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It can be seen that the Vinnakota and Rao converters using cascade
subtractors exhibit more delay than the Andraros and Ahmad design.
Note that in the Andraros and Ahmad design, the full adders needed
can be reduced [10] by noting that one of the inputsB in (4) is a
constant 1 or 0 forn LSB’s, which we have not considered in the
above evaluation in (5a). The high-speed version of the Vinnakota
and Rao converter exhibits similar delay and area requirements as
the Andraros and Ahmad design. However, both the Piestrak’s cost-
effective and high-speed designs are superior to Vinnakota and Rao’s
high-speed as well as cost-effective designs.

IV. CONCLUSION

It has been shown that a recently described RNS-to-binary conver-
sion technique for the moduli set2n�1; 2n; and2n+1 is a variation
of the well-known MRC technique. An evaluation of the area and
delay performance of this technique and comparison to the Andraros
and Ahmad technique described in this brief has shown that the high-
speed version of Vinnakota and Rao’s converter is comparable in
performance to the Andraros and Ahmad technique. However, both
the cost-effective and high-speed designs of Piestrak, which are an
improvement over the Andraros and Ahmad technique, are shown to
be superior to Vinnakota and Rao’s converter, regarding area as well
as conversion delay.
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Justification of Torque per Unit Velocity
Methods of Analyzing Subsynchronous

Resonance and a Swing Mode in Power Systems

Rajesh Rajaraman and Ian Dobson

Abstract—Torque per unit velocity is a practical method to study
the subsynchronous resonance instability of electric power systems. The
torque per unit velocity method is justified as an eigenvalue perturbation
technique and extended to power systems with thyristor switching devices
and multiple torsional modes. A new method to estimate the damping of
the swing mode is proposed.

I. INTRODUCTION

Subsynchronous resonance (SSR) is an electromechanical power
system instability in which transmission lines compensated with series
capacitors interact with torsional modes of generator shafts [2], [10].
This instability can break generator shafts and must be studied and
prevented when series compensation is used.

The SSR modes are torsional modes of the generator rotor which
can be destabilized by interaction with the electrical system. The
torque per unit velocity method, due to Bowler, Hedin, and others [3],
[4], [9], [14], is commonly used to estimate damping of SSR modes.
Its basic idea is to trace the effect of a small sinusoidal mechanical
disturbance in the generator rotor velocity through the electrical
network. This mechanical displacement causes a displacement of the
electromagnetic torque of the generator which acts to damp or to
undamp the initial displacement. The damping of an SSR mode is then
estimated from the ratio of the electromagnetic torque to the generator
rotor velocity. This approximation has been established for time
invariant cases such as when the transmission line is compensated
with a fixed series capacitor and the three ac phases are balanced.

This paper mathematically justifies the torque per unit velocity
method in a general power network which includes multiple machines
and thyristor switching devices. The torque per unit velocity method
is derived as an eigenvalue perturbation technique which relies on
the smallness of the rotor electromagnetic acceleration.

One reason to extend the analysis to account for thyristor switch-
ings arises from the emerging technology of flexible ac transmission
(FACTS). Flexible ac transmission systems such as the thyristor
controlled series capacitor offer the possibility of power flow control
together with suppression of SSR instabilities [5], [15], [16]. The
thyristor switchings make the system equations time varying by
switching so that the 3 phases of the power system are unbalanced
for some portions of the supply cycle. Time variation due to phase
unbalance cannot be removed by Park’s transformation.

One advantage of clarifying the mathematical basis of the torque
per unit velocity method is that useful extensions can be developed.
We extend the method to the multiple torsional modes which occur
when two generators have the same rotor frequencies. We also
develop a new method to estimate the damping of the low-frequency
power swing mode in the single machine case. The methods justified
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here are informally explained, applied, and validated on a test case
in the companion paper [18].

II. L INEARIZED SYSTEM EQUATIONS

This section presents linearized electromechanical equations of a
general multimachine power system which includes thyristor switch-
ing devices. The detailed equations for these systems are complicated,
and this paper requires only their general form. Detailed linearized
electromechanical equations for balanced multimachine power sys-
tems without thyristor switching devices are derived in [1] and [2].
Modifications to incorporate thyristor switching devices are detailed
in [12], [17], [19].

The mechanical system consists of the turbine shafts of all the
generators and is modeled as a linear, torsional spring, lumped mass
system with matrixAm. The mechanical statexm describes the shaft
angles and velocities, and its linearized deviation about the steady-
state is denoted by�xm. The linearized mechanical system equations
can be written as

� _xm = Am�xm + �Ame(t)�xe: (2.M)

The term�Ame(t)�xe(t) represents the linearized coupling from the
electrical system to the mechanical system via the electromagnetic
machine torques. The linearized deviation about the steady state of
the electrical system is denoted by�xe. � is a small number.

The electrical system includes the electrical parts of the system and
its controls and has statexe (e.g., [17]). When thyristor switching
devices are included, the electrical system equations change structure
at each thyristor switching. In particular,xe includes the reactor
current of a thyristor controlled reactor only when the thyristor is
conducting [12], [17]. The switching instants are determined either
by the thyristor current becoming zero or by control of the thyristor
firing angle. The firing angle control can depend in a complicated
way on previous system states. For examples, see [12]. The linearized
electrical equations have the overall form

� _xe = f(�xe;�xm; t): (2.E)

Equation (2.E) is time varying, and varies in structure at each thyristor
switching.

The assumptions necessary in the sequel are:
Assumption 1:The nonlinear electromechanical system equations

have a periodic steady state (periodic orbit) of periodT0.
Assumption 2:Near the periodic steady state, the nonlinear

electromechanical system equations are smooth between switchings,
and each switching time depends smoothly on the system states
at or before the switching. (In particular, there are no switching
time bifurcations [13].) Smooth dependence of the equations and
switching times on the parameter� for small � is also assumed.

Assumptions 1 and 2 imply that the electromechanical system
equations can be linearized about the periodic steady state to produce
the time varying linear equations (2.M), (2.E) which are periodic
with periodT0. In particular,Ame(t) andf are periodic in time with
period T0.

Assumption 3:The generator shafts are modeled as a linear, tor-
sional spring, lumped mass system [2], and the mechanical dampings
of the shafts are zero. (It is usual in SSR analysis to add the
small natural mechanical dampings to modal dampings computed
with the assumption of zero mechanical damping.) It follows that
the matrixAm can be transformed by a change of coordinates to
diagfD1; D2; � � � ; Dng, whereDi =

0

�!
1

0
and!i is the natural

frequency of theith torsional mode. Thus, all eigenvalues ofAm

have the form�j!i.

Assumption 4:The rotor electromagnetic acceleration term
�Ame(t)�xe in (2.M) is small so that� is a small number.
(�Ame(t)�xe is typically 2 orders of magnitude smaller than other
terms in [1].)

When � = 0, there is no coupling from the electrical equations
to the mechanical equation (2.M), and the eigenvalues�j!i of Am

are eigenvalues of the electromechanical system. The SSR and swing
modes of the electromechanical system are most easily described
when � = 0: the SSR modes correspond to the eigenvalues�j!i
with !i 6= 0 and swing modes correspond to eigenvalues�j!i with
!i = 0.

Assumption 5:System modes which are not SSR or swing modes
are asymptotically stable and well damped.

The objective of the torque per unit velocity method is to estimate
the damping of a particular SSR mode. The main idea is to solve
the electromechanical equations (2.M), (2.E) for� = 0 and then to
use this solution to estimate the change in the eigenvalue of the SSR
mode when� is nonzero.

When � = 0, the mechanical equation (2.M) is decoupled from
the electrical equation (2.E) and is easily solved for the SSR mode.
If the SSR mode is theith mode then the corresponding solution to
(2.M) is �xm(t) = ej! tvi, where!i is the frequency of modei
andvi is the corresponding mode shape or right eigenvector scaled
as described in Appendix A. Substituting�xm(t) = ej! tvi in
the electrical equation (2.E) yields an electrical differential equation
whose steady-state solution�xe(t) is the electrical part of the
solution for � = 0. This steady-state electrical solution will cause
a torque�Ti which acts on modei. (�Ti is precisely defined and
shown to be proportional to components of the term�Ame(t)�xe
in (2.M) in (A1), (A2) in Appendix A.) To summarize,�Ti is the
steady state torque response in modei when the mechanical input to
the linearized electrical equation (2.E) is�xm(t) = ej! tvi, where
vi is the right eigenvector ofAm corresponding to eigenvaluej!i.

It is proved below that�Ti can be used to estimate the damping
of the SSR mode to order�. Since (2.E) is time varying with period
T0, the response�Ti contains other frequency components as well
as a componentciej! t of frequency!i. That is, it follows from the
theory of periodically varying linear systems [6] that

�Ti = cie
j! t + e

j! t

k 6=0

dke
j2k�=T

: (2.1)

ci specifies the component of�Ti at the subsynchronous frequency
!i of the mechanical input.

Some means of computing�Ti is required for the torque per
unit velocity method and time domain simulation is one practical
approach. A detailed time domain simulation of the electrical system
is often available because of its use in evaluating the transient torques
caused by large signal deviations and in other system assessments.
The steady-state simulation can be perturbed by a small sinusoidal
mechanical input and the deviation in torque about the steady-
state can be measured. Then the steady-state torque response of the
electrical system to the complex signalej! t can be evaluated as
(response tocos!it) + j (response tosin!it). (Since the electrical
system is time varying, the response tosin!it is not simply a time
shift of the response tocos!it.) A change to modal coordinates then
yields�Ti. One advantage of the method is that even when the entire
electromechanical system is unstable, the electrical part of the system
used to compute the electrical torque response is typically stable
(see Assumption 5). Thus, the practical difficulties of simulating
an unstable system are avoided. The solutions to (2.E) can also be
computed directly by harmonic admittance [11] or other methods.
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According to the theory of periodically varying linear systems [6],
the general modal solution of (2.M), (2.E) may be expressed as

�xm(t)
�xe(t)

= e�t
gm(t)
ge(t)

= e�tg(t) (2.2)

where� is the modal eigenvalue and the mode shapeg(t) is periodic
in time so thatg(t) = g(t + T0). Substituting�xm(t) = e�tgm(t)
into (2.M) yields

(Am � �I)gm(t) = ��Ame(t)ge(t) + _gm(t): (2.3)

Write overbar for average over one period so that

h(t) =
1

T0

T

0

h(t)dt:

Since _gm(t) = (1=T0)(gm(T0)� gm(0)) = 0, averaging (2.3) gives

(Am � �I)gm(t) = ��Ame(t)ge(t): (2.4)

Equation (2.4) is an intermediate result useful in Sections III and IV.

III. D AMPING OF SSR MODES

This section estimates the damping of an SSR mode with natural
frequency!i 6= 0 distinct from other mechanical frequencies. The
generalization to the case of multiple SSR modes with the same
frequency is given in Appendix C.

In the case of an SSR mode with a frequency!i 6= 0 distinct
from other mechanical frequencies, Assumption 3 implies thatj!i
is a simple eigenvalue ofAm with corresponding left and right
eigenvectorsui andvi. ui andvi are scaled as described in Appendix
A and satisfyuivi = 1. When� = 0, this mode is uncoupled from
the electrical system and the modal solution isej! t v

g (t)
, where

�xe(t) = ej! tg0e(t) is the solution to (2.E) when the mechanical
input �xm(t) = ej! tvi.

When � 6= 0, the modal eigenvalue changes toj!i + i and the
modal solution changes toe(j! + )t g (t)

g (t)
. Appendix B shows

that these changes are of order�:

gm(t)
ge(t)

�
vi

g0e(t)
= O(�); i = O(�): (3.1)

It follows by substitutingj!i + i for � in (2.4) that

igm(t) = �Ame(t)ge(t) + (Am � j!iI)gm(t): (3.2)

Premultiplying (3.2) on the left byui and usingui(Am�j!iI) = 0,
we get

uiigm(t) = ui�Ame(t)ge(t): (3.3)

Using (3.1),uivi = 1 and (3.3), the modal eigenvalue perturbation
i satisfies

i = ui�Ame(t)g0e(t) +O(�2): (3.4)

It remains to expressui�Ame(t)g0e(t) in terms of the modal torque
�Ti. Appendix A proves that

ui�Ame(t)�xe(t) = ��Ti=(2j!iMi) (3.5)

whereMi is the modal inertia. It follows from (3.5) and�xe(t) =
ej! tg0e(t) that

ui�Ame(t)g0e(t) = �e�j! t�Ti=(2j!iMi):

But consideration of the form of�Ti in (2.1) shows that
e�j! t�Ti = (1=T0)

T

0
e�j! t�Ti dt = ci. Thus, (3.4) becomes

i = �ci=(2j!iMi)+O(�2): (3.6)

The modal damping is the real part of�(j!i + i):

modal damping= Real
ci

2j!iMi
+O(�2): (3.7)

Note that the modal damping is independent of the other frequency
components of�Ti in (2.1) to O(�).

IV. DAMPING AND FREQUENCY OF SWING MODE

This section derives a new torque per unit velocity method to
estimate the frequency of the swing mode in the single machine case.

In the single machine case, it follows from Assumption 3 thatAm

has a unique nontrivial Jordan block with two zero eigenvalues which
corresponds to the swing mode. Thus, the two zero eigenvalues of
Am have only one left eigenvectorui and only one right eigenvector
vi and uivi = 0. Let ui+1 be the generalized left eigenvector
corresponding to the double zero eigenvalue so thatui+1Am = ui
and ui+1vi = 1. Appendix A specifies these eigenvectors in more
detail.

When � = 0, the modal solution is v
g (t)

, whereg0e(t) is the
solution to (2.E) when the mechanical input�xm(t) = vi.

When � 6= 0, the modal eigenvalues change toi; i+1 and the
modal solutions change toe t g (t)

g (t)
; j = i; i + 1. Appendix B

shows that because of the nontrivial Jordan form, these changes are
of order �1=2:

gmj(t)
gej(t)

�
vi

g0e(t)
= O �1=2 ; j = O �1=2 : (4.1)

Premultiply (2.4) byui for j = i; i + 1 to obtain

juigmj(t) = ui�Ame(t)gej(t): (4.2)

Premultiply (2.4) byui+1(Am � jI); use

ui+1(Am � jI)
2 = �2jui + 2j ui+1

(4.2) and (A4) from Appendix A to get

2j ui+1gmj(t) = ui�Ame(t)gej(t): (4.3)

Now use (4.1) and (A3) to obtain forj = i; i + 1:

2j = ui�Ame(t)g0e(t) +O �3=2 =
�ci
Mi

+O �3=2 (4.4)

whereci is the constant (zero frequency) component of�Ti. In (4.4),
observe thatg0e(t), the solution of (2.E) with�xm(t) = vi, is real
and thereforeci is real. Hence, the estimate of2j is real and the
estimate ofj is either purely imaginary or purely real. For a stable
swing mode, the estimate ofj is purely imaginary so thatj = �j�j
and the estimated modal damping is zero.

We suggest the following iterative method to better estimate both
the damping and frequency of this mode. Write = � + j� and
let etge(t) be the solution of (2.E) with�xm(t) = etvi and
let ej�tge�(t) be the solution of (2.E) with�xm(t) = ej�tvi. For
practical power systems � j�, so ge(t) � ge�(t). Thus, it is
reasonable to approximate the modal solution byet v

g (t)
. Now,

working as above and after some algebra, we obtain the following
analog of (4.4):

2 � �ci(j�)=Mi (4.5)

whereci(j�) specifies the frequency� component of�Ti so that
�Ti = ci(�j)e

j�t+ other frequencies. The solution of this equation
is estimated by the iteration:[0] = 0; [k] = �[k] + j�[k] and

[k+1] = �h [k] = � �ci(j�[k])=Mi (4.6)

whereci(j�[k]) specifies the�[k] frequency component of�Ti in

response to a mechanical input�xm(t) = ej� tvi. According to
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the contraction mapping theorem, this iteration will converge for
sufficiently small�, because thenh has Lipschitz constant less than
one near the origin [note thatci(j�[k])=Mi = O(�)].

V. CONCLUSION

This paper derives the torque per unit velocity method for estimat-
ing the damping of SSR swing modes as an eigenvalue perturbation
method. The derivation clarifies the mathematical basis of the torque
per unit velocity method and extends its validity to multimachine
power systems with thyristor switching devices and unbalanced
phases and to the case of multiple modes with a common frequency.

An iterative torque per unit velocity method for estimating the
damping and frequency of the swing mode is derived in the case of
a single machine.

The method is easier than exact eigenanalysis of the entire electro-
mechanical system. In particular, the method can estimate eigenvalues
by computing the torque response of a time domain simulation of the
electrical system to a small sinusoidal disturbance to the steady state.
Testing of the torque per unit velocity method in [18] on the IEEE
SSR first benchmark model with a thyristor controlled series capacitor
shows excellent agreement with exact eigenanalysis [17].

APPENDIX A
ELECTROMAGNETIC ACCELERATION

Eigenvector scalings are defined, and an expression for the
linearized electromagnetic acceleration is derived. Choosexm =
(�1; � � � ; �n; _�1; � � � ; _�n)

t, where �i and _�i are the angle and
velocity of shaft i. Then Am =

0

�J K

I
0

, where J =

diagfJ1; � � � ; Jng is the inertia matrix andK is the spring constant
matrix. Now the acceleration

�Ame(t)�xe(t) =
0n

�J�1�T

where�T 2 IRn is the vector of linearized electromagnetic torques
on the shaft [2]. Let the columns of then � n matrix Q =
(q1 q2 � � � qn) represent the mode shapes of the shaft angles. That
is, qi is theith right eigenvector ofJ�1K. Let P = (pt1 � � � p

t
n)

t =
Q�1 so thatpi is the ith left eigenvector ofJ�1K. The ith modal
torque is defined as

�Ti = pi�T : (A1)

For the SSR mode numberi with !i 6= 0, choosevi = (qti ; j!iq
t
i)
t

and ui = 1
2
(pi; pi=(j!i)). Then

ui�Ame(t)�xe(t) = �(2j!i)
�1piJ

�1�T

= ��Ti=(2j!iMi) (A2)

where M = PJQ = diagfM1; � � � ; Mng is the modal inertia
matrix. Writing ei for a row vector with all zeros except for 1
in the ith place, the detailed steps to obtain (A2) arepiJ�1 =
eiPJ

�1QP = eiM
�1P = M�1

i eiP = M�1
i pi and using (A1).

For the swing mode case with!i = !i+1 = 0, choosevi =
(qi; 0)

t; ui = (0; pi) andui+1 = (pi; 0). Then

ui�Ame(t)�xe(t) = �Ti=Mi (A3)

and

ui+1Ame(t)�xe(t) = (pi; 0n)(0n; J
�1�T )t = 0: (A4)

APPENDIX B
EIGENVALUE PERTURBATION ESTIMATES

This appendix justifies the estimates of the variation in eigenvalues
used in Sections II and IV. References [7], [8], and [20] are useful
background.

Write J� for the Jacobian of the Poincaré map evaluated at the
periodic orbit. It follows from Assumption 2 thatJ� exists and is a
smooth function of� for small �. Let z� be a right eigenvector of
J� corresponding to the nonzero eigenvaluee T of J�. Let p�(t)
be the solution of the linearized equations (2.M), (2.E) with initial
condition p�(0) = z�. We havep�(T ) = J�p�(0) = e T p�(0),
and flowing forward for timet yields p�(t + T ) = e T p�(t).
Defining g�(t) = e� tp�(t), it follows that g�(t) = g�(t + T )
with g�(0) = p�(0) = z�. Thusp�(t) = e tg�(t) is the solution of
the mode with eigenvalue� and whose mode shape is the periodic
function g�(t).

SinceJ� is a smooth function of�, it follows from [20] that if
e T is a simple eigenvalue ofJ0 with right eigenvectorz0, then
J� has an eigenvaluee T with right eigenvectorz� that satisfies
e T � e T = O(�) and z� � z0 = O(�). The analysis whenJ0

has a multiple eigenvalue with simple elementary divisors is similar.
However, whenJ0 has a double eigenvalue ate T with only one
corresponding independent eigenvectorz0, then [20] shows thatJ�

has two eigenvaluese T and e T with right eigenvectorsz�1 and
z�2 such thate T � e T = O(�1=2) and z�j � z0 = O(�1=2) for
j = 1; 2.

Assumption 5 implies that the eigenvalues ofJ0 corresponding
to the SSR and swing modes are distinct from other, well damped
system eigenvalues. Therefore, if0 is a simple eigenvalue ofAm;

e T is a simple eigenvalue ofJ0, and therefore perturbations of
this eigenvalue and corresponding eigenvectors areO(�). Similarly,
if 0 = 0 is a double eigenvalue ofAm with only one eigenvector,
then J0 has a double eigenvalue ate0T = 1 and perturbations of
these eigenvalues and corresponding eigenvectors areO(�1=2).

Now z�i �z0 = p�(0)�p0(0) = O(�) implies thatp�(t)�p0(t) =
O(�) for 0 � t � T , and hence the estimate (3.1) holds. Estimate
(4.1) follows similarly.

APPENDIX C
MULTIPLE SSR MODES

We show how to estimate the damping of multiple SSR modes
having the same nonzero natural frequency. We assume that, say, the
first two torsional modes have the same nonzero natural frequency;
the analysis for more than two such modes is similar. ThenAm has
two eigenvaluesj!1 = j!2 with corresponding left and right real
eigenvectorsu1; u2, andv1; v2 with u1v2 = u2v1 = 0.

When � = 0, the general modal solution is

a1e
j! t v1

g0e1(t)
+ a2e

j! t v2
g0e2(t)

wherea1; a2 are (as yet) undetermined constants.
When � 6= 0, the modal eigenvalues change byO(�) to j!1 + 1

and j!2 + 2 and the modal solution changes byO(�) to

a1e
(j! + )t gm1(t)

ge1(t)
+ a2e

(j! + )t gm2(t)
ge2(t)

: (C1)

(The values ofa1 anda2 are assumed constant in order to conclude
that the modal solution changes byO(�) [20].)

Premultiplying (3.2) byu1 andu2 yields for i = 1; 2

u1igm(t) = u1�Ame(t)ge(t)

u2igm(t) = u2�Ame(t)ge(t):
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Substituting the modal solution (C1) as in Section III and neglecting
terms ofO(�2) yields

ia1 = u1�Ame(t)g0e1(t)a1 + u1�Ame(t)g0e2(t)a2

ia2 = u2�Ame(t)g0e1(t)a1 + u2�Ame(t)g0e2(t)a2

or

i
a1
a2

= �B
a1
a2

where

B =
1

2j

c1(v1)=(M1!1) c1(v2)=(M1!1)
c2(v1)=(M2!2) c2(v2)=(M2!2)

:

The notationci(vk) denotes theej! t coefficient of�Ti in response
to a mechanical displacement�xm = ej! tvk.

For a nontrivial solution,a1 anda2 cannot both be zero, and�1
and�2 are the eigenvalues ofB (the eigenvectors ofB determine
a1 and a2). Hence, the modal dampings are the real parts of the
eigenvalues ofB to O(�2).
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