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Abstract
Complex critical infrastructures such as power 

transmission networks, communication systems, 
transportation network and others display many of the 
characteristic properties of complex systems. They 
exhibit infrequent large cascading failures that often 
obey a characteristic power law distribution in their 
probability versus size. This power law behavior 
suggests that conventional risk analysis does not apply 
to these systems. They also often display correlations 
between events suggesting that the system memory is 
important in its evolution.  It is thought that much of 
this behavior comes from the dynamical evolution of 
the system as it is upgraded, ages, is repaired, and as 
the operational rules evolve. Metrics for the “system 
state”, i.e. quantifying how likely and risky large 
failures are is discussed in the context of the power 
transmission grid. How these metrics change, implying 
changed risk, with different upgrade and operational 
strategies is initially explored.  

1. Introduction 

The goal of this paper is to identify possible metrics 
that give a measure of risk of extreme events in an 
infrastructure system such as the power transmission 
system.  A first step in identifying such a metric is 
determining the parameter of the system that plays a 
critical role in leading to such events.

In a complex system, extreme events may be 
triggered by a random event. However, the much 
higher than Gaussian probability of extreme events (the 
heavy tail) [1] is a consequence of the correlations 
induced by operating near the operational limits of the 

system and has nothing to do with the triggering 
events.  The result is that the tail of the extreme event 
distribution is independent of the triggering events. 
Therefore, trying to control the triggering events does 
not lead to a change of the form of the power tail 
distribution. A careful reduction of triggering events 
may reduce the frequency of blackouts but will not 
change the functional form of the distribution. The 
process of trying to plan for and impact the triggering 
events can in fact lead to a false sense of security since 
one might think one is having an effect on risk by 
doing so when in reality, the unexpected triggers which 
will certainly occur will lead to a similar distribution of 
blackout sizes.

These types of “heavy tail” distributions are seen in 
many infrastructure systems.  Figure 1 shows the 
cumulative distribution function for customers 
unserved during blackouts for the US power 
transmission system.  The figure shows that the 
distribution of sizes in the blackout has a power law 
(“heavy”) tail with a slope of ~ -0.98.   It also is 
apparent that there is a very similar functional 
distribution for the Western region and Eastern region 
separately, despite differences in the network grid 
characteristics. It is these tails, which contain the rare 
yet very important extreme events, which dominate the 
overall risk [2]. 

In these complex systems, an initiating event 
cannot be identified by just the random trigger event, 
but by the combination of the triggering event and the 
state of the system. This “state of the system” can be 
characterized by different measurements of the 
elements of the system. In our case for example, the 
system state includes the distribution and amount of 
loads and power flows in the network. A model like 
OPA [2-6] is continually, self-consistently, changing 
the network loading and power flows. This, 
importantly, gives a large sample of initiating events 
and system states. The statistics of the results therefore 
reflect these many combinations of initial events and 
system states.   It is some measure of the system state 

45th Hawaii International Conference on System Science, January 2012, Maui, Hawaii, © 2012 IEEE



that we would like to find which can be used as a risk 
metric since by their nature the random triggers are not 
predictable.  

Fig.1. The cumulative distribution functions 
for a measure of the size of blackouts 
(Customers without power), for the total US 
grid and for two sub-regions, the eastern and 
western regions.  Power law tails can be 
clearly seen in all three.

The dynamics of these complex systems is driven 
by the constant push toward the breaking point coming 
from aging and or increased demand while the pull 
away from that critical point is driven by upgrade, 
repair, replacement and sometimes regulation [2,7].  
This dynamic push-pull coupled with the cascading 
failures initiated by the random triggers leads to the 
heavy tails which characterize the increased risk of 
“extreme events”.  It is important to note that while 
often these systems are modeled by increasing the 
demand, aging can be equally important in driving the 
system toward the critical point as it also often leads to 
an increased risk of component failure for a given load.

The rest of the paper is organized as follows. In 
Section II,  we introduce a risk measure that is going to 
be used for the different potential metrics discussed in 
this paper. For different values of these potential 
metrics we evaluate the probability of a blackout in 
Section III and the average size of the blackout in 
Section IV. The risk as a function of these quantities is 
evaluated in Section V. This risk measure is then tested 
in Section VI for the occurrence of extreme events. 
Finally the conclusions of the paper are given in 
Section VII.

2. Risk Metrics in a Complex System 

The determination of the risk of an event requires 
the determination of the probability of the event and a 
measure of the consequences (or cost) of the event. 
Here, for simplicity, we will quantify those 
consequences simply by the size of the event. 
Estimating the real cost of an event as a function of its 
size is difficult, and we have discussed elsewhere 
several possible cost measures for blackouts  for which  
the cost of a blackout  scales as a power greater than 1 
as a function of the the blackout power shed [2]. 
However in order to discuss the basic ideas of the 
metrics proposed, we will simply use a  cost that is 
proportional to the size measured by the power shed 
normalized to the power demand. 

In determining the risk, the first step is the 
identification of the parameters that play a critical role 
in the occurrence of the extreme events (the tail of the 
PDF or CDF).  From this identification, we can select  
which parameters are directly measurable and this then 
would allow us to implement such a metric. An 
alternative approach is to find ways to measure the 
proximity to critical point. This type of metric is in 
general an a posteriori measure, which is useful in 
order to learn how to operate the system in a safer 
manner.

For the second step, we need to determine how 
these parameters correlate with the size of the event. 
Because of the intrinsic dynamics of a complex system, 
we can only give a correlation between critical 
parameter and the probability of certain event sizes.

Let Q be one of the parameters identified. Then 
the range of Q values can be divided into N bins of 
width !Q.  If Probability (Qj) is the probability of a 
blackout when Q is in the range (Qj , Qj+!Q) and 
<Size(Qj)> is the averaged size of the blackout, we can 
define the risk associated with the blackouts in which 
Q is in the range (Qj , Qj+!Q) as:

Risk(Qj) = Probability (Qj) <Size(Qj)>       (1)

In this work, for power transmission systems, we 
use the OPA model to investigate these possible 
relationships. The OPA model provides guidance as to 
which parameters may play a critical role in leading to 
extreme events. We can then build testable metrics for 
the OPA model based on these parameters. Clearly 
however, once the parameters have been identified 
with OPA it will be necessary to validate them with 
measurements in a real power transmission system in 
order to calibrate the metric.

3. The OPA Model 

The OPA model [2-6] for a fixed network 
configuration represents transmission lines, loads and 
generators with the usual DC load flow approximation 
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using linearized real power flows with no losses and 
uniform voltage magnitudes. 

There are two basic timescales modeled in OPA. 
For the slow, long time scale part,  the OPA blackout 
model represents the essentials of slow load growth, 
cascading line outages, and the increases in system 
capacity coming from the engineering responses to 
blackouts. The short timescale part captures the 
cascading line outages leading to a blackout, which are 
regarded as fast dynamics and are modeled as follows. 
Starting from a solved base case, blackouts are initiated 
by random line outages. Whenever a line is outaged, 
the generation and load is re-dispatched using standard 
linear programming methods. This is because there is 
more generation power than the load requires and one 
must choose how to select and optimize the generation 
that is used to exactly balance the load. The cost 
function is weighted to ensure that load shedding is 
avoided where possible. If any lines were overloaded 
during the optimization, then these lines are outaged 
with probability p1. The process of re-dispatch and 
testing for outages is iterated until there are no more 
outages.  The total load shed is,  then, the power lost in 
the blackout. 

The slow dynamics model the growth of the load 
demand and the engineering response to the blackout 
by upgrades to the grid transmission capability. The 
slow dynamics is carried out by the following small 
changes applied each time a potential cascading failure 
is simulated: All loads are multiplied by a fixed 
parameter that represents the rate of increase in 
electricity demand. If a blackout occurs, then the lines 
involved in the blackout have their line flow limits 
increased slightly. The grid topology remains fixed in 
the upgrade of the lines for model simplicity. In 
upgrading a grid it is important to maintain 
coordination between the upgrade of generation and 
transmission.  The generation is increased at randomly 
selected generators subject to coordination with the 
limits of nearby lines when the generator capacity 
margin falls below a threshold. 

4. Critical Parameters for the Occurrence 
of Blackouts 

To demonstrate the identification of critical 
parameters, we use the OPA code with the WECC 
model networks.  These are fairly large (over 1000 bus) 
reduced representations of the Western region.  Input 
parameters for these models have been determined [8] 
by matching the blackout data from NERC, historical 
performance data [9,10,11], as well as data on 
cascading events [12]. 

Some variables of the system that we measure 
every “simulation day” are:

•  <M>, the averaged value of Mi (the fractional 
line loading) over all lines every day. Here,

M =
1

NLines

Mi
i=0

NLines

! =
1

NLines

Fi
Fi
max

i=0

NLines

!      (2)

where Fi is the power flow in line i,  Fi
max  is the 

maximum power flow allowed in this line, and 
Nlines is the number of lines in the network.
•  The variance of M, <(M-<M>)2>, every day
•  The distribution of values of Mi for each line. 

The OPA code calculates a distribution of Mi values 
with ten bins of width 0.1. We often consider the 
number of lines with Mi > M0 and we will be using 
M0 = 0.9.

• Load shed and load shed normalized to the 
power demand.  This is used as our blackout size 
measure.
Let Q(t) be one of the parameters measured every 

day during one of the simulations of the power 
transmission system evolution.  This same quantity, 
now called Qb(i), is also measured every time  a 
blackout occurs. The range of Q values is divided into 
N bins of width !Q. If there are nj values of Q(t) in the 
bin j, and mj values of Qb(i) in the same bin, the 
probability of a blackout when Q is in the range (Qj , 
Qj+!Q) is, 

pj =
mj

nj
    (3)

Using this approach, we can evaluate the 
probability of a blackout for a given value of each of 
the network parameters listed in the previous section. 
In this way, we can see if the measurement of these 
quantities can tell us if a blackout is likely. For 
example, if,  in a simulation, there are 50 instances 
(days) in which the average value for M is between 0.6 
and 0.65 (!Q being 0.05 and Qj being 0.6 in this 
example), and there are 30 blackouts on those 50 days, 
then nj = 50 and mj = 30 giving a probability of a 
blackout pj = 0.6 for <M> between 0.6 and 0.65.

The results of this diagnostic measure, for the 
main four quantities listed in the previous section 
calculated for both the WECC 1553 and 2507 bus 
networks are plotted in Fig. 2. From this figure the 
following conclusions can be reached:

• The averaged value of M (<M>): The two 
networks show that the probability of a blackout 
increases with <M>. The increase becomes 
sharper with a threshold type of effect that 
displays a size scaling behavior.
• The variance of M (<(M-<M>)2>): The 
functional form of this plot is very similar to that 
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of <M>. This also shows a threshold type effect 
for both networks.
• The number of lines with M > 0.9: The 
probability of a blackout grows strongly with the 
number of lines with M > 0.9. This threshold 
depends on the size of the network and it is not 
directly correlated neither with the number of lines 
overloaded nor with the fraction of lines 
overloaded. Here by fraction of lines overloaded  
we refer to the ratio of overloaded lines to the total 
number of lines of the network.

All three of these metrics saturate at a probability 
of 1 for large enough values. 

Based on these results, there appear to be several 
useful quantities to monitor the system and calculate 
the probability of a blackout occurring. However, this 
information alone does not provide guidance as to the 
size of the blackout to expect. Fig.2. Probability  of a blackout as a 

function of three network measures. These 
results are for the WECC 1553 bus and 2507 
bus networks

5. Critical Parameters and the Size of 
Large Blackouts 

After determining parameters that correlate with 
blackouts, we will look for correlations between the 
values of the critical parameters and the size of the 
blackout. Let us consider one of the parameters, Q. For 
each blackout j,  we have a value of this parameter Qj 
and a value Sj for the load shed normalized to the 
power demand. A number of useful quantities can be 
calculated: 

1) Binning the parameter Q in bins of size !Q, the 
average value of S in the bin k, <S>k can be 
calculated permitting <S>k to be plotted as a 
function of Qk. When the standard deviation of S 
in the bin k is calculated, it is used as an error bar.
2) Consider a bin k. In this bin, there are nk values 
of S.  Of them, there are mk values of S > S0. 
Therefore, as before, the probability of having a 
blackout of size S > S0 when Qk < Q < Qk+!Q is 
Pk=mk/nk.  Then, Pk can be plotted as a function of 
Qk.

Finally, in each of the bins, the minimum and 
maximum size of the blackouts can be determined and 
tabulated.

Using this method,  the correlation of  <M> and the 
size of the blackout is analyzed. Binning the variable 
<M> and proceeding as above, the average blackout 
size as a function of <M> can be plotted. In general, as 
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<M> increases the blackout size increases. 
Interestingly, this rolls off at the highest values of 
<M>.  This is shown in Fig. 3 for the same two WECC 
network models.  There is a clear network size 
dependence in this relationship.  

Also in Fig. 3, the calculation of the blackout size 
as a function of variance of M is shown. The function 
has very similar behavior for both networks. In this 
case the curves overlap, exhibiting no network size 
behavior.

Finally, the fraction of lines with M > 0.9 (the 
overload value) is considered and the same method is 
applied. In Fig. 3, the averaged size of the blackout as 
a function of the fraction of number of lines with M > 
0.9 is once again plotted for the two WECC network 
models. 

The dependence of the probability of a blackout 
and its size on the several measures of the M 
distribution reflects the structure of this distribution 
associated with the different blackout sizes.  Plotting 
this distribution for different ranges of S, it becomes 
apparent how the probability distribution function 
(PDF) of M changes.

Fig. 3. Averaged size of the blackout as a 
function of <M> (top), the variance of M
(middle), and the fraction of lines with M!>!0.9 
(bottom) in the initiating event for two WECC 
network models. Error bars represent the 
standard deviation

In Fig. 4 the plot of the PDF for the different 
ranges of S and for the WECC 1553 bus network is 
shown. It can be seen that as the blackout size gets 
larger, the distribution is shifted towards larger values 
of M, or perhaps more properly, as the distribution is 
shifted towards larger values of M, the blackout size 
gets larger.

Fig. 4. PDF of the values of M 
associated with the lines of the WECC 1553 
bus network for different ranges of the 
blackout size.
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6. Risk Metrics for Power Transmission 
Systems 

Having evaluated the probability of an event and 
the averaged size of the event as a function of the 
measurable parameters, we can calculate the risk using 
Eq. (1). In Fig. 5, we show the risk as a function of the 
<M>, the variance of M and the fraction of lines with 
M > 0.9 for the WECC 1553 and 2507 bus network 
models.  Similar plots are shown in Fig. 6 for artificial 
400 and 800 bus network models.  For these smaller 
network models, we have considerably better statistics, 
which allow us to check some of the features of the 
risk function obtained for the WECC network models.

 
Fig. 5. Risk of the blackout as a function of 

<M> (top), the variance of M (middle), and the 
fraction of lines with M!>!0.9 (bottom) for the 
WECC 1553 and 2507 bus network models.
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Fig. 6. Risk of the blackout as a function of 
<M> (top), the variance of M (middle), and the 
fraction of lines with M!>!0.9 (bottom) for the 
400 and 800 bus network models. 

For the 2507 bus WECC network and the artificial 
networks, as a function of <M>, the risk is at moderate 
level for <M> < 0.5.  However, and perhaps very 
importantly, for higher values the risk increases 
exponentially. Regarding the variance of M, risk seems 
to be an exponentially increasing function of <(M-
<M>)2>. Finally, for the fraction of lines with M > 0.9, 
the risk function has strange form with a peak in some 
cases for low values of the fraction. This deserves 
further examination; therefore in the next section we 
discuss the reason for this behavior.

7. Risk Metrics and Extreme Events 

In calculating the risk function we have used the 
average event size over a group of events. Since the 
blackout probability distribution function is not 
Gaussian and has a heavy tail, this averaging is not 
necessary a good description of the event size 
associated with the value of the parameter considered. 
It is important to submit these potential metrics to a 
further test.

To address the latter point,  when we determine the 
probability of an event using a sample with ni points, 
the minimum value of the probability that we can 
measure within a factor of 2 with a 95% confidence 
level is given by pmin = 11/ni [13].

If the probability that we want to measure is lower 
than this minimum value, we have only two solutions. 
One is run this case for a longer time to accumulate 
more statistics. The other is to increase the size of the 
bin !<M>. Naturally, we can weaken the accuracy of 
the determination, but that is not very satisfactory. In 
what follows, we will keep this accuracy criterion and 

do a first estimate of what we can do with our usual 
OPA code. 

To find a metric for large events, in the following, 
we consider only events larger than a given size.  To 
evaluate the probability of a blackout with size S larger 
than a value k, we determine the number mi of 
blackouts with S > k in the bin i, then the probability of 
a blackout when <M> is in the range Mi - !<M> " 
<M> " Mi + !<M> is 

pi =
mi

ni
!
    (3)

For this value to be correct within a a factor of 2 
with a  95% confidence level we need to have pi # pmin. 
Here S = load shed/Power demand during a blackout.

We can now calculate the probability of blackouts 
with size S # k,  for k= 0.00001 (that is, for all 
blackouts according to our definition), k = 0.01, k = 
0.05 and k = 0.09.  The calculated probabilities for the 
2507 bus network are plotted in Fig. 7.

Fig. 7. Probability  of blackouts with size 
S!"!k, for the WECC 2507 bus network for four 
values of k. In the figure, pmin is also plotted.

We can see that the probability function has a 
similar structure for all three values of k. It is relatively 
flat for <M> " 0.48, then increases sharply. The rate of 
increase increases with k. By looking at the larger  
blackouts, we have confirmed the results obtained 
previously.  Similar results are obtained for other 
networks.

The next step is the determination of the average 
size of the blackout for the different thresholds 
considered. We use as a measure of blackout size the 
ratio of the load shed to the power demand.  The 
calculated average size of the blackouts as a function 

45th Hawaii International Conference on System Science, January 2012, Maui, Hawaii, © 2012 IEEE



of <M> under different conditions and for the four 
networks are shown in Fig. 8.

Fig.8. Average size of the blackouts as a 
function of <M> under different conditions for 
the 2507 bus network. 

Now, having evaluated both the probability of an 
event and the average size of the event as a function of 
the measurable parameters, we can calculate the risk 
using Eq. (1). In Fig. 9, we have plotted the calculated 
risk for the 2507 bus network.

Similar results have been obtained for all networks. 
These all show that at low values of <M> the risk is 
practically independent of <M>, but for higher <M> 
the risk increases rapidly as a function of <M>. The 
form of the risk function is the same for all the cases 
considered with S # k.  This verifies the result 
suggesting that to minimize risk  in this system, one 
must operate the system with <M> < 0.5.

Fig.9. Risk of the blackouts as a function of 
<M> under different conditions and for the 
2407 bus network. 

8. Conclusions

Because the heavy tails found in size distributions 
of failures in many complex infrastructure systems 
dominate the risk and therefore the societal cost/
impact, understanding these risks and finding metrics 
to quantify them is essential. The dynamics which 
cause the heavy tails are often driven by a combination 
of the aging of the system components and the 
increased load placed on those components and the 
counteracting forces of upgrade, repair, replacement , 
economics and changes in operation.   Approaches like 
those shown here,  with simplified models used to 
determine the important parameters and important 
values of the risk metrics, are very promising and 
allow the investigation of the real impact of changing 
upgrade, repair [14] and replacement policies and 
different types of aging profiles. 

Some initial conclusions can be drawn from these 
results:

1) The probability of a blackout occurring 
correlates well with <M> every day,  variance of M, <
(M-<M>)2>, every day, and the number of lines with 
M > 0.9 

2)  When a blackout occurs, the size of a blackout 
also correlates with <M> every day, variance of M, <
(M-<M>)2>, every day, and the number of lines with 
M > 0.9. In fact it appears that the risk of the largest 
events starts to rapidly grow when <M> crosses a 
threshold of ~ 0.5.  This type of criterion could give 
guidance to operators or designers of the power grid.

3)  One could construct an even more meaningful 
composite metric for the risk of large blackouts using 
two of the three quantities. Both the <M> and <(M-
<M>)2> seem to be very good metrics, they show a 
clear separation between an operational region of 
moderate risk and a high risk region.

ACKNOWLEDGMENTS
We gratefully acknowledge support in part from NSF 
grants SES-0623985 and SES-0624361 and in part by 
the California Energy Commission,  Public Interest 
Energy Research Program. This paper does not 
necessarily represent the views of the Energy 
Commission,  its employees or the State of California. 
It has not been approved or disapproved by the Energy 
Commission nor has the Energy Commission passed 
upon the accuracy or adequacy of the information. One 
of us (BAC) thanks the financial support of 
Universidad Carlos III and Banco Santander through a 
Càtedra de Excelencia.

9. References 
[1] B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole, 
Evidence for self-organized criticality in a time series of 

45th Hawaii International Conference on System Science, January 2012, Maui, Hawaii, © 2012 IEEE



electric power system blackouts, IEEE Transactions Circuits 
& Systems, Part 1, vol. 51, no. 9, Sept. 2004, pp.1733-1740.
[2] D.E. Newman, B.A. Carreras, V.E. Lynch, I. Dobson, 
Exploring complex systems aspects of blackout risk and 
mitigation, IEEE Trans. Reliability, vol. 60, no. 1, March 
2011, pp. 134-143.
[3] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, 
Complex dynamics of blackouts in power transmission 
systems, Chaos, vol. 14, no. 3, Sept. 2004, pp. 643-652.
[4] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, 
Critical points and transitions in  an electric power 
transmission model for cascading failure blackouts, Chaos, 
vol. 12, no. 4, Dec. 2002, pp. 985-994.
[5] I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman, 
Complex systems analysis of series of blackouts: cascading 
failure, critical points, and self-organization, Chaos, vol. 17, 
026103, June 2007.
[6] H. Ren, I. Dobson, B.A. Carreras, Long-term effect of the 
n-1 criterion on cascading line outages in an evolving power 
transmission grid, IEEE Trans. Power Systems, vol. 23, no. 3, 
August 2008, pp. 1217 - 1225.
[7] B. A. Carreras, D. E. Newman, I. Dobson, M. Zeidenberg, 
A simple model for the reliability of an infrastructure system 
controlled by agents, Forty-second Hawaii  International 
Conference on System Sciences, Hawaii, January 2009.

[8] B. A. Carreras, D. E. Newman, I. Dobson, Determining 
the vulnerabilities of the power transmission system, Forty-
fifth Hawaii International Conference on System Sciences, 
Maui, Hawaii, January 2011.
[9] NERC (North American Electric Reliability Council), 
2007 Long-term reliability assessment, available from 
NERC, Princeton Forrestal Village, 116–390 Village 
Boulevard, Princeton, NJ USA.
[ 1 0 ] h t t p : / / w w w . e n e r g y . c a . g o v / e l e c t r i c i t y /
historic_peak_demand.html
[11] http:/ /www.eia.doe.gov/cneaf/electrici ty/epa/
epat3p2.html
[12] I. Dobson, B.A. Carreras, Number and propagation of 
line outages in cascading events in  electric power 
transmission systems, 48th Annual Allerton Conference on 
Communication, Control and Computing, Monticello IL 
USA, Sept.  2010.
[13] I. Dobson, B.A. Carreras, D.E. Newman, Extreme Event 
Research Final  Report Appendix D: Extreme Event Risk, 
Public Interest  Energy Research (PIER) Program, California 
Energy Commission report CEC!MR-08-03-APD, to appear.
[14] J.T. Fong, J.J., Filliben, N.A. Heckert, R. deWit, B. 
Bernstein, Robust engineering design  for failure prevention, 
2008 ASME Pressure Vessels and Piping Division 
Conference, Chicago, Illinois, USA, July 2008.

45th Hawaii International Conference on System Science, January 2012, Maui, Hawaii, © 2012 IEEE


