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TABLE I 
SUMMARY OF PERFORMANCE COMPARISON 

algorithms time complexity ROM space special condition modulo adder size 
PI wg 4 > n2 no n*M 

PI wg 4 2 
yes 2” 

PI O(n) &n”, no M 
New algorithm 000~ nl O(n) no <M 

1001 

in the figure are the same. Each cell in the tree performs the findno 
algorithm. In the diagram, the RNS representation is used as input to 
the first level of cells in pair, i.e., (~1, XZ), (23, x4), . . . , (X,-I, 2,). 
{Pi 1 i = l,..., n} is the module set. They are also paired 
as inputs to the cells. At the first level, output z%j, j = i + 1 
is produced by the cell whose inputs are z2, xj, Pi, Pj, such that 
xi = x;~ mod Pi, ~j = xz3 modPj and ~;j < Pij = Pi * PJ. 
Outputs from the first level of cells are fed to the cells in the second 
level. This pattern continues until there is only one output from the 
final level, which is the number we want to find. 

From Fig. 2, it is easily seen that for a module set of size n, 
in first level of the tree, there are n cells, the second level has 
[n/21 cells, and so on. The tree is of height log, n. Therefore the 
time delay to decode the RNS number (xi, . . . , x, ) is of log, n. 
Each cell is implemented to perform algorithm “findno”. For findno 
(x1, x2, PI, Pz, N), the value ko is an integer such that ko * PI = 1 
mod P2 and is stored in a ROM. For algorithm “translate”, the 
value of flizr, P, are also stored in a ROM. The total ROM area 
required is n + n/Z + n/4 + ... + 1, which is of O(n), which is 
better than the Sl(n?) ROM area needed in [2]. In addition, in the 
algorithm proposed here, the module M adder is used only in the 
last cell, all the other adders are modulo Pi * . . . * Pi which is less 
than the value M = PI * . . . * P,. This is to be compared to the 
n * M modulo adders required in [2]. Section VI provides an overall 
performance comparison among different algorithms including the 
algorithm proposed in this brief. 

V. PERFORMANCE COMPARSION 

previous approaches may require the use of large table look-up, 
like all the CRT-based approaches, or they may need large modulo 
M = PI * . . . * P, adders. Some approaches may require time delay 
greater than O(logn). Some other approaches, e.g., the approach 
in [4], restrict the module set such that Pi = 2k for some i. The 
approach proposed in this brief attempts to avoid such difficulties. 
The algorithm achieves ,the fastest time O(log n), has the minimum 
table look-up O(n), and makes no assumption on the module set. 
Moreover, the suggested implementation structure is very regular. A 
summary of performance comparison of a number of approaches is 
shown in Table I. 

In Table I, under the column marked “modulo gdder size,” n * M 
means there are n adders used and all of them are modulo M, 2k 
means there is a modulo 2k adder. “<M” means the adders used are 
modulo P, * ... * Pj < M. 

VI. CONCLUSION 

This brief proposes a new and better algorithm for RNS-to-decimal 
decoding. It is based on the idea of recursively decomposing the 

module set into two parts. The time complexity of this algorithm is 
of O(log n). The ROM area used is of order O(n). The minimum 
number of modulo M = PI * . . . * P, adders are used. There is no 
assumption on the module set. 
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Nonlinear Dynamics and Switching Time Bifurcations 
of a Thyristor Controlled Reactor Circuit 
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Abstract- We study a thyristor controlled reactor circuit used for 
static VAR control of utility electric power systems. The circuit exhibits 
switching times which jump or bifurcate as fold or transcritical bifurca- 
tions. We study the nonlinear dynamics of the circuit using a Poincare 
map and demonstrate that the Poincarb map has discontinuities and is 
not invertible. The circuit has multiple attractors. Moreover, the basin 
boundary separating the basins of attraction intersects with the Poincar6 
map discontinuities. These novel properties illustrate some of the basic 
features of dynamical systems theory for thyristor switching circuits. 
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Fig. 1. Single phase static VAR system. 

I. INTRODUCTION 

As static switching circuits in large scale electric power systems 
proliferate, there is an increasing need to analyze and understand 
these circuits. Thyristor controlled reactors are used at the loaded ends 
of transmission lines to control the reactive power supplied from a 
fixed shunt capacitor so that voltage can be maintained when system 
loads or transmission line configurations change [6], [12], [lo]. More 
recently, thyristor controlled reactors are emerging as one of the 
economical alternatives for flexible ac transmission (FACTS) [2], [7], 
[l 11. This paper describes some basic aspects of nonlinear dynamics 
and bifurcations of a thyristor controlled reactor circuit. Thyristor 
controlled reactor circuits are a good choice for demonstrating the 
dynamics of switching circuits since they are both simple in form 
and exhibit interesting nonlinear behavior. 

A key nonlinearity of a thyristor controlled reactor circuit is 
the dependence of the thyristor turn off time on the system state. 
For many initial conditions, the turn off time varies smoothly with 
changes in the initial condition and the behavior of the system 
is nonlinear but conventional. However, it is also possible for the 
switch off time to suddenly jump, or bifurcate. These switching time 
bifurcations can destabilize steady state circuit operation as circuit 
parameters slowly vary [S], [3], [9]. 

This brief addresses the different problem of fixing the circuit 
parameters and studying the effect of switching time bifurcations as 
the circuit initial conditions are varied. That is, the effect of switching 
time bifurcations on circuit transients is studied. The sudden jump in 
switch off times is described as a fold bifurcation and the onset of 
thyristor misfire is described as a transcritical bifurcation of switching 
times. We investigate the effects of the switching time bifurcations 
on the Poincare map dynamics and phase portrait. The PoincarC map 
is shown to be noninvertible and discontinuous in some places and 
to have two asymptotically stable fixed points which correspond to 
asymptotically stable periodic orbits of the circuit. The boundary 
separating the basins of the two periodic orbits interacts with the 
Poincare map discontinuities and has novel features. Some of these 
results first appeared in [13] and [14]. 

II. CIRCUIT DESCRIPTION 

Fig. 1 shows a single phase static VAR system [8], [l] consisting 
of a thyristor controlled reactor and a parallel capacitor C = 1.5 mF. 
The controlled reactor is modeled as an inductor L, = 1.66 mH and 
resistor R, = 31.3 mR in series. The static VAR system is connected 
to an infinite bus behind a power system impedance of inductance 
L, = 0.195 mH and resistance R, = 0.9 m!L The source voltage 
,u(t) = sin(wt - 2rr/3), where w = 2x/T = 1207r rad/s. 

The switching element of the thyristor controlled reactor consists 
of two oppositely poled thyristors which conduct on alternate half 
cycles of the supply frequency. The thyristor is modeled as an ideal 
diode with a gate. The thyristor turns on when a firing pulse is 

applied at the gate, conducts current only in the forward direction, 
and turns off when the thyristor current becomes zero. The thyristor 
is a short circuit when on and an open circuit when off. These 
modeling assumptions are appropriate for systems studies of high 
power switching circuits. The phase delay of the thyristor firing is 
fixed at 120 degrees. One of the thyristors is fired at the beginning of 
the cycle (t = 0, T, 2T, . . .) and the other thyristor is fired half way 
through the cycle (r =T/2, 3T/2, . . .). The firing pulses are assumed 
to be very short. 

When either of the thyristors conduct, the state vector x(t) = 
(1, (t), K(t); 1, (t))” is specified by the thyristor controlled reactor 
current &A), capacitor voltage (kV), and the source current @A), 
and the system dynamics are 

5 = Az + Bu (1) 

where 

( 

-R,L;’ L;’ 
A= -c-l 0 

0 -L,’ y;J. B= (Lq. 

When both thyristors are off, the circuit state is constrained to lie in 
the plane I, = 0 of zero thyristor current, the state vector y(t) = 
(K(t),I,(t))” and the system dynamics are 6 = PAPty + PBu 
where 

p= (; ; !f). 
Further information on the circuit modeling is in [8]. 

III. SWITCHING CONDITIONS 

We give switching conditions for the thyristor firing at r = 0; 
switching conditions for the thyristor firing at t = T/2 are similar. At 
time zero, the thyristor current 1, (0) = 0 and the initial state is given 
by X = y(O) = (K(O), I,(0))t or by ~(0) = (0, V,(O), ls(0))t. The 
function f (t, X) is defined to be the thyristor current assuming the 
thyristor is on for all time 

1 . 

Note that f(0, X) = 0 for all X. 
The function f(t, X) can be used to describe the thyristor switching 

rules precisely. At t = 0, a thyristor is fired and will turn on 
unless a misfire occurs (a misfire occurs when the thyristor voltage, 
V,(O) < 0). If there is no misfire and the thyristor switches on at 
t = 0, then the thyristor will switch off at the$rst positive root 0 off: 

a(x) = min{ t ] f (t, A) = 0, t > O}. 

Note that, in contrast to diodes, thyristor switch on is inhibited until 
a firing pulse is present. 

IV. FOLD BIFURCATION OF SWITCHING TIMES 

The switching time g for the thyristor firing at t = 0 is plotted as 
a function of the initial state X = y(0) = (Vc(0), I, (0))t in Fig. 2. 
Discontinuities of the switching time are apparent as sharp changes 
in the plot. These discontinuities can be understood by examining 
the roots of f (t, X). Fig. 3 shows a “slice” of Fig. 2 obtained by 
plotting several roots of f (t, X) versus the initial capacitor voltage 
Vc(0) for a fixed initial source current 1, (0) = 9. The switching time 
(T is indicated by circles in the plot. As can be seen from Fig. 3, a 
discontinuity in the switching time occurs near Vc(0) = 5.1 where 
the first and second roots of f (t, X) coalesce and disappear so that 
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Fig. 2. 3-D plot of d versus X = (V,(O),I,(O)). 

-2 xxxxxxxxxxxxx~~x 
-3 .2 -1 0 1 2 V,(OY 1 5 8 7 a 

Fig. 3. Roots of f(t,X); o = c, * = root 2,+ =root 3,x = root- - 1, 
-- = root 0. 

what was previously the third positive root becomes the first positive 
root and the switching time (T. 

To analyze the discontinuity as a fold bifurcation off, the thyristor 
is assumed to turn on with no misfire at t = 0 over the range of initial 
conditions X of interest. It is proved in [3] that if the thyristor switch 
off at time F( Xi) satisfies the transversality condition 

then u(X) is a smooth function of X for X sufficiently near Xi. If the 
thyristor switch off at time 0(X,) does not satisfy the transversality 
condition, then the switch off time g(X) is typically discontinuous 
at X,. For example, when X = Xi = (3.2, 4)t, the transversality 
condition is satisfied at the thyristor switch off at 0(X,) as shown in 
Fig. 4(a). There is a second root of f near u( X1) and a third root of f 
at a later time. When X = X, = (4.2, 4)t as in Fig. 4(b), f has zero 
gradient at the double root at p(k) and the transversality condition 
is not satisfied. When X changes to a new value X2 = (5.2, 4)t near 
X, as shown in Fig. 4(c), the previous first and second root have 
disappeared and the previous third root has suddenly become the first 
root. 

V. MISFIRE ONSET AS A TRANSCRITICAL BIFURCATION 

A thyristor misfires at a switch on time when the thyristor voltage 
is negative when the gate turn on pulse arrives. Consider the thyristor 
firing at t = 0 (the analysis is similar for misfire at t = T/2). Just 
before the gate pulse arrives, at time t = 0-, the thyristor voltage is 
the capacitor voltage V,(O) (see Fig. 1). From the system equations 
(l), K(O) is proportional to at a (0, X) which is the gr adient of the 
thyristor cutrent at t = O+. Misfiring is described in the sequence 

(a) kh, 

2 

1 

lml 

o .  .  

m-J 

-1 
0 2 4 6 

time (ms) 

Fig. 4. f (t, X) versus t showing fold bifurcation. 
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Fig. 5. f(t, X) versus t showing transcritical bifurcation. 

of diagrams in Fig. 5(a)--(c) which are plots of f (t, A) versus t for 
various values of Vc(0) with I,(O) = 4. In Fig. S(a) (V,(O) = l), 
the circuit is operating normally, and $$(O, Xi) > 0. In Fig. 5(b) 
(&i,(O) = 0), %(0,X,) has decreased to zero and this is the onset 
of misfire. In Fig. 5(c) (ICC(O) = -l), the thyristor will misfire since 
$$(O, Xa) < 0. If we define root - 1 to be the first negative root 
of f(t, X) = 0, then root -1 increases through the root at zero and 
becomes relabeled as the first root when it becomes positive. The 
onset of the misfire occurs when root -1 coalesces with the root at 
zero. Since the root at zero is fixed, this is a transcritical bifurcation 
[5], [15] of roots of f. Also a transcritical bifurcation diagram is 
evident at the origin of Fig. 3. 

Note that the onset of misfire for the thyristor firing at t = 0 can 
be predicted using 0 = %(0:X) = [l 0 O]A(O V,(O) I,(0))t which 
reduces to V,(O) = 0. That is, the thyristor misfires for V,(O) < 0. 
(If the system is in steady state with the initial condition X on a 
periodic orbit such that V,(O) is near 0, then even a small change 
in parameters could cause a misfire to occur and the thyristor will 
not turn on; this sudden change in switching times will destabilize 
the system [9]. Note that, similarly to the case of fold bifurcation 
instabilities [3], the eigenvalues of the Jacobian of the Poincare map 
give no warning of instability due to the onset of misfire.) 

Interaction of the fold and transcritical bifurcations can be observed 
in Fig. 6(a)-(d). Each subplot is a bifurcation diagram showing the 
roots of f (t, X) versus Vc(0) while holding 1, (0) constant; the 4 
subplots are obtained by varying 1, (0). In Fig. 6(a) (Is(O) = 3.8), 
there is a transcritical bifurcation at T, and no fold bifurcations. 



IciM IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, NO. 12, DECEMBER 1996 

Fig. 6. Roots of f(t, X) showing bifurcations interacting. 

We vary 1s (0)) and note that fold bifurcations Fi and Fa appear 
in Fig. 6(b) (Is (0) = 0.2). As we continue varying 1, (0). the 
bifurcations T and Fi move closer and finally coalesce in Fig. 6(c) 
(1, (0) = -3) to form a pitchfork bifurcation [5], [15]. The pitchfork 
bifurcation is not generic and as we continue to vary I, (0), the 
pitchfork bifurcation disappears, and in Fig. 6(d) (L(O) = -3.4) 
the generic fold and transcritical bifurcations appear once more. 

VI. DYNAMICS OF THE POINCARG MAP 

This section shows how switching time bifurcations affect the 
Poincare map F which describes the circuit transient dynamics 
[5], [15]. F advances the system state y(0) at time zero by one 
period T so that F(y(0)) = y(T). F is computed by successive 
integration of the circuits with one thyristor on and with no thyristors 
on encountered during the cycle. If a periodic orbit of period T 
passes through y(O) at time zero, then F has a fixed point y(0) 
corresponding to the periodic orbit. 

-1 B2 

-2 

4 

Fig. 8. Basin boundary separating basins of fixed points. 

The fold switching time bifurcations of Section IV cause the 
switching time to vary discontinuously. Near a switching time bifur- 
cation, these switching time discontinuities can cause two initially 
nearby trajectories to separate greatly because a portion of one 
trajectory occurs in a circuit with a thyristor on while the same 
portion of the second trajectory occurs in a circuit with a thyristor 
off. (Note that, in contrast to ideal diode circuits [3], the delay of 
thyristor switch on until there is a firing pulse typically prevents the 
thyristor in the second trajectory from turning on again just after 
it turns off.) Therefore the fold switching time bifurcations typically 
cause discontinuities of the PoincarC map. If the initial condition y (0) 
is such that a switching time bifurcation occurs at one of the switching 
times in the cycle, then F is discontinuous at y(0). We write 0 for 
the set of discontinuities of F. F is smooth away from 0 [3]. 

nt$ F”(R) becomes the two fixed points y1 = (1.06, -58.18’) and 
y2 = (19.92,58.45’) which correspond to orbits of period T and are 
not in 0. It can be shown [4], [3] that all periodic orbits of the 
thyristor controlled reactor circuit with y(0) 6 0 are asymptotically 
stable. Thus we have demonstrated multiple attractors for the thyristor 
controlled reactor circuit. This contrasts with the unique attractors of 
suitably resistive ideal diode circuits [3]. 

VII. BASINS OF AITRACTION 

The Poincare map F is not one to one. We can see this by 
computing the Poincare map for a segment of a circular disk of initial 
conditions of radius 10 (cf. Fig. 7). The overlapping portion of Fig. 7 
indicates a non invertible map, and numerical experiments confirm 
this. For example, the initial conditions (3.0,8.19”) and (3.2,-31.01”) 
map onto the same point. Here it is convenient to specify initial 
conditions y(0) in polar coordinates (r, 0). 

The basin boundary dB separating the basins of attraction of the 
two fixed points yi and y2 is of interest because it interacts with 
the set of Poincare map discontinuities 0. Fig. 8 shows the basins 
of attraction B1, B2 of each fixed point and the basin boundary dB 
(dB is formally defined as the intersection of the closures of B1 and 
Bz). dB was computed by taking a fine grid of initial conditions and 
noting which of the two fixed points they converged to under repeated 
application of the Poincare map F. The basin boundary interacts with 
0 inside the dotted rectangle of Fig. 8 which is shown enlarged in 
Fig. 9. 

To ,avoid the region of misfires, we restrict the domain of F to Fig. 9(a) shows the fine structure of 0 only. 0 is composed of 3 
(-89” 5 0 5 89”). Computer experiments show that {-S9’ 5 curves Ci, C2, C’s which were computed by a continuation method. 
8 5 89”) is positively invariant under F. The Appendix shows that Initial conditions on Ci yield switching time bifurcations in the 
there is a compact positively invariant set R such that every initial first half cycle as shown in the corresponding inset of Fig. 9(a) (the 
condition in { -89” 5 0 5 89”) tends to R. Computing fi:=, F<(n) inset shows the qualitative form of thyristor current 1,-(t) for initial 
yields all the attractors inside { -89” 5 0 5 89”). After 30 iterates, conditions on Ci and * indicates a switching time bifurcation). C2 

Fig. 7. Poincark map of semidisk of radius 10. 

fixed point y2 
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(a) Fig. 10. PoincarC map of basin boundary L313. 

-40 

(b) 
Fig. 9. (a) Detail of Poincak map discontinuities 0. (b) Detail of 0 and 
basin boundary 8B. 

and  CS correspond to switching time bifurcations in the second half 
cycle as shown in the corresponding insets of Fig. 9(a). 

Fig. 9(b) shows how the basin boundary  dB intersects with 0. 
Let X be  the points in dB and  0: 

X=dBnO 

X consists of initial condit ions on  the basin boundary  which en- 
counter a  switching time bifurcation during the next cycle. The 
discontinuity in F caused by switching time bifurcation is the 
mechanism by which nearby initial condit ions on  either side of 
X tend to different fixed points under  iterations of F. Numerical 
application of F  to X suggests that initial condit ions exactly on  X 
tend to the fixed point ye. That is, X is contained in the basin B2. 
To understand this, note that in the fold switching time bifurcation 
in Fig. 3, the switch off time o(X) is cont inuous at the switching 
time bifurcation when \/L(O) = K GZ 5.1 as K(0) approaches V, 
from above,  but is discontinuous at K as lfc(0) approaches K, from 
below. This one  sided continuity causes the points in X to tend to 
ye under  iterations of F. 

W e  have described switching time bifurcations of a  thyristor 
controlled reactor circuit using fold and  transcritical bifurcations 
of the thy&or current function f which determines the thyristor 
switching times. The discontinuities in the switching times greatly 
affect the circuit transient dynamics, causing discontinuities and  
noninvertible regions of the Poincare map. The circuit exhibits two 
asymptotically stable periodic orbits and  no  unstable periodic orbits. 
The basin boundary  separat ing the two basins of attraction of the 
two periodic orbits is composed of some of the initial condit ions 
whose forward trajectories encounter  switching time bifurcations. W e  
conclude that switching time bifurcations in the thyristor controlled 
reactor circuit cause novel dynamics not present in conventional 
nonlinear dynamical systems. These novel dynamics are generic and  
should help to clarify nonlinear phenomena in other circuits with 
ideal thyristors. 

This appendix shows the existence of a  compact  positively invari- 
ant and  globally attracting set for F  by a  combination of analytical 
and  numerical results. F  is assumed to be  restricted to i-89” 5  
6’ 5  89”). 

According to [4], [8], 

Let Y be  the portion of the basin boundary  dB not in X. Points 
of E’ map to X under  a  repeated application of F. To  show this, 
we computed.  the dynamics on  Y as follows. First, we claim that 
F maps Y into dB. (Let y(0) E Y, and  let U be  a  neighborhood 
of y(O) which intersects both B1 and  Ba but is disjoint from 0. F 
is smooth in U and  F(B1 n  U) c B1, F(B2 rl U) C B2 imply . -I I-j, -- 
that k’(y(0)) E i)B.) Parameterking the basin boundary  I?B by 0, 

where g(,u) is a  bounded  function of U. The matrix J(y(0)) is the 
Jacobian of F  if y(0) $2  0. Choose the norms related to the circuit 
energy (see [3]) by  

IEEETRANSACTIONS ONCIRCUITS ANDSYSTEMS-I:  FLJNDAMENTALTHEORY ANDAppLICATIONS,VOL.43,NO.12,DECEMBER 1996 1005 

we computed F on  Y to yield the one  dimensional map shown in 
Fig. 10  (the shaded port ions correspond to X). The form of the map 
in Fig. 10  shows that repeated iterates of F  map Y to X (one such 
iterate is shown).  

In summary,  the basin boundary  CUB consists of initial condit ions 
which are either on  X or eventually map to X. Thus the forward 
trajectory through every initial condit ion on  dB encounters a  switch- 
ing time bifurcation which causes the two basins to be  separated. 
However,  there are also many initial condit ions in 0  but not in dB 
whose forward trajectories encounter  switching time bifurcations. The 
basin boundar ies of conventional smooth dynamical systems contain 
unstable orbits such as saddles which act to separate trajectories in 
different basins. No such unstable orbits appear  to exist in aB. 

VIII. CONCLUSION 

APPENDIX 

F(yl(O)) = J(Y(O)) ~(0) +  g(u) 

L  L  

Iv(t)l’ =pc(t)” + ;L,Is(t)2 

lz(t)12 =;L,Ir(t)2 +  $CK(t)2 + $L,I*(t)2 
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and write II.11 for the induced matrix norms. From [8], [3], 

~(~(0)) = ~,“~1Q,PnQ(~/2-~l)p,~4’z~ePAQ(~/~--r2) 

where ~1: ~2 are the length of time each thyristor conducts and Q is 
the transpose of P. Using (IP(I 5 1 and ~~Q~~ = 1 from [3], 

IIJ(y(O))ll < I(e”“I( IlerAQ(T’2-T1)ll lleA’q llepAQ(T’*--rql. 

It can be checked that lle”l II < 1 for ~1 > 0 and 
that Ile P”Q(T12--r1)lJ 
lIeAT II Ile rAQ(T/2--rl)l( 

< 1 for 71 < T/2. Therefore 
< 1 for 0 5 71 5 T/2 and 

su~IIJ(y(O))ll < 1. Let 

2 S”PlS(~U)l 
R = 1 - ~uPllJ(ym)ll 

Then J:y(O)( 2 R implies 

IF(y(O))l 2 ~~~~Pll~~y(~~~ll~lY(o~l+ snpls(u)I < qY(o)l 

where k satisfies (1 + supllJ(y(O))ll)/2 < I; < 1. Let 

P = 1 + R + 1, Y gyg IF(Y(OJ)I - R 1. 

Then /y(O)/ 5 /- implies IF(y(O))l < p. Since (-89” 5 0 5 89’} 
is positively invariant, the set 

R = { Iy(O)l 5 p: -89” 5 8 5 89” } 

is a compact positively invariant set. Moreover since 0 < li < 1, 
and Iy(O)( 2 p implies IF(y(O))l < h.ly(O)I, every initial condition 
in (-89” 2 8 2 89”) tends to R. Numerical results show that 
P= 500 is a suitable choice. 

Cl1 
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Chaotic Behavior and Synchronization Phenomena 
in a Novel Chaotic Transistors Circuit 

Cong-Kha Pham, Makoto Korehisa, and Mamoru Tanaka 

Abstract- In this brief, chaotic behavior and synchronization phe- 
nomena which occur in a novel Chaotic Transistors circuit with high 
speed operation are described. The most important point in this brief 
is to change a nonlinear transfer characteristic of a MOS inverter 
to a nonlinearity generating a chaos. The proposed circuit includes 
a looped MOS inverter having a pull-up resistor serially connected 
to a pull-down NMOS transistor. A switched capacitor (SC) circuit 
having a hold capacitor and two CMOS switches is added in the loop 
of the circuit to operate sampling holding. The chaotic behavior has 
been found along with a variation of a sampling clock frequency. The 
synchronization phenomena is also found between two coupled Chaotic 
nansistors circuits. The test chip is implemented employing 2 pm CMOS 
technology of MOSIS service. 

I. INTRODUCTION 

There are many studies on chaotic behavior in nonlinear systems 
in the recent decade [l]-[12]. The nonlinear feedback system such 
as a pulsewidth modulated (PWM) system with a difference equation 
generates chaos if this equation has periodic solution of each period 
as described in [l]. The chaotic phenomena is also found in a 
negative resistance LC oscillator as shown in [2] and in a two 
cells or three cells autonomous system of cellular neural networks 
which exhibits the Hopf-like bifurcation as shown in [3]. On the 
other hand, there are many studies on chaotic behavior based on the 
nonlinear differences equations or nonlinear mapping functions have 
been reported in [4]-[12]. The very simplest nonlinear difference 
equations can possess an extraordinarily rich spectrum of dynamical 
behavior, from stable points, through cascades of stable cycles, to 
a regime in which the behavior is in many respects chaotic, or 
indistinguishable from the sample function of a random process [4]. In 
[5], an example of a one-dimensional (1-D) map, also called logistic 
map which exhibits complicated behavior such as chaos is used for 
analyzing experimentally the chaotic dynamics and bifurcations of 
circuits and systems. Recently, a neuron model with an N shaped 
1-D mapping function which exhidits chaotic behavior called chaotic 
neuron [6]-[l l] has been investigated and can be implemented with 
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