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Abstract—The automated restoration of power systems with
variable energy resources is a timely problem to tackle. Auto-
mated restoration advice can support operators in deciding on
strategic actions to restore power grids from a blackout with a
mix of conventional and renewable generation resources. To this
end, this paper frames the restoration process of power grids
with solar resources as a nonlinear dynamic model with algebraic
constraints in discrete time which is steered by feedback control
loops. We discuss two feedback-control strategies based on greedy
and reinforcement learning algorithms, and contrast their perfor-
mance with restoration plans generated by a mixed-integer linear
program. We found that the reinforcement learning algorithm
infers restoration actions faster than the greedy one. However,
the tuning process of the reinforcement learning parameters is
slower than for the greedy one.

Index Terms—Restoration, machine learning, optimization.

I. INTRODUCTION

A classical resilience problem in power engineering is the
restoration of an electric power grid from a blackout [1],
[2]. A restoration process uses black-start generating units
(hydro or gas powered [3], [4]) to: (i) energize transmission
paths, (ii) supply demand, and (iii) start up non-black-start
power plants. When a blackout is declared, a step-by-step
restoration plan is deployed to quickly re-energize the grid [5,
p. 183]. During its execution, power system operators have the
difficult task of analyzing whether the restoration process is
progressing well [2], [5], [6]. They perceive this by monitoring
grid variables, e.g., voltage magnitudes, frequency, as well as
generation and transmission loading [6].

The classical focus of the restoration problem is on de-
ciding cranking paths to energize critical loads and next-start
units [1], [7]. This is because the primary energy resources of
conventional generation are assumed firm, e.g., gas and water
supply [1], [4]. At present, the decision-making for restoration
is challenged by the variability of renewable energy resources
such as wind and solar [8]–[10]. In particular, operators are
now confronted to adapt restoration strategies on the fly to
compensate for the variability of non-conventional generation.
Hence, advancing automated restoration methods is timely.

Automated restoration techniques have been researched
since the advent of digital computers [11]. Present approaches
for restoration resort to optimization algorithms [7], [10], [12],
decision trees [6], and reinforcement learning [13]–[19], to
cite a few. In these methods, decisions are incentivized by

either tracking the number of energized transmission lines, the
amount of energized load, or by testing whether grid variables
are within specifications [6], [17]. Other relevant metrics from
resilience focus on economics [18], [20], [21].

A contemporary challenge to the design of feedback con-
trollers for restoration pertains to the complexity of represent-
ing the re-energization process of power grids. At present,
simulating one full restoration process using electromagnetic
transient programs or positive-sequence approaches (which are
computationally lighter) can take several hours [22]. Notably,
the variability of the primary energy resources like solar and
wind power are omitted because they are assumed invariant
during transients [23]–[25]. Another problem for designing
restoration controllers pertains to determining a set of per-
formance metrics to stimulate automatic restoration decisions.
The purpose, for example, is to steer the system states towards
desired targets [26, Ch. 5].

To address the aforementioned challenges, we report the
following contributions: (i) An abstract model of the power
system restoration process in a minute time scale represented
by a set of nonlinear coupled discrete algebraic equations
which incorporate the variability of solar resources. This
model is computationally light, hence useful to iteratively de-
sign restoration feedback controls. A limitation is the omission
of electromechanical and electromagnetic transients. (ii) A set
of restoration performance metrics to evaluate the resilience
of grids in the context of blackout recovery. These metrics
model in a low dimensional space the status of voltage mag-
nitudes, breaker statuses, amount of load served, equity in load
energization, and energy storage level, to name a few. These
serve to stimulate a controller to make decisions so that energy
transmitted from generation to the grid loads is maximized.
(iii) A computer implementation of greedy and reinforcement-
learning control strategies to steer the restoration process
by employing the aforementioned restoration performance
metrics. We showcase these contributions in a power system
example with photovoltaic and concentrating solar assets. This
paper has objectives to meet restoration requirements [27] and
mitigate likely impacts from blackouts.

The paper is organized as follows. In Section II, we develop
details of the restoration process and the modeling approach.
In Section III, we propose a set of blackout restoration (or
resilience) performance metrics. In Section IV, we design
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state feedback controls employing greedy and reinforcement
learning approaches. In Section V, we present an illustrative
case study that showcases the contributions of the paper. The
paper concludes in Section VI.

II. RESTORATION PROCESS MODEL

The restoration process is modeled with nonlinear dynamics
and algebraic constraints in discrete time:

xk+1 = F (xk,yk,ak,dk, ξk) (1)
0 = G (xk+1,yk+1) (2)
rk = R(xk,yk) . (3)

The discrete times are tk with discrete time index k =
0, 1, 2, . . . ,K−1. The time step tk+1− tk is assumed constant
for all k. The vector xk = x(tk) ∈ Rnx contains both
continuous and discrete states. The vector yk = y(tk) ∈ Rny
contains continuous output variables. The restoration is steered
by the control input ak = a(tk) ∈ Rna . The exogenous
disturbances are modeled with the vector dk = d(tk) ∈
D ⊂ Rnd . The vector ξk = ξ(tk) ∈ E ⊂ Rnξ models
impacts of uncertainties on the system dynamics. Equation (3)
defines a vector of state-dependent restoration performance
metrics rk = r(tk) ∈ Rnr , which are defined in Section III.
In Section IV-A, these metrics are used to stimulate greedy
restoration control actions. They are also used to stimulate
reinforcement learning in Section IV-B.

In more detail, the vector xk describes at time tk the state
of the circuit breakers, the amount of load that has been picked
up, the amount of stored energy, and the amount of generation
by the solar resources. The vector yk describes the bus voltage
magnitudes and phase angles, real and reactive power flows,
and the power injections from the conventional generators.
The vector ak models commands such as to close a circuit
breaker, pick up load, or increase the contribution from solar
resources. The vector dk contains time varying inputs such as
the power that can be delivered by PV arrays or concentrating
solar technologies. The generated power, energized load, and
exogenous inputs are perturbed by ξk.

The restoration process may be controlled by a variety of
decision-making approaches that might or might not need state
feedback as illustrated in Fig. 1. The action ak can emerge
from a closed-loop controller that uses feedback information
of the present state of the system, e.g., greedy techniques and
reinforcement-learning agents. Decisions can also be sourced
from a list of pre-computed sequential actions (without state
feedback), e.g., by solving a mixed-integer linear program
(MILP). These controllers may also be stimulated by a forecast
d̂k = d̂(tk) ∈ D̂ ⊂ Rnd . Typically, d̂k 6= dk, i.e., the forecast
does not match the actual observations.

We consider that power system operators execute one action
at a time during a restoration process, e.g., see [5, p. 183].
Here, each action, ak, belongs to a set of admissible actions:

U = {u(1),u(2), . . . ,u(nu)} ⊂ Rna . (4)

power system
xk+1 = F (xk ,yk,ak,dk, ξk)

0 = G (xk+1,yk+1)

decision-making
controller

z−1
time
delay

feedback? (Y/N)

ak

dk

d̂kxk , yk

xk+1, yk+1

Fig. 1. Restoration controller with and without feedback.
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Fig. 2. Modified WSCC 9-bus power system. Closed breakers are filled black.
A load `i, i ∈ {5, 6, 8}, models the aggregate impact of various feeder loads.

An admissible action vector with all zero entries means doing
nothing. The other admissible action vectors have one non-
zero entry which can be ±1. This means that at most one
action is applied to the system at a time; for example, to close
a circuit breaker.

We next explain the modeling of the restoration process
with the power system in Fig. 2. This power system, which
will be the subject of analysis in Section V, has nb = 9
buses (B1–B9), ng = 3 power plants (B1–B3), nl = 9
transmission branches (e.g., {B7,B8}), and n` = 3 loads
(connected to B5, B6, and B8). All transmission branches
have associated circuit breakers for their energization which
are commanded by the binary control variables c1 to c9. The
black-start unit is connected to bus B1 and is assumed to
be hydro powered. Further, bus B2 contains a concentrating
solar power (CSP) plant with thermal energy storage (TES)
which can continuously produce 160 MW (rated power) for
eight hours. Bus B3 has a PV power plant with battery energy
storage capacity to generate 110 MW for two hours.

At the beginning of restoration, there is no transfer of elec-
tricity from generation to the system loads via the transmission
system; all circuit breakers are open and only B1 is energized.
During restoration, grid operators decide on which branches
and generation assets to energize and the amount of load to
pick up [5].
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A. Power Flow Model

This subsection constructs G of (2) which is in essence a
classical power flow calculation. From Fig. 2, we consider a
bulk transmission system with a set of nb buses:

B = {B1,B2, . . . ,Bnb} . (5)

Per-unit voltage magnitudes and phase angles at all buses are:

v = [v1, v2, . . . , vnb ]
> and θ = [θ1 = 0, θ2, . . . , θnb ]

> . (6)

A power plant (conventional or hybrid) connects to a bus in:

Bg = {B1,B2, . . . ,Bng} ⊂ B (7)

i.e., the first ng buses of B have generators. The first bus has
a black-start unit.

All power plants regulate their terminal voltages to follow
operator prescribed set-points:1

vgen = [vgen
1 , vgen

2 , . . . , vgen
ng ]> . (8)

The vector of active power supplied at all terminals of the
generation resources (other than the black-start unit) is:

pgrid = [pgrid
2 , pgrid

3 , . . . , pgrid
ng ]> . (9)

The variable pgrid
1 does not appear because it is the slack

unit/bus in the power flow problem and corresponds to the
black-start generator in a physical grid.2

In the same vein, we consider n` loads that can be connected
to any bus of B. The active and reactive power consumed by
the loads are:

` = [`1, `2, . . . , `n` ]
> and q = [q1, q2, . . . , qn` ]

> (10)

respectively. Here, qi = `i

√
(1/γi)

2 − 1, i = 1, 2, . . . , n`
where γi is the power factor of load i. The target load to
restore for load i is `target

i .
There are nl transmission branches with a circuit breaker

at each end.3 For simplicity, we assume that both the circuit
breakers on a branch have the same status: open or closed.
The statuses of all breakers are collected in:

c = [c1, c2, . . . , cnl ]
> , (11)

where the branch j breakers are either both open (cj = 1)
or both closed (cj = 0). Finally, the active powers flowing
through the branches are:

p† = [p†1, p
†
2, . . . , p

†
nl

]> (12)

where p†j ∈ [−p†rating
j , p†rating

j ].

1If a generating unit surpasses its rated current limits, regulation of terminal
voltages could be challenging. Power converters have hard current control
limits that constrain terminal currents at rated levels for continuous operation.
On the other hand, synchronous generation may disconnect because of
relatively high stator winding temperature.

2A black-start resource typically operates in isochronous-governor mode to
fix grid frequency at its rated value [3]. Hence, load pick-up is only performed
by the black-start resource even if other generators are connected in parallel.
Generation levels of other units are adjusted using their set-points.

3A transmission branch is either a power transformer or transmission line.

Overall, we construct a power flow problem from (8),
(9), (10), and the associated parameters with the objective
of calculating pgen

1 and a subset of variables in (6), as well
as all the bus angles and branch flows. We clarify that this
power flow problem is special because all buses are isolated
at the beginning of the restoration process, and later they
are energized dynamically and their types are changed. Also,
the transmission topology depends on the statuses of the
circuit breakers that constrain which buses in the system
are energized. The magnitude of load that can be changed
at each restoration step is commanded dynamically. These
particularities are discussed next.

B. Circuit Breaker Dynamics

The dynamics of the circuit breakers on the j-th line are:

cj(tk+1) = cj(tk)⊕ c∗j (tk) (13)

where cj(tk) ∈ {0, 1}, ⊕ denotes exclusive or, and c∗j (tk) ∈
{0, 1} is a command to flip the breaker state. The exclusive or
implements ‘close if open’ and ‘open if closed’ with a single
breaker control command c∗j (tk).

C. Bus Type Selection

Each bus is PQ, PV or a swing type at each timestep tk.
The type of bus r is selected at each timestep tk according to

PQ bus type if there is a closed line joining
bus r to bus s and vs(tk) > 0.

PV bus type if bus r has a generator and
vr(tk−1) ∈ [0.9, 1.1].

swing type bus otherwise

All buses are considered swing type at the beginning of the
black-start process, i.e., at t = t0 because all transmission
branches are open. The voltage set-point for each isolated bus
is zero other than for the bus with a black-start unit.

D. Load Energization Dynamics

We model the dynamics of load i with:

`i(tk+1) =

{
`i(tk) + κ′i`

∗
i (tk) if vi(tk) ∈ [0.9, 1.1]

0 if vi(tk) /∈ [0.9, 1.1] .
(14)

Here, `∗i (tk) ∈ {−1, 0, 1} is a discrete control command to
increment or decrement load and κ′i = κi(1 + ξ`i) with ξ`i ∈
[−ξ`i , ξ`i ] sampled from a uniform distribution at each time tk
to represent an unknown-but-bounded load pick-up. We note
here that transmission operator’s command to pick up or reject
load is executed by a distribution operator by energizing or de-
energizing feeder circuits, which is not modeled here. In (14),
we consider that the load can jump to zero if the bus voltage,
vi, is outside prescribed limits by NERC [28, p. 18]. Notably,
voltage protection relays can direct the opening of substation
circuit breakers to de-energize all connected loads.
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Fig. 3. Solar power plants with converter and battery storage as well as with
steam turbine and thermal energy storage.

E. Power Plant Dynamics

We model here the quasi-steady-state response of a power
plant to sequential restoration commands. We first model the
dynamics of energy stored by the n-th power plant as any
of the ones in Fig. 3. These diagrams illustrate details of non-
conventional power plants of Fig. 2 and the variables described
in this section. In particular:

en(tk+1) = en(tk)− ηsto
n (psto

n (tk))psto
n (tk)∆tk (15)

where ∆tk = tk+1 − tk and the efficiency ηsto
n of (15) is:

ηsto
n (psto

n ) =

{
ηfwd
n if psto

n ≥ 0

1/ηfwd
n if psto

n < 0
. (16)

Here, ηfwd
n denotes the efficiency when withdrawing energy

from storage. Also, en(tk) ∈ [emin
n , emax

n ], k = 0, 1, . . . ,K,
models a bounded amount of stored energy in the n-th energy
storage subsystem at time tk. The rate at which energy flows
into or out of the storage subsystem in (15) (q.v. Fig. 3) per
unit time is modeled with:

psto
n (tk) =


1
ηcnv
n
pgrid
n (tk)− pvar

n (tk) if An(tk)
1
ηcnv
n
pgrid
n (tk)− pvar

n (tk) if Bn(tk)

0 otherwise

(17)

An(tk) :
pgrid
n (tk)

ηcnv
n

> pvar
n (tk) & en(tk) ≥ emin

n + χ′n∆tk

Bn(tk) :
pgrid
n (tk)

ηcnv
n

< pvar
n (tk) & en(tk) < emax

n − χ′n∆tk

where An and Bn are conditions of the n-th power plant
evaluated at tk. Also, ηcnv

n ∈ (0, 1] is the efficiency of the
n-th energy conversion subsystem and:

pvar
n (tk) = (1 + ξvar

n )p̂var
n (tk) (18)

is the maximum electric power that can be withdrawn from
the renewable energy conversion subsystem, e.g., PV array. We
note here that this power is modeled as an uncertain deviation
from a forecast value p̂var

n (tk) via ξvar
n ∈ [−ξvar

n , ξ
var
n ] which is

sampled from a uniform distribution at each tk. For water and
gas resources, pvar

n = 0.
In (17), pgrid

n (tk) models the power transferred from a power
plant to the grid which satisfies:

pgrid
n (tk+1) = ProjPn(tk)

{
pgrid
n (tk) + χ′np

∗
n(tk)

}
(19)

where p∗n(tk) ∈ {−1, 0, 1} is a discrete control command to
increase or decrease generation by χ′n = χn(1 + ξpn) where
χn is the mean and ξpn ∈ [−ξpn , ξpn ] is sampled from a
uniform distribution at each time step k to model uncertain
changes in generation.4 Note that a power plant can supply
rated power to the grid only if there is enough stored energy,
otherwise, it can only inject the power that can be harvested
by the renewable resource. Limits in (19) are enforced via the
Euclidean projection operator, ProjP {·}, onto the set:5

Pn(tk) :=

{
[0, pmax

n ] if en(tk) ≥ emin
n + χ′n∆tk

[0, ηcnv
n pvar

n (tk+1)] if en(tk) ≤ emin
n .

(20)

Here, pmax
n is the maximum energy conversion rate per unit

time. We emphasize that this subsection also applies to power
plants fired with fossil fuels or powered by the flow of water.
In such cases, en(tk) of (15) is relatively large.

F. Assembly of Restoration Process Model
We assemble the vectors of (1) and (2) as follows:

xk = [ck; `k; ek;pgrid
k ], from (13), (14), (19), (15)

yk = [pgrid
1,k ;vk;θk;p†k], from (6), (12)

uk = [c∗k; `∗k;p∗k], from (13), (14), (15)
dk = pvar

k , from (17), (20)
ξk = [ξ`k; ξpk; ξvar

k ], from (14), (18), (19)

III. RESTORATION PERFORMANCE METRICS

We present a set of restoration (or resilience) performance
metrics. The set of metrics is a low-dimensional representation
of the status of the grid. The purpose of these metrics is
to design and/or deploy state feedback controllers and to
quantify the restoration performance for operator awareness.
We construct R of (3) to output:

r = [r1, r2, r3, r4, r5, r6, r7, r8]> (21)

which is calculated at each tk from xk and yk of (1) and (2).

A. Restored Branches
We describe the fraction of branches that are closed at a

particular point of time with:

r1 :=
1

nl

nl∑
j=1

cj . (22)

Recall that cj of (11) indicates whether the j-th branch is
open or closed. This metric is suited to stimulate the closure
of breakers by a restoration controller. If breakers are all open
or all closed, r1 = 0 or r1 = 1, respectively.

4The actual generated power typically differs from its set-point when
generation controllers are sensitive to frequency deviations.

5We assume that a hybrid power plant is a source, thus pgrid
n ≥ 0.
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B. Restored Buses

We represent the fraction of energized buses via:

r2 :=
1

nb

nb∑
s=1

λ (vs) with λ(x) :=

{
1 if x ∈ [0.9, 1.1]

0 otherwise ,
(23)

where r2 ∈ [0, 1] and vs is from (6). If vs ∈ [0.9, 1.1] for
all s, then r2 = 1; otherwise, r2 < 1. This metric incentivizes
a controller to maintain bus voltages within emergency levels
by choosing an appropriate sequence of actions.

C. Restored Demand

We consider the fraction of the total power system demand
that has been energized with:

r3 :=
1

n`

n∑̀
i=1

min

{
`i

`target
i

, 1

}
. (24)

When each `i has reached or surpassed (because picked-up
load is uncertain) its target, `target

i , then r3 = 1. This metric
serves to stimulate a controller to energize the demand which
is the ultimate goal in a restoration process.

D. Transmission Congestion

We quantify the fraction of power transmission capacity that
is available with respect to corresponding branch ratings via:

r4 := 1−min{p�, 1} with p� := max
j

{
|p†j |
p†rating
j

}
(25)

where r4 ∈ [0, 1]. Here, r4 = 1 signifies that the transmission
system is unloaded. If r4 = 0, it signifies that the transmission
system has already congested. Controllers can be stimulated,
for example, to re-dispatch generation to mitigate congestion.

E. Generation Strength

We model the strength of power generation (conventional
or renewable) to pick up load and sustain it with:

r5 := max

{
0,

∑ng
n=1 p

firm
n −

∑n`
i=1 `i∑ng

n=1 p
firm
n

}
(26)

where r5 ∈ [0, 1]. The n-th power plant can produce firm
power, pfirm

n , if there is sufficient stored energy en > emin
n

(e.g., thermal or charged electrolyte) to sustain rated power
generation, for at least τn hours (which can be defined by a
grid operator) which implies:

pfirm
n =

{
pmax
n if en−emin

n

pmax
n

> τn

0 otherwise .
(27)

F. Storage Level

The level of stored energy in the grid is sensed with:

r6 :=

∑ng
n=2

(
en − emin

n

)∑ng
n=2 (emax

n − emin
n )

(28)

where r6 ∈ [0, 1]. It serves to stimulate a controller to maintain
relatively high reserves of stored energy if feasible.

G. Generation Load Sharing

During restoration, economic dispatch processes are typi-
cally offline. A judicious policy is that all generators are loaded
in a similar percentage with respect to their capacities. We
capture uneven generator loading with:

r7 := 1−min{∆p, 1} (29)

∆p := max
n

{∣∣∣ pgrid
n

pmax
n

− pgrid
∣∣∣}with pgrid :=

1

ng

ng∑
1

pgrid
n

pmax
n

(30)

where ∆p models a deviation of percent loading among several
generators. This metric is instrumental to stimulate restoration
controllers to not overload particular generation assets.

H. Equity in Load Restoration

There are a variety of social objectives that can be con-
sidered in restoration. Here, we illustrate one of these with
a metric of equity between load buses relative to a targeted
amount of restoration. In particular, the restored demand as a
percentage of its target value could significantly differ among
buses. For example, the restored demand at one bus could be
30% whereas at another one could be 90%. That difference
could suggest decision biases to serve particular loads even if
a plan is technical. Equity in load restoration is sensed with:

r8 := 1−min{∆`, 1} (31)

∆` := max
i

{∣∣∣ `i

`target
i

− `
∣∣∣}with ` :=

1

n`

n∑̀
1

`i

`target
i

(32)

where ∆` models a deviation of percent energized load from
the average ` among several loads. This metric is instrumental
to stimulate restoration controllers to maintain a balance of
the percent energized demand among several buses.

I. Restoration Performance

Grid operators select a restoration action based on multiple
observations and objectives. An action can be decided based
on the progress during the restoration of a weighted sum of
the restoration performance metrics:

w , α>r =

8∑
i=1

αiri. (33)

The weights αi satisfy 0 ≤ αi ≤ 1 ∀i and
∑8
i=1 αi = 1.

In the next section, we leverage a greedy controller using an
optimal version of α. This is computed offline via a Bayesian
optimization approach to maximize consumed energy. The
indicator (33) is also used in the form of a reward to synthesize
a state-feedback controller via deep reinforcement learning.

IV. STATE FEEDBACK CONTROLLERS

We use greedy and reinforcement learning methods to steer
the grid restoration process of Section II when performance is
sensed with the metrics of Section III.
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power system model

xk+1 = F (xk ,yk,ak, d̂k, ξk)

0 = G (xk+1,yk+1)

greedy algorithm

max.
u∈U

α⊤r̂k+1

s.t. x̂k+1 = F (xk ,yk,u, d̂k, ξk = 0)

0 = G (x̂k+1, ŷk+1)

r̂k+1 = R(x̂k+1, ŷk+1)

z−1

ak = u∗

D̂

D̂

α

xk+1, yk+1

xk , yk

k = 0, 1, . . . , K − 1

restore(D̂,α,x0,K)

{x1,x2, . . . ,xK}

Fig. 4. Greedy restoration strategy of a power system from a blackout.

A. Greedy Restoration Technique

We formulate a greedy algorithm which autonomously
outputs restoration actions using the observed state of the grid
as depicted in Fig. 4. There, the pair (xk,yk) represents the
present state of the power system. The algorithm estimates the
next state of the grid (x̂k+1, ŷk+1) that could be attained by
applying an action u ∈ U , hence leading to r̂k+1.

The control objective is to select a greedy action u∗ ∈ U
of (4) that transfers (xk,yk) to a predicted (x̂k+1, ŷk+1)
such that α>r̂k+1 is maximum. The controller is greedy
because it only considers the next state when determining
an action. The selected u∗ is applied to the physical system
which transfers the state of the grid to (xk+1,yk+1). We note
that (xk+1,yk+1) is not necessarily equal to (x̂k+1, ŷk+1)
because uncertainties cannot be captured in the controller. In
the controller, we assume that ξk = 0.

The selection of α is a complex task analogous to tuning
the parameters of a proportional controller. The objective is
to select α = α∗ so that the energy served to the demand is
maximum during a K-step restoration process. This implies
posing the following optimization problem:

max
α

K∑
k=1

β>xk

s.t.
8∑

n=1

αn = 1 and 0 ≤ αn ≤ 1, n ∈ {1, 2, . . . , 8}

{x1,x2, . . . ,xK} = restore(D̂,α,x0,K)

(34)

where restore(D̂,α,x0,K) is illustrated in Fig. 4.6 We

6Alternatively, the coefficients αi ∀i could be constrained as to reflect
priorities on particular metrics. For example, transmission line congestion
could be more important than generation strength so that α4 > α5.

clarify that the objective in (34) is the total energy served:
K∑
k=1

β>xk :=
1

60

K∑
k=1

(
n∑̀
i=1

`i(tk)

)
(35)

in per unit hours which is extracted from each xk (k =
1, 2, . . . ,K) by an appropriate selection of β. The constant
1/60 appears in (35) because we choose tk+1 − tk = 1/60
hours. Solving (34) is challenging because the problem is
non-convex and the gradient information is unavailable. Note
in (34) that the relation between the objective function and
the decision vector is complex because a specific α yields a
particular {x1,x2, . . . ,xK}.

To solve (34), we resort to a zeroth-order optimization
technique, viz., Bayesian optimization [29]. This method
constructs Gaussian distributions along with confidence in-
tervals based on interactions of the decision variables with
the objective function. The maximum value of an acquisition
function, which depends on the mean and variance of the
distributions, creates the next data point to be evaluated. The
acquisition function controls the trade-off between exploration
and exploitation. The maximum of the lower-bound confidence
interval dictates the search region as the upper bound must
remain strictly larger than this value to prove a maximum of
the objective function is reached. More technical details of the
Bayesian optimization method are available in [29].

B. Deep Reinforcement Learning Approach

In contrast to the greedy method, deep reinforcement learn-
ing implicitly considers the outcome of the full future restora-
tion process when steered from the present state. Here, the
control actions are generated by an action-value function [30]:

QW : Rnx × Rny′ × U × Rnd 7→ R (36)

which is defined by a deep neural network, and where W
represents a set of weights and biases or simply parameters.
When W = W?, i.e., it is optimal, the function QW? is
used to output an approximation of the maximum discounted
cumulative reward that a restoration process could achieve in
an infinite-time horizon, i.e.:7

max
u∈U

QW?(xk,y
′
k,u, d̂k) ≈

∞∑
ι=k

wιµ
ι−k . (37)

Here, y′k = [pgrid
1,k ;vk;p†k] ∈ Rny′ is extracted from yk as

specified in Section II-F, wι = α?>rι is defined in (33)
of Section III-I, and α? is calculated in (34) of Section IV-A.
We clarify that (37) quantifies a restoration process that is
driven optimally from the present state (xk,yk) to a desired
one (x?K ,y

?
K). In particular, the process is steered by a

sequence of optimal actions {a?k,a?k+1, . . . ,a
?
K−1} chosen

from U while impacted by dk,dk+1, . . . ∈ D. Also, the
discount factor µ ∈ (0, 1) stimulates early or delayed actions
that will impact (37). For example, if µ→ 0, the first instances
of wι will dominate the right-hand side of (37).

7We use d̂k because only the forecast is available for control synthesis.
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power system model

xk+1 = F (xk ,yk,ak,dk, ξk)

0 = G (xk+1,yk+1)

feedback controller

rk = R(xk ,yk)

u⋆ = argmax
u∈U

QW⋆ (xk ,y
′
k,u, d̂k)

z−1

ak = u⋆

dk

d̂k
rk

xk+1, yk+1

xk , yk

Fig. 5. Deployment of a reinforcement-learning agent for grid restoration.

The application of QW? for state-feedback control of the
restoration of a power system is depicted in Fig. 5. The best
control action, ak, is one u ∈ U of (4) that maximizes
GW?(xk,y

′
k,u, d̂k). Here, the present state (xk,yk) and an

estimate of exogenous input d̂k are available information for
control. We clarify that d̂k ∈ D̂, which is a time-series data
set, contains the forecast of solar irradiance, q.v. Section II.
Notably, the action ak will drive the grid to a next state
(xk+1,yk+1); then, the calculation for the next action re-
peats.8 The challenging task is the determination ofW? in (37)
and Fig. 5. The training process of QW is explained with great
detail in [30].

C. Mixed-Integer Linear Program

The MILP is not a feedback strategy, but is briefly presented
for benchmarking. Here, a restoration plan is the solution to:

max.
uk∈U

K∑
k=1

β>xk

s.t. xk+1 = F̃ (xk,yk,uk, d̂k) , k = 0, 1, . . . ,K − 1

0 = G̃ (xk+1,yk+1) , k = 0, 1, . . . ,K − 1

x ,y ∈ X ,Y
(38)

where x0 and y0 are given. The sets X and Y represent
a variety of constraints that arise in a MILP formulation to
constrain the state and output variables. The functions F̃ and
G̃ are linearized forms of (1) and (2).

V. CASE STUDY

We illustrate how to employ the model of Section II and
the metrics in Section III as well as the feedback techniques
in Section IV. These results are contrasted with a restoration
plan from MILP in Section IV-C. We consider the modified
version of the Western System Coordinating Council (WSCC)
9-bus power system that is depicted in Fig. 2.

All numerical studies were conducted in one core of a server
with AMD 7742 CPUs running at a clock speed of 3.4 GHz.
The power system of Section II is implemented in MATLAB
2021a [31] and MATPOWER 7.1 [32]. The greedy restoration
technique in Section IV-A and reinforcement learning method
of Section IV-B are implemented in Python 3.7.6 [33]. We

8The grid can be stationary if the optimal action is do nothing.
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Fig. 6. Forecast (dotted lines) and actual (solid lines) solar power available
at power plants CSP2 and S3 of Fig. 2 in per unit with base 100 MVA.

TABLE I
SIMULATION PARAMETERS (PER UNIT HAS BASE 100 MVA)

`
target
1 1.3 p.u. `

target
2 0.9 p.u. `

target
3 1.0 p.u.

γi 0.9 γ2 0.85 γ3 0.95
pmax
1 2.5 pmax

2 1.6 pmax
3 1.0

τ1 10.0 h τ2 1.0 h τ3 1.0 h
ηconv
n 0.98 p.u. ηfwd

n 0.95 p.u. χn 0.1pmax
n p.u.

κi 0.1 p.u. ξ`i 0.2 ξpn 0.05
ξ

var
n 0.2 emax

2 12.8 h emin
2 1.28 h

emax
3 2.2 h emin

3 0.22 h

also used the Adaptive Experimentation platforms (Ax) [29]
to solve (34) with Bayesian optimization which yielded:

α? = [0.22, 0.001, 0.529, 0.001, 0.24, 0.001, 0.001, 0.007]> .

We note here that the weights emphasize r1, r3, and r5 which
makes sense because the objective of (35) is to energize the
load. We also used Open AI Stable Baselines for pre-training,
training and deployment of the controller in Section IV-B [34].
We used the following hyperparameters: η = 0.99, δ =
0.0005, ε = 500, which are the defaults in the tool. The MILP
problem of Section IV-C is implemented in Julia 1.5.3 [35]
and solved via Gurobi 9.1.0 [36]. Simulation parameters for
model implementation of Section II are reported in Table I.

The ISO 6709 geographical locations of the solar data for
G2 and G3 are: 40.95, -94.35 and 41.75, -93.45, respectively.
The restoration trials for feedback control synthesis began at
aleatory times of year 2006. To illustrate a specific case study,
one-minute forecast instances of solar power for CSP2 and S3
from [37] are depicted in Fig. 6. For training of the GRA and
DRL methods, the solar profiles in Fig. 6 are used to construct
the sets D and D̂, e.g., see Fig. 4. There, k = 0 corresponds
to 10:00 am of January 1, 2006. The low energy limit for
the storage of CSP2 and S3 is 10% of their energy maximum
capacities, q.v. Fig. 2. At the start of restoration, we consider
that the amount of stored energy at both power plants is 30%
of their energy storage capacities.

Table II informs the value of the objective function (35) that
is achieved by the greedy algorithm (GRA), deep reinforce-
ment learning (DRL), and MILP strategies. It also displays the
computational times for solving the respective control problem
(training), sourcing a control action (inference), and generating
a full restoration trail using the setup in Fig. 1 (simulation).
Training times for GRA, DRL, and MILP pertain to determin-
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TABLE II
OBJECTIVE FUNCTION & COMPUTATION TIMING.

Objective (35) Training Inference Simulation
GRA 650 MWh 3.35 min 0.1 s/action 13.0 s
DRL 660 MWh 15.56 min 0.64 ms/action 15.6 s
MILP 350 MWh 21 s + N/A N/A

(690 MWh) 12.85 min

ing α∗ in Section IV-A, constructing QW? in Section IV-B,
and solving (38) in Section IV-C, respectively.

We learn from Table II that MILP achieves 390 MWh be-
cause the plan does not adapt to the uncertainties. MILP serves
690 MWh of energy when it is applied to a power system
without uncertainties, q.v. Fig. 1. We also learn from Table II
that synthesis of GRA controllers is faster than for DRL
and MILP. On the other hand, the DRL controller can infer
restoration actions up to one hundred times faster than the
GRA one. The MILP calculation or training time of ‘21 s +
12.85 min’ comprises of 21 s to determine a solution and 12.85
min to verify it. The computational complexity to scale GRA,
DRL, and MILP to larger power systems respectively depends
on the computational burden of: (i) the power flow calculations
in (2), (ii) the back-propagation algorithm in [30], and (iii) the
number of discrete variables and constraints in (38). Notably,
inferring an action from MILP is not time consuming because
the restoration plan is already computed. Although GRA and
DRL need some CPU time to infer an action, they consider
the present state and resource variability, thus they adapt to
restoration challenges on the fly in contrast to MILP.

Figure 7 contrasts the restoration progress of the grid
in Fig. 2 using GRA, DRL, and MILP. Figure 2 reveals that:
(A) At k = 3, a 1.136 p.u. over-voltage occurs because a
transmission line was energized and no load was connected.
(B) At k = 99, there is a step change in the power transmitted
by transformer T1 in Fig. 2 because the power sourced by S3,
pgrid
3 , drops from 0.71 to 0.03 p.u. Hence, pgrid

1 of G1 increases
to compensate the variability. (C) The power drop of S3 at
k = 99 happens because its battery energy storage reaches its
minimum level, i.e., emin

3 = 22 MWh. (D) In contrast to GRA,
the performance of DRL improves at k = 73 because battery
charge of S3 rises. Hence, this generation resource becomes
firm, q.v. (27). (E) The load `5, which is connected to bus B5
in Fig. 2, disconnects at k = 23. The reason is that the under-
voltage protection activates because the bus voltage magnitude
of B3 is 0.89 p.u., q.v. (14). (F) The performance of MILP is
severely impacted at k = 23 because of the `5 disconnection.

Now we assess the performance of GRA and DRL by
studying the values of w in Fig. 7 which are calculated
with (33) at each point in time.

We found that the restoration process by DRL optimally
charged/discharged the storage resources in contrast to the
blackout recovery using GRA. This is because the control
actions by GRA are greedy whereas DRL considers complete
restoration trials. We recall via label (C) within Fig. 7 for GRA
that e3 (battery level of S3) reached its lowest admissible level
22 MWh at k = 99. Hence, pgrid

3 is constrained by the avail-
ability of the solar resource pvar

3 , q.v. (20). The performance

of MILP was challenged during deployment because a 20%
uncertainty is applied to load pick-up, please see (14) and ξ`i
in Table I. Uncertainties were not considered in the off-line
optimization calculations.

Figure 8 illustrates the set of time-domain trajectories of
restoration performance indices from Section III. We learn
from Fig. 8 that: (A) Transmission congestion occurs at k =
33 because the branch connecting B1 to B4 is loaded to its
limit as a result of the loading of G1, q.v. Fig. 2. (B) The
battery depletion of S3 impacts branch congestion at k = 99.
(C) The lowest unbalance of generation sharing is 0.33 at
k = 34, q.v. (29). (D) The lowest level of load energization
equity is 0.34 at k = 28, q.v. (31). (E) The system loads
are fully restored when k = 50 and k = 47 when using
GRA and DRL, respectively. (F) The MILP strategy did not
fully restore the system loads because of the under-voltage
event at k = 23 which challenged the pre-computed plan. (G)
Generation strength when using MILP increases because of
the disconnection of the load `5 at k = 23.

VI. CONCLUSION

This paper has reported a dynamic model of the restora-
tion process of a power system which is used to synthesize
decision-making controllers for grid restoration. We designed
two state-feedback controllers that leverage the theory of
greedy and deep reinforcement learning algorithms. The de-
sign process was driven by a set of eight restoration per-
formance metrics which quantify the restoration of a grid
in a relatively low dimensional space. An advantage of the
state feedback controllers is that decisions are made based
on the present state of the grid, which can account for the
variability of renewable resources. We found that the DRL
controller is roughly one hundred times faster than the GRA
one; however, training time for DRL is nearly five times longer
than identifying the coefficients for GRA using Bayesian opti-
mization. Future work will address larger power systems, the
incorporation of more uncertainties such as breaker failures,
and simulating the restoration process using electromagnetic
transient programs.
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