFr=Fe V_g(O) = VZ (0)
- WM I+-< R(fowo)E¢ + ifowoie If there are (periodic) modulations on any of the quantities
me”ph(fﬂ‘*’o? Me at the input, one can calculate the proper initial values using
_ Z i fnwo i 1) (16). Otherwise, fot # 0, E, = v, = p, = 0. Also, one has
m,n ) 170(0) = Ug, ﬁQ(O) = pPo, and‘/o =1y=FEy=0.
fmtfn=fe By treating this problem as an initial value problem with
_ dpn the described initial conditions, we are assuming a perfectly
Z Um=r > matched load and no reflections. When a sever and a mis-
Pt ity matched load are included, one must treat the problem as a

‘ _ ifwg o di,, - boundary value problem and use an iterative scheme such as a
= tfowope — .uo Z Um Pn — Z 42 P shooting method [20, Ch. 17]. In the boundary value problem,
the relation of circuit voltage to circuit current at the input [cf.
(22) (23)] will be determined as part of the solution to be consistent

with the reflections.
where—oco < ¢ < oo. We have used that for(z, 1) and

m,n m,n
Fmtfn=F fmtfn=Ff

y(z, v) periodic, multiplication becomes convolution B. LATTE
F - -
z(z, P)y(z, ¥) «— Z T (2)Gn(2). Appendix | derives LATTE starting from (10)—(14), which
£ :’}‘n’fjrfn are the same equations used to derive the MUSE model. Compa-
The summation notation should be read asrf over integers "aPle multifrequency disk models are well known, e.g. [3]{5],
m andn such thatf,, + f = fo.” [21], but the derivation in Appendix | is unique in the way it rep-

2) Method of Numerical SolutionFor practical implemen- resents the method of characteristics as a general transformation

tation one neglects higher frequencies and lintiite —\/ < Detween Eulerian and Lagrangian coordinates. _

¢ < M. Then, the MUSE model hag2} + 1) complex equa- The tr_ansformauon reveals interesting information about

tions. the relation between MUSE and LATTE. For example, the
During integration of the MUSE model, one needs to solJedgdrangian continuity equation [(46)] is often written as (see,

(21) and (22) for the derivative, /dz anddj,/dz. Equations ©-9- [17, p- 302])

(21) and (22) for—M < ¢ < M are the linear systems

SW’I} - b'u
Sw, =b, wherel is beam current; is time, I is initial beam current,

andt, is the Lagrangian initial time. However, it has not been
pointed out in the microwave device literature that

Idt = Iydty

wherew,, w,, b,, andb, are2M +1 vectors and is a(2M +

1) x (2M + 1) matrix. The/th entries ofw, andw, aredv,/dz

anddp,/dz, respectively, théth entries ob,, andb, are equal dt_Io

to the right-hand sides of (21) and (22), respectively, andtthe dto T

row andnth column entry oS is v, wheref,, + fu = fe. is the Jacobian of the transformation from Lagrangian to
We choose the relation between the initial value of the CIrCYH lerian coordinates. We use this fact in Section II-C to

current and the initial value of tr~1e circuit voltage as examine when electron overtaking occurs. Appendix | also

70 = — Ve (0) identifies a constant of the motion for MUSE and LATTE given

I( )_ f((flwo). ( ) in (53).
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C. S-MUSE TABLE |

Lo . e . 8537H RARAMETERS (CONSTANT PITCH SECTION)
1) Derivation: A simplification of MUSE results in the
S-MUSE model. S-MUSE is easier to analyze than MUSE

i R > g ] - VIR Parameter Model Value
while it retains important nonlinear physics. The simplifications Helix mean radius 0.2353 cm
are Helix wire width 0.0305 cm

1) approximatingy(z) andvg(z) as constantgy andug; Pitch 0.13cm

2) neglecting the ac portion of velociiy the convective Cathode voltage 3.1kV

derivative,i.e., lettinguv(9/0z) =~ uy(9/9z); Beam current 65.5 mA

3) ignoring nonlinearities higher than second order in the Min. beam radius 0.0962 cm

continuity equation. BN (<, = 5.4) support rod 1.21
Since we have made the transformatient) — (z, 1), some smeared permittivity

of the nonlinearity of the convective derivative is retained, i.e.,
the original v(0/0z) term [as seen in (4) and (5)] splits into _ )
0(9/92) + v(wo /uo)(9/94) and we only linearize the first of Equat|o_n (30) shows the S-MUSI_E mod_el in \{ector fo_rm asa
these two nonlinear terms in (13) and (14). This is the motivg4m Of & linear term and a quadratic nonlinearity. In this form,
tion for introducing the z, 1) coordinates in (9). The S-MUSE they are well suited for a type of perturbation theory where the

model is zeroth order solution is that of a linear system.
Ve ifewo o ifewoK (fowo) -
=— Vi— — I (25) l1l. N UMERICAL EXAMPLE
dz Ug Uph(fewo)
Ji . ., In this section, we consider a numerical example comparing
e Zf{“jo AL i fowoApe the models amongst themselves and Christine 1-D. First, we
dz K{(fewo)vpn( fewo) to look at circuit power as a function of axial distance. We use
(26) LATTE as a benchmark and present deviations in decibels of the
- ; ~ other models from LATTE. For the simulations, we also check
dEy — ifwo = | pe . ;
= a E¢+ o (27) the constant of the motion (53) and compare the terms making
o 0 up the constant of the motion. For the case of one drive fre-
dig _ i fowoe K (fowo) i+ e R fowo) B guency, we consider the question of electron overtaking and its
dz  mougbon(fowo) ' meug 0T correlation to the deviation of MUSE from LATTE. Lastly, we
1 ) o discuss practical issues concerning the choice of frequencies for
3 Z w0V Un (28) 4 simulation comparison with Christine 1-D.
0 m#0, n£0 ; ; ;
iy Saa For our numerical study, we simulate one constant pitch sec-
~ tion of the 8537H TWT with no sever or circuitloss. The param-
dpy _ ifowoepo K (fowo) i, _ _¢pro R(fuwo)E eters for the 8537H are taken from [7] and are shown in Table I.
dz Mmeudion(fowo) — meu2 YT For the frequency dependent parameigsig frwo), K (fiwo),
i fewopo - e i frawo K (frnwo) and R(fewo) we use the outputs of Christine 1-D's tape helix
I I e Z T o fm@e model and space charge reduction factor calculation. These pa-
0 ero ?‘ﬁof’"f]? pham rameter values ensure that MUSE, LATTE, and S-MUSE use
. e e ) the same dispersion parameters as Christine 1-D.
I pn — P Z R(fmwo)Em pn The set of frequencies includes two drive frequencies, the
oo ?ﬁofsnjﬁ second-order products, and the third-order intermodulation
e . (3IM) frequencies2f; — f» and2f, — f;. Table Il lists the
Po , - ifewo . . ) : ) .
+ = Z 1 fnWoUmUp — —— Z Umpn frequencies and dispersion parameters (drive frequency data in
Y0 1,0, nsto U0 040, nst0 bold).
fm+fn="Ffc fm+fn=f

The calculations are done using a fixed step fourth-order
(29) Runge—Kutta integrator.
where—M < (¢ < M, L #0.

2) Vector Form: The S-MUSE model (25)—(29) may beA. Power Versus Axial Position
written in the following vector form that is particularly useful

) In Fig. 1, we plot axial power of the drive, harmonic, and
for analysis:

3IM frequencies for the MUSE model and LATTE. The models
% = Ax + H(x, x) (30) agree extremely well for a majority of the TWT length, but there

is disagreement between the models at saturation. For a quan-
where x is a §2M)-dimensional complex vector, titative comparison of all of the models, we plot decibel differ-
A is a 5(2M) x 5(2M) complex matrix, H is a ence of the models from LATTE. Figs. 2—4 show the decibel
5(2M) x 5(2M) x 5(2M) complex 3-tensor, and overdotdifference from LATTE for the drive frequencies, harmonics,
represents/dz. The detailed specification and indexingof sum frequency, and the 3IMs respectively. For each model, the
A, andH as well as a formula to compute the components @ifequency pair having the largest maximum deviation is repre-
x are found in Appendix . sented in the figure.
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TABLE I ' ‘ ' ' ' ' i
SIMULATION FREQUENCIES ANDDISPERSIONPARAMETERS o ——— MUSE - 3.202 GHz (Harmonics)
s w [ S-MUSE - 3.202 GHz
f(GHz) K (Q) #pn (x10™m/s) R = 4-  —— Christine - 3.200 GHz
0.001  365.40 3.2845 0.00100 <
1.599 225.13 2.9983 0.04529 e 2
1.600 224.98 2.9980 0.04535 g
1.601 224.82 29977 0.04540 3 0
1.602 224.67 2.9974 0.04545 q‘:,
3.200 42.68 2.6460 0.14945 o2
3.201 42.62 2.6459 0.14952 %
3.202 42.57 2.6458 0.14959 % -4
-6
or | | 2 0 ‘ m ‘ 2 30 ' 40
. k/IAUTSTEE /: Axial distance (cm)
30 Fig. 3. Decibel difference of harmonics and sum frequency from LATTE
= ) versus axial distance.
% 10+ DI‘IVGS\
) 6 j T i T ' T H
= d
S 10k Carmonics - S MUSE - 1.602 GHz (3IMs) |
™~ an o S-MUSE - 1.602 GHz H
Il }it  —— Christine - 1.602 GHz "
-30 3IMs
2 [
50 L { L

0 10 20 30 40
Axial distance (cm)

Fig. 1. Power versus axial distance for LATTE and MUSE.

dB difference from LATTE
[

8 ‘ ‘ . | : | —

- —-- MUSE - 1.601 GHz (Drives) i L , [ ,
b T S-MUSE - 1.601 GHz If 0 10 20 30 40
—— Christine - 1.600 GHz i Axial distance (cm)

I Fig. 4. Decibel different 3IMs from LATTE versus axial distance.

Sk "' | confirms that growth rates of LATTE, MUSE, and S-MUSE are
; the same, even though we see that S-MUSE is less accurate than
I r] MUSE, especially for the higher order nonlinear products.
0 o - - —— s Finally, we see the difference between LATTE and Christine
] 1-Dis <2 dB, <3 dB, and<5 dB in the drives, harmonics, and
I . 3IMs, respectively foe < 35 cm. One sees from Fig. 2 that the
30 40 linear growth rates of the drive frequencies are slightly different
for the two models, which results in a disagreement of predicted
Fig. 2. Decibel difference of drive frequencies from LATTE versus axigbower between the models which grows with axial distance. The
distance. difference in gain predicted by the two models is about 1.5 dB
out of 72 dB. The differences in the nonlinear products are likely
For smallz values, Figs. 3 and 4 exhibit large fluctuations imlue to the nonlinear amplification of the differences in the drive
the decibel difference from LATTE for the harmonics and 3IMdrequencies.
respectively. However, the numbers being compared are vengince Christine 1-D has been validated experimentally [7],
small and are below the numerical noise floor of the computtie disagreement between LATTE and Christine 1-D raises the
tions. The differences between the harmonics converge befqreestion of experimental validation of LATTE and MUSE. To
the differences between the 3IMs since the harmonics needatidress this question, we studied the sensitivity of the output
rise above the numerical noise floor before the 3IMs may rigwwer on certain input parameters. For the present case, we
above the numerical noise floor. Foe= 5 cm, steady-state dif- found that less than a 1% change in beam voltage can pro-
ferences are achieved in both figures. duce a 1-dB difference in output power, and a 10% change in
Inspection of Figs. 2—4 confirms that the agreement betwetsmeared” relative dielectric constant can produce more than a
LATTE and MUSE is very good prior to the onset of saturatio@-dB difference in output power. In [7], beam voltage and rel-
(roughly z < 35 cm). Up toz = 30 cm, the discrepancy is ative dielectric constant were changed by more than 8% from
less than 0.1 dB. The constant level of the nonlinear produditeir experimental values. Therefore, we observe that the input

dB difference from LATTE

2 L | L |
-0 10
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- e ' \ ‘
parameters to our models could be changed within the same 7% ' l T

bounds used in [7] to match Christine 1-D results.

6e-06 [ =R -
B. Constant of the Motion £ ~
Appendix | shows that the total energy density (53) is a con- 35@06- \'\ 4
stant of the motion for MUSE and LATTE when circuit pa- % ‘-\ ]
rameters are independent of axial distance. This is confirmedin? , 1 : kﬁg‘} ']
Fig. 5, which also shows the energy density for S-MUSE. Since fé’ == S-MUSE i
S-MUSE is an approximation to MUSE, one would not expect =

(53) to be a constant of the motion. However, as seen in Fig. 5, %[ K
S-MUSE predicts the value to be constant uati 30 cm. r 1
Having a constant of the motion can be a useful aid in an  2e-06; : m : 5 : 5 ; 20
investigation of the physics in a model. For example, while Axial distance (cm)
LATTE and MUSE predict the constant of the motion, MUSE ) o
does not exhibit a saturation (see Fig. 1). This suggests that ffe>  Constant of the motion versus axial distance.
partitioning of the energy density is not consistent between the
models. In Fig. 6, we see that the energy density in the circuit ' ‘ ' ' ‘ *
guantities of MUSE continues to rise where that of LATTE satu-  6c-06
rates. We also see that the beam kinetic energy density continue
to decrease in MUSE where in LATTE it reaches a minimum
and starts to increase. Additionally, there is a difference in the
energy density in the space charge field not shown in Fig. 6.
Thus, the energy density terms from the constant of the motion
reveal another view of the deviation of the models. Furthermore,
the constant of the motion provides a means of checking the = . /
error in numerical calculations. A7

&
=
>

T

—— Beam - LATTE
== Circuit- LATTE
— Beam - MUSE
---- Circuit - MUSE

nergy density (J/m)
g
&
T

C. Electron Overtaking . I . ! l !

0

Nordsieck’s Lagrangian formulation was motivated by the Axial distance (cm)
fact that “electrons overtake one another at or even considerably . densities in circuit and b i o LATTE
before the point along the tube where the limiting power level _E??d &Usé‘_eé%rg‘ilnjgf;t';iﬁ'rs‘:;e"tcznch af;emﬁgfgsn“;t auia oistance for
obtained,” [2] in which case Eulerian functions become multi-
valued. However, Paschke wanted to “dispel the widespread be- . . . i .
lief that, because of overtaking, the hydrodynamic model myfidl Position at which overtaking first occurs. Computing
break down at large levels” [22] with nonlinear Eulerian treat/ SUCh as in Fig. 8, one can precisely determine the exact
ments of electron beamisSince LATTE and MUSE come from Xial position where the overtaking starts. _
the same “hydrodynamic” equations, they are ideally suited to 10 study |_f there is a correlation between elect_ron ove_rtaklng
consider overtaking and its role in the deviation of MUSE frorﬁnd the deviation of MUSE from LATTE, we consider a simula-

LATTE. tion of one drive tone af = 1.6 GHz with the drive level such
The Jacobian of the transformation from Lagrangian ttg_at saturation occurs at = 39.5 cm. Detailed inspection of
Eulerian coordinates is (39) Fig. 8 reveals thafl = 0 for one value ofi) atz = 36.43 cm.
Detailed study of Fig. 9, which shows a closeup of the point at
ov which MUSE and LATTE deviate, reveals the position of the de-
J= EX viation to be roughly: = 36.3 cm. Therefore, it seems that the

~ deviation of MUSE and LATTE is correlated to electron over-
If .7> 0 for all ¢ at somez, then the electron beam, whiletgking.

perhaps bunched, retains the same “disk ordering” (in time)jt js also interesting that the Eulerian model of Dagtaal.

it had atz = 0. On the other hand, if for somé, v) we [23] exhibits saturation for the cases they consider. The discrep-
have J <0, then some disks in the beam have exchang@fcies between the Datta model and MUSE will be a subject
positions. Thez at which electron overtaking occurs is suckyf future investigation. Future studies will also attempt to use
that.J = 0 for exactly one value ofy. Beyond thisz value recent developments in numerical analysis for computing mul-

J(z, 1o) has exactly two zeroes iy (for simple overtaking). tivalued solutions of Eulerian functions [24] to enable MUSE to
While overtaking can be observed on a disk trajectory plgimuylate charge overtaking.

such as Fig. 7, it may not be possible to establish the exact

2The view taken in this paper is that the Eulerian and Lagrangian models Qe Choosmg Simulation Frequencies

both “hydrodynamic,” i.e., they describe the electron beam as a fluid. However, r implementations of MUSE. S-MUSE. and LATTE allow
the functions in Lagrangian coordinates allow for the fluid to “fold” over o ’ ’

itself. Only when one seeks approximate numerical solutions to the Lagrang;tg}? user to choose any frequgncy that is an integer multiple
equations does one get a “disk” model. of the base frequency. Alternatively, there are two methods of
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harmonic frequencies that are spaced by the difference fre-
quency would be included. Therefore, the Christine 1-D code
provides an integet which allows the user to specify an array
for frequencies close to the drive frequencies only, and creates
2 ] n “harmonic windows” which are frequency arrays containing
harmonics of the specified frequency array. The frequencies
0 generated by the use of the harmonic window function may

i " include additional frequencies that are not exactly harmonics
2r of the specified array.

I W The implications of Christine 1-D’s frequency selection
A4 \ method meant that in our Christine 1-D simulations, we did
_6' . | ‘ | , | , | not include the difference frequengy= 1.0 MHz. Also, due

0 10 Axial dis%gnce (cm) 30 40 to the use of the harmonic window function, we did include
a tone atf = 3.203 GHz. First, we discuss the effect of the
Fig. 7. Disk orbits versus axial distance. difference frequency, then the tonefat 3.203 GHz which is
not a nonlinear product of the drive frequencies.
Because of the frequency convolutions in the MUSE model,

Y (radian)

10— e " L B to predict the evolution of a particular frequency, in principal
I I — z=3343cm | all frequency pairs adding to the particular frequency need to be
8 P z=3493cm - accounted for. However, in practice only the dominant contribu-
[ --- z=36.43 cm . . . .
I P ——-7z=3793cm | tors are considered. For this example, we included the difference
6 ! \' mmz=3943cm frequencyf = 1.0 MHz since it had a 0.5-dB effect on the level

of the 3IM in the MUSE simulation.

To estimate the effect of leaving the difference frequency out
of the Christine 1-D simulation, we ran LATTE simulations in-
cluding and excluding = 1.0 MHz. For these simulations, we
observed that the level of the 3IM depends only slightly on the
inclusion of the difference frequency:0.05 dB). Hence, we
conclude similar behavior is likely in Christine 1-D. We do not

B S T S e show results for the 1.0-MHz signal since it is so far out of the
y, (radian) bandwidth of the TWT.
For f = 3.203 GHz, we ran LATTE simulations including
Fig. 8. Jacobian versus, for several axial positions. and excluding this frequency and found that the effect of in-

cluding f = 3.203 GHz is negligible £0.02 dB difference in
3IMs, less in other tones). Furthermore, preliminary analytic
results from S-MUSE indicate that amplitudes of intermodu-
lation frequencies are determined primarily by the amplitudes
of frequencies mixing to make the product. Therefore, since
f = 3.203 GHz is not related to the drives or intermodulation
frequencies, we expect that it will not have a significant effect.
For the difference frequency, we saw that even though it is a
nonlinear product related to the 3IM, it had a small effect on the
3IMin LATTE. An unrelated frequency can be expected to have
an even smaller effect.

In sum, we conclude that even though= 1.0 MHz was
excluded andf = 3.203 GHz was included in the Christine
1 1-D simulations, it is still appropriate to compare these results

> % Axial distance (em) to those of MUSE and LATTE. _
Finally, we discuss getting dispersion data foe 1.0 MHz

Fig. 9. Power versus axial distance for LATTE and MUSE. since Christine 1-D did not simulage= 1.0 MHz and, hence,

did not generate dispersion data for it. The circuit dispersion

parameters af = 1.0 MHz were calculated with an indepen-
choosing simulation frequencies in the Christine 1-D coddent tape helix solver and the space charge reduction factor is
First, one can have the code create an array of frequendisestimate based on the values for other frequencies. However,
between specified minimum and maximum frequencies spadembed on MUSE simulations, the prediction of the difference
by the base frequency. This method alone, however, wodléquency does not seem to depend on the dispersion parame-
make it impractical to include harmonics of closely spaceeérs atf = 1.0 MHz. This is consistent with preliminary ana-
drive tones since all frequencies between the drive and tlyéic results from S-MUSE which suggest that when a nonlinear

100

80

[=a}
=3

Power (W)
3

20
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product frequency lies out of the linear gain-bandwidth its am- | — MuUsE ‘ 2

plitude and growth rate are primarily determined by the drive IFF --- Density linearized 77

frequencies which mix to produce fit. ~=+= Velocity linearized i

_0.0001F o 3
IV. DISCUSSION z / S

A. Nonlinearities g Drive i l

. . . L 1e-08f Harmonic 0 B
The nonlinearities of the MUSE model are different than \ 7

the nonlinearities of LATTE. The MUSE model has quadratic | e |

nonlinearities that arise from the quadratic nonlinearities of  1e-12f- /,;.’f" =

the Eulerian electron beam equations. In contrast, LATTE

has quadratic nonlinearitie$/v nonlinearities, and complex 0 e 5 : > . 5 20

exponential nonlinearities. As the MUSE predictions agree Axial distance (cm)

with LATTE for a majority of the tube length, one can argue. o S )
that the nonlinear behavior in this region can be describ&?' 10. Power versus axial distance for partially linearized equations.
by quadratic nonlinearities. As discussed in Section V, the _ .

quadratic nonlinearity is easier to study analytically than tH& Dimension Scaling of LATTE and MUSE

nonlinearities in LATTE. The computation time of systems of ordinary differential
A quadratic nonlinearity in the time domain becomes a coBquations (ODESs) such as LATTE, MUSE, and Christine 1-D
volution in the frequency domain, as seen in the MUSE modgépends on the number of state variables in the simulation, i.e.,
(18)—(22). This allows one to observe the origin of harmonige dimensionof the model. (The dimension of the model is
and intermodulation frequencies based on the nonlinear comédual to the number of coupled ODEs in the system, and hence
nations of beam velocity and density. As a brief demonstratieual to the number of derivatives that must be calculated at
of the physical insight to be gained from this fact, we consideach step of the integration.) The dimension of the MUSE
alternately linearizing andp in the derivation of the MUSE model depends only on the number of frequencies; however,
model from (1)—(5). We use the equations resulting from thRe set of frequencies in a simulation must be chosen with care
“partial linearizations” to examine whether nonlinearities intp assure that all nonlinear product frequencies are accounted
volvingv or nonlinearities involving in (4) and (5) play alarger for correctly. In a disk model the majority of the dimensions are
role in producing distortions. those accounting for the disks. The number of disks depends
In both partial linearizations, since (1)—(3) are lineagn several factors which we will discuss. To simplify the
(18)—(20) are reproduced. If we linearizein (4) and (5), discussion, we consider the dimensions of MUSE and LATTE,
make the coordinate transformation (9), and compute Fouri@lting that other disk models will have similar behavior to
coefficients, we get instead of (21) and (22) LATTE.
. LATTE has six complex dimensions per simulation frequency
? _ ’ifzcijoeK(fewo) It — R(fuwo)Ee  (31) plus 2V real dimensions for the disks. MUSE has ten complex
2 meUpn(fewo)uo MU dimensions per simulation frequency plus five dimensions for
s 1 b, ifawo . the DC quantitie;. _
- Z Pm {E + " vn] . (32 To compare dimensions (_)f LATTE to MU_SE, one needs a
i} 0 0 formula for the number of disks based on simulation parame-
ters. An estimate for computing the number of disks is given
Notice thatdjo/dz # 0. in the Christine 1-D documentation [5]. Depending on simula-

Similarly linearizingp reproduces (21) and from (5), one get&ion parameters, the number of disks may need to be increased
to obtain convergence of results. We provide a version of this

m,n

fmtfn=fe

. dpn, . . 1 . o formula applicable to LATTE here. V},.s is a “base” number
> im 1 = Wewope = "o D ifnwolmpn of disks, N the number of tones in the simulation, aig; is
Fot bt Pt oty the number of harmonics present, then a starting point for the
die  ifowo - number of disksV in a simulation is given by
- | . @)
N = 1.5Npase Nf Nz (34)

In (33), it is understood thaipy/dz = 0.

Fig. 10 shows the result of integrating the MUSE modat is suggested tha¥,... initially be chosen near 19 and that the
(18)—(22), thev-linearized equations (18)—(20), (31), (32), andhoice of N,.s. always be a prime number.
thep-linearized equations (18)—(21), (33) in the 8537H constant To understand the dimensional dependence on frequency of
pitch section for a drive frequency ¢f= 1.6 GHz. Linearizing MUSE, one needs to account for the fact that to simulate a non-
the velocity reduces the level of the circuit harmonic more thdimear product frequency, one may be required to simulate fre-
linearizing the density. Therefore, the velocity has a larger rolgiencies one is not directly interested in. For example, due to the
in producing the harmonic. This observation appears to be validquency convolutions in the MUSE model, to simulate 3IMs
for many cases. one needs to track all pairs that sum to these frequencies. Thus,
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to simulate the 3IM2f; — f» and2f, — f;, one needs to ac- (b)
count for2fi, 2f2, f1 — f2, andf, — f1 in addition to the drive 30F -
frequencies. Eool q{ i
For the example presented, we have °
” i
Npase =19 0 T T?
Ny =38 @
NH = 2 E-ZOw e o N
N =456. Q
P
E
Thus, the dimension of LATTE is 960 (912 real, 48 complex). m ‘ Tﬂ T m [ , }; T TH H {mf [_
1

.64 1.65 1.66 1.67

i i 1.63
For MUSE we have 85 complex dimensions. Frequency (GHz)

As an example of using MUSE in cases with many frequen-
cies, we |r_10Iu_de res_ults (_)f a S|mulat|o_n modeled after the noisg. 11. (a) Input and (b) output spectra of a simulation with 402 frequencies.
power ratio simulations in [8], but using the lossless, constant

pitch_TWT parameters from Section III._The input Spec””_'ﬂ'\eory one does a derivation similar to Section Il. In particular,
consists of 101 evenly spaced frequencies (0.4 MHz spacings \;ses the Eulerian electron beam equations, neglecting space
with a 3 MHz notch at the center. The total number of freque@f1arge and a wave equation for only a forward wave. The

Cles wuen accounting for all lsurg and d|ﬁere_nceJrequdenC||esrgsU|t is a system that closely resembles (after normalization) a
402. The nonzero input amplitudes are assigned randomly B itrequency collective variable model that does not need to
tween—20 dBm and—30 dBm. The input and output spectr

oo e : %e “closed.”

ahre shown :jndF]:fg. 11. NfOt shown in Fig. 11 ;]S the spe.ctrulm.atUSing the change of variable equations from Eulerian to La-
the sum an drfierence frequencies. Since the TWT simulati Pangian coordinates one finds that the second collective vari-
parameters did not include circuit loss or a sever, the output e of [9] is related to beam current. Thus, by taking moments
taken at: = 26 cm. The simulation ran for 5 h and 40 min 0fy,o (gjjective variable method misses having a collective vari-

a1.3-GHz Gnu/Linux PC. As yet, there has been no attemptigq for electron beam velocity. This is the primary difference
optimize the speed of the code. between the approach of [9] and the MUSE approach.

C. Relation to Method of Collective Variables

V. ANALYSIS USING S-MUSE

In this section, we compare MUSE to a collective variable . .
model, and we outline a method for developing a MUSE type The S'MUS_E model has aform ame_nable_ to analysis and in-
model for free-electron lasers (FELS). Since the TWT may Eéghts..ln paf“"“'a“ the quadratic ”°”"T‘ea“t.y. of the S-MUSE
described by the same “nonlinear pendulum” equations as fRadelis easier to analyze than the ponhnean'ues qf LATTE and
FEL, e.g., [26], we propose that the prescription would resultﬁpables_a new view of the generation of harmonics and inter-
a useful multifrequency analysis and simulation tool for FELé..nOOIUI"’ltlon _products. . .

The majority of the initial collective variable work was done Under suitable condmor_ls, the S.'MUSE model in the vector
for single frequency excitations, where “in the presence of mJgrm (30) can be solved with a series solution
tiple frequencies, it is extremely difficult to obtain a descrip- oo
tion of FEL dynamics in terms of a reduced set of equations x = Z x(@)
involving collective variables” [27]. With some simplifications a1
and normalizations, the MUSE model can be transformed into
such a multifrequency collective variable model, applicable athere each vectox(®) satisfies a differential equation that is
least in the exponential growth region and potentially into tree linear system forced by quadratic terms formed by combi-
oscillation region. nations ofx(?) with 3 < «. For example, the drive frequen-

The method of collective variables [9] involves first definingies are inx(Y) and they combine quadratically to force the
the “bunching parameter,” the first collective variable, as thgifferential equation fox(® so as to cause second harmonics
complex exponential average over particle phases, then differx(?). These second harmonics, in turn, combine nonlinearly
entiating the definition which results in an equation containingith the drive frequencies to force the differential equation for
a higher “moment.” One defines this higher moment as the next®) so as to cause third order intermodulation frequencies in
collective variable and differentiates this definition to get ar(®). Further intermodulation frequencies appear as the process
equation which contains the next higher moment. At this poirgpntinues. The key point is that intermodulation frequencies of
arelation is employed to “close” the system of equations.  interest are generated in a systematic analytic procedure by the

In contrast, the MUSE model recognizes the first collectiveffects of successive quadratic nonlinearities in the differential
variable as the Fourier coefficient of the electron beam chargquations forx(®). By identifying the growth rates present in
density, and defines a “second collective variable” as tliee equations at each stage, the maximum growth rates of har-
Fourier coefficient of the electron beam velocity. To get monic and intermodulation frequencies can be predicted from
multifrequency “collective variable model” using the MUSHormulas [28]. The results from these formulas can differ from
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the conventional rules of thumb for narrow band TWTSs that pre- APPENDIX |
dict that third-order intermodulation frequencies are three times LATTE MODEL
the drive frequency.

This view from S-MUSE of the origin of harmonic and in-
termodulation frequencies also suggested how appropriate
monic injections could advantageously modify intermodulatio
frequencies._ln particular, it predicteq that large r_eductions }Q Derivation
intermodulation products during multifrequency drive could be o ] )
realized by injection of the second harmonic at the right phase! "€ Eulerian independent variables are ), wherez is
and amplitude. This effect has been confirmed by experiméhfid! position and is phase. The Lagrangian independent vari-
[29]-[31]. ables arg z, 1), wherez is axial position and), is the phase

position of a fluid element with respect to the stream wave
when the fluid element is at= 0. ¢y and take values from
VI. CONCLUSION 0 to 2r.
We have derived a new nonlinear multifrequency Eulerian The transformation from Lagrangian to Eulerian coordinates

TWT model, the MUSE model. The MUSE model differs fron{> 9'V€N by functionsZ and¥
other available nonlinear multifrequency Eulerian models in
its suitability for analyzing larger numbers of input tones. The [7} _ {Z(Zv 1/’0)] (35)
MUSE model also has some similarities with the method of Y] L0z, 1)
collective variables in FEL theory [9], but one of the “collective
variables” of the MUSE model is a Fourier coefficient ofz(, ) is the axial position of fluid element, at z so
beam velocity and the MUSE model does not require a closure
relation.

To enable a direct comparison with Lagrangian methods, a Z(z, o) = 2.
Lagrangian “disk” model LATTE is also derived. MUSE and
LATTE show excellent agreement before saturation when siff{z, o) is the phase position of fluid elemegng with respect
ulated on a constant pitch section of the Hughes (now Boeiri§)the stream wave at
8537H TWT. The discrepancy between MUSE and LATTE be- A function " of Eulerian variable$z, v) is transformed to
gins at the start of electron overtaking, which can be quantifiéfunctiong™ of Lagrangian variablez, 1) using
by singularity in the coordinate transformation from Lagrangian
to Eulerian coordinat.es. Also, results for LATTE (and, hence, g% (2, o) = g% (Z(z, o), ¥(z, 1))
MUSE before saturation) for the TWT parameters used are com- Bz, U(z, o)) 37)
parable with the Christine 1-D Lagrangian simulation (Christine g% A
has been previously validated against experiment on the 8537H

This appendix details the coordinate change that derives the
Labgrangian “disk” model, LATTE, from the Eulerian equations
))—(14).

(36)

TWT [7)). The linearization of coordinate transformation (35) is the ma-
The relative contributions of different nonlinearities in thd"X

MUSE model to harmonic and intermodulation distortions 1 0

are demonstrated by simulating with selected nonlinearities oV HT (38)

removed. In the constant pitch TWT example, the nonlinearities 92 Do
due to the velocity contribute more strongly to the formation 0
of harmonics than the nonlinearities due to the density. In th@d its Jacobiad is the determinant of (38)
example studied, MUSE has about one-fifth the number of
equations compared with a Lagrangian model such as LATTE, O
but this difference in the number of equations is not sufficient to = o’ (39)
suggest a speed advantage of more than one order of magnitude
in simulation of this example with MUSE. However, as th%artial derivatives transform via
number of frequencies increases, there is potential for such a
speed advantage. -1
The MUSE model has only quadratic nonlinearities, whereas [ 9 9 7] 0 1 0
Lagrangian models such as LATTE have more complicatednon- | 5, 94 ] - [ 9z o ] a_\p o - (40
linearities. Indeed, a simplification of the MUSE model called 9z o
S-MUSE is well suited for analytic purposes. The growth rates
of S-MUSE agree with MUSE results in the example given, but Consistent with the method of characteristics, we take
there is a significant difference in the power prediction, particu-
larly in the 3IMs (~40%). S-MUSE has the form of vector dif- oV wo (1 uO)

ferential equations with linear and quadratic terms and we have Jz g vl
k?”eﬂy 'nd'ca_ted how insights into harmon'cl and intermodula- 3The “stream wave” is a hypothetical wave of frequengytraveling with
tion generation, growth rates, and suppression can be pursusgkedu,.

(41)
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then the convective derivative [iz, 1)) coordinates] becomes dE, ifowo = 1 1 Io(tpg)e T2V (2 %)
S = — dijy
dz Ug €A 21 Jor v(z, o)
ovF vF ovF ov® (50)
B — 1) — =" —. 42
Y oz +w0<u0 ) oY Yo, (42)

Applying the derivative transformations in (40) to the conti- 9z v —
nuity equation (14), one gets

o 1 X ifuwoeK (fuwo) -
- Z — I
MeDpn (frwo)
+ - R(fZWO)Eg} eiff\p(zaﬂ'/‘o) (51)
a—\Ij avaL = —W i aLL Me
(91/}0 82 - 0 ’UL 811)0 .

(43)

0z wpg

ov  wo ( uo) . (52)

v
Taking 9/0v, of (41), one gets
These equations are valid for an arbitrary periodic electron beam
g 0¥ wp ov® (44) modulation. Equations (51) and (52) are ordinary differential
Dz Mpy  (vE)2 Oy equations parameterized By. For calculations, one represents
the beam as a finite number of “disks” and there are equations

Substitute (44) into (43) and integrate to get (51) and (52) for each disk. In this case, the integration gyer
—1fe V(2,0
a—\:[JPL’UL = K (45) i IO(/I/}O)e fe ( ¥ ) d?/)()
81/}0 2m J2m ’UL(z7 1/}0)

wherex is a constant of integration. We seby using the values becomes the sum
of pYv™ ando¥ /9y on thewy, axis [by definition¥ (0, ) =
which impliesoW /9, (0, = 1] which gives finall .
o p /0%0(0, o) ] g y 1 i To(tho;)e=iF1¥ s vos)
ow Io(1) N <= v (z, ;)
OV gt = g0, o)o(0. o) = 200 (s =
0o A

As a last point regarding the coordinate transformation, w& Constant of the Motion

change variables in an integral. Pulling the equation for theln Lagrangian coordinates, the time averaged linear energy

Fourier coefficient ofp back to Lagrangian coordinates (for density |
i ensity is
fixed z) one gets
1 4 me 1 v 1 o | K(fewo) 5 -
A Ep—ifed g, W=—"—1 I —d - [0
P 27, 277'0 ‘ # e 2w -/277 olto) 2 vot 4 e; {{’ph(féWO) o
1 i’ 8\11 —ifr\I’(z / ) 1
—— [, _‘ e~ e¥ (=, %0) gy " i} ViVi — coAR(fowo)EEr S . (53)
2 Jon 10%0 pn(fewo) K (fewo) ! ' !
1 Io(tho)e~Fe¥ (= %o)
=— dipo 47) L _ . . N
21 Jor Avl(z, 1) The velocity integral is the time average linear beam kinetic

energy density. Expressed in Eulerian coordinates this is
where we have used (46) to substitute for the Jacobian.

Finally, we derive LATTE from (10)—(14). Equations me 1 oL me.A 1 pE(vE)2
(48)~(50) are (18)—(20) with (47) substituted far. Equation - 5 /2 Io(vo) o dipo = —— 5~ /2 5 .
(14) was used to get (47). For (13), one writésand using e " (54)
(15) in Lagrangian coordinates. Equation (41) is also included
as model equation (52). The circuit equations, space charge i : i
equation, Newton's law, and phase relation are (leaving off tifé the MUSE variables, this term is

superscripiL) a1 B Eo 4
b= / - (v ) dq/} = T Z PV U -
J27

dVe _ifewo 7 ifewo K (fewo) 7 (48) ¢ 2 2 2e
dZ Uo ¢ ’aph(f/w()) ¢ fet+fm+frn=0

] (55)
dly i fewo 5 ifuwo +
—— =—= — Ve — I, .

dz K (fowo)vpn(fewo) o ~When the circuit parameters(fowo), Tpn(fewo), and

,- 1 To(tpo)e~ ¥ (2 %) i 49 R(fwwo) are not functions of, the energy density¥ is a
+ifewo o o v(z, Yo) Yo (49) constant of the motion. The most convenient way to show this
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is to compute the derivative in Lagrangian coordinates, then
change the result to Eulerian coordinates. Using v*

L] oo (3o
{ (fewo)

vph flw(]
Upn(fewo)

0

0z

ov
—+

ov
0z

_

K(fewo)

— g AR(fow)

2

i fewo AK (fewo)
Upn(fewo)

Iipy

+ AR(fzwo)EeﬁZ}
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A, = ——'Lfl’;‘:” 61)
Afa.s = i (62)
€0
A, = ZfewofiK(fzwo) (63)
MetoUph( fewo)
A, = L) (64)
melUo
Ao, _’LfewoilfoK(fzwo) (65)
metgpn(fewo)
e R w
A.g53 _ pUm(/l.]:g 0) (66)
elp
A, = _’szwzoﬂo' (67)
Up

EntriesA,,; not listed are zero.
N i _ifewoAf((fewo) 3 The three-tensor entriedy,,,,,,, for (¢, m, n) are as fol-
= {)ph(flw[)) l lows.
= Case 1 If ¢, m, andn are such thaf, = f,, + f., then
+ AR(fMo)E;fﬁ/} -
: i fpw
~ Heymin, == 3 0 (68)
- if[u)oAK(f/wo) Tk ~ T ~% 0
AN T pe — , :
+ Z { ) h(fgwo) [ epe /,0[] _ € meWOK(meO)
l=—00 p H[5m2n5 - - 2 ~ (69)
meud  Opn(fmwo)
— AR(fowo) [E?ﬁz +Ezﬁ?} } =0. eR(frwo)
Hﬂ5m3n5 =% (70)
el
H[5m4n4 = p_g ifnwo (71)
APPENDIX I Ug
S-MUSE VECTOR COMPONENTS i fowo
Himin, =— . 72
This section provides details of the vector form of S-MUSE. fomans ud (72)

For elementsc,,, Ay, ., andHy, ., , the subscripts{( m, n)

run from —M to M excluding zero, and the subsubscripts Entries for(, j, k) not listed are zero. ]
(z, 4, k) run from 1 to 5. The subscrigtindexes frequencies Case 2 If £, m, andn are such thaf, # f,, + f., then
in the set{ f¢}.
We index x with double subscripts such that = H,nn, =0 (73)
[ ar ;"Xflel"'XM]T andx, = [x¢, X0, Xe,Xe,Xg, )T =
[WTIrfEﬁvljtp;L. tains the i ts of (25)—(29). Itis block for all (i, j, ). "
e matrixA contains the linear parts o —(29).Itisblock o0 t ok h
diagonal with entryA, = A,,. The entriesA,,, of the block or thetth component ok, we have
diagonal elemenf, are
Xy = A[X[ + Z Hfm,n (Xm7 Xﬂ) (74)
Ay, = 1 fowo (56) fm+Fn=F
uo
. ~ where theith component of the quadratic term is
i fowo K (fowo) P g
Ap,=—"—F777"—— (57)
'Uph(flwo)
TR w”)t;wo(f wo) (58) Z Himn (Xim, %n)
LW )Uph\ JeWo fm+f =f ;
1 fewo 5 5
A, =—= 59
ZZ— U(] ( ) = Z ZHEimjnkxmjxnk- (75)
Ap, =ifewod (60) fe=foet, T
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