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It can be seen that the Vinnakota and Rao converters using cascade Justification of Torque per Unit Velocity
subtractors exhibit more delay than the Andraros and Ahmad design. Methods of Analyzing Subsynchronous
Note that in the Andraros and Ahmad design, the full adders needed Resonance and a Swing Mode in Power Systems
can be reduced [10] by noting that one of the inpBtsn (4) is a
constant 1 or 0 fom LSB’s, which we have not considered in the Rajesh Rajaraman and lan Dobson
above evaluation in (5a). The high-speed version of the Vinnakota
and Rao converter exhibits similar delay and area requirements as

the Andraros and Ahmad design. However, both the Piestrak’s costAbstract—Torque per unit velocity is a practical method to study

effective and high-speed designs are superior to Vinnakota and R%B%subsynch‘r onous resonance instability of electric power systems. The
orgue per unit velocity method is justified as an eigenvalue perturbation

high-speed as well as cost-effective designs. technique and extended to power systems with thyristor switching devices
and multiple torsional modes. A new method to estimate the damping of
IV. CoNcCLUSION the swing mode is proposed.
It has been shown that a recently described RNS-to-binary conver-
sion technique for the moduli st —1,2", and2" 41 is a variation l. INTRODUCTION

of the well-known MRC. technlque. An evaluathn of the area and Subsynchronous resonance (SSR) is an electromechanical power
delay performance of this technique and comparison to the Andraros

. ) R . system instability in which transmission lines compensated with series
and Ahmad technique described in this brief has shown that the h@}a{fpacitors interact with torsional modes of generator shafts [2], [10].

speed version of Vinnakota and Rao’s converter is comparable_if. . y :
performance to the Andraros and Ahmad technique. However, b(;li is instability can break generator shafts and must be studied and

- . : . : revented when seri mpensation i .
the cost-effective and high-speed designs of Piestrak, which areloae ented when series co pe sation is used .
. . he SSR modes are torsional modes of the generator rotor which
improvement over the Andraros and Ahmad technique, are shown t

. , . i be destabilized by interaction with the electrical system. The
be superior to Vinnakota and Rao’s converter, regarding area as we . . .
. orque per unit velocity method, due to Bowler, Hedin, and others [3],
as conversion delay.

[4], [9], [14], is commonly used to estimate damping of SSR modes.
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objective comments which have significantly enhanced the qualgjectromagnetic torque of the generator which acts to damp or to
of this brief. undamp the initial displacement. The damping of an SSR mode is then
estimated from the ratio of the electromagnetic torque to the generator
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here are informally explained, applied, and validated on a test casé\ssumption 4: The rotor electromagnetic acceleration term
in the companion paper [18]. €Ame(t)Az. in (2.M) is small so thate is a small number.
(eAme(t)Ax, is typically 2 orders of magnitude smaller than other
terms in [1].)

When e = 0, there is no coupling from the electrical equations

This section presents linearized electromechanical equations o%ahe mechanical equation (2.M), and the eigenvaligs; of A,,
general multimachine power system which includes thyristor switchre eigenvalues of the electromechanical system. The SSR and swing
ing devices. The detailed equations for these systems are complicajfdes of the electromechanical system are most easily described
and this paper requires only their general form. Detailed linearizgghen = 0: the SSR modes correspond to the eigenvaltigs;
electromechanical equations for balanced multimachine power Syt ., - 0 and swing modes correspond to eigenvaltgss; with
tems without thyristor switching devices are derived in [1] and [2],, — .

Modifications to incorporate thyristor switching devices are detailed Assumption 5: System modes which are not SSR or swing modes
in [12], [17], [19]. are asymptotically stable and well damped.

The mechanical system consists of the turbine shafts of all therhe gpjective of the torque per unit velocity method is to estimate
generators and is modeled as a linear, torsional spring, lumped M@RS damping of a particular SSR mode. The main idea is to solve
system with matrix4,,. The mechanical state,, describes the shaft {he electromechanical equations (2.M), (2.E) fo= 0 and then to
angles and velocities, and its linearized deviation about the steagie this solution to estimate the change in the eigenvalue of the SSR
state is denoted g z,,,. The linearized mechanical system equationg,qode whene is nonzero.
can be written as When e = 0, the mechanical equation (2.M) is decoupled from
the electrical equation (2.E) and is easily solved for the SSR mode.
If the SSR mode is théth mode then the corresponding solution to

ic A — Ldwit, i 5
e (1200 epresents e ez coupng Fom nd2 ) B D) S L e B e ey oo
electr?cal system to the_ mec_hanical _sygtem via the electromagn%tlsc déscribed in Appendix A. Substitutinga (1) = e/“iv; in
mgcgggritg;?l;e;e-lr—:?shg:ggtzeeddk;:sv'at'.on about”the séeady Statethoé electrical equation (2.E) yields an electrical differential equation
| Sy . e €IS @ small number. whose steady-state solutioAx.(t) is the electrical part of the

The electrical system includes the electrical parts of the system as%Qution fore = 0. This steady-state electrical solution will cause

its controls and has state. (e.g., [17]). When thyristor switching

devices are included, the electrical system equations change str CE ForqueATi which acts on mode. (AT is precisely defined and
v incluged, the : y quat 9 UCH SN to be proportional to components of the teti,.(¢)Ax.
at each thyristor switching. In particulag,. includes the reactor

; W | : A iZAT: |
current of a thyristor controlled reactor only when the thyristor iIn (2:M) in (A1), (A2) in Appendix A) To summarizeT; is the

. R . . gteady state torque response in méaehen the mechanical input to
conductlng_ [12], [17]. The swn_tchlng instants are determined e_lthﬁ;e linearized electrical equation (2.E)dse,. () = *i'v,, where
by the thyristor current becoming zero or by control of the thyrlstozp is the right eigenvector oft,., corresponding to eigenvalye;

:‘Ilvrlng ﬁng:le\;i The flrltngmarlglte C?:m:mxc‘;: Idepend Tza T(fﬁml?rl:cafzd Iénis proved below that\T; can be used to estimate the damping
ay on previous system stales. For examples, see [12]. The linea 6Ffthe SSR mode to order Since (2.E) is time varying with period
electrical equations have the overall form .
Ty, the responsé\T; contains other frequency components as well
L jwst - e i
Adre = F(Awe, Ao, 1) (2.E) as a compon_enifej of fr_equgncyh. That is, it follows from the
theory of periodically varying linear systems [6] that

Il. LINEARIZED SYSTEM EQUATIONS

Ay, = A Ay, + €A e () A, (2.M)

Equation (2.E) is time varying, and varies in structure at each thyristor
switching.

The assumptions necessary in the sequel are:

Assumption 1: The nonlinear electromechanical system equations
have a periodic steady state (periodic orbit) of periad

Assumption 2:Near the periodic steady state, the nonlinear specifies the component &7, at the subsynchronous frequency
electromechanical system equations are smooth between switchingsef the mechanical input.
and each switching time depends smoothly on the system stateSome means of computind7; is required for the torque per
at or before the switching. (In particular, there are no switchingnit velocity method and time domain simulation is one practical
time bifurcations [13].) Smooth dependence of the equations aagproach. A detailed time domain simulation of the electrical system
switching times on the parameterfor small ¢ is also assumed. is often available because of its use in evaluating the transient torques

Assumptions 1 and 2 imply that the electromechanical systegaused by large signal deviations and in other system assessments.
equations can be linearized about the periodic steady state to prodpge steady-state simulation can be perturbed by a small sinusoidal
the time varying linear equations (2.M), (2.E) which are periodimechanical input and the deviation in torque about the steady-
with period7y. In particular,A,,.. (#) and f are periodic in time with state can be measured. Then the steady-state torque response of the
period To. electrical system to the complex signdl“:’ can be evaluated as

Assumption 3: The generator shafts are modeled as a linear, tQresponse taos w;t) + j (response tain w;t). (Since the electrical
sional spring, lumped mass system [2], and the mechanical dampiggstem is time varying, the responsesta w,? is not simply a time
of the shafts are zero. (It is usual in SSR analysis to add tBaift of the response teos w;t.) A change to modal coordinates then
small natural mechanical dampings to modal dampings comput@dids AT;. One advantage of the method is that even when the entire
with the assumption of zero mechanical damping.) It follows thaflectromechanical system is unstable, the electrical part of the system
the matrix 4,, can be transformed by a change of coordinates igsed to compute the electrical torque response is typically stable
diag{ D1, D, ---, D, }, whereD; = (_, ;) andw; is the natural (see Assumption 5). Thus, the practical difficulties of simulating
frequency of theith torsional mode. Thus, all eigenvalues 4f, an unstable system are avoided. The solutions to (2.E) can also be
have the formztjw;. computed directly by harmonic admittance [11] or other methods.

AT = cie? " 4 N e /T, (2.2)
k0
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According to the theory of periodically varying linear systems [6]The modal damping is the real part ef(jw; + ~:):
the general modal solution of (2.M), (2.E) may be expressed as

modal damping= Real{ﬁ} + O(e). (3.7)

@/E,"’( )> = “(g’“(t)) = My(t) (2.2)

Aue(t) ge(t) Note that the modal damping is independent of the other frequency
where) is the modal eigenvalue and the mode shape is periodic  components ofAT; in (2.1) to O(e).

in time so thaty(t) = g(t + 1y). SubstitutingAz, (t) = e g, (£)

into (2.M) yields IV. DAMPING AND FREQUENCY OF SWING MODE
(A — AD) g (1) = —€Apme (£)ge () + Gun (1) (2.3) This section derives a new tprque per unit yelocity mthod to
estimate the frequency of the swing mode in the single machine case.
Write overbar for average over one period so that In the single machine case, it follows from Assumption 3 that
1 has a unique nontrivial Jordan block with two zero eigenvalues which
h(t) = f/ h(t)dt. corresponds to the swing mode. Thus, the two zero eigenvalues of
0 Jo A, have only one left eigenvectar; and only one right eigenvector
SINCe g (t) = (1/To)(gm(To) — g..(0)) = 0, averaging (2.3) gives Vi and uivi = 0. Let uit be the. generalized left eigenvector
corresponding to the double zero eigenvalue so that A,, = wu;
(A = A gm (1) = —€Ame(t)ge(t). (2.4) andu;.1v; = 1. Appendix A specifies these eigenvectors in more

. . . . . . etail.
Equation (2.4) is an intermediate result useful in Sections Ill and I\9 When ¢ = 0. the modal solution |s( Ou)) where ¢(#) is the

solution to (2.E) when the mechanical |nmum(t) = ;.
lll. DAMPING OF SSR MoDES Whene # 0, the modal eigenvalues change4n ;11 and the
This section estimates the damping of an SSR mode with naturabdal solutions change @'’ (9;“3((’3)) Jj =1,i+ 1. Appendix B

frequencyw; # 0 distinct from other mechanical frequencies. Thghows that because of the nontrivial Jordan form, these changes are
generalization to the case of multiple SSR modes with the samgorder ¢!/2:

frequency is given in Appendix C. i (1) vi ‘ .
In the case of an SSR mode with a frequengy# 0 distinct <gqe_]((t) ) - < f)) =0('?), v =0(%).  (4.1)

from other mechanical frequencies, Assumption 3 implies jhat e o )

is a simple eigenvalue ofi,, with corresponding left and right ~Premultiply (2.4) byu, for j =i, + 1 to obtain

eigenvectors:; andv;. v; andv; are scaled as described in Appendix Vi gmi (1) = wieAme (£)ge, (1). (4.2)
A and satisfyu;v; = 1. Whene = 0, this mode is uncoupled from

the electrical system and the modal solutiore4s'* (7, ), where Premultiply (2.4) byuiti (A — 7;1); use

Az (t) = ™' g2(t) is the solution to (2.E) when the mechanical wit1(Am — v 1)? = =27jui + 7w

input Az, (t) = edwity;. .
Whene # 0, the modal eigenvalue changesjto; + +; and the (4.2) and (A4) from Appendix A to get

modal solution changes e/~ (#={1)). Appendix B shows Vi1 Gmy (1) = wi€Ame(t)ges (D). (4.3)

that these changes are of order

Now use (4.1) and (A3) to obtain fgr=i,i + 1:
m(t‘) Uy _ _ . _ . —Cy g /¢
@m ) B <g§<f>> =0, =00 GY S — w0+ 0 = 0 (@)

It follows by substitutingjw; + v; for A in (2.4) that wherec; is the constant (zero frequency) componeni\ds;. In (4.4),
, = , ) — observe thay? (t), the solution of (2.E) withAz,,(t) = v;, is real
Figm(t) = eAme()ge(t) + (Am = jwil)gm (). (3-2)  and thereforer; is real. Hence, the estimate of is real and the
Premultiplying (3.2) on the left by, and usingu(A,, —jw:I) = 0, €stimate ofy; is either purely imaginary or purely real. For a stable

we get swing mode, the estimate of is purely imaginary so that; = +j3;
and the estimated modal damping is zero.
UiYigm(t) = wieAme(t)ge(t). (33)  We suggest the following iterative method to better estimate both
the damping and frequency of this mode. Write= « + j3 and
SS'Qgt.g;s) u;v; = 1 and (3.3), the modal eigenvalue perturbation let ¢7g.(¢) be the solution of (2.E) withAwm(t) = e"v, and
! let ¢’?*g.5(t) be the solution of (2.E) withA\z,, () = ¢?**v,. For
vi = wi€Amc(t)g? () + O(7). (3.4) practical power systems ~ j3, S0 g.(t) = g.(t). Thus, it is

reasonable to approximate the modal solutiorteﬁ’)ﬁ/((J ;fm ) Now,
working as above and after some algebra, we obtain the following
analog of (4.4):

It remains to express;eA...(t)g2(¢) in terms of the modal torque
AT;. Appendix A proves that

Ui €Ame () Az (t) = —AT; /(25w M;) (3.5 ,},,2 ~ —c;(jB)/M; (4.5)
where M is the modal inertia. It follows from (3.5) andz.(f) =  wherec;(;j/3) specifies the frequency component ofAT; so that
e/ 1g?(t) that AT; = e;(87)e’® + other frequencies. The solution of this equation

is estimated by the iteration!® = 0, ~I* = o[# 4 j3I¥l and

1] :I:h('y[k]> -+

Wi €Ame (£)g2(t) = —e= 1wt AT; [ (25w, M;).

—e; (B /M, (4.6)

But consideration of the form ofA7; in (2.1) shows that

AT — Ty e~ Iwit —
7wt AT = (1/To) J, AT, dt = ci. Thus, (3.4) becomes where ¢; (j 511 specifies the3™™ frequency component oAT; in

vi = —¢i/(2jwiM;) 4+ O(€7). (3.6) response to a mechanical inpitz,, (t) = e/”"'v;. According to
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the contraction mapping theorem, this iteration will converge for APPENDIX B

sufficiently smalle, because theh has Lipschitz constant less than EIGENVALUE PERTURBATION ESTIMATES

one near the origin [note that(j3!")/M; = O(e)]. This appendix justifies the estimates of the variation in eigenvalues
used in Sections Il and IV. References [7], [8], and [20] are useful

background.

V. CONCLUSION : . o
) ) . ) . Write J¢ for the Jacobian of the Poinéamap evaluated at the
This paper derives the torque per unit velocity method for estlmg7q

. . ) ’ eriodic orbit. It follows from Assumption 2 that® exists and is a
ing the damping of SSR swing modes as an eigenvalue perturba ooth function ofe for smalle. Let z“ be a right eigenvector of
method. The derivation clarifies the mathematical basis of the torqye corresponding to the nonzero eigenvalié’ of J<. Let p°(t)
per unit velocity method and extends its validity to multlmachlnB the solution of the linearized equations (2.M), (2. E) with initial
power systems with thyristor switching devices and unbalancggndltlon »°(0) . We havep“(T) = Jp(0) = ¢ "p(0)
phases and to the case of multiple modes with a common frequen&xd flowing forvvard for timet yiélds p(t+T) = 6~,<Tpg(t)j

An iterative torque per unit velocity method for estimating th% fining ¢ (t) = e—V”p&(t), it follows that ge(i) = g (t+ T)

damping and frequency of the swing mode is derived in the case gl g°(0) = p(0) = =°. Thusp<(t) = 67/‘fy((t) is the solution of
a single machine.

. . . . . the mode with eigenvalug® and whose mode shape is the periodic
The method is easier than exact eigenanalysis of the entire elec}[fhcnon g (1),

mechanical system. In particular, the method can estimate elgenvalue§Ince J¢ is a smooth function of, it follows from [20] that if
by computing the torque response of a time domain simulation of theol is a simple eigenvalue of ® Wi’th right eigenvectoruo then
electrical system to a small sinusoidal disturbance to the steady sty has an eigenvalue® T \ith rlght eigenvector:* that SZ;ltISerS
Testing of the torque per unit velocity method in [18] on the IEEE _ o' Z O ) and = — =% = O(e). The analysis when'®

SSR first benchmark model with a thyristor controlled series capaC| or . . o s L
as a multiple eigenvalue with simple elementary divisors is similar.
shows excellent agreement with exact eigenanalysis [17].

However, whenJ® has a double eigenvalue at’” with only one
corresponding independent eigenvecidr then [20] shows thaf

APPENDIX A has two eigenvalues”i” and¢?2” with right eigenvectors:{ and
ELECTROMAGNETIC ACCELERATION 25 such thate™i — ¢ = O(¢'/?) and =5 — 2° = O(¢'/?) for
Eigenvector scalings are defined, and an expression for the= 1,2
linearized electromagnetic acceleration is derived. Choase= Assumptlon 5 implies that the eigenvalues Bt corresponding
(61, ---, 0., by, 9n)L, where 6; and 6; are the angle and to the SSR and swing modes are distinct from other, well damped
velocity of shafti. Then A,, — ( ojnxlnh éi) where J = system eigenvalues. Thereforepft is a simple eigenvalue od,.,,
diag{.J1, ---. J.} is the inertia matrix ands is the spring constant ¢” °T is a simple eigenvalue of°, and therefore perturbations of
matrix. Now the acceleration this eigenvalue and corresponding eigenvectorsCire. Similarly,
if Y = 0 is a double eigenvalue of,, with only one eigenvector,

< 0, ) then J° has a double eigenvalue at” = 1 and perturbations of
€Ay () Az (t) = 1A . - . 9
—J AT these eigenvalues and corresponding eigenvector® @' ).

Now zf — 29 = p(0) — p°(0) = O(e) implies thatp®(t) — p° (t) =
where AT € IR" is the vector of linearized electromagnetic torque®(¢) for 0 < ¢t < T, and hence the estimate (3.1) holds. Estimate
on the shaft [2]. Let the columns of the x n matrix Q = (4.1) follows similarly.

(q1q2 -+ q.) represent the mode shapes of the shaft angles. That
is, ¢; is theith right eigenvector off ' K. Let P = (p} --- pL)' = APPENDIX C
Q™' so thatp; is theith left eigenvector of/ ~' K. The ith modal MULTIPLE SSR NDDES

torque is defined as . . .
We show how to estimate the damping of multiple SSR modes

AT, = p;AT. (A1) having the same nonzero natural frequency. We assume that, say, the
- first two torsional modes have the same nonzero natural frequency;
the analysis for more than two such modes is similar. TAgnhas
two eigenvaluegw; = jws with corresponding left and right real
eigenvectors:y, u2, andwvy, vy With uyvey = ugv; = 0.
Whene = 0, the general modal solution is

For the SSR mode numbémith w; # 0, choosev; = (¢!, jwigq!)"
andu; = 5(pi, pi/(jw:)). Then

Ui€Ame () Anc(t) = —(2jw;) tpid TTAT

= —AT,/(2jwi M) (A2) fmf( V1 ) ‘. fwzt( v2 )
Mgl )T ()

where M = PJQ = diag{M,, ---, M, } is the modal inertia wherea,, a, are (as yet) undetermined constants.
matrix. Writing ¢; for a row vector with all zeros except for 1 Whene # 0, the modal eigenvalues change ®Ye) to jw; + ¥
in the lth place, the detailed steps to obtaun (A2) atd~' = andjw. + . and the modal solution changes By¢) to
e;PJ'QP =e;M *P = M;'e;P = M; 'p; and using (Al).

For the swing mode case with; = w;y; = 0, choosev; = ale(imﬂl)t(g"“(t)) + as e(szﬂz)t(g'"?(t)) (C1)
(g:;, 0)', w; = (0, p;) andu;+1 = (p;, 0). Then ger(t) gea(t)

(The values of:; anda- are assumed constant in order to conclude
wieAme () Axc(t) = AT, /M; (A3)  that the modal solution changes By(¢) [20].)

Premultiplying (3.2) byu; andus yields fori = 1, 2
and

w1Yigm (1) = w1€Ape () ge(t)
'ui+l&47rze(t)A$e(t) = (pn On)(onw Jﬁlg)t =0. (A4) 'LLQ'}"igm(t) = ’LLQG‘Amg(t)gg(t).
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Substituting the modal solution (C1) as in Section Ill and neglecting7]
terms of O(e?) yields

(8]
El

Yiar = U1€Ame(6) g% (1) a1 + ur€Anme ()% (1) as
Yitz = uz€Ame (1) g2y (1) a1 + uze A (1) g2y (1) az

(2)--(2)
a2 a2

_ i(al (v1)/(Miwr) cl(/va)/(f\llwl))
- 2} 02(111)/(.7\/12»‘2) 62(7.’2)/(;7\/[20.)2) ’

or
[10]

[11]
where

[12]

The notation:; (v,) denotes the’* coefficient of AT} in response [13]
to a mechanical displacementr,, = /<y,

For a nontrivial solutiong,; anda, cannot both be zero, and~,
and —~, are the eigenvalues @® (the eigenvectors oB determine
a; and az). Hence, the modal dampings are the real parts of the
eigenvalues ofB to O(e?).

[14]

(18]
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