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Abstract—Branching processes can be applied to simulated
cascading data to describe the statistics of the cascades and
quickly predict the distribution of blackout sizes. We improve
the procedures for discretizing load shed data so that a Galton-
Watson branching process may be applied. The branching
process parameters such as average propagation are estimated
from simulated cascades and the branching process is then used
to estimate the distribution of blackout size. We test the estimated
distributions with line outage and load shed data generated by
the improved OPA and AC OPA cascading simulations on the
IEEE 118 bus system and the Northeast Power Grid of China.

Index Terms—Branching process, cascading failure, power
transmission reliability, simulation.

I. INTRODUCTION

CASCADING blackouts of transmission systems are com-
plicated sequences of dependent outages that lead to load

shed. Of particular concern are the larger cascading blackouts;
these blackouts are rare and high impact events that have
substantial risk, and they pose many challenges in simulation,
analysis, and mitigation [1].

Simulations of cascading outage produce samples of cas-
cades, and it is useful to be able to statistically describe these
simulated cascades with high-level probabilistic models such
as branching processes. Branching processes have descriptive
parameters that characterize the system resilience to cascading.
For example, the propagation of outages is a key parameter
for branching processes that quantifies the average extent to
which outages cause further outages. Moreover, the branching
process can be used to predict the probability distribution of
blackout size (that is, the frequencies of blackouts as a function
of blackout size) from much shorter simulation runs. It is much
quicker [2] to estimate the parameters of a branching process
from a shorter simulation run and then predict the distribution
of blackout size using the branching process than it is to
run the simulation for very long time to accumulate enough
cascades (especially the rare large cascades) to empirically
estimate the distribution of blackout size.
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However, these advantages of branching processes can only
be realized when the branching process is validated, and this
needs to be done for a range of different simulations and test
cases, and for real data. The progress so far in establishing
branching process models for estimating cascade propagation
and distributions of blackout size is:

1) Branching processes can match the distribution of num-
ber of line outages [2] and load shed [3] simulated by the
OPA simulation on the IEEE 118 and 300 bus systems.
There is also a match for the distribution of load shed
for the TRELSS simulation in one case of an industrial
system of about 6250 buses [3].

2) Branching processes can match the propagation and
distribution of the number of cascading line outages in
real data [4], [5].

3) Branching processes can approximate CASCADE, an-
other high-level probabilistic model of cascading [6].

In matching load shed in [3] for item (1), two approaches and
types of branching processes were tried to accommodate the
continuously varying load shed data. (Note that line outages
are easier than load shed since number of line outages is a
nonnegative integer whereas load shed varies continuously.)
The approach that worked best in [3] discretized the load
shed data so that it became integer multiples of the chosen
discretization unit. Then the discretized load shed data was
processed with a Galton-Watson branching process, which
works with nonnegative integers. However in [3], the choice of
the discretization unit was ad hoc and no systematic approach
was given. Analyzing the load shed data with the branching
process is important because load shed is measure of blackout
size that is of great significance to both utilities and society,
whereas line outages are of direct interest only to utilities.

Instead of applying a Galton-Watson branching process to
discretized load shed, it is also possible to directly analyze
load shed using a continuous state branching process model
[3]. Each generation is a continuously varying amount of
load shed that propagates according to a continuous offspring
probability distribution. One challenge with the continuous
state branching process is determining the form to assume for
the continuous offspring distribution. Reference [3] assumes
a Gamma distribution for simplicity and computational con-
venience, but the problem of a justified choice of continuous
offspring distribution for cascading load shed remains open.
The calculations for continuous state branching processes are
analogous to the calculations for Galton-Watson branching
processes but more technically difficult.

In this paper, we advance the application of branching
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processes to cascading blackouts by improving the processing
of load shed data and validating the branching process on other
simulations and test systems. In particular,

1) We describe a new and systematic procedure to dis-
cretize load shed data so that it can be analyzed as
a Galton- Watson branching process with a Poisson
offspring distribution. This new procedure can be ap-
plied to any continuously varying measure used to track
cascading.

2) We show how branching process models can match the
distribution of number of cascading line outages and
load shed simulated by two enhanced versions of the
OPA simulation on the IEEE 118 bus system and the
Northeast Power Grid of China (NPGC).

The rest of this paper is organized as follows. Section II
briefly introduces Galton-Watson branching processes. Section
III explains estimating branching process parameters and the
distribution of outages. Section IV explains how to discretize
the load shed data so that it can be analyzed with a Galton-
Watson branching process. Section V introduces the improved
OPA and AC OPA cascading simulations. Section VI tests the
proposed method with line outage data and load shed data gen-
erated by the two simulations on IEEE 118 bus system and the
NPGC system. Finally the conclusion is drawn in Section VII.

II. BRANCHING PROCESSES

Branching processes have long been used in a variety of
applications to model cascading processes [7], [8], but have
been applied to the risk of cascading outage only recently [9],
[4], [6], [2], [3], [5]. This section gives an informal overview
of branching processes. For more detail, see [5] and [7], [8].

The Galton-Watson branching process gives a high-level
probabilistic model of how the number of outages in a blackout
propagate. The initial outages propagate randomly to produce
subsequent outages in generations. Each outage in each gen-
eration (a “parent” outage) independently produces a random
number 0, 1, 2, 3, ... of outages (“children” outages) in the next
generation. The distribution of the number of children from
one parent is called the offspring distribution. The children
outages then become parents to produce another generation,
and so on. If the number of outages in a generation becomes
zero, then the cascade stops.

The mean of the offspring distribution is the parameter λ.
λ is the average family size (the average number of children
outages for each parent outage). λ quantifies the tendency
for the cascade to propagate, since large average family sizes
will tend to cause the outages to grow faster. In this paper,
we have λ < 1, and the outages will always eventually die
out. The branching process model does not directly represent
any of the physics or mechanisms of the outage propagation,
but, after it is validated, it can be used to predict the total
number of outages. The parameters of a branching process
model can be estimated from a much smaller data set, and
then predictions of the total number of outages can be made
based on the estimated parameters. While it is sometimes
possible to observe or produce large amounts of data to
make an empirical estimate of the total number of outages

(indeed this is the way the branching process prediction is
validated), the ability to do this via the branching process
model with much less data is a significant advantage that
enables practical applications. The simplicity of the branching
process model also allows a high-level understanding of the
cascading process without getting entangled in the various and
complicated mechanisms of cascading. The branching process
should be seen as complementary to detailed modeling of
cascading outage mechanisms.

The intent of the branching process modeling is not that
each parent outage in some sense “causes” its children outages;
the branching process simply produces random numbers of
outages in each generation that can statistically match the
outcome of the cascading. For example, when used to track
the number of transmission line outages, the branching process
does not specify which lines outage, or where they are, or
explain why they outaged. The branching process describes the
statistics of the number of lines outaging in each generation,
and the statistics of the total number of lines outaged.

Similarly, when used to track load shed, the branching
process does not specify which load is shed, or where, or
explain why load is shed. It is worth noting that the underlying
cascading processes and interactions that we are tracking with
a branching process are complicated and varied. For example,
there are situations in which load shed tends to inhibit the
chance of further cascading and there are other situations in
which load shed can tend to increase the chance of further
cascading. It is not obvious that branching processes can
summarize this complexity, and it is a goal of this paper to
show evidence that this can be done. In particular, we show
that the branching process describes the statistics of the load
shed in each generation for the purpose of summarizing the
cascade propagation so that the distribution of the total load
shed can be statistically estimated. The branching process
analysis is a bulk statistical analysis that should be regarded
as complementary to detailed causal analysis.

III. ESTIMATING BRANCHING PROCESS PARAMETERS

This section explains how the branching process parameters
are estimated from the simulated data and used to estimate the
distribution of blackout size, in particular the distribution of
the number of line outages or the distribution of load shed.

The simulation naturally produces the line outages or load
shed in generations or stages; each iteration of the “main loop”
of the simulation produces another generation. In the case of
line outages, the number of line outages in each generation are
counted. In the case of load shed, the continuously varying
load shed amounts in each generation are processed and
discretized as described in section IV to produce integer
multiples of the chosen discretization unit. In either case, M
cascades1 are simulated to produce nonnegative integer data
that can be arranged as

1Note that a single outage shedding load followed by no further load shed
is regarded as a cascade with only one generation.
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generation 0 generation 1 generation 2 · · ·

cascade 1 Z
(1)
0 Z

(1)
1 Z

(1)
2 · · ·

cascade 2 Z
(2)
0 Z

(2)
1 Z

(2)
2 · · ·

...
...

...
...

...

cascade M Z
(M)
0 Z

(M)
1 Z

(M)
2 · · ·

where Z(m)
j is the number of outages produced by the simula-

tion in generation j of cascade number m. Since the average
propagation λ < 1, each cascade eventually terminates with a
finite number of generations when the number of outages in a
generation becomes zero. Each cascade has a nonzero number
of outages in generation 0. The shortest cascades stop in
generation 1 by having no outages in generation 1 and higher
generations, but some of the cascades will continue for several
or occasionally many generations before terminating. The
assumption of a positive number of outages in generation 0
implies that all statistics assume (or, in statistical terminology,
are conditioned on) a cascade starting.

Note that all the outages are parent outages, and all the
outages in generations 1 and higher are children outages. It
follows that the average propagation λ (the average family
size) can be estimated as the total number of children divided
by the total number of parents:

λ̂ =

M∑
m=1

(Z
(m)
1 + Z

(m)
2 + ...)

M∑
m=1

(Z
(m)
0 + Z

(m)
1 + ...)

(1)

This is the standard Harris estimator of propagation [8], [10].
We will also estimate the variance of the offspring distribution
as explained in Appendix A and use this variance in section IV
to choose the load shed discretization.

The empirical probability distribution of the number of
initial outages Z0 can be obtained as

P [Z0 = z0] =
1

M

M∑
m=1

I[Z
(m)
0 = z0], (2)

where the notation I[event] is the indicator function that
evaluates to one when the event happens and evaluates to zero
when the event does not happen.

The average number of initial outages θ is estimated as

θ̂ =
1

M

M∑
m=1

Z
(m)
0 . (3)

We assume that the offspring distribution is a Poisson
distribution with mean λ. There are general arguments sug-
gesting that the choice of a Poisson offspring distribution is
appropriate [3], based on the offspring outages being selected
from a large number of possible outages that have small
probability and are approximately independent.

We are most interested in statistics of the total number of
outages Y∞ produced by the cascades, since Y∞ indicates
either the total number of line outages or the total load
shed. Given the probability distribution of Z0 and the average
propagation λ̂, the formula for calculating the probability

distribution of Y∞ is the following mixture of Borel-Tanner
distributions [4]:

P [Y∞ = r] =

r∑
z0=1

P [Z0 = z0]z0λ̂(rλ̂)r−z0−1
e−rλ̂

(r − z0)!
.

IV. PROCESSING AND DISCRETIZING LOAD SHED

This section discusses the processing and discretization of
the load shed data to produce integer counts of the discretiza-
tion unit of load shed. Our Galton-Watson branching process
assumes a Poisson offspring distribution, which always has its
variance equal to its mean. The key idea is to choose the
discretization so that the offspring distribution also has its
variance equal to its mean and is therefore consistent with
the Poisson distribution.

A. Initial Processing

Very small load shed amounts (less than 0.5% of total load)
are considered negligible and rounded to zero. The cascades
with no load shed are discarded. For those cascades that have
no load shed in initial generations and non-negligible load shed
in subsequent generations, the initial generations with no load
shed are discarded to guarantee that generation zero always
starts with a positive amount of load shed. Moreover, when any
intermediate generation with zero load shed is encountered,
the current cascade will be ended and a new cascade started
at the next generation with nonzero load shed. There are M
cascades in total and X(m)

k denotes the load shed at generation
k of cascade m.

B. Discretization

To apply a Galton-Watson branching process to load shed
data, we need to discretize the continuously varying load shed
data in MW to integer multiples of a unit of discretization ∆.
In particular, we use the following discretization to convert the
load shed X(m)

k MW to integer multiples Z(m)
k of ∆ MW:

Z
(m)
k = int

[
X

(m)
k

∆
+ 0.5

]
(4)

where int [x] is the integer part of x. We add 0.5 before taking
the integer part to ensure that the average values of Z(m)

k and
X

(m)
k /∆ are equal. The discretization (4) is straightforward

except that the choice of the discretization unit ∆ matters.
Here we give a justifiable way to choose ∆. A previous paper
[3] made a heuristic and subjective choice of ∆.

We first discuss how the choice of the discretization unit
∆ affects the mean and variance of the offspring distribution.
Consider a second choice of discretization unit ∆′ and corre-
sponding discretized data Z ′(m)

k so that

Z ′k
(m)

= int
[
X

(m)
k

∆′
+ 0.5

]
.

Neglecting the effects of rounding, so that Z(m)
k ≈ X

(m)
k /∆

and Z ′k
(m) ≈ X(m)

k /∆′, yields

Z ′k
(m) ∼=

∆

∆′
Z

(m)
k . (5)
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The mean λ of the offspring distribution is a dimensionless
ratio of load shed that does not depend on the scaling or units
of the load shed (see (1)). To understand this, we recall that
the offspring distribution is defined as the distribution of the
number of units of load shed in generation k + 1 assuming
one unit of load shed in generation k. When the discretization
is changed from ∆ to ∆′, both Z(m)

k and Z(m)
k+1 are multiplied

by ∆/∆′, so that the mean of the offspring distribution does
not change. The variance of Z(m)

k+1 is multiplied by (∆/∆′)2,
but since Z

(m)
k is also multiplied by ∆/∆′, the offspring

distribution variance σ2, which is the variance in generation
k+1 arising from one unit of load shed in generation k, is only
multiplied by ∆/∆′. To explain these scalings with an exam-
ple, suppose that in the first cascade there are 2 units of load
shed in generation k with discretization ∆ so that Z(1)

k = 2.
Then, according to the principles of branching processes, the
distribution of load shed Z(1)

k+1 in generation k+ 1 is the sum
of two independent copies of the offspring distribution for
discretization ∆, and therefore has mean 2λ and variance 2σ2.
Now change the discretization to ∆′ = 2∆ so that Z ′k+1

(1) ∼=
Z

(1)
k+1/2 and Z ′k

(1)
= Z

(1)
k /2 = 1. Then the distribution of

Z ′k+1
(1) is the offspring distribution for discretization ∆′, which

has mean EZ ′k+1
(1)

= EZ
(1)
k+1/2 = 2λ/2 = λ, and variance

E[(Z ′k+1
(1) − λ)2] = E[(Z

(1)
k+1 − 2λ)2]/4 = 2σ2/4 = σ2/2.

Thus changing the discretization unit ∆ strongly affects σ2,
and in particular increasing ∆ decreases σ2 proportionally.

When we consider the influence of rounding on these scal-
ing approximations, the mean of the offspring distribution λ is
only slightly affected by ∆ while the variance of the offspring
distribution σ2 has an overall strong tendency of decreasing
proportionally with the increase of ∆ (strict monotonicity
for small changes in ∆ is not guaranteed). We notate these
strong and weak dependencies by writing σ2(∆) and λ(∆)
respectively and we can get σ2(∆) ∼= σ2(∆′) ∆′/∆ and
λ(∆) ∼= λ(∆′) from the above analysis.

Our calculations assume a Poisson offspring distribution,
and it is well known that the variance of a Poisson distribution
is equal to its mean. Therefore, to be consistent with the
Poisson distribution, we need to choose a discretization so
that the variance of the offspring distribution is equal to its
mean. That is, we need to choose ∆ so that σ2(∆) = λ(∆).

Specifically, we discretize the data for ∆ = 1 MW and
estimate σ2(1) and λ(1) and then the ∆ that satisfies σ2(∆) =
λ(∆) is approximately σ2(1)/λ(1). Calculated values of ∆ are
shown in Table II. This procedure requires σ2 to be estimated
and this calculation is explained in the Appendix. We have
found that the distribution of load shed is not very sensitive
to the exact value of ∆, so that the estimate of σ2 and the
chosen ∆ need not be very accurate.

C. Processing after Discretization
After discretization the initial load shed in some cascades

may become zero. These cascades are discarded.

V. IMPROVED OPA AND AC OPA MODEL

This section briefly summarizes the main features of the
improved OPA and AC OPA cascading outage simulations.

Since these are enhanced versions of the OPA model, we
first summarize the OPA model. For detailed descriptions, see
[11], [12], [13] for OPA, [14], [15] for improved OPA, and ,
[15], [16], [17] for AC OPA. This paper uses the forms of the
improved OPA and AC OPA simulations in which the power
grid is fixed and does not evolve or upgrade.

A. OPA

The OPA model represents transmission lines, loads, and
generators and computes the network power flows with a
DC load flow. Each simulation run starts from a solved
base case solution for the power flows, generation, and loads
that satisfy circuit laws and constraints. To obtain diversity
in the runs, the system loads at the start of each run are
varied randomly around their mean values by multiplying by
a factor uniformly distributed in [2−γ, γ]. Initial line outages
are generated randomly by assuming that each line can fail
independently with probability p0. This crudely models initial
line outages due to a variety of causes including lightning,
wildfires, bad weather, and operational errors. Whenever a
line fails, the generation and load is redispatched to satisfy
the transmission line and generation constraints using standard
linear programming methods. The optimization cost function
is weighted to ensure that load shedding is avoided where
possible. If any lines were overloaded during the optimization,
then these lines are those that are likely to have experienced
high stress, and each of these lines fails independently with
probability p1. The process of redispatch and testing for line
outages is iterated until there are no more outages. OPA has
been validated against WECC data [18].

B. Improved OPA

Compared with OPA, the improved OPA considers in the
cascading process the misoperation of protective relays and the
failure of EMS or communications in the dispatching center.
The maloperation of relays is simulated by tripping lines that
are not overloaded with probability ξ × |F/Fmax|a. ξ is the
base probability of unwanted operation of relays and |F/Fmax|
is the load ratio of the transmission line. The standard linear
programming problem in OPA is calculated with probability
η and 1−η is the failure rate of the dispatching center, which
can be caused by breakdown of the EMS or communications.

C. AC OPA

Both OPA and improved OPA use DC power flow and only
consider active power. Bus voltages are considered constant. In
contrast, the AC OPA model uses AC power flow and thus can
consider reactive power and voltage. The operation mode of
the system is first determined by AC OPF and load shedding
and will be readjusted by AC OPF until there is no further
outage or failure once outages happen. The AC OPF takes
into account both reactive power and voltage constraints.

VI. RESULTS

This section presents results giving the branching process
parameters computed from simulated cascades, the distribu-
tions of outages predicted from these parameters, and the
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comparison with the simulated distributions of outages. The
cascading outage data is produced by the improved OPA sim-
ulation [14] on the NPGC system and the AC OPA simulation
[16], [17] on the IEEE 118 bus test system.

The NPGC system consists of Heilongjiang, Jilin, Liaoning,
and the northern part of Inner Mongolia. It has about 500 trans-
mission lines, more than 300 transformers, 250 substations,
and about 200 generators. We consider 500kV and 220kV
transmission lines and substations which correspond to a 568
bus system. The NPGC system data includes the line limits.

The IEEE 118 bus system data is standard, except that line
flow limits are determined by running the fast dynamics of the
improved OPA and the slow dynamics of OPA that selectively
upgrades lines in response to their participation in blackouts
[12], starting from an initial guess of the line limits. This
procedure results in a coordinated set of line limits.

For the improved OPA model, we use the same parameters
as those in [14] and p1 = 0.999, ξ = 0.001, a = 10, and
η = 0.95. For the NPGC system p0 = 0.0007, which is the
same as [14], and for the IEEE 118 bus system p0 = 0.0001,
which is the same as [2]. For both models the load variability
γ = 1.67 as in [2].

For testing the branching process model, the simulation is
run so as to produce 5000 cascading outages with a nonzero
number of line outages or non-negligible load shed.

A. Line Outage Results

We test the branching process model for estimating the
distribution of total line outages on cascading data from the
improved OPA simulations on the NPGC system under differ-
ent load levels. The estimated branching process parameters θ̂
and λ̂ are shown in Table I. The distributions of line outages
are shown in Figs. 1–2. The distributions of total line outages
(dots) and initial line outages (squares) are shown, as well
as a solid line indicating the total line outages predicted by
the branching process. The branching process data is also
discrete, but is shown as a line for ease of comparison. The
branching process prediction of the distribution of total line
outages matches the empirical distribution quite well.

The branching process model is also tested with cascading
data generated by the AC OPA model on the IEEE 118 bus
system. The results are shown in Figs. 3–5. The branching
process prediction of the distribution of total line outages
matches the empirical distribution well.

TABLE I
ESTIMATED PARAMETERS FOR LINE OUTAGE DATA

system model load level θ̂ λ̂ λ̂500

NPGC Im OPA 1.15 1.69 0.02 0.02
NPGC Im OPA 1.3 2.14 0.14 0.14
NPGC Im OPA 1.6 2.54 0.19 0.20

IEEE 118 AC OPA 1.0 4.38 0.40 0.40
IEEE 118 AC OPA 1.2 7.01 0.52 0.52
IEEE 118 AC OPA 1.4 10.08 0.63 0.63

Fig. 1. Probability distributions of number of line outages by improved
OPA on NPGC system at load level 1.3 times the base case. Dots indicate
total numbers of line outages and squares indicate initial line outages; both
distributions are empirically obtained from the simulated cascades. The solid
line indicates the distribution of total numbers of line outages predicted with
the branching process.

Fig. 2. Probability distributions of number of line outages by improved OPA
on NPGC system at load level 1.6 times the base case.

Fig. 3. Probability distributions of number of line outages by AC OPA on
IEEE 118 bus system at base case load level.
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Fig. 4. Probability distributions of number of line outages by AC OPA on
IEEE 118 bus system at load level 1.2 times the base case.

Fig. 5. Probability distributions of number of line outages by AC OPA on
IEEE 118 bus system at load level 1.4 times the base case.

B. Load Shed Results

We also test the branching process model for estimating
the distribution of total load shed on cascading data from
the improved OPA and AC OPA simulations on the NPGC
and IEEE 118 bus systems. The estimated branching process
parameters θ̂ and λ̂ are listed in Table II. In contrast with
the line outages, the average propagation λ̂ does not always
increase with load level. When the load level increases from
1.3 times base case to 1.6 times base case for improved OPA
simulation on NPGC system, λ̂ decreases from 0.29 to 0.22.

TABLE II
ESTIMATED PARAMETERS FOR LOAD SHED DATA

system model load level θ̂ (MW) λ̂ ∆ (MW) λ̂500

NPGC Im OPA 1.15 177 0.10 198 0.11
NPGC Im OPA 1.3 441 0.29 388 0.35
NPGC Im OPA 1.6 5404 0.22 2465 0.23

IEEE 118 AC OPA 1.0 160 0.42 90 0.44
IEEE 118 AC OPA 1.2 224 0.58 167 0.58
IEEE 118 AC OPA 1.4 407 0.67 425 0.68

The results comparing the distributions of load shed for
improved OPA simulations are shown in Figs. 6–8 and those

for AC OPA are shown in Figs. 9–11. The branching process
predictions of the distribution of load shed match the empirical
distributions well, with a less good match for the high stress
case of Figure 11.

Fig. 6. Probability distribution of total load shed by improved OPA on NPGC
system at load level 1.15 times the base case.

Fig. 7. Probability distribution of total load shed by improved OPA on NPGC
system at load level 1.3 times the base case.

Fig. 8. Probability distribution of total load shed by improved OPA on NPGC
system at load level 1.6 times the base case.
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Fig. 9. Probability distribution of total load shed by AC OPA on IEEE 118
bus system at base case load level.

Fig. 10. Probability distribution of total load shed by AC OPA on IEEE 118
bus system at load level 1.2 times the base case.

Fig. 11. Probability distribution of total load shed by AC OPA on IEEE 118
bus system at load level 1.4 times the base case.

A reasonable objection to the comparison in section VI-A
and VI-B is that the same data is used both to estimate the
distribution and to obtain the empirical distribution. To address
this objection we divided the data into separate fitting and

validation sets. Specifically, we estimate the distribution from
the odd numbered cascades and compare with the empirical
distribution for the even numbered cascades, and vice verse.
The resulting matches, which are shown in Appendix B, are
also satisfactory.

C. Efficiency

For testing and validating the branching process model, we
use 5000 cascades, but the analysis and results of [2] and [3]
suggest that, once validated, the approach can be applied for
much fewer cascades. Tables I and II show the propagation
λ̂500 estimated using the first 500 cascades. λ̂500 is close to λ̂ in
all cases except for load shed in NPGC at loading level 1.3.

Previous work has demonstrated the efficiency gained by
estimating the distribution of discretized load shed by first
estimating the propagation and then using a branching process
model. According to [3], “if the initial load shed distribution is
known accurately, then accurately estimating the distribution
of the total amount of load shed via discretization and the
Galton-Watson branching process requires substantially fewer
cascades.”

In particular, let pbranch be the probability of shedding total
load S∆ MW, computed via estimating λ from Kbranch sim-
ulated cascades with non-negligible load shed and then using
the branching process model. pbranch is conditioned on a non-
negligible amount of load shed. Let pempiric be the probability
of shedding total load S∆ MW, computed empirically by
simulating Kempiric cascades with non-negligible load shed.
If we require the same standard deviation for both methods,
then section IV of [3] derives the following approximation of
the ratio R of the required number of simulated cascades as

R =
Kempiric

Kbranch
=
pempiric(1− pempiric)θ

λ(1− λ)∆

(
dpbranch
dλ

)−2
(6)

R is a ratio describing the gain in efficiency when using
branching process rather than empirical methods. To obtain
numerically a rough estimate of R, we evaluate (6) for almost
largest total load shed S∆ MW for all six load shed cases.
Here we sort the total load shed of Kempiric cascades in
descending order and choose S∆ to be the ith one, where
i = int[5%Kempiric+0.5]. dpbranch/dλ is estimated by numer-
ical differencing. The results in Table III show that Kempiric

exceeds Kbranch by an order of magnitude or more. That is,
if the initial load shed distribution is known accurately, then
accurately estimating the distribution of the total amount of
load shed via discretization and the Galton-Watson branching
process requires substantially fewer cascades.

TABLE III
EFFICIENCY GAIN R FOR LOAD SHED DATA

system model load level S∆ (MW) R

NPGC Im OPA 1.15 419 28
NPGC Im OPA 1.3 1851 27
NPGC Im OPA 1.6 12759 15

IEEE 118 AC OPA 1.0 830 28
IEEE 118 AC OPA 1.2 1581 111
IEEE 118 AC OPA 1.4 3946 91
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Similarly, we can also confirm the efficiency gains for line
outage data by evaluating (6) with ∆ = 1 for almost largest
total line outages S, which can be determined in a similar way
as choosing S∆. The results in Table IV show that Kempiric

exceeds Kbranch by an order of magnitude or more. Similar or
better efficiency gains for estimating the distribution of number
of lines outages have also been observed in [2].

TABLE IV
EFFICIENCY GAIN R FOR LINE OUTAGE DATA

system model load level S R

NPGC Im OPA 1.15 4 114
NPGC Im OPA 1.3 6 68
NPGC Im OPA 1.6 6 21

IEEE 118 AC OPA 1.0 13 32
IEEE 118 AC OPA 1.2 23 41
IEEE 118 AC OPA 1.4 46 36

The efficiency gains are not surprising because estimating
the parameters of a distribution is generally expected to be
more efficient than estimating the distribution empirically.

VII. CONCLUSION

In this paper, we advance the application of branching
processes to cascades of power grid outages by improving the
processing of load shed data and testing the capability of the
branching process to estimate distributions of blackout size.

Load shed data needs to be discretized before applying
a Galton-Watson branching process with a Poisson offspring
distribution. We describe and justify a new way to select the
unit of discretization so that it is compatible with the Poisson
offspring distribution. The capability to describe load shed
cascading data is useful, and the method should also apply
to any continuously varying quantity that is used to track the
progression and impact of cascading outages.

We used enhanced versions of the OPA simulation on
the IEEE 118 bus system and NPGC systems to produce
cascading outage data for the transmission lines outaged
and the load shed. After discretizing the load shed data,
we estimated the average propagation and the average size
of the initial outage that are the parameters of a branching
process model. We then used the branching process model
to estimate the distributions of lines outaged and load
shed. The estimated distributions are close to the empirical
distributions, suggesting that the Galton-Watson branching
process model with an average propagation can capture some
overall statistical aspects of the cascading of line outages and
load shed. While previous work on other simulations and test
cases has reached similar conclusions [5], [3], it is necessary
to test branching processes with many different simulations
and test cases to establish the use of branching processes for
power system cascading outages. In addition to providing a
useful summary describing cascade statistics, the branching
process enables the average propagation and the distribution
of blackout size to be estimated with much fewer simulated
cascades [2]. This is a significant advantage since simulation
time is a limiting factor when studying cascading blackouts.

APPENDIX A
ESTIMATING VARIANCE OF THE OFFSPRING DISTRIBUTION

This appendix explains estimating the variance of the off-
spring distribution that is used to determine the discretization
of the load shed data in section IV-B. Useful background is
in [7] or [8].

Let Y (m)
t = Z

(m)
0 +Z

(m)
1 + · · ·+Z

(m)
t be the total outages

up to and including generation t of cascade m, and let Y (m)
∞

be the total outages in all generations of cascade m. Group
the cascades into K groups so that each group has at least
n initial outages. The choice of K and n is discussed below.
Let Y [k]

∞ be the sum of the outages in group k and let λ̂[k]∞ be
the Harris estimator (1) evaluated for the outages in group k.

Given λ̂, which is the Harris estimator (1) of the mean of
the offspring distribution for all the cascades, we estimate the
variance of the offspring distribution as

σ̂2 =
1

K

K∑
k=1

Y [k]
∞ (λ̂[k]∞ − λ̂)2. (7)

We discuss the choice of n and K. It is desirable to
have large n and large K, but there is a tradeoff between
n and K. If there are a total of p initial outages in the
simulated cascades, then nK ∼= p. To determine values of
n and K, we simulated 5000 realizations of an ideal Galton-
Watson branching process with Poisson offspring distribution
of known mean and variance for a range of values of n. We
found that for small n and large K, (7) underestimates the
variance whereas for large n and small K, (7) is a noisy
estimate. We chose n = 20 p/5000 and K ∼= 250 based on
this testing.2

There are other estimators of offspring variance in the
literature [10], [19], and while (7) seemed to perform well
enough for our purposes here, the question of the most
effective variance estimator remains open, especially for our
cascading data in which the offspring mean and variance may
vary somewhat with generation.

Now we give some justification for (7), mainly by following
Yanev [20]. Consider a branching process X0, X1, X2, ...
with X0 = n and offspring mean λ and offspring variance
σ2. We assume 0 < λ < 1 and σ2 < ∞. (A branch-
ing process with X0 = n is equivalent to n independent
branching process cascades whose initial outages are all 1.
Thus X0, X1, X2, ... corresponds to one of the K groups of
cascades discussed above.) Let Yt(n) = X0 +X1 + · · ·+Xt

denote the total outages up to and including generation t. Let
λ̂t(n) = (Yt(n) − X0)/Yt−1(n) be the Harris estimator for
the offspring mean computed from X0, X1, X2, ..., Xt. Write
X

(i)
0 , X

(i)
1 , X

(i)
2 , ... for the branching process starting from

the ith initial outage only. Let W (i)
t =

∑t
k=1

(
X

(i)
k −λX

(i)
k−1
)
.

From [20, equation (8)]:

Yt−1(n)(λ̂t(n)− λ)2 =

1

n

( n∑
i=1

W
(i)
t

)2

1
nYt−1(n)

(8)

2When load shed data is discretized, the number of initial outages p is
inversely proportional to the discretization unit ∆. Choosing n proportional
to p ensures that the grouping of the cascades into K groups will remain
unchanged when the unit of discretization ∆ changes.
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We have

1

n

( n∑
i=1

W
(i)
t

)2

=
1

n

n∑
i=1

(
W

(i)
t

)2
+

1

n

∑
1≤i,j≤n
i 6=j

W
(i)
t W

(j)
t

[20] states that EW 2
t = σ2(1 +λ+ ...+λt−1) and EWt = 0.

Then the strong law of large numbers implies

1

n

( n∑
i=1

W
(i)
t

)2
a.s.→ σ2(1 + λ+ ...+ λt−1).

Moreover, Yt−1(n)/n
a.s.→ EYt−1 = 1 + λ + ... + λt−1, a

nonzero constant, as n→∞. Hence from (8),

Yt−1(n)(λ̂t(n)− λ)2
a.s.→ σ2 as n→∞.

Now letting t → ∞, we get Y∞(n)(λ̂∞(n) − λ)2
a.s.→ σ2 as

n→∞, and E
[
Y∞(n)(λ̂∞(n)− λ)2

]
→ σ2 as n→∞.

Write λ̂(p) to show the dependence of the Harris estimator
λ̂ for all the cascades on the total number of initial outages p.
Define

∆ = Y∞(n)
[
(λ̂∞(n)− λ)2 − (λ̂∞(n)− λ̂(p))2

]
= ∆1 + ∆2

where ∆1 = Y∞(n)(λ̂∞(n)− λ)(λ̂(p)− λ)

and ∆2 = Y∞(n)(λ̂∞(n)− λ̂(p))(λ̂(p)− λ).

By Cauchy-Schwartz,

|E∆1|2 ≤ E
[(
Y∞(n)(λ̂∞(n)− λ)

)2]
E
[
(λ̂(p)− λ)2

]
(9)

Since Y∞(n)(λ̂∞(n) − λ) = (1 − λ)
[
Y∞(n)− n

1−λ

]
, from

[20, equation (6) and Lemma 1] we obtain

E

[(
Y∞(n)(λ̂∞(n)− λ)

)2]
= (1− λ)2

nσ2

(1− λ)3
=

nσ2

1− λ
From [20, Theorem 2(ii)],

E
[
(λ̂(p)− λ)2

]
→ σ2(1− λ)/p as p→∞.

Choose p ≥ n1+δ for some δ > 0. Then from (9),

|E∆1|2 ≤
nσ2

1− λ
σ2(1− λ)

n1+δ
=
σ4

nδ
→ 0 as n→∞,

and E∆1 → 0 as n→∞.

∆1 −∆2 = Y∞(n)(λ̂(p)− λ)2 =
Y∞(n)

n
n(λ̂(p)− λ)2

For p ≥ n1+δ , and as n→∞,

nE
[
(λ̂(p)− λ)2

]
= n

σ2(1− λ)

p
≤ nσ

2(1− λ)

n1+δ
→ 0.

That is, E
[
n(λ̂(p)− λ)2

]
L1→ 0. Moreover Y∞(n)/n

L1→

1/(1 − λ), and hence ∆1 − ∆2
L1→ 0 and E [∆1 −∆2] → 0

as n → ∞. Since we have already shown E∆1 → 0, we
conclude that E∆ = E [∆1 + ∆2]→ 0. Hence for p ≥ n1+δ ,

E
[
Y∞(n)(λ̂∞(n)− λ̂(p))2

]
→ σ2 as n→∞.

Since σ̂2 → E
[
Y∞(n)(λ̂∞(n)− λ̂(p))2

]
as K → ∞, σ̂2 →

σ2 as K,n→∞.

APPENDIX B
COMPUTING ESTIMATED AND EMPIRICAL DISTRIBUTIONS

FROM SEPARATE DATA

This appendix presents results by dividing the data into
separate fitting and validation sets. Typical results for both
line outage data and load shed data are given.

In Figs. 12–13, we estimate the distribution of the total
outages using the branching process from the odd numbered
cascades (solid line) and compare with the empirical distribu-
tion from the even numbered cascades (dots). The squares are
empirically obtained distribution of initial outages from the
even numbered cascades.

In Figs. 14–15, we estimate the distribution using the
branching process from the even numbered cascades (solid
line) and compare with the empirical distribution from the
odd numbered cascades (dots). The squares are empirically
obtained distribution of initial outages from the odd numbered
cascades.

Fig. 12. Probability distribution of total line outages by improved OPA on
NPGC system at load level 1.3 times the base case.

Fig. 13. Probability distribution of total load shed by AC OPA on IEEE 118
bus system at load level 1.4 times the base case.
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Fig. 14. Probability distribution of total line outages by AC OPA on IEEE
118 bus system at load level 1.2 times the base case.

Fig. 15. Probability distribution of total load shed by improved OPA on
NPGC system at load level 1.6 times the base case.
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