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We consider the design of a satellite to ensure robust stability in a high-dimensional parameter space. Starting
with a given nominzl design that is stable, we compute instabilities that are locally closest to the neminal design in
the design parameter space. If these worst-case instabilities are too close, we compute a design that is sufficiently
far from the worst-case instabilities and hence sufficiently robust. The methods are based on computations from
bifurcation theery and are considerably simplified by our assumption of a Hamiltonian satellite, which includes
spin-stabilized satellites, dual-spin-stabilized satellites, and gravity-gradient-stabilized satellites. The Hamiltonian
assumption is then relaxed to allow the inclusion of damping terms. We illustrate the computations by ensuring
the robust stability of a flexible dual-spin satellite with six design parameters.

Introduction

ET A be a vector of satellite design parameters such as masses,

moments of inertia, and lengths and stiffnesses of flexible com-
ponents. Then the parameter vector A needs to be designed so that
the satellite is robustly stable. That is, given a nominal design Ap
that is stable, the stability of designs near A in parameter space
should be ensured. Although this process is straightforward if only
one or two parameters vary, satellite designs are typically described
by many parameters, and it is not usually ¢lear which subsets or
combinations of parameters should be varied in order to check and
ensure robust stability of the design. That is, the high dimension
of the parameter space is typically an obstacle in design. We see
our methods as contributing a tool that gives quantitative help in
ensuring robust stability of a satellite design in higher dimensional
parameter spaces.

In general, a bifurcation occurs when there is a qualitative change
in the system dynamics as explained in the introductory texts.!™
The qualitative change we are interested in is the stability of the
equilibrium at which the satellite is to be operated. A bifurcation
of this equilibrium is the condition of marginal stability through
which the equilibrium must pass if quasistatic variations in satellite
parameters cause the equilibrium to lose stability. We write A, for
the critical parameter values at which the systemn bifurcates and the
equilibrium stability is lost. The robust stability problem is to en-
sure that the design parameters are sufficiently far from the critical
parameter values corresponding to bifurcations and instability. This
paper computes critical parameter values A, that are locally closest
in parameter space to a given nominal design 4. The computations
are based on both standard’ and novel® computations in bifurca-
tion theory and are simplified considerably by the assumption of a
Hamiltonian satellite. The general study of instabilities of mechan-
ical systems as bifurcation instabilities with several parameters is
familiar from works such as the text by Huseyin® and the paper
by Plaut® on the stability boundaries of multiply loaded shallow
arches.

We model a satellite as a Hamiltonian system with a vector A € R™
of design parameters. The attitude of the satellite is specified by a
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state vector of generalized coordinates, and the origin is assumed
to be an equilibrium for all values of the design parameters A.
We assume a nominal design Ag at which the origin is stable, and
we assume that stability is established by showing that the system
Hamiltonian is positive definite at A¢ and invoking Lyapunov’s di-
rect method (Ref. 7, p. 244). As the parameters A vary from the
nominal parameters Ay, the origin can lose stability in a bifurcation
as the Jacobian of the system at the origin becomes singular, and we
denote the set of such A in the parameter space R™ by . Here, Z is
a boundary in parameter space of the designs that are stable, and the
designer seeks to maintain a sufficient distance from X to ensure
that the design is robustly stable. A good choice of the sufficient
distance requires engineering judgment of design safety factors and
likely parameter variations and tolerances.

Typically = consists of hypersurfaces in R™ and their intersec-
tions. Robust stability of the design can be addressed by monitoring
the position of the nominal design A, relative to T and correcting the
design if Ag is too close to . In particular, it is useful to calculate
critical parameters A, in X for which |A, — &g/ 15 a Jocal minimum
of the distance from Ag to Z. Then the line segment Ly, represents
a worst-case parameter variation and |A, — Ag] is a stability margin
measuring the proximity to bifurcation. We call the bifurcation at
A, “a closest bifurcation™ with the understanding that the distance
to bifurcation is measured in parameter space relative to the fixed
value Ag.

This paper explains how to compute the stability margin [A, — Ao|
and how to use the sensitivity of |A, — A¢| to change the nominal
design Ag to increase | A, — Ag|if | A, — Ap| is too small. After illustrat-
ing the computation with a simple rigid-satellite example, we use
the computations to design a flexible dual-spin satellite with multi-
ple parameters so that a robustness criterion is met. The computa-
tions apply more generally to Hamiltonian systems with additional
damping terms provided these terms have no linear dependence on
position. That is, the computations apply provided the Taylor series
expansion of the damping about the equilibrium point has zero co-
efficients for the linear position terms. A previous version of this
worl appeared in the conference paper.®

The focus of this paper on Hamiltonian satellites is motivated by
an interest in flexible satellites stabilized by “passive” means such as
spin stabilization, dual-spin stabilization, and gravity-gradient sta-
bilization. Qur intent is to add a useful design tool to the literature on
passive stabilization methods (for recent studies, see (Refs. 9-15).
As stated above, the methods presented here work in the presence
of additional damping terms provided these terms have no linear
dependence on position, e.g., in the presence of Rayleigh damping.
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The methods of this paper are generally not appropriate for satel-
lites with active control systems because the Hamiltonian structure
is vsually destroyed and the generic bifurcations associated with
loss of equilibrium stabitity may differ. However, it would be inter-
esting in future work to try to apply the closest bifurcation methods
appropriate to non-Hamiltonian systems’ to the robust parameter
space design of satellites with active control.

Closest bifurcation analysis has also been applied to voltage col-
lapse in electric power systems by Dobson and Lu.'6 In this appli-
cation, the parameters are the system power loadings, and critical
loadings A, correspond to saddle node bifurcation, voltage collapse,
and blackout of the system. Computing the saddle node bifurcation
closest in load power parameter space gives a worst-case measure
1A, — Aol of proximity to voltage collapse, and if this measure is
too small, corrective control action can be computed to move the
system further from voltage collapse. This monitoring and preven-
tative control of voltage collapse shares the overall approach of this
paper but applies it to find controls to steer a power system away
from bifurcation rather than refine a satellite design to improve its
Tobustness.

Transcritical and Pitchfork Bifurcations

We describe the nature of the bifurcation instabilities typically
encountered when the Jacobian of the system at the origin is singular.
Let the equations of motion of the system be

x=flx.h),

where f is a C* smooth fonction with f£(0,1) = 0 for all A so
that the origin is always an equilibrium. Write Df or Df |, for
the Jacobian of f with respect to x evaluated at the origin and
at parameters A. At critical parameters A, € Z, Df has a zero
eigenvalue and a transcritical or pitchfork bifurcation occurs. This
zero eigenvalue is generically unique. Note that we have eliminated
the possibility of a Hopf bifurcation via our assumption that the
systern Hamiltonian is positive definite at Ay, Stability can then only
be lost when the system Hamiltonian ceases to be positive definite,
and this requires the passage of an eigenvalue through the origin as
discussed later. Let the left and right eigenvectors of the Jacobian
corresponding to the zero eigenvalue be w, and v, respectively.
Moreover, in the absence of special symmetries in the problem, the
bifurcation will generically be a transcritical bifurcation satisfying
the transversality condition

w, Do floanv, 0 Z)

and an additional second-order transversality condition.* [Dy, f
is the second derivative 8°£/(3A d.x).] If the system has the odd
symmetry f(—x) = —x then the bifurcation will generically be
a pitchfork bifurcation satisfying (2) and an additional third order
transversality condition.* In either case, T is a hypersurface in a
neighborhood of A, and a normal vector to the hypersurface at A,
is given by the transversality condition (2):

N = w. Do florgt, 3

x eR", L eR” (

A standard argument proving Eq. (3) is given in the Appendix.

Computing Bifurcation for Given Parameter Change

We briefly review computing transcritical or pitchfork bifurca-
tions for a given parameter change and state a direct method for
the computation. Suppose we specify a particular direction of pa-
rameter change from the nominal design Ag. That is, we specify a
ray in parameter space based at Ag with a unit vector ng so that the
parameters X along the ray are given by

A= A.() -+ l’n() (4)

as the factor I’ assumes positive real values. There are several meth-
ods to compute the closest bifurcation assuming this ray of pa-
rameter change. That is, we can compute a critical factor [ so that
A = Ap +Ing € I. Since sy is a unit vector, ! = |,y — Ag|. Here,
! is a stability margin along a given direction of parameter change.

This computation can be done by using continuation methods, dj.
rect methods, or optimization methods. The text by Seydel! gives op
entry to the extensive numerical analysis literature on continuatioy
and direct methods.

A direct method in which solution of the following equations by
Newton's method yields the stability margin / and the right eigen.
vector v, is

Dflosgstnp ¥y, =0 5
el =1 (6)

Equation (5) states that the Jacobian Df evaluated at the bifurcation
is singular with right eigenvector v,. The term ¢ € R” is a fixed
vector and Eq, (6) ensures that the right eigenvector v), is nonzero,
Continuation methods are also a good choice for computing /.

Simplifications for Hamiltonian Systems
The previous sections characterize the critical parameters £ ag

those parameters at which the Jacobian of f is singular;

2 ={A]| Dfips hasazero eigenvalue} )]

and state a formula for the normal vector to £ and a method for
computing points on T based on this characterization. In this section
we give alternative characterizations of ¥ for Hamiltonian systems
(see also Ref. 17) that lead to a formula for the normal vector to ©
and a method for computing points on X that are simpler.

Consider a parameterized, smooth, holonomic Hamiltonian sys-
tem with Hamiltonian H and the origin as an equilibrium:

9aH 9H
P g

Write D> H (A} for the Hessian matrix of H evaluated at the origin,
The Jacobian and the Hessian are related by the identity

Df =JD'H )]
where
I [ 0 1]
-1 0
In particular,
det Df = det D*H (10)
since det J = 1 so that
T = {x | D*H{X) has a zero eigenvalue} (1n

Note that the Hamiltonian H is expressed as a function of the
Hamiltonian coordinates ¢, p. It is often easier to obtain the
Hamiltonian expressed as a function 4 of the Lagrange coordinates
¢, g, and we now deduce the corresponding result for k. Let the
transformation between Lagrangian and Hamiltonian coordinates
be given by P = T(@}. Applying the chain rule for differentiation
yields

D*h = D(DHDT) = (DTY D*HDT + DHD*T (12

and, since D H vanishes at the equilibrium,
D’ = (DT)" D*HDT (13)
The conjugacy, Eq. (13), implies that DA and D? H have the samé
inertia'® and in particular that D%4 and D? H have the same numbe!

of zero eigenvalues. Hence
T = {A | D?h(2) has a zero eigenvalue} (14
Now suppose that the Hamiltonian has the form

ho=hy+hy (13}
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where Bz is a positive-definite quadratic form in the generalized
velocities g and kg is a function only of the generalized coordinates

q_Then
DRy 0
Dzh=|: o D hq] (16)

gdot

where D, denotes a derivative with respect to g and D4, denotes
a derivative with respect to §. Then

det D*h = det D}k det D2y, k2 7
and since & is a positive-definite quadraticform, det ngmhz (A)=>0
for all A and

T ={i| Djho(3) has a zero cigenvalue) (18)

Suppose there is a generic transcriticat or pitchfork bifurcation at
parameters k., € 1. Then the zero eigenvalue of Dgho is unique (see
Appendix) and we write v, for the right eigenvector corresponding
o the zero eigenvalue. Since D§h0 is symmeiric, the left eigenvector
corresponding to the zero eigenvalue is v7, The following formula
for the normal vector to & at A, is analogous to Eq. (3) and is derived
in the Appendix:

N} = v; DuDiho(h,)o. a9

Given the direction of parameter change ng, a direct method to
compute the stability margin / and the right eigenvector v, is

D2ho(ho + Ingdv. = 0 (20
o, =1 21

Equatiens (19-21) are much simpler to compute for Hamiltonian
systems of the form of Eq. (15) because they are expressed in terms
of a submatrix of the Hamiltonian in Lagrangian coordinates. There
are analogous equations for Hamiltonian systems not of the form of
Eq. (15); simply replace D2ho by D*h in Egs. (19-21).

Hamiltonian Systems, X, and Lyapunov’s Direct Method

The introduction states that stability at the nominal design X, was
established by showing that the system Hamiltonian is positive defi-
nite at Ay and invoking Lyapunov’s direct method. This is important
because it guarantees that stability can only be lost by crossing X;
in other words, it guarantees that no bifurcations can occur before
Z is reached. To see this, note that if the system Hamiltonian is
positive definite, then the Hessian matrix D% is positive definite.
Being real, symmetric, and positive definite, D*h will thus have all
of its eigenvalues lying on the positive real axis. Therefore posi-
tive definiteness of DZh, and hence stability, cannot be lost until
one of these eigenvalues passes through zero. But, as shown in the
preceding section, a zero eigenvalue of D%k can only occur on I.

Iterative Method

The iterative method from Ref. 5 to compute a closest bifurcation
has two main ingredients: the formula for the normal vector N to
% and any of the standard methods for finding the stability margin
[ assuming a direction of parameter change. The computation of [
and N may be iterated to compute the direction n, and parameter
value A, of a locally closest transeritical or pitchfork bifurcation and
hence the stability margin |4, — Ag|. The procedure is as follows:

1) Let n, be an initial guess for the direction »,.

2) Given n;_;, compute the bifurcation along the ray given by
m;_1; that is, compute ;, A;, x; sothat A, =Xy +n;_(/; € .

3) Compute the normal vector N(3;).

4)8et n; = £N(A;)/|N(A;)]. The sign is chosen so that n; points
outward from the region of stability.

5) Iterate steps 2—4 until convergence of n; to a value n,. Then
;‘-* = Ao + 1.1,

The direction n, of a locally closest bifurcation is parallet to the
normal vector N (A} of ¥ at A,, and it follows that n, is a fixed point
of the iteration. The quickest way to grasp how the iteration works

is to try it with pencil and paper in the case of Z an ellipse and A,
an interior point of the ellipse. Note that the iteration converges in
one step if T is a hyperplane.

The iteration can be understood as minimizing |A, — Ag| on a
series of tangent hyperplane approximations to T. At each iteration,
n; = N(A;) indicates the direction of the point closest to Ay on the
tangent hyperplane T Z;, to Z at A;. The following claims are proved
inRef. 5

1) If the iteration converges exponentially to a fixed point n, then
the parameter A, = Aq + #,/, specifies a locally closest bifurcation.

2) If A, is the parameter of a locally closest bifurcation and ¥ is
convex or “not too concave” at A,, then the direction n, = N(&,)
is an exponentially stable fixed point of the iteration. (The precise
meaning of “not too concave” is that the minimum principal curva-
ture of  ai A, must exceed — A, — Ag|™")

Note that when the iteration converges, it converges to a locally
closest bifurcation that is not necessarily a globally closest bifur-
cation. This is a potential problem in practice, particularly if the
hypersurfaces of £ are corrugated or if A is close to several por-
tions of Z.

An initial ray direction ng for the iterative method may often be
calculated as follows from information available at the nominal de-
sign Ay (Ref. 16): If A, is close encugh to one of the hypersurfaces
of L, then the eigenvalue of Dgho(lg) of smallest absolute value is
the eigenvalue that will become zero as )\, moves toward A, € Z.
The corresponding right eigenvector vg of Dqlho(lo) approximates
the right eigenvector v, at A, so that ng = v{ Dy, D>ho(Ao)vo ap-
proximates n,. Note that this argument only works when A, is close
enough to exactly one of the hypersurfaces of I; obtaining justifi-
ably good estimates for rp in general is an open problem. However,
the iterative method seems robust to the choice of ng. Dobson!®
also gives a direct method for computing a closest saddle node bifur-
cation. That is, equations are given that have solutions that include
closest bifurcations. Analogous equations for the closest transcrit-
ical or pitchfork bifurcation are straightforward to obtain® and can
easily be simplified by the Hamiltonian assumptions. However, the
solutions of the direct-method equations require the curvature of &
to be computed in crder to confirm that the solution corresponds to a
minimum and not just a turning point of the distance |4, —¢|. There
is a formula for the curvature of the saddle node bifurcation set,’
but no such formula is known for other bifurcations. The difficulty
of confirming that the solution is 2 minimum and the expected su-
perior robustness properties of the iterative method led us to choose
the iterative method here. The iterative method only converges to
locally closest bifurcations and does not require the curvature of =
at the solution to be checked.

Sensitivity Formulas and Improving Design Robustness

If the nominal design Ay is too close to T, then the nominal design
should be changed to increase the distance to Z. An optimal combi-
nation of parameters to change can be obtained from the sensitivity
to Ap of the distance to I. Sensitivity formulas are given both for
the distance to T assuming a given direction of parameter change
and for the closest distance to X.

Assume the direction of parameter change ng so that A; = Ay +
{ny € Z. Then the sensitivity to Ay of the stability margin [ is

Dyl = =NODING)ngl ™ (22)

That is, the optimum direction of first-order change in A, to increase
! is along —N (). Equation (22) is proved in Ref. 19

Let X, be a closest bifurcation to Ag. Then the sensitivity to Xq of
the stability margin |A, — Ag| is

Diglas — ol = =NQ) (23)

as proved in Ref, 5. That is, the optimum direction of first-order
change in A, to increase |A, — ig| 18 along —N(X,).

Thus the normal vector — N (),) to E yields the first-order sensi-
tivity of distance measures to changes in the nominat design. This
fact is obvious upen locally approximating 2 by its tangent plane,
as explained in Ref. 16. The larger entries in — N (2.} indicate the
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parameters that are most influential on |A, — Ag| and the proximity
of Apto X.

Equation (22) can also be applied to determine the sensitivity of
the distance |A, — A4/ to a closest bifurcation to medel parameters
not initially included in the design parameter space.'® This is done
by augmenting the parameter space with additional model parame-
ters and then computing the normal vector at A, in the augmented
parameter space using Eq. (19). (Note that the right eigenvector v,
need not be recomputed.)

Suppose that ] is an initial nominal design and a minimum sta-
bility margin p has been selected. If A? is a closest hifurcation to
A and [AY — A3} < p, then we want to change the design to A} to
satisfy the minimum requirement |3} — A}| = p. However, it is also
desirable to minimize the design change JA(‘) - Jxﬂj since we assume
that A) has already been optimized with respect to design criteria
other than robust stability. A simple approximate method of reach-
ing these objectives is to move A3 along the normal vector — N (},)
to make up the balance of the distance p to obtain the design

1 _ 40 _ N(lt) _
0 =4~ NG

)] (24)

The sensitivity formula, Eq. (23), ensures that the design change
|Ad — lﬁl is minimized to a first-order approximation. By construc-
tion, |A] — J\.él = p, but it is necessary to check that )LE is a bifur-
cation closest to AL, as we could have moved closer to a different
point on the bifurcation surface when we changed the design from
23 to A]. That is, the closest bifurcation algorithm should be rerun
with nominal design A} to obtain a closest bifurcation AL. IfA! = A,
then Ay gives a new design that satisfies the robustness criterion, If
A, # A% and |AL — A}l < p, then a further iteration to find A2 is
necessary.

Since, for a closest bifurcation, A2 — 1 is parallel to N{(a,),
Eq. (24) can be rewritten as

M:A‘J—M(p—\,\"—ﬁ\) (25)
(1] 1} |12—18| * Q

Nonconservative Systems

This section shows that the computations for Hamiltonian systems
developed in previous sections generalize to systems with additional
damping terms provided these terms have no linear dependence on
position. Indeed, the critical parameter set X and the closest bifur-
cations are independent of the presence of this type of damping.
Recalling from previous sections that stability of our Hamiltonian
system was determined via Lyapunov’s direct method, we note
that A will still be negative semidefinite in the presence of damping,
so that stability of the origin will be preserved. We now discuss the
effect of damping on the bifurcation set Z.

Consider a holonomic, conservative system with Hamiltenian H.
Lagrange’s equations for the conservative system are

g=1Fig,4.2 (26

We also consider a holonomic nonconservative system obtained by
adding a term C(g, ¢, ) satisfying C, = 0to Lagrange’s equations

§=Fulg. 4. 1) =F(g,q. 1) +Clg. 4. %) @7

First note that, if y = ¢, then system (27) can be written as the
first-order equations

and the Jacobian Df of the state-space form of Lagrange’s equations
takes the form

pr=| 2 1 @9)
Fq F)'+Cy

0

Apply the Laplace expansion of the determinant™ to obtain

detDf = —det F, (E10)]

Similar observations for a class of second-order systems appea; in
Refs. 2 and 21. Tt is clear from Eq. (30) that det Df is independem
of C and in particular that det Df is identical to the determinant of
the Jacobian of the conservative system (26). Since T is defineq by
the vanishing of Df, ¥ and the closest bifurcation are independ,
of the nonconservative forces.

Satellite Model

The satellite considered in this paper is shown in Fig. | and
consists of a central body containing an internal rotor and two
rectangular solar panels supported by massless, elastic shafts wip,
circular cross sections. The central body, rotor, and panels are g5.
sumed to be rigid. Each supporting shaft has polar moment of jj.
ertia J, medulus of rigidity G, and length L. A guy-wire system
is assumed to constrain panel-shaft vibrations to purely torsional
modes, 12:22.23

The central body has principal body axes £, j, & that are also prig-
cipal body axes for the entire satellite. The origin of the i, j, & cogr.
dinate system is the center of mass of the central body and the center
of mass for the entire satellite. The principal moments of inertia of
the panels about their principal axes are denoted A,, B,, and C,
and the principal axes of the panels are aligned with the axes i j, k,
as shown in Fig. 1. The center of mass of each panel lies along thej
axis and is located a distance ! from the center of mass of the central
body. Generalized coordinates «; and o, describe the angle each
panel makes with the j, k plane and are also used to measure the
amount of twist of each shaft. The center of mass of the rotor is
located at O and the rotor spins about the k axis at a constant rate
of w, relative to the ceatral body.

The principal moments of inertia of the entire satellite in its un-
deformed state about the i, f, k axes are given by

ent

A=A+ A +24, +2m,*
B=B.+4,+2B,
C=Cc+C +2C, +2m,*

The center of mass of the satellite is assumed to move in a circular
orbit, with orbital angular speed £ and radial distance Ry, about the
center of a spherically symmetric planet. An equilibrinm position
is defined to be one in which the satellite is at rest with respect to
the set of orbital axes ay, @2, a3 shown in Fig. 2. The orbital axes
@\, @, a; are defined as follows: 1) the origin is at the center of

k

A AV 2

Y X
b a
" Fig.1 Satellite model.
as

satellite
orbit

C_l. -

1
a,

Fig.2 Orbital axes.
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and
{51 = cosB, cos ¥ + sind, sin 8, sin
by = — cos @ sinr - sin 6; sin @) cos ¥

Fig. 3 Rotation sequence for i,j, k axes.

mass of the satellite, 2) a; is in the radial direction, 3) a, is tangent
to the orbit in the direction of motion, and 4) &; is normal to the
orbit plane. The axes i,j, k of the satellite are oriented relative to
the orbital axes by a 2-1-3 rotation sequence through 8;, 6, and ¥,
respectively (Fig. 3). It is shown in Ref. 7 thaté; = 6, =¥ = 01is
an equilibrium position of the satellite, and this is the equilibrium
position used in this research.

Damping
As discussed in the section on nonconservative systems, the sta-
bility boundary ¥ is independent of damping terms that have no
linear dependence on position. Therefore damping of this type can
be added to the satellite model described in what follows with-
out affecting any of closest bifurcation results calculated for the
satellite.

Energy Expressions
The expression for the kinetic energy of the satellite is given by

T= Tenral body + Trolor + Tpanell + szmel 2
where
| 1
Leenmatbody = 3 Meve Ve + 3w Lo w,
1 t
Tootor = VeV + W I w,
1 1
Tpancl] = FMpVpi ¥yl + 3ol Ipl C Wl
1
Thanelz = 3Mp¥p0 - Voo + §wpn - Ipp - wp
For the central body, the rotor, panel 1, and panel 2, we denote
the velocities of the centers of mass by v., ¥,, ¥ 1, ¥,2, the angular
velocities by a, @, , wpy, Wy, and the moment of inertia tensors by
IC! Ir: Ipla Ip?.-
The potential energy consists of the gravitational potential pius
the strain energy of the shafts:
V= Vgrav + Vamin 1 + Vitrain 2

where
-0t n
Veraw = (T)[(Sl;1 =y + Ly — L)

+ (38 = 1)U + Le = L) + (38 ~ D)L + Ly — L)

120k Ly + bl Fee + bl 1)}

JGat
Vitrain 1 = 5T

JGa?
Virain 2 = 3L z

I3 = sinf cos Gy

and Iy, Iy, Iz, Iy, Iy, and 1, are the instantaneous moments of
inertia of the entire satellite about the axes i, f, k given by

Lo = Ao+ A, + 2mpl + Ap(coszal + cos’ (1'3)
+ C,,(sin2 o + sin® C{z)
I, =B.+A, +2B,
I.=C.+C + 2m;,l2 + Ap(sin2 oy + sin? Ot‘g)

+ Cp(coszal + cos® o.'z)

ILy=1,=0
L. = (A, ~ C,)(sinoy cosa + sinap cos aa)

By constructing the Hamiltonian of the system from the above
energy expressions, it can be shown that the system Hamiltonian is
of the form i = h; + kg of Eq. (15).

Hessian Matrix

Ag discussed in the satellite model section, the generalized coor-
dinates for the satellite are

(qle dz: g3, 44, qS) = (919 62! W! oy, aZ)

Evaluate D2h, for the satellite at the equilibrium point (g1, g2,
g3, ¢4, g5) = (0,0,0,0, 0) to obtain

1 0 0 0 0
0 hn 0 ki
0 0 his 0 0
0 hoy 0 hy 0
0 —hy O 0 haq

—ha
D*hy =

where
By = (Co+ Co +2C, + 2m,l* — B, — A, —2B,)Q" + C,0, Q2
hyy = 4(Cc + C, +2C, — A, — A, —24,)Q% + C.o0, R
ha = 4A, — C,)Q?
hyz = 3(B, + 2B, ~ A, — 24, — 2m,I*)Q°

JG
has = A 4A, — CHQ°

" Closest Bifurcation Analysis
Simple Illustrative Example ’

To first illustrate the closest bifurcation techniques in the sim-
plest way, we apply them to a rigid satellite for which the stability
boundaries are known and can be drawn in two dimensions. Define
dimensionless parameterso = (C—B)/mk? and 8 = (C—A)/mk?,
where m is the mass of the satellite and k is the radius of gyration
of the satellite about the & axis. Then it follows from Ref. 24 that
in quadrant I of Fig. 4 the lines 8 = o and o = O are exact sta-
bility boundaries; i.e., the satellite is stable provided the satellite
parameter values lie in region Ib and the satellite becomes unstable
if its parameter values cross into region Ia or quadrant II. For arigid
satellite, the generalized coordinates are

@1 gz, q5) = (61, 62, %)



338 MAZZOLENI AND DOBSON: ROBUST STABILITY DESIGN

o)

i A3 A "'

l () 0 .

> 3? X
' Ib
i :

:
oA A ’."

A+ X O O Ia
! A A
i

Fig. 4 Parameter space for rigid satellite,

and evaluating D?hy for the satellite at the equilibrium point
(g1, g2, g2} = (0, 0, 0), we obtain

e 0 0
Dihy=miQ2 | 0 48 0
0 0 38—

We now choose several points, A = («, 8), in stable region Ib
and use the methods of this paper to calculate the closest bifurca-
tion, L, = (&, B.). to each point. Choosing A, = (1, 3), the closest
bifurcation is computed as Ay, = (0, 3); for ; = (2, 3) the closest
bifurcation is computed as Ay, = (2.5, 2.5); for A3 = (1, 8) the
closest bifurcation is computed as Az, = (0, 8);and for Ay = (7, 8)
the closest bifurcation is computed as A4 = (7.5,7.5). As is
easily seen by referring to Fig. 4, the methods of this paper do
indeed find the closest bifurcation points to each of the points
chosen.

Multiparameter Design Example

We use the closest bifurcation computation to design a flexible
dual-spin satellite with six parameters so that arobustness criterion is
met. Consider a satellite whose central body is a box with dimensions
X, ¥,and Z inthei, j, k directions. The dimensions of each panel are
taken to be a, b, ¢, as shown in Fig. 1. The following dimensionless
parameters are introduced:

X =Xx/¥, F=y/v=1, Z2=2Z/Y
a=a/Y, b=b/Y, E=c/Y
L=L/y, F=r/Y, h=h/y

w; /{0.0010855Q) = dimensionless spin

(2%
JG=JG / (m H522 Y3) = dimensionless stiffness
M, /m, = ratio of central body mass to panel mass
m, /m, = ratio of rotor mass to panel mass

We now consider a satelhte demgn problem with six parame-
ters; ie, weset ¥ = 1,7 = i h_4 @y = 25, JG = 100 and
M./m, = 60,m,/m, = 16 and consider the remaining six pa-
rameters as design parameters. The design parameters are denotsd
by the vector & = (&, 5, ¢, L, X, Z). In addition to requiring that

the satellite be stable, we assume a robustness criterion is givey
in terms of minimum distance in parameter space to the Closegt
bifurcation point. We start with an initial nominal design 13 ang
calculate the distance and direction of a closest bifurcation and use
these results to move to a new design A satisfying the robustnegg
criterion.

Statement of Design Problem
We wish to design a dual-spin satellite whose parameter vector
Ap is close to the nominal design
Af = (4.0,4.0,0.05,3.0,6.1, 6.0)
and meets the robustness criterion of
|As — Aol = 2.0

where X, is the closest bifurcation to Aq.

Design Strategy
Calculate the closest bifurcation A3, to A). If

|23, — 33| = 2.0
then Ay = kg and the problem is solved. But if
A8, — 45| <2.0

then obtain a new design via the formula

M= — (20— A8, Ag)r‘g*—_lg @31

]\‘g* - lg‘

Then calculate the closest bifurcation point A},
whether or not

to A} and check

|35, — A3| = 2.0

If it is, then Ay = )L[’] and the problem is solved; if not, then repeat
the preceding steps until the robustness criterion is satisfied.

Results
0 Ii’:oceeding as described above, the closest bifurcation point to

A9, = (3.99285, 4.00000, 0.05009, 3.00076, 5.68917, 6.46700)
Checking |33, — 13|, we find that

|23, — A3| = 0.66203 < 2.0
and Eq. (31) yields
= (4.01584, 4..00000, 0.04980, 2.99832, 7.01010, 4.96547)

Calculating the closest bifurcation to A}, we find

Aj, = (3.99285, 4.00000, 0.05009, 3.00076, 5.68917, 6.46700)
and

A3, — 25| =2.0

Therefore

g = A} = (4.01584, 4.00000, 0.04980, 2.99832, 7.01010, 4.96547)

and a design satisfying the robustness ¢riterion has been achieved-
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Summary

we consider designing the robust stability of Hamiltonian satel-
Jites with multiple design parameters and an equilibrium fixed at the
origin. The origin can beco_rnc_ unstable in a transcritical or pitch-
fork bifurcation, and in designing the satellite parameters we seek
10 avoid the critical parameters ¥ at which the bifurcation occurs.
Given nominal design parameters Ag, we compute the parameters
aofa bifurcation locally closest in parameter space to Ap and use
the stability margin |A, — Ao} to check the robustness of the stability
of the design at Aq. The computation of the closest bifurcation is
considerably simplified by the Hamiltonian assumption. The stan-
dard computation of the bifurcation in a given direction of parameter
increase from Ag is also simplified, If the stgbility margin [A. — A
is too small, we adjust the nominal design A, to increase its robust-
ness to the desired amount. This adjustment uses formulas for the
sepsitivity of |A, — Aol appropriately simplified by the Hamiltonian
assumption. The closest bifurcation methods of this paper apply
more generally to Hamiltonian systems with additional damping
terms provided these terms have no linear dependence on position.
To illustrate the methods, we consider the design of a flexible dnal-
gpin satellite with six design parameters to achieve a given stability
margin in the six-dimensional parameter space.

Appendix

The equations ¥ = f(x, A) are assumed to have a generic trans-
¢ritical or pitchfork bifurcation at . € I, and we state a standard
argument yielding the normal vector formula (3). It is then straight-
forward to indicate the modifications to obtain the normal vector
formula (19) for the Hamiltonian system.

Since the zero eigenvalue of Df is unique, there is a smooth
function g’ defined in a neighborhood of A, with x'(A,) = 0 and
/() the eigenvalue of D f| , with smallest absolute value. Write
o', w' for the right and left eigenvectors of Df|,, corresponding
to £/ (A); these eigenvectors are normalized according to w'v’ = 1.
Then v" and w’ are smooth functions of A in a neighborhood of A..
Write v, = v'(A,) and w’, = w’'(X,). Here, Tis given by u'(A) =0
in a neighborhood of A, so that the normal vector N (1,) is given by
the gradient D, '], which we compute by differentiating,

W= w’DfI(n.A)UI (A1)

with respect to X to obtain

Ny = wl, (D flean)v, + (Daw’ [,)Df v,
+w, Df |5, (D20 0]0,)

= Wi (D flom))v, (A2)

To derive the analogous formula for the Hamiltonian case, we
first need to demonstrate that the zero eigenvalue of D‘?ho is unique.
The eigenvector v’ of Df corresponding to the unigue zero eigen-
value of Df is also an eigenvector of D? Ff corresponding to a zero
eigenvalue of D2 H since D*Hv' = JDfv' = 0. Moreover, if v" is
any eigenvector corresponding to a zero eigenvalue of D*H, then
Dfv" = JD*Hv" = 0 so that v is a scalar multiple of v’ by the
uniqueness of the zero eigenspace of Df. Therefore the zero eigen-
value of D?H is unique. Since D" H and D?h have the same inertia
[cf. Eq. (13)], the zero eigenvalue of D2 is also unique. The posi-
tive definiteness of D;dmhg then implies that the zero eigenvalue of
DZhy is unique.

The uniqueness of the zero eigenvalue of D2ky(4,) implies that
we can define a smooth function g in a neighqborhood of A, with
(A, = 0 and p(A) the eigenvalue of Dﬁho(k) with smallest ab-
solute value. Write v for the eigenvector of D?ho(l) corresponding
10 t(A). Here, T is given by () = 0 in a neighborhood of A, so
that the normal vector N(A,) may be computed by differentiating,

po=1v" Doy (A3)

to obtain
N{&,) = v] Dy Diho(As)v. (Ad)
by reproducing the steps above.
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