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ABSTRACT

Sigma-Delta modulators are among the key data conversion components in digital audio and mul-
timedia systems. Power electronic converters transform power from one form to another by means
of power semiconductor devices. For instance, an electric vehicle is propelled by an ac motor
which derives its power from a dc battery. The dc-to-ac conversion is afforded by a power elec-
tronic converter. In this dissertation, we demonstrate the strong commonality between sigma-delta
modulators and power electronic converters, and exploit this to invent, analyze, and build a new
“quieter” and more efficient power electronic converter. Applications of this technology include
electric submarines and vehicles, solar distribution systems, and wind turbines.

A novel application and generalization of sigma-delta modulation has emerged in the area of
high frequency power electronics. A conventional sigma-delta modulator with scalar signals and
binary quantizer is generalized to the hexagonal sigma-delta modulator which comprises vector
signals and a hexagonal quantizer. Indeed, power electronic switching states may be thought of
as determining the quantizer outputs. The output spectrum is a key performance measure for both
communications and power electronics. This dissertation analytically derives the interesting output
spectrum of the hexagonal sigma-delta modulator with a constant input using ergodic theory and
Fourier series on the hexagon. The switching rate of the modulator is important for power elec-
tronic design. Formulas for the average switching rate are derived for constant and slowly varying
sinusoidal inputs. Design techniques from communications such as white noise spectral analysis

are generalized and applied to analyze the sigma-delta designs so that the noise can be shaped to



design requirements and a range of interpolative sigma-delta modulator designs from communi-
cations can be drawn upon. Hardware and simulation results demonstrate significantly improved
spectral characteristics over prior work. The hexagonal sigma-delta modulator is patented and has

been implemented in spectrally demanding commercial power electronic products.



Chapter 1

Introduction

Numerous advances in XA modulation technology have recently appeared in the communica-
tions literature. This dissertation generalizes and applies these improvements to the analysis and
design of XA modulators for high frequency power electronic systems. The system of £A modu-
lation originated in the early Sixties [1, 2, 3, 4] and has received significant attention over the past
decade as an attractive alternative to conventional analog-to-digital converters [5, 6].

YA modulators or, more generally, oversampled analog-to-digital converters achieve the per-
formance of high resolution quantizers by using low resolution quantizers in a feedback loop with
linear filtering. These converters modulate an analog signal into a simple code, usually a single
bit, at a frequency much higher than the Nyquist rate. In this manner, the modulator can trade res-
olution in time for resolution in amplitude as well as employ simple and relatively high-tolerance
analog components [7, 8, 9, 6]. '

In power electronics, switching converters can also be viewed as analog-to-digital converters
wherein an analog reference is coded into a Jow-resolution set of discrete switching states [10].
Moreover, switching converters typically switch at frequencies well in excess of the Nyquist rate.
Therefore £A modulation techniques are pertinent. Indeed A modulators have been applied
successfully to systems such as resonant dc link converters (RDCL) wherein the discrete timing
of the circuit switching precludes the use of conventional modulation techniques such as pulse-
width modulation (PWM) [10, 11]. Resonant link converters use zero voltage switching to limit

switching losses and attain relatively high switching frequencies [12).



The main analogy we exploit is with the methods in communications theory of converting
(modulating) an analog signal to a digital signal with a quantizer and subsequently (after trans-
mission) converting (demodulating) the digital signal back to analog form. For instance, a volt-
age source converter applies one of a finite set of discrete voltages on the converter output. The
converter output is then passed through an analog low-pass filter that removes the modulation fre-
quencies thereby demodulating the discrete voltages back to analog form. In both communications
and power electronics, an aim is to design the system so that the input signal is transmitted with
minimal distortion.

One consequence of this interpretation is that the power electronic switching states determine
the possible “digitized states” or quantizer outputs. That is, the structure of the quantizer is de-
termined by the power electronic circuit. For example, the conventional voltage source inverter
(VSI) [13] of Fig. 1.1 has seven switching states which correspond to the seven output vectors in
Fig. 1.2. We assume balanced three-phase signals represented by vectors with three coordinates
which sum to zero. The outputs of the VSI are the line-to-neutral voltages which may equal one of
seven possible values according to the switch state. These seven space vectors are shown as dots
in Fig. 1.2 and can be thought of as the possible output vectors of a quantizer. Here we choose
the quantizer so that a quantizer input vector « maps to the dot nearest to u. The broken lines in
Fig. 1.2 delimit the regions which map to each dot. This “hexagonal” vector quantizer is a nearest
neighbor quantizer and is well known in communications [14, 15]. Moreover, this quantizer is
optimal in the sense that the mean-square error from input to output is minimized [14]. Viewing
high frequency power electronic circuits as contributing to quantization allows them to be regarded
as part of the modulator topology. It follows that noise-shaping methods of filter design may be
applied to optimize the spectral characteristics.

To apply the conventional £ A architecture with binary quantization to three phase converters
requires some generalization. First, the output voltages of the VSI are limited to a set of seven
output vectors which form a truncated hexagonal lattice. If we assume a nearest neighbor partition

as in the binary case, the appropriate generalization is the truncated hexagonal vector quantizer
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Figure 1.2 Voltage source inverter output states.

discussed above. Second, all modulator signals are augmented from scalar quantities to vectors

and a vector integrator replaces the scalar integrator.

1.1 Motivations

There has been extensive design and analysis of scalar 2A modulators for applications in com-
munications and signal processing [5]. Also vector quantization is applied (but not to YA mod-
ulation) in a number of applications in signal processing [16]. The power electronic application
combines specific vector quantizers with 2A modulation and requires a significant generalization
of the scalar work. Of course, vector quantization can be used in ©A modulation simply by apply-
ing scalar A modulation to each component; but the analysis of these systems is straightforward.
In contrast, the hexagonal quantizer is not the Cartesian product of two scalar quantizers, so that the
required generalization is not trivial. The vector generalization motivated by the power electronic
application is natural enough in communications and signal processing since the nearest neighbor
quantizer is one of the simplest vector quantizers. However, it appears that the use of hexagonal
quantizers in A modulators has not been studied previously and that this type of generalization

has not been explored.



1.2 Approaches

The central component of a A modulator is a quantizer, a device that maps real numbers
into a finite set of possible representative values, often as few as two. Quantization is a nonlinear
operation and thus rigorous analysis can be difficult. Incorporating a quantizer in a linear system
with feedback as in the case of A modulators renders the analysis challenging.

Two different approaches for analyzing £A modulators have evolved: approximate methods
based on the results of Bennett [17], and exact analysis. In the first approach, one tries to ap-
proximate the quantization noise by choosing an input-independent additive noise source having '
a similar long-term sample distribution and power spectrum. The simplest noise model is white
noise with a uniform distribution. Under such an approximation, the nonlinear ©A modulator is
modeled as a linear system, and the performance can readily be derived by using well-known lin-
ear system techniques. Moreover, approximate methods have been a key tool in practical design
and have predicted many aspects of system behavior to a sufficient degree. Some of the properties
agree reasonably well with simulation results [9, 18]. However, two notable failures of the linear
model predictions are the generation of idle-channel tones and modulator instability [6].

Exact analysis was first applied successfully to discrete-time single-loop A modulators with
dc input [19, 20]. Instead of assuming the memoryless and uniformity characteristics, this approach
derives the true quantizer noise behavior by solving a system of nonlinear difference equations,
and then determining the noise statistics and power spectrum. The major conclusion is that the
quantizer noise, even though uniformly distributed, is not white. In fact, the quantizer noise and
output of single-loop £A modulators have discrete power spectra, which consists of spectral spikes
whose frequency location depend in a complex way on the system input [21]. This suggests that the
single-loop system is unfavorable; besides, the discrete nature of the spectra may be subjectively
undesirable for certain applications such as digital audio.

Several researchers have applied exact analysis methods to scalar A modulators to describe
their behavior, predict their performance, and help develop improved systems. These works share

the common goal of avoiding unjustified application of the white noise approximation. Powerful
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techniques from ergodic theory have been deployed by Gray [19, 21], Delchamps [22, 23], and
He et al. [24] to derive exact formulas for the spectra of scalar modulators for various inputs. Of
related interest are the works of Kieffer [25] on stability and convergence of one-bit quantizers,
and the work of Hein and Zakhor [26].

In this dissertation, we build on these exact analyses to derive the spectrum of a vector TA
modulator with a hexagonal quantizer and a constant input. To simplify our analysis of this highly
nonlinear system, we make two assumptions. The first assumption is that the modulator input is
constant. While sinusoidal waveforms are also commonly used to test the system performance, the
constant input is a useful idealization of slowly varying waveforms. The second assumption is that
there is no overload in the internal quantizer. This can be accomplished by limiting the magnitude
of the modulator input (i.e., dynamic range).

A key aspect of modulator performance is the output spectrum. Despite its complexity, we
show in this dissertation that exact calculation of the output spectrum can be done using results
from ergodic theory and Fourier analysis. In this approach, the nonlinear discrete dynamical sys-
tem representing the modulator is thought of as iterated shifts on a torus and the typical statistics
of the process may be computed by integration over the torus or subsets of the torus. The generic
case of the spectrum calculation first appeared in our conference paper [27].

Switching rate is an important performance measure in power electronic design since device
switching loss is directly proportional to the switching rate. We derive the average switching rate
for the scalar and hexagonal A modulators with generic constant inputs and then extend this
calculation to slowly varying sinusoidal inputs.

Rigorous analysis of £A modulators is challenging because the quantizer nonlinearity occurs
inside a feedback loop. However an approximate approach based on the results of Bennett [17] is
very useful for many practical design purposes [9, 18, 28, 29]. In this approach, the quantization
noise is approximated by an input-independent additive noise source having a similar long-term
sample distribution and power spectrum. The simplest noise model is white noise with a uniform
distribution. Under such an approximation, the nonlinear ©A modulator becomes a linear system

with a stochastic input, and the performance can easily be derived.



For a single-loop scalar A modulator without overload, the white noise approximation gives
good estimates of the mean-square quantization error [30, 31] and signal-to-noise ratio (SNR). On
the other hand, the white noise approximation fails to predict idle tones in the output spectrum
[21] or modulator instability [26]. However, the white-noise approximation is exact for higher
order scalar A architectures provided the quantizer does not overload [21].

We extend the conventional white noise analysis of the scalar A modulator to the hexagonal
LA modulator and thereby derive useful design graphs and formulae. We use analysis and simula-
tion to compare the single-loop and double-loop hexagonal £A modulators in terms of spectra and
switching rate and demonstrate the advantages of the double-loop hexagonal ©A modulator [32].

There is considerable advantage in using analytic formulas for the output spectrum and switch-
ing rate in design because simulation of data with complicated nonperiodic structures has difficul-
ties of run time, data processing and limited insight into the nature of the process and the parameter

dependencies.

1.3 Literature Review

Although the methods used in this dissertation are a generalization of exact analysis methods
for scalar A modulators in communications theory, much of the current technological motivation
for the results comes from power electronics. Therefore, while the hexagonal A modulator may
well find applications outside power electronics, it is appropriate to conclude this introduction with
a review of the applications of oversampled analog-to-digital converters to power electronics.

Oversampled analog-to-digital converters have been employed in power electronics for nearly
two decades. However, attention to these converters has been sparse in comparison to the vast
literature for pulse width modulators (PWM). The first reported application of an oversampled
converter (delta modulator) was to a conventional three phase transistor inverter wherein the inte-
gration of the output voltage was calculated via the output inductors. The output current closed the
feedback loop and thus could be controlled [33]. This so-called current controlled delta modulator
exhibited a non-zero steady-state output current error which was improved by the addition of an

integrator in the forward path [34].



The invention of the soft switching resonant dc link converter by Divan [12] fostered interest
in ¥A modulators since they both require constrained switching instants. Studies of three-fold
scalar 2A modulators applied to resonant link inverters that considered their spectral performance
and harmonic distortion using simulation, experiment, and basic analysis were reported in [35].
The three-fold ¥A modulator uses three identical independent scalar modulators to control each
of the three inverter leg voltages. The three-fold modulator has reduced dynamic range compared
to the hexagonal XA modulator. A zero output voltage state (i.e. all switches high/low) was
introduced in [11] to obtain adjacent state switching. This so-called modified ¥ A modulator is
a three-fold A modulator with the provision that non-adjacent states are overridden by a zero
state. This work differs from the hexagonal A in that the zero vector is not chosen unless a non-
adjacent state is selected. Seidl [36] derived the hexagonal quantizer based on its one-step ahead
optimality properties (minimum squared error) and developed a neural network delta modulator
employing the hexagonal quantizer. An alternative to current controlled delta modulators using
a one-step ahead minimization of the infinity norm of the current error was proposed in [37].
Another possibility based on sliding modes [38] is presented in [39]. Attempts to combine A
modulation with space vector modulation [13] are developed in [40] and [41]. Summaries of
the application of current controlled delta modulators and (to a lesser extent) YA modulators to
resonant link inverters prior to 1994 are found in [42, 36, 40]. The use of XA modulators for control
of electromagnetic interference (EMI) in switch-mode power supplies is considered in [43].

A simple coherent analysis of ©A modulators applied to resonant link converters was reported
by Mertens in [44]. This work drew from the basic reference in communications for the behavior
of quantization noise with dc input of Candy and Benjamin [8]. They extended methods of Iwersen
[45] from A modulation. Their approach was based on an approximate continuous time model for
a XA modulator and their results well matched experimental results (for a continuous time system).
They applied their approximations to evaluate the mean squared error when an ideal low-pass filter
is used as a decoder. Iwersen applied Fourier series expansion of the quantizer error function to

a specific input to obtain a Fourier series for the error sequence from which the spectrum was

deduced [45].



In 1998 Nieznariski [46] compared the hexagonal YA modulator to the modified £A modu-
lator of [11] and the threefold-scalar ©A modulator [35, 42] and showed that the hexagonal XA
modulator has lower distortion power and device switching rate. This work builds on the compar-
isons made in [40]. Via simulation, this work showed the hexagonal XA to have lower distortion
power and device switching rate. Additionally, this study compared the hexagonal TA to space
vector PWM [13]. For inputs less than 90%, the space vector PWM was shown to outperform
the hexagonal XA in the sense that it requires lower device switching frequency to obtain a given
spectral performance. However, for inputs exceeding 90% the situation is reversed.

In 1995 we introduced [10] and patented [47] the hexagonal XA modulator as well as exten-
sions to double-loop and interpolative hexagonal A modulators. As this technology represented
a significant improvement in spectral performance of resonant dc link converters, a hardware plat-
form was rapidly developed for deployment in commercial applications by SoftSwitching Tech-

nologies, Madison, Wisconsin. Notable successes of the technology include:

e A 2.4 MVA permanent magnet motor drive for a “silent”, ultra-low total-harmonic-distortion

(THD), high-density, and high-efficiency Navy electric submarine (Curthroat).

A 200 kVA hybrid active filter for an induction heating application contracted by Tommie

Inc.
o A 30 kW regenerative drive for elevators contracted by Yaskawa Electric Inc.

* A 250 kVA bidirectional wind turbine contracted by the University of Massachusetts.

A 175 kVA frequency converter for commercial aircraft applications.

A 175 kVA bidirectional pump drive for naval applications.

A 175 kVA solar distribution/generation system.

A 70 kW electrical vehicle drive system contracted by General Motors Inc.

A 200 kVA bidirectional automatic-voltage-regulator (AVR) for a plastics application.
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A novel insight put forth in [10] is that a power electronic circuit may be thought of as an
analog-to-digital converter in which the analog input is the signal to be synthesized and the quan-
tized digital output is the state of the circuit switches. One consequence of this interpretation is
that the power electronic switching states determine the possible “digitized states” or quantizer out-
puts. Similarly, other circuits such as the matrix converter, multilevel converters, and multiphase
converters define particular quantizer outputs.

We have also analytically derived the exact output spectrum (no white noise approximation)
of the hexagonal £A modulator with a constant input using ergodic theory and hexagonal Fourier
series [48, 32, 27]. The switching rate of the modulator is important for power electronic design
and formulas for the average switching rate are derived for constant and slowly varying sinusoidal

inputs [48].
1.4 Overview

Chapter 2 Considers ©A modulation and quantization in the context of power electronics.

Chapter 3 Develops and rigorously analyzes the model of the classical single-bit ¥A modulator

with constant input.

Chapter 4 Derives long-term statistics of the hexagonal ©A modulator driven by a constant input
as well as calculates the Fourier coefficients for the hexagonally distributed error function

for the hexagonal XA modulator.

Chapter 5 Calculates a closed form formula for the autocorrelation of the quantization noise for
the hexagonal ¥A modulator. The autocorrelation formula is numerically validated against

the result of Chapter 4.

Chapter 6 Derives the average switching rate for the single-bit ©A modulator and the hexagonal

LA modulator. Also, we determine the switching rate for slowly varying inputs.

Chapter 7 Reviews the linear analysis of the single-bit A modulator, and then extends these

results to the hexagonal ¥ A modulator.
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Chapter 8 Presents simulation results confirming the analytic results for the quantizer error and
output spectra, and the average switching rate of the hexagonal £A modulator. Hardware
implementations of various hexagonal A modulators for power electronic converters are
presented. These modulators are currently manufactured for spectrally demanding commer-

cial applications.

Chapter 9 Finally, conclusions are made and possible directions for further work are indicated.
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Chapter 2

Application of A Modulation to Power Electonics

This chapter explains a conventional scalar ©A modulator [5], and how a half-bridge con-
verter may be embedded in the modulator structure. These ideas are then generalized to the vector

modulator of central interest in this dissertation.

2.1 Scalar XA Modulator

The simplest form of a ¥A modulator is shown in Fig. 2.1. z is the input signal, u is the
integrator state and y is the latch output. The comparator is thought of as a quantizer whose output
g(u) is £1 according to the the sign of the integrator state u. The latch samples the comparator
or quantizer output ¢(u) at the sampling frequency f, and holds that value until the next sampling
instant.
|7
\Y

Latch

q(u(t))

y(t)
Digital

1-bit
Comparator

Figure 2.1 Conventional sigma-delta modulator.

Intuitively, the A modulator uses feedback to lock onto a band-limited input signal z(¢). As
explained in [29], “Unless the input signal z(¢) exactly equals one of the discrete quantizer output
levels, a tracking error results. The integrator accumulates the tracking error over time and the
quantizer and latch feed back a value that will minimize the accumulated tracking error. Thus

the quantizer output y(t) toggles about the input signal z(t) so that the average quantizer output
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is approximately equal to the average of the input.” A typical EA modulator output waveform

(reference superimposed) is shown in Fig. 2.2.

1.0

0.8

0.6

0.4 B ™

0.2

0.0

XY

-0.2

0.4

-0.8

-1.0

. L L )
20 40 60 80 100 120 140 160 180 200
Sample Number

Figure 2.2 Waveform of a ©A modulator.

To illustrate how a power electronic circuit can be embedded in a ©A modulator, consider the
modulator for the half-bridge converter shown in Fig. 2.3. In this arrangement the gating circuitry
and half-bridge are embedded into the loop following the latch in Fig. 2.1. The comparator and
latch set the switch state for each sampling period according to the sign of the comparator input u at
the sampling instant. The switch state impresses the voltage +V on the output, y(¢). Since Fig. 2.3
and Fig. 2.1 are different implementations of the same overall quantizing and latch functions, the
corresponding modulators have identical behavior. Thus, by taking the input signal z(t) to be the
desired output voltage, the actual output voltage y(¢) will approximate the desired output voltage.
As will be seen, this approximation can be improved by generalizing the integrator in Fig. 2.1 to a

linear filter or by increasing the sampling rate f;.

2.2 Hexagonal YA Modulator

We now consider a vector YA modulator which may be applied to a voltage source inverter

(VSD (Fig. 1.1). As detailed in the introduction, the outputs of the VSI are the line-to-neutral
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+V
4
Vv
t t
w_‘> q(u(t)) Latch y(t)
1-bit
Comparator
-V

Figure 2.3 Half-bridge embedded in ©A modulator loop.

voltages which may equal one of seven possible values according to the VSI switch state. These
seven space vectors can be considered as quantizer outputs and are shown as dots in Fig. 1.2. The
action of the quantizer is to map the the delimited regions to the nearest dot (neighbor). Hence,
this “hexagonal” vector quantizer is an example of a nearest neighbor quantizer [14, 15].
Generalizing the £ A modulator with binary quantization to the VSI entails two modifications.
First, the nearest neighbor binary quantizer is generalized to the nearest neighbor hexagonal quan-
tizer of Fig. 1.2. Second, all modulator signals are augmented from scalars to vectors, and a vector
integrator replaces the scalar integrator. In an analogous manner to the half-bridge circuit of Sec-
tion 2.1, the VSI may be embedded in the vector A loop with hexagonal quantization (Fig. 2.4).
We call the system of Fig. 2.4 with the VSI omitted a hexagonal ©A modulator.
} s
O 2®) | | ot Vs vtt)

Hexagonal
Quantizer

Figure 2.4 VSI embedded in hexagonal A modulator loop.

A typical output line-neutral waveform (reference superimposed) and spectrum for the hexag-
onal A modulator are shown in Fig. 2.5 and Fig. 2.6 respectively. The oversampling ratio is 64
and the input amplitude is 80% of full-scale linear range. The oversampling ratio (OSR) is defined
as ratio of the switching (sampling) frequency, f; to the reference Nyquist frequency, 2f, (fs/2f.).
For practical converters, the OSR typically ranges from 16 to 256.
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We call the frequency band 0 < f < f; the baseband; it includes the frequency of the input

signal and the band over which we wish to reduce noise in the output. The baseband is chosen ac-

cording to the application specifications. The input z,, is sampled by the modulator at a frequency

much higher than the baseband.

1.0
08

0.6 F

04 ’—— m

-0.2

X

-0.4

0.6 -

0.8

-1.0r

20 40 60 80 100 120 140 160 180 200
Sample Number

Figure 2.5 Waveform of a hexagonal £A modulator.
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Figure 2.6 Spectrum of a hexagonal £A modulator.
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Chapter 3

Single-Bit >A Modulator

This chapter reviews the spectral calculation for a single-bit YA modulator with a generic
constant input. In this context, the single-bit modulator has been studied extensively by Gray,
Delchamps, and He et al [20, 19, 22, 23]. The purpose of the section is to explain in a simpler

context the spectral calculation method that is used for the hexagonal case.

3.1 Discrete-Time Model

A conventional discrete-time single-loop ©A modulator is shown in Fig. 3.1 where 3, u, e € R

and ¢ is the single-bit quantizer

1/2 ifz >0,
q(z) =
—1/2 otherwise.
=
-1
3 D Un > q Q(un)>

Figure 3.1 Discrete-time single-bit or hexagonal XA modulator. D: unit delay. g: single-bit or
hexagonal quantizer.
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From Fig. 3.1, one can write the following difference equations that describe the A modula-

tor:

Unt1 = 0+ un — q(un) (3.1

where [ is the discrete-time input, u,, is the modulator state, and ¢, = q(ur) is the quantizer output
at time 7.

A key process in the analysis is the quantizer error sequence defined by
en = e(tn) = Uy, — ¢y (3.2)

Using (3.1) and (3.2), the state and output processes can be expressed in terms of the input and

the error sequence:

Upy1 = €p + ﬁ (3.3)

Gn+1 = €n — €py1 + 0 (3.4)

By substituting (3.3) into (3.2), the error sequence satisfies the nonlinear difference equations:

ep = e(up)

ent1 =¢€(en+0), n=0,1,... (3.5)
3.2 Solution of the Difference Equation

The quantizer error defined by e(u) = u — g(u) is graphed in Fig. 3.2 as a function of the
quantizer input u. We see that if the quantizer input u is confined to the interval [—1,1], then
the error will be bounded in magnitude by 1/2. If the input is outside that region, then the error
magnitude will be larger than 1/2, and the quantizer is said to be overloaded. Thus [—1,1] is called
the no-overload region.

We assume the no-overload condition that |3] < 1/2 and |ug| < 1. It follows that len] < 1/2

and |u,| < 1forn = 0,1,...[20]. Then the quantizer error can be expressed as [20]

e(u) = (u) — %, foru € [-1,1] (3.6)



e(u)
A

1/24
| / ——u
-1 A /1/2 1

“1/2

no-overload region

A
,

Figure 3.2 Quantizer error.
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where (r) is the fractional part of r; that is, (r) = r — ||, where |r| denotes the largest integer
not greater than 7.

For a system with no-overload, (3.5) becomes

1

en+1=(en+ﬁ)—§, n=0,1,... (3.7)
For convenience define
o= ylu) = 5 +e(w),  une[-11 9
so that (3.7) becomes
Yni1=(yn+8), n=12,... (3.9)
where §' = 3 — 1.
The solution to (3.9) is [20]
Yn = (Yo + nf') (3.10)

3.3 Spectrum of the Quantizer Error

The autocorrelation function of the y sequence is defined as

= Jim - Zyk Yhken (3.11)

L—oo

whenever the limit exists. Use (3.10) to obtain
L-1

Ry(n) = Jim = 3™ (yo+ b (g0 + k' + )
k=0

L—

L—1
= lim 2 3™ (o + £8) (w0 + k) + ) (.12

L—oo
k=0

A classical result in ergodic theory due to Weyl is [49]

Theorem 3.1 If f is an Riemann-integrable function, 3 € R is irrational, and ~ € R then

hrn—Zf ﬁk+r)-/ f(s)d

A - e
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This phenomenon is referred to as the equidistribution of the sequence since the sequence (Bk +r)
uniformly fills the unit interval and the sums approach an integral in the limit.

We assume (3 irrational and apply Theorem 3.1 to f(s) = s (s + n8’) in (3.12) to obtain

1
Ry(n) = / (s) (s+npf)ds (3.13)
0
Let f,g € L*([0,1)) have Fourier coefficients fp, Jp, P € Z. Then Parseval’s formula is
1
/ f(s)g*(s)ds = foim (3.14)
0 PEZ

The function ( ) € L?(]0, 1)) is periodic and has Fourier series

() = ey (3.15)
pEL
where
1 . 1 if p=0,
Cp =/ (u) e Py = 2
0 5;—1) ifps#£0

The Fourier coefficients of g(z) = (z + nf') are c,e™¥. Applying Parseval’s formula to (3.13)
gives
R,(n) = Z cpc;e‘iz’rpnﬂ/ = Z ICPIQeiQ”pﬁI" (3.16)
peZ pEZ
Since 3 7 [ep|* = 3, the series (3.16) for Ry (n) is absolutely summable and this implies uniform
convergence of the series (3.16) with respect to n. Since almost periodic sequences are the uniform
limit of trigonometric polynomials, R, (n) is almost periodic [50].
A complex valued sequence g, defined for n € Z is called almost periodic, if for any € > 0

there exists a trigonometric polynomial 7%.(n), such that
lgn —Te(n)] <¢, neZ (3.17)

An alternate definition for an almost periodic sequence g, is that if for every € > 0 itis possible to
find a positive number [{¢) such that every interval of length I(¢) contains at least one m € Z such

that |gn4+m — gn| < e forn € Z [50].
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We now compute the spectrum S, of the almost periodic sequence R,. It is known from
harmonic analysis that the spectrum of an almost periodic sequence is discrete (pure point). The
pure point part of the spectrum S,, may be recovered from the autocorrelation sequence R, (n) for

any point A, € [0, 1) by the mean value of the almost periodic sequence R,(n)e~12mn [51, 22].

N
: 1 —i27Apn
Sy({)‘p}) = ]\}l—llnoo IN + 1 Z R’y(n)e 2

=—N

N
— 1 1 2 i2x(pB’ —Ap)n
= dm onrT 2o X lele

n=—N peZ
N

1 ; /
_ 2 q; 21 (pB' —Ap)n
2l Yim SN T 2 © (3.18)

pEZ n=-N

The interchange of summations is justified since > pez 16pl° < oo. Thus,

0 if p8' # A\, mod 1,
Sy({d}) = (3.19)

> ifpB =2, mod 1.
The numbers {),, p € Z} are called the Bohr-Fourier frequencies of the sequence Ry(n), and |c,|?
are the Bohr-Fourier coefficients of R, (n). Rewriting (3.19) and using y = 1 /2 + e the spectrum

of the quantization error is [19, 23]

Se(w) =D lepl*8(w - (p3) (3.20)

pEL

p#0
According to (3.4), the quantizer output g is obtained by differencing e and adding 5. Hence
standard linear system Fourier analysis techniques can be applied to obtain from (3.20) the spec-

trum of the quantizer output g:
Se(w) = 0%6(w) + 4 lep|? sin(mw)é(w — (pB)) (3.21)
PEZ

p#0

The output spectral density S, is purely discrete having amplitudes 4 lcp|? sin?(mw) at frequencies

(pB') for 0 # p € Z, and the square of the input at zero frequency.
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3.4 Mean and Variance

This section computes the mean and variance of the quantizer error function for the single-bit
YA modulator for a generic constant input.

We denote the long-term time average or mean and variance by

1 L-1
Y= Lh_{go T2 Yk (3.22)
k=0
L-1
— 1 )
Z=lim =5 ¢ (3.23)
Looo L Y0

respectively.
We now apply Theorem 3.1 to the sequence y,, of (3.10) to determine the desired statistics for

an irrational input 3. Taking f(s) = s in Theorem 3.1, the mean of y is given by

! 1
y:/ sds=§ (3.24)
0

and taking f(s) = s? the variance is

1

1
Y2 = / s2ds = = (3.25)
. 3

By the definition of y in (3.8), the mean and variance of the quantizer error sequence e, are

£=0
1
2
“T 12

The quantizer output g, is obtained by differencing e,, and adding z accordin g to (3.4). Hence, the

mean and variance of g, are

If § is rational, then Weyl’s formula may be replaced by a standard result from finite fields [19];

however, we will not pursue these results here.
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Chapter 4

Hexagonal > A Modulator

This chapter describes mathematical underpinnings, including hexagonal coordinate systems,
lattices and quantizers, and states the nonlinear difference equation for the hexagonal modulator.
As a preliminary step we mathematically describe the hexagonal lattice and discuss its properties.
We then proceed in a similar fashion to the single-bit modulator of the previous chapter.

A key aspect of modulator performance is the output spectrum. Despite its complexity, exact
calculation of the output spectrum can be done using results from ergodic theory and Fourier
analysis. In this approach the nonlinear discrete dynamical system representing the modulator is
thought of as iterated shifts on a torus and the typical statistics of the process may be computed by
integration over the torus. We performed these calculations for the generic constant input case and

they generalize similar results for scalar YA modulators.

4.1 Hexagonal Lattices and Coordinates

It is convenient to define the plane P = {(z,y,2)"* € R® | z + y + z = 0}, where ¢ denotes
transpose. Define W : R? — Pand V : P — R? to be

10
11 2 -1 =1
311 2 -1
1 -1

VW is the identity on R? and WV is the identity on P.
The hexagonal lattice is A = | {Wk | k € Z?} = P () Z®. The large dots in Fig. 4.1 show

points in A.
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The dual of P is P* = {(z,y, z) € R*® | 2 + y + z = 0}. The lattice dual [14]to A is
AN={peP |preZforall A€ A}=J{qV | ¢ € 2*?}

The vertices of hexagon H in Fig. 4.1 are points in A*.

Vectors in P or A are written as column vectors and dual vectors in P* or A* are written as row
vectors. For example, n, € P in Fig. 4.1 is the column vector %(2, —1,—1)*. The columns of W
generate A and the rows of V' generate A*.

The Voronoi cells (points closest to a given lattice point) of A are hexagons of side /2/3.
Define the set H to be the interior of the Voronoi cell containing 0, together with a specific choice
of 3 non-opposite hexagon sides and 2 opposite hexagon vertices. (These choices ensure that lattice

translates of H tile the plane with no overlapping points.) H is the dark central hexagonal region

of Fig. 4.1. The area of H is |[H| = /3.

Define vectors n and n' by (see Fig. 4.1):

2 -1 -1
ng = 1 ny = 2 ne =
a — 3 - ) b — 3 ) c = 3 -1 s
-1 -1 2
0 1 -1
np=| -1, mp=| o], mr=[| 1
1 -1 0
Also define n_; = —n,, nt, = —n;. Note that nint = 0, |nt| = /2, and |n| = 1/2/3.

Coordinates 3., Bi, 35~ for P are defined by
By=Bmng,  Gy=Fmy, Br=0-n (4.2)
Coordinates p,, ps, p. for P* are defined by
Pa = PNa, Dy =P,  Pc = Pl (4.3)

It is convenient to define an ordered coordinate system for P: Let 8{, 85, 83 be an ordering

of B}, B, B chosen so that |B%| > |B5| > |84|. The ordered coordinates are a continuous,
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non-differentiable function of the original coordinates. Also, the ordered coordinates satisfy the

relation:

61| = |83 + 155 ] (4.4)

(4.4) is proved by noting that when (i is positive (say), 35 and 35 are necessarily negative; and
that 8- + B3 + f5 = 0. We write ny = (3;-/|8], j = 1,2,3 so that 3 = 3 - n7.

In the ordered coordinate system we may define with economy the various regions of Fig. 4.1:

H={zeP: |zt|<1} (4.5)
U={zeP: |z3|<1/2} (4.6)
S={zeP: |rr| <1} 4.7)
R={zeP: |zy| < 3and|z;| < 2} (4.8)

Figure 4.1 Hexagonal quantizer g and regions H, S, and R.
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4.2 Hexagonal Quantizer and Discrete-Time Model

A function f on P is hexagonally periodic if f(x+ ) = f(z) forall A € A. Define () : P —
H as the identity on H and extend the definition of () to P by making () hexagonally periodic.
One might call () “hexagonal part” since () generalizes to P the scalar fractional part ( ).

Let z,y € P. Then

TFy) =& +v 4.9)

Define the hexagonal lattice nearest neighbor quantization function ¢ to be

g(z) =z - (@) (4.10)

The nearest neighbor quantizer g is shown in Fig. 4.1. The input u to ¢ is a point in the
plane P and the output g(u) is the nearest to u of the seven truncated hexagonal lattice points
{0, £nt, £nit, £nl} in Fig. 4.1.

A discrete time hexagonal £A modulator is shown in Fig. 3.1. The signals 3, u,, g,, and e,
are now interpreted as vectors in the plane P.

The discrete-time model derivation exactly parallels that of section 3.1 and the error sequence

satisfies the nonlinear difference equations:

e = €(uo)

ent1 =€le,+0), n=0,1,2... (4.11)
4.3 Solution of the Difference Equation

Our analysis requires the modulator state u,,, n = 0, 1, 2, . . . to be contained in the no-overload
region R of the quantizer. R is the lightly shaded region of Fig. 4.1 consisting of the 7 hexagons
closest to zero. S is the star-shaped shaded region of Fig. 4.1. The following sufficient condition
for no-overload can be shown by induction: If 5 € S and ey € H, thene, € H and u,, € R for all

n=20,1,2.... We assume 3 € S and ey € H and hence no-overload for the rest of the paper.

e A g oo L i b e
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Since the function e(u) = u — ¢(u) coincides with () on the no-overload region R, the no-

overload assumption implies that the difference equation (4.11) can be written as

ent1 = (En+ 0) (4.12)

Property (4.9) can be used to check that the solution to (4.12) is

en = (eg + nB) (4.13)
4.4 Fourier and ergodic results

We state results about Fourier analysis and ergodic shifts. Let f,g : P — C be hexagonally
periodic and Lebesgue square integrable on H. Then f(z) = 3" .. f»€2™P% where the equality is
interpreted in the L? sense and the Fourier coefficients are f, = ﬁ [y f(s)e™®™sds. Parseval’s

formula is

ﬁ% /H F(s)g"(s)ds =" f, 4 (4.14)

pEA*
These Fourier results can be obtained either as sketched in Appendix A or as a particular case of
harmonic analysis on compact Abelian groups [52].

Identify points of P differing by vectorsin A to define H = P/A={z+ A|z € P}. Hisa
compact Abelian group. A function f : H — C lifts to a function f : H — Cif f(z + A) = f(z)
for all z. Lemma 4.1 gives a generic condition on the input 3 for the dynamics (4.13) to induce a
uniquely ergodic shift on 7 so that time averages of a function f can be evaluated as an integral

over H:

Lemma 4.1 Let § € P be such that the only p € A* withpf € Zisp=0.Let f : H — Rhavea

continuous lifting f : H — R. Then for all ¢y € P,

L—oo

. 1 L-1 1
im 3 (@) = g [ Fe)ds
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Corollary 4.2 The result of Lemma 4.1 extends to functions f : H — R for which there exist
sequences of functions f, f Iy k = 1,2,... with continuous liftings such that f k(:v) < f(z) <

fi(z) for all z and |f, — Frloo — 0as k — oc.

Lemma 4.1 can be obtained from standard results on the torus [53] as indicated in Appendix A.

4.5 Spectral Analysis

This section computes the power spectral density of the quantizer error function and the quan-
tizer output for the hexagonal 2A modulator with a constant input. There are three cases to con-
sider, depending on the value of the constant input 3. The three cases are characterized as follows.

Case 1: {s € A* | s@ € Z} = {0}. In Case 1, the error sequence e, described by (4.13) is
equidistributed over H so that Lemma 4.1 applies. Case 1 is the generic case satisfied by § € H
almost everywhere.

Case 2: {s € A*|sf € Z} = {mr | m € Z} for some nonzero r € A*. Another characteriza-

tion of Case 2 is that 3 has the form
ﬂ=am_+§a; r) €ENoeAzeZ,gel 4.15)

where a € R is irrational and 7; # 0. In Case 2, the sequence e,, described by (4.13) is confined
to lines in H, but the sequence is aperiodic and equidistributed over the lines.

Case 3: (3 has the form
h
ﬁ——-gv; veEANheZgeZ (4.16)

where h and g are relatively prime. In Case 3, the sequence e, described by (4.13) is confined to
discrete points in H and is periodic with period q.

Cases 1 - 3 and their characterizations are established in Appendix B.
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4.6 Autocorrelation Computation

The autocorrelation matrix of the noise process is, using (4.13),

I~
—

€n ® Cn+k

=

Rk = g,

T
Ll

(g +nf) ® (eg+nf+kp) 4.17)

S

= lim
L—oo

i
o

n

where ® denotes outer product. The following three subsections compute the autocorrelation in

Cases 1, 2 and 3 starting from (4.17).

4.6.1 Autocorrelation Computation Case 1

Case 1 is the generic case in which Lemma 4.1 applies and the calculation proceeds as a gen-
eralization of the method for the single-bit modulator presented in section 3.

Equation (4.17) may be modified using (4.9) to give

t~
—

eo +nB) ® ({eg+nb) +kB)

Siks

R0 = jim,

3
I
o

Define f : H — P x P by

fs)=sg 4.18)

Then

t~

-1

f({leg+nB))

Re(k) = lim

Sl

I
o

n

Each component of f is continuous except on several line segments and satisfies the conditions of

Corollary 4.2. Hence

R(k) = I_Ilfl/H (8 ® s+ kB ds (4.19)

Let ¢, be the Fourier coefficients of () forp € A*:

1 / —iomp
Cp =0 e~ Pl (4.20)
*TH] Sy ©
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Appendix C computes c, as

= M 4.21)

- 4+/372T1(p)
where II and sgn are defined as follows: Using coordinates (4.3) so that p = (p,, ps, D), define
II(p) = product of nonzero elements of {p,, Py, pc}, p # 0 and II(0) = 1. Partition A* = At U
(ng + A) U (—n§ + A) and define

4

0 if p € A, papepc # 0 or p = 0,
21/V3 if p € A, papepe = 0 and p # 0,
sgn (p) = <
1 ifpenl + A",
-1 ifpe —nt + AL

\

The Fourier coefficients of f(z) = (x + kf) are c, e"2™Pk.
Each entry of the outer product in (4.19) can be regarded as an inner product of functions over

H and applying Parseval’s formula (4.14) to each entry gives

Re(k) =Y ¢, ® c_p e 2Pk (4.22)

pEA*
4.6.2 Autocorrelation Computation Case 2

Recall from (4.15) thatin Case 2, § = ar; + f}-a wherer,,c € Aandz,g € Zand o € R is

irrational. Equation (4.17) for the autocorrelation matrix may be rewritten using (4.18) as
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Use « irrational and Weyl’s ergodic theorem 3.1 to get

R.(k) = éi /01 f({fr + (mz/g)o + eo) )do

m=0

g-1 1
= é > / (Ory + (mz/g)o + eq) ® (Oro + (mz/g)o + kB + eo) df (4.23)
m=0"0

The Fourier coefficients of the factors inside the integral in (4.23) can be obtained from their

Fourier expansions:

Oro+(mz/g)o +eq) =Y cperOrrotmz/apope)
pEA*

:E : E : cp6127r((mz/g)pa+peo)et27m9

neZ peA*
pri=n

(Or + (mz/g9)o + kB + eg) = Z Z ¢ ei2r((ma/a)p/o+kp! B1p'eo) gi2mng

nEL p'eA*
p'ri=n

Applying Parseval’s formula (3.14) to (4.23) gives

1 g_.l ; : / ! '
R.(k) = E Z Z Z cpeﬁﬂ((mz/g)pff-f'peo) ® Z c;/e-l%((mZ/g)p o+kp' B+p'eo) (4.24)

m=0 neZ peA* pEA*
proi=n p'ri=n

According to Appendix D, the summations in (4.24) are absolutely convergent and can be reordered

to give
181
R.(k) = Z Z Cp ® ey e—i2mkp'B Z ei2m(mz/g)(p—p')o ji2m(p—p')eo
n€Z p,p’ eA* 9 m=0
pri=n
p'ri=n
= > g®c yetbeme-pe (4.25)
p.p EA™
(p—p')r =0
(p—p’)o=0(mod g)
= Y ®c_pem e (4.26)
p,pIEA*
(r—p')BeL
— Z Cp ® cs_peiQﬂ'kp,@eiQn'sec (4'27)
3 EA*
pS/SBEZ

The equivalence of (4.25) and (4.26) follows from (B.4) in Appendix B.
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4.6.3 Autocorrelation Computation Case 3

Recall from (4.16) that in Case 3, 3 = (h/q)v where v € A and h, ¢ € Z are relatively prime.

Then (4.17) may be rewritten as

—

il qz m/q)v + 60) ® ((m/q)v + kG + eo> (4.28)

bQ

The Fourier coefficients of the factors inside the sum in (4.28) can be obtained from the Fourier

expansions:

(m/q)v + eg) = Z cpe 2 ((m/@)pvtpeo)

peA"
_§ ’ E : cpet27rpeo i2mnm/q
pEA”
pv:n(mod q)

(/v T kB +e) = 3 cpel2rtmiamripspeo)
pEA*

. , , .
E § Cplez%r(kp B+p eo)e'LZﬂnm/q

p'EA*
p’v=n(mod q)

Applying Parseval’s formula for scalar discrete periodic functions to (4.28) gives

. . I ’
§ : 2 : cp€127rpeo ® § c;,e 127 (kp' B+p'eg)

p fEA* pIGA*
p'v=n(mod g) p’v=n{mod q)

g—1
—i27kp' B ji2n(p—p
— E Cp ® C_pe 2" P'B pi2n(p—p)eo

n=0  pp'eA*
pv=n(mod q)
p'v=n(mod q)

—i 7 ; '
E Cp ® c_pe i2mckp 661271'(1) p')eo

p,p'€A*
(p—p’)v=0(mod q)

i ’ ; ;
— E Cp ® c_pe i2mkp BezQW(p p'eg
p.p'EA*
(p—p")BEZ
‘2 ) {3
= > 0y ® copemPIciZrse0 (4.29)

p,sEA*
sBEZ

b o ki s it Mot s s
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4.7 Formal Derivation of Autocorrelation in the Three Cases

As a supplement to the rigorous derivation above, we give a formal derivation of the autocor-
relation that neglects issues of convergence and interchange of infinite operations. The purpose is

to show the commonality between the three cases. Starting from (4.17),

L—o0

L—1
Re(k) = lim % ; (nB + e) ® (nB+ kB + eg)

L-1
1 14277(” ; 7 ' '
= % pB+peo) , 127 (np B+kp' B+p'eo)
= lim 7 E E Cpe ® E Cp€

L—oo
n=0 peA* p'EA*

b

-1

— R e /6127rkp BezZW(p+p Jeo lim = 61,27r0(p+p )8
Cp P Loo I,

p.pEA* n

i2kp’ B 12 !
— E : Cp ® cpet?™ P'B gi2n(p+p)eo
pp EA”
(p+p')BeZ
— E ' Cp ® cs_-pe—z27rkp56127rseo (430)

p,sEA*
SpEZ

Il
=)

In Case 1, (4.30) reduces to the rigorously derived equation (4.22) since sg@ € Z for s € A* implies
s = 01in Case 1. Moreover, in Cases 2 and 3, (4.30) is the same as the rigorously derived equations

(4.27) and (4.29).

4.8 Spectrum of Error and Output Sequence

According to (4.22), (4.27), and (4.29) for Cases 1, 2, and 3 the autocorrelation matrix may be

rewritten in the general form

Re(k) = " ¢ ® cy_p €20 gmi2mP0k (4.31)

p,SEA™
SPEZL
The absolute summability of the series (4.31) is proved in Appendix D and this implies uniform

convergence of (4.31) with respect to k. Since almost periodic sequences are the uniform limit of

trigonometric polynomials, we conclude that each matrix element of R, (k) is almost periodic [50].



s A st e

35

Similarly to the scalar case, the Bohr-Fourier series (4.31) implies that the quantization error

spectral matrix S, is purely discrete having amplitudes Z Cp ® Cs—p €275 at frequencies (pf3)

SEA*
sBEZ
forp € A*:
=D ) o ®cop €2 5w — (pf)) (4.32)
PEA* s€EA*
sBEZ

Note that the amplitudes are real because ¢, and c,_,, are both imaginary (see (4.21)) so that ¢, ®
Cs—p 18 real and because of the symmetry of the sum over s. In particular, s3 € Z <= —sf8 € Z.
The quantizer output g, is obtained by differencing e,, and adding 3 according to (3.4). Hence

the output spectral density matrix is
Se(w) = & B6(w) + 4sin®(1w) S, (w) (4.33)

Now we examine some of the special forms of these spectra in the Cases 1, 2 and 3 described in

section 4.5.

4.8.1 Spectrain Case 1

For generic input 3 satisfying Case 1, the error spectrum (4.32) reduces to

W)= ®c_ydw— (pf)) (4.34)

PEA*
and the output spectrum (4.33) becomes

Sw) =B ® Ao(w) + 3 S (rw)sen ( D) & 03w — (pB)) (4.35)

I12(p
v 127m4112(

Hence, the frequencies and therefore the amplitudes of the spectra depend strongly on the input 3.

Clearly the spectrum is far from white noise being neither white nor continuous.

4.8.2 Spectrain Case 2

Recall from (4.15) that in Case 2, 8 = ar| + ja wherer;,c € Aandz,g € Zanda € Ris
irrational. Moreover {s € A* | s € Z} = {mr | m € Z}. Then (4.32) can be written as

Se(w) = Z Z Cp @ Crny—p €27TTE0 § <w — <aprl + gpo>> (4.36)

PEA* meZ
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4.8.3 Spectrain Case 3

Recall from (4.16) that in Case 3, § = (h/q)v where v € A and h, g € Z. Then (4.32) can be
written as

- Z Z Cp ® Cop €750 § (w - <ﬁq2>) (4.37)

n p,SEA™
puv=n(mod q)
sv=0(mod q)

showing that frequencies are equally spaced at multiples of 1/¢. The output spectrum frequencies

are spaced in the same way.

4.9 Mean and Variance

This section computes the mean and variance of the quantizer error function for the hexagonal
YA modulator in Case 1 of a generic constant input.
The mean of the noise process is, using (4.13),

€= 1m—Zen—hm—Zm (4.38)

Looo [ o
n=

Applying Lemma 4.1 to (4.38) yields

€ ! / d 0 (4.39)
= — sSas = . -
|H| Ju

The quantizer output g is obtained by differencing e and adding 3 according to (3.4). Hence, as
expected, the mean quantizer output is § = .
The covariance matrix o2 of the quantizer error is R.(0), the autocorrelation matrix evaluated

at zero. Calculation of R.(0) from (4.19) is straightforward [14]:

2 -1 -1
1 51
2
- ds = —= | — —~11. 4.40
o’ lHI/HS®S s=gzz -1 2 -1 (4.40)
-1 -1 2

Hence the variance of one component of e is 10/108 = 0.0926.

e e s i e
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Chapter 5

Autocorrelation Calculation

This chapter computes a closed form formula for the autocorrelation of the hexagonal A mod-
ulator assuming a generic constant input. Detailed analytic proof of the calculation steps has not
been attempted; delta functions are used freely in integrands and various smoothness assumptions
are asserted. The places in which these assumptions are made are noted. The notation used in this
chapter is given in Section 4.1. The closed form autocorrelation formula is numerically validated
against the rigorous result of Chapter 4.

The autocorrelation function of the hexagonal XA modulator is

1
Ru(y) = W/H ® sds 5.1)

Since s 1s piecewise linear with discontinuities only along a finite number of line
segments in H, R, is continuous. We first choose y in the interior of a particular hexagon sextant
and later vary the sextant and then extend R, to H by continuity.

Choose y in the interior of a particular hexagon sextant. Define f : [0,1] — P? by

f(a) = Re(oy) (5.2)

This definition ensures that f(«) lies within the interior of the sextant containing y except that

f(0) = 0. The strategy to evaluate R,(y) = f(1) is to expand f in a Taylor series about zero.

5.0.1 Constant Term

Calculation of R,(0) is straightforward [14].

1
£(0) = Ra(0) = ﬁ/H@ & sds = 3_56p 5.3)

i h e R o B (o e a7 2555
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5.0.2 Linear Term

In the following we allow delta functions in the integrand. Assuming that f is differentiable

and that we can interchange differentiation and integration,

Vaof zl—;ﬂ- /HVa ® sds (5.4)
Since D,z +y) = D,z +y),

Vaof =|—;ITLVS( ) ® sds 5.5)

By the product rule,

1
Vo =i | V:(EEED -va)ts— i [ GFaD yasw
1
=t [ V(EEED -ys)ds 56)
H

Applying Stokes theorem as developed in Section 5.2, we obtain an integral along the hexagon

sides with respect to arc length 4.

1
Vof :—-i—ff YL@ ntde 5.7)
InH|H| Jon

Let a, b, c be any three non-opposite hexagon sides. Then

Vaof ’n_LH Z / @@-y6®nj+@-y(€—nj)®(—nj)dé
OH.

se{abc}
=T~ > ( Yoy -ydint @nt (5.8)
’I’L H se{ ,b,c} OH.

Since

. 1
lim () = £~ 5 (L+sgn () ¢

a>0 2
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we have by interchanging limit and integral

vaf'O = hn%) vaf

a>0
= Z / (E—— (1+sgn(yy))n )-yd@nj@ni
TL H se{abc} oH.
1 1 N n
~mmm = | (e gn) ey = b e
Int||H]| se{abe) -/ OHs 2
—|n|
= e vz |ny @ ny
2|nLHH|se§’c} °
1
=3 Z lyr|nt @ nt (3.9
se{a,b,c}

using |H| = /3, |nt| = v/2, and |n| = /2/3.

5.0.3 Quadratic Term

Calculate V. f by differentiating (5.8). Let a, b, ¢ be any three non-opposite hexagon sides
and simplify similarly to the linear term:

Vaa I l“ Z Va ydénj@nj

se{a,b,c} 0H,

| oD - yitnd o
oH.

se{a b,c}

1
= Inlly|* — / (Vea(€+ay) - y) - ydﬁJ ny ®ny
i 2 =,
3Inilyl? 1
— P
el e 2
since 3° e rp. M ® Ny = 3P. We claim that

Inlll

[/ (veq<f+ay)-y>-yd€}nj®né (5.10)
OHs

_L
Veq(£ -5([@[1— ll)nj@nj (5.11)

Substituting for V,q in (5.10) gives

Voof IyIQP——— > / S(I€Eay i — 1) (Nyay - ¥)2dlnt @ 0t (5.12)

se{a b,c}
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See Fig. 5.1 for an illustration of the second term of V. f.
By employing the ordered coordinate system developed in Section 4.1, the integral in (5.12)
vanishes for s = 1, becomes |n|(y3)? for s = 2, and becomes |n|(ys)? for s = 3. Thus

1
Veof =ly* P — 3 [ny @ ng(y3)? + ny @ ny (y3)?] (5.13)

It is now clear that V,, f is a constant with respect to . Therefore the Taylor series for f only

includes constant, linear and quadratic terms:

&
N
@
g
H

F) = 70+ Vaflo + 5 Vaaf

~(H+ W) P-t 3 it ot - g @) + nd o))
se{a,b,c}
(5.14)
Thus formula (5.14) depends on which sextant y is in.

The derivation assumes that y is in the interior of its sextant. Since R.(y) is continuous on H,
the value of R.(y) on the sextant borders can be obtained as a limiting case of formula (5.14). For
clarity, we consider the border between sextant a and sextant —b. This border lies along n.. In
sextant a, the third term of (5.14) is

1
=5 [ ®ny(v2)” + g @ ng ()]

and this tends to

- é [ne @ nz (v5)] (5.15)

as y tends to the border within sextant a. In sextant —b, the third term of (5.14) is

1
=5 [ @nz () +ny @ g (1))

and this tends to

- % [ne ®nZ (v2)?] (5.16)
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as y tends to the border. But on the border, (y;-)2 = (y;-)? so that expressions (5.15) and (5.16)
coincide.

However, the derivative of R.(y) is not continuous at the sextant borders. Thus R.(y) is
quadratic within sextants but merely continuous at sextant borders; in short, R.(y) is piecewise

quadratic.

Figure 5.1 Tllustration of second term of V. f.

5.1 Numerical Verification of the Autocorrelation Formula

We present a numerical check through MATHEMATICA of the autocorrelation formula, (5.14)
by comparing it to the rigorously derived series (4.22).
For the input 8 = (0.0298658, 0.188285, —0.218151), formula (5.14) produces the following

autocorrelation matrix

0.03839617 —0.02362990 —0.01476626
—0.02362990 0.01617576  0.00745414
—0.01476626 0.00745414  0.00731212



Computation of the summation (4..22) over 7650 terms of A*

0.03838994 —0.02362614 —0.01476379
—0.02362614 0.01617260  0.00745353
—0.01476379 0.00745353  0.00731026

resulting in an error of

—6.2x107% 37x10% 24x10°6
37x107% —3.1x10"% —6.0x 1077
24x107% —6.0x1077 —1.8x 107

5.2 Line Integrals, Differential Forms, and Stokes Theorem

42

In this section, we specialize Stokes theorem to the case of a scalar function on the hexagon

H. Stokes theorem allows us to rewrite area integrals on A as line integrals on the boundary of the

hexagon, 0H. Much of the terminology and notation is copied from Spivak [54].

Regard the hexagon H as a singular 2-cube H : [0,1]2 — R2. Then the boundary 0H is a 1-

chain which is the sum of the sides, each with the orientation given by a counterclockwise motion

around H. Let ¢ be a smooth real function on R?.

Define the vector 1-form

d
w=20e Y
—dz
Then
dé N d ¢
do=| MY 15| gondy = Vo de A dy
—doé Adz g_;f

Stokes theorem

/dwz/ w
H OH

3 dy
/w dx/\dyz/ é
H 6H —dz

becomes

(5.17)

(5.18)

(5.19)

(5.20)
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Now we change coordinates on the right hand side of (5.20) from zy coordinates to {1y coordi-
nates where / is arc length along a given curve and v is the angle between curve tangent and the

axis. The coordinates are related by

z=£fcosy+ xg

y = {siny +yo (5.21)
where zg, Yo is the point on the curve corresponding to £ = 0. Now

dx = cosy df — £siny dy
dy = sin df + £ cos ¥ dyp (5.22)

The right hand side of (5.20) becomes

/ o Y | aes / ot | Y| aw (5.23)
8H | —cos 8H sin i

But the second integral of (5.23) vanishes since 9 is constant along hexagon sides. Hence

1
/ Vo dz ANdy = — dnedl (5.24)
H lWI 8H
where
Ty . sinw
|| — cos 1)

1s the unit vector normal to the hexagon side.
Result (5.24) is developed under the assumption that ¢ is smooth, however it can be extended

to functions with step discontinuities.
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Chapter 6

Average Switching Rate

Switching rate is an important performance measure in power electronic systems since device
switching loss is directly proportional to the switching rate. After deriving the average switching
rates for the single-bit and hexagonal ¥A modulators, we proceed to determine the switching rate

for slowly varying sinusoidal inputs.

6.1 Single-Bit > A Modulator

We derive the average switching rate for the single-bit 2A modulator with the assumptions of
no-overload and constant irrational input £.

First use (3.4) and notation from section 3.2 to show that

Gn+1 — Gn = —€ny1 + 2en — €n-1
=_<en+ﬁ>+26n_ <en"ﬂ>
= len + 8] + len — B

The precise condition for no switching between n and n + 1 is

Int1 = Gn < |_en + <ﬁ>J + l_@n - <5>J =0
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Write  for the indicator function, so that the average switching rate f; is given by
=
1—fo= ng{.lo I Z X [no switching between n, n -+ 1]

L-1

= hm —ZX |len + B8] + len — B]| = 0]

1
=/x[|Ls+ﬁJ+LS—ﬁJI=0]dS 6.
0
by Theorem 3.1. By inspection (6.1) is
26, 0<8<1/2,
fs = ' (6.2)

21-8), 1/2<8<1.

The maximum switching rate f; = 1 occurs at § = 1/2.

6.2 Hexagonal XA Modulator

We derive the switching rate for the hexagonal ¥A modulator with constant input vector § € S
(see Fig. 4.1). No-overload and generic 3 satisfying Case 1 are assumed.

First use (3.4), (4.9) and the definition of g in section 4.2 to show that

Gn+1 — Gn = —€ny1 + 265 — €41
= —(eat B)) +2en—(ex—B))
=qlen+ () ) +alen— B )

The precise condition for no switching between n and n + 1 is
Qn+1 = Qp < Q(en_*'@)_’_Q(en*@):O
< qle, +{B))=0 and gle,— B))=0 (6.3)

since 0 # g(e, + (B) ) = —g(en— (B) ) is impossible. Write H + (B) for the hexagon H translated
by (B) so that (6.3) may be writtenas e, € H — () and e, € H+ (B) . Then the precise condition

for no switching between n and n + 1 is

H-@)nH+P) (6.4)
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Using Corollary 4.2 the average switching rate f; is given by

-1
1
1-fo= lim — Z x [no switching between n, n + 1]

Looo L

=hm-—ern - @ )N(H+ O )

zﬁ/x[se(ﬂ—@)m(fﬁ@)lds
|l"Ll”Area (H-@))N(H+ B )] 6.5)

Equation (6.5) relates f; to the overlapping area of two shifted hexagons as shown in Figs. 6.1 and
6.2. This is a useful geometric interpretation. For instance, we immediately see that f, is maximum
for 3 on the perimeter of H. To compute the area (6.5) for 3 € S, there are three cases:

Case A: 3 € U° N H. Consider the particular case of 3 in the lower half of the nj- sextant as

shown in Fig. 6.1. According to (6.5), the switching rate is

3 V3
fi=1- Tﬁl Area(ABDC) =1 — gl-}-ﬂ|AB| |BD| (6.6)

By computing the positions of A, B, D in terms of the vertices of H and /3, it can be shown that
|AB| = —2(8¢ — 1)|n|and |BD| = 2(8; + 1)|n|. Hence

fo=1+4- (ﬁb - 1) +1)
- = + (mb |+ 161 = By 116 1)

Using the ordered coordinates described in section 4, the general case for any 5 € U° N H is

1
fo=—3+3 (\ﬁll+lﬂzl 16116571) (6.7)

Case B: 3 € U. Consider the particular case of 3 in the lower half of the n;- sextant as shown

in Fig. 6.2. The switching rate is:

fs=1— =S Area(ABPDCQ)

7
-1- <|BP!IBQI+£\ABIIAQ1>
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Figure 6.1 Overlap of 2 shifted hexagons for 3 € U°N H.

B P
A
N
D
Q¢

Figure 6.2 Overlap of 2 shifted hexagons for 8 € U.

47
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By computing the positions of 4, B, P, @, it can be shown that |[BP| = |n|(268+ + 1), |BQ| =
|nt|(B+ + 1), |AB| = |n|(28; + 1), and |AQ| = |n|. Hence

fom =g (65 + 65+ 6267) = 5 (181 + 1651 - 19261

The general case for any § € U is, using (4.4),

ol

fo=5 (851 + 18— 181168 = 5 (181 - 161165) ©8)

Case C: 3 € H°NS. Since (6.5) is a function of (3) , the average switching rate at 3 € H°NS
is equal to the average switching rate at (3) = 8 — ¢(8) € H.

Fig. 6.3 shows a contour plot of the switching rate evaluated with (6.7) and (6.8). The switching
rate is zero at the origin and has its maximum value of one on the perimeter of H. For small 3 the

product term in (6.8) is negligible and hence the contours are approximately hexagonal near the

origin.

Figure 6.3 Switching rate contour plot over region S.
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6.3 Slowly Varying Sinusoidal Inputs

Up to this point we have only considered dc inputs. However, in practice one is usually in-
terested in the behavior of the modulator under sinusoidal inputs since power electronic systems
typically generate variable amplitude, variable frequency sinusoidal waves to drive an induction
machine.

We determine the switching rate for sinusoidal inputs that are slowly varying with respect to
the switching rate. Sinusoidal inputs correspond to circles in the plane P and the circle radius is
proportional to the sinusoidal input amplitude. This section computes the average switching rate
on circles as the radius is varied, and then quantifies the deviations of the switching rate from the
average switching rate as the circle is traversed.

To describe the circles it is convenient to use polar coordinates (r,8) in the plane P. The

transformation to coordinates (4.2) is

Bt -1 V3
r cos @

Gl=12 o (6.9)
rsind

lirs -1 -3

For example, ng- has polar coordinates (r, ) = (1, 0).

Formulas (6.8) and (6.7) for the switching rate fs; have a 12-fold symmetry in 8 (fs is un-

1
c

changed by reflection in the axes of symmetry along n;, ni-, n, ng, n, n.). Therefore, the aver-

age switching rate fs(r) on a circle of radius 7 can be computed on a sector of the circle such as
6 € [0,7/6]:
R 6 w/6
ﬂm=;/ Jfo(r,6)do (6.10)
0

To evaluate (6.10), there are three cases according to how the sector of the circle intersects the
regions U, H,and S.
Case A: 0 < r <+3 /6. The sector of the circle lies inside U and the switching rate formula

(6.8) specializes to

fu= S (B — BBE) = rcost+ 31 (1~ 2c0s20) ©.1)

3

[SSRIES
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Evaluating (6.10) using (6.11) gives

-84 (\/g_ﬁ) P2 0<r<+3/6 (6.12)
s T 3

Case B: v/3/6 < 7 < 1/2. The sector of the circle lies in U for 6 € [0,6,] and in H N U* for
6 € (01, 7/6). The boundary of U satisfies |35 = |G| = 1/2. (4.8) and (6.9) yields

8r
6, = sec™! (6.13)
' 1+ 482 =3
In H N U* switching rate formula (6.7) specializes to
_ 14 o Ll
fs_ 3+3(Bb IBa_*—ﬂbﬁa)
= —1 + ér (3 cosf + \/gsinﬁ) - §r2 (0052 0+ ﬁcos@sin@) (6.14)
3 3 3
Evaluating (6.10) using (6.11) for 6 € [0, 6] and (6.14) for 6 € (6,, 7/6] gives
A 2 1 16 T 5 (4 1 2 s
=—0) — -+ — — -0, — = —— 20, — — 3/6 <1/2.
fs 7r91 3+ WTCOS(91+6)+4T (Wt% 3 7Tcos( 1 6)), V3/6<r<1/
(6.15)

Case C: 1/2 < r < 1/+/3. As shown in Fig. 6.4, the sector of the circle lies in S N H° for
6 € [0,05] and in H N U* for § € (62, 7/6] where

0y = sec™! 2r (6.16)

The switching rate for the sector of the circle in S N H¢ for 8 € [0, 85] is equal to the switching
rate for the reflection of this sector in the edge of the hexagon H. (The reflected sector may be
obtained by mapping the sector inside H using () and then reflecting in a vertical axis. According
to (6.5) and the 12-fold symmetry of (6.8) and (6.7), these operations preserve the switching rate).
The reflected sector is a sector of the circle of radius r centered on nj- and may be parameterized

by 8 € [0,05] as (1 — rcos @, rsin ) in rectangular coordinates and as
Ba -1 V3
1—17rcosd
Brl=|2 0 " (6.17)
rsin
B: -1-v3



Figure 6.4 Sinusoidal input that lies partly outside H.
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in coordinates (4.2).
The reflected sector lies in U for 6 € [0, ;] and in H N U*® for 8 € (64, 62). For 8 € [0, 6,], the

switching rate is obtained using (6.11) and (6.17) as

SV

fs= (1 + 72 — 2r2cos 29) (6.18)
For 6 € (64, 05], the switching rate is obtained using (6.14) and (6.17) as
4 .
fs= 1+§r (2rcosf — 1) (ﬁsm@—cos@) (6.19)

Evaluating (6.10) using (6.18) for 8 € [0, 6,], using (6.19) for § € (61, 6,], and using (6.14) for
6 € (62, 7/6] gives

- 1 2 8 16 T T
fs = — g —+ %‘01 + ;62 —_ ?r (COS(91 - 8) —_ 2COS(92 -+ g))
_4, (g — 4, — 2cos(26; + %) + 2\/§cos292) . 1/2<r<1/V3. (6.20)
T

Formulas (6.12), (6.15), and (6.20) give the average switching rate fs overtherange 0 < r <
1/+/3 and is plotted in Fig. 6.5. For r = 1/2 the average switching rate is 0.98732. Fig. 6.5 also
plots the minimum and maximum switching rates.

Fig. 6.6 plots the variation of the switching rate against the radius of the sinusoidal input. The
switching rate variation for a particular radius is defined as the maximum percentage the switching
rate deviates from the average switching rate over the circle normalized to the average switching

rate:

var fi(r) = }00 max |fo(r,8) — fo(r)] (6.21)

fs (7-) 0<6<2n

The maximum variation is 9% at zero radius. Note that the variation never reaches zero. This
implies that the contours of Fig. 6.3 are never perfect circles. (Interestingly, the curve rises rapidly
beyond r = 1/2. This is because in Fig. 6.5 the maximum switching rate is unity for 1 /2<r<

1/+/3 while the minimum switching rate decreases fairly rapidly.)
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Figure 6.5 Minimum, maximum, and average switching rates for 0 < r < 1/4/3.

0.1 0.2 0.3 0.4 0.5
r

Figure 6.6 Normalized switching rate variation for 0 < r < 1/ V3.

53



54

Chapter 7

Linear Analysis of XA Modulators

In this chapter we review the linear analysis of the single-bit single-loop and double-loop £A
modulator as well as the generalization of this analysis to interpolative ©A modulators. In Sec-

tion 7.4 we extend these results to the vector A modulator with hexagonal quantization.

7.1 Single-Loop XA Modulator

The linear discrete-time model of the scalar ¥ A modulator (Fig. 2.1) is shown in Fig. 7.1. The
integrator is modeled with its discrete-time equivalent and the quantization process is modeled as
an additive noise source e, = u, — Y,. As discussed above, ¢, is assumed to be a white, uniform
noise source that is statistically uncorrelated with the input.
€n

 \

Tn z-1 Up _J— Yn -

L 4

Figure 7.1 Single-Bit, single-Loop XA modulator.

From Fig. 7.1, one can write the following difference equations that describe the ©A modula-
tor:

Yn=2""zp+ (1 — 27 Ve, (7.1)
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Intuitively, the quantizer output y is the sum of the input signal z (delayed), plus a difference (or
discrete time derivative) of the quantization noise e. The principle is that this difference will be a
high-frequency term that can be removed by low-pass filtering to obtain the original signal.

If the input signal z is a tone in the baseband, the modulator’s output spectrum is similar to
that shown in Fig. 7.2 or Fig. 2.6. We see that the low-frequency quantization noise power in the
baseband is attenuated relative to its total power. That is, the quantization noise will be pushed or
shaped to higher frequencies. This shaping of the noise is advantageous since the high frequency

noise can be removed by a low-pass filter.
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Figure 7.2 Spectral density of the A modulator output with an input tone.

7.2 Double-Loop XA Modulator

Another popular XA system is the double-loop XA introduced by Candy [9] and first rigor-
ously analyzed by He [24]. Here, a single-loop XA is embedded in a second loop with an integrator
in the feedforward path as shown in Fig. 7.3. It can be interpreted as a single-loop with the original
input replaced by the integrated error between the input and the quantized output. Observe the

output of the double-loop A modulator is

Yn =2 'Tp + (1 — 2271 + 27 %)e, (7.2)
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In contrast to (7.1) this has the interpretation of being the original signal plus a second-order
difference instead of a first-order difference of the single-loop system. A well-known difficulty
with the double-loop XA modulator is the potential for quantizer overload [9].

€n

+
- A

T

Figure 7.3 Single-Bit Double-Loop ¥A modulator.

7.3 Interpolative Modulators

The XA modulator is one of a variety of specific devices for achieving oversampled analog-to-
digital conversion. A modulators [1, 3] employ ideal integrators as linear filters. These analog-to-
digital converters can be embedded within additional feedback loops to form high-order or multi-
loop £A modulators [9] or cascaded to form multistage A modulators [55, 56]. In the single-loop
feedback case, a general system can have linear filters in both the feedforward and feedback paths.
When the feedback is entirely in the feedback path, the system is called a predictive coder [57]
of which the delta modulator [58] is a special case. When the filtering is entirely in the feedfor-
ward path, the system is called a noise shaping coder [57] or interpolative coder [29]. The A
modulator is an interpolative coder with the linear filter specialized to an ideal integrator.

Greater suppression of the quantization noise can be achieved by replacing the integrator with
more complex higher-order filters, but the stability of the resulting system must be carefully con-
sidered. The resulting architecture is known as an interpolative modulator and is shown in Fig. 7.4.
The input feeds a loop filter G(z) that is followed by a binary quantizer. The quantized output y
is fed back and subtracted from the input. This forces the average value of the quantized output to

follow the average value of the input. Equation (7.1) generalizes to

G(z) ¥ 1

YE = emX @ Tren

E(z) (7.3)
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where X, U, E,Y are the 2-transforms of z, u, e, y respectively. For example, the choice G(z) =
:11 yields the modulator of Fig. 7.1. Equation (7.3) is a fundamental relation describing interpola-

tive modulators. It states that the output of the modulator consists of the sum of two terms: the

_G(z)

input signal z filtered by the signal transfer function (STF), ; el

FelE) and the quantizer noise e filtered

by the noise transfer function (NTF), If G is designed properly, the NTF will have a high-

1+G(z
pass response, and the STF will be approximately unity in the baseband. In this manner the output
SNR in the baseband can be made large [18]. An important consideration in the design of inter-
polative modulators, especially those of higher order (> 2), is their stability, for large-amplitude
low-frequency oscillations can appear [26]. These oscillations can drive the modulator into sus-

tained modes of integrator saturation. Another potential drawback is that higher order filters may

require increased hardware complexity [59].
E(z)
X(2) Gz |V é Y(z)

Figure 7.4 Interpolative ©A modulator.

The noise-shaping filter G is usually designed in discrete-time. However, analog modulators
have been implemented with op-amps, comparators, and latches. A discrete-time modulator can be

converted to an equivalent continuous-time modulator using the impulse-invariant transformation

[60, 61, 6].

7.4 Linear Analysis of Vector A Modulators with Hexagonal Quantization

A popular measure of modulator performance is the output SNR over the baseband. SNR is
mainly governed by the order of the loop filter G and the OSR. The advantage of choosing a higher
order filter is an improved SNR for a given OSR. The white noise model can be used to evaluate

the spectral density of the modulation noise and the total modulation noise power in the baseband
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for the single-loop and double-loop A modulators. This calculation is done in [5] for single-bit

XA modulators and is presented in this section for vector ©A modulators.

7.4.1 Linear Model

Define the hexagonal region H of Fig. 7.5 to be the vectors which quantize to zero. H has

sides of length 1/2/3 and area |H| = /3. Let e, be a sequence of uncorrelated, zero mean

random vectors (i.e. white noise process) that is uniform over the hexagon H and statistically

uncorrelated with the input. The power spectral density matrix of e is

21 25
e=——— | ee"de=——P
fslHI H fs 72
where
2-1-1
P= L 1 2-1
=3|- _ ,

—-1-1 2

[s 1s the sampling rate, and * denotes complex conjugate transpose.

Figure 7.5 Hexagonal vector quantizer, g.

(7.4)

(1.5)
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The hexagonal XA modulator’s input/output relation with input vector z,, and output vector ys,
is given by

Yn=2""Tp+ (1 — 27 e, (7.6)

The output sequence y,, is the sum of the input (delayed) plus a high-frequency term.

€n

T - Uy Yn
: Sl

Figure 7.6 Discrete time model of the single-loop hexagonal £A modulator

As in the single-bit case, we can achieve greater noise suppression by replacing the integrator in
Fig. 7.6 with an appropriately designed linear filter as in Fig. 7.4. The operation of this interpolative
YA modulator can be analyzed quantitatively by modeling the quantization process by an additive

white noise vector E(z). Then the modulator of Fig. 7.4 is described by the linearized equation
Y(z) = (I+G(2)7'G(2)X (2) + (I + G(2)) T E(2) (1.7)

where the inverse is a matrix inverse. Similar to the case of a single-bit ©A modulator, equation
(7.7) states that the output vector ¥ consists of two terms: the input signal X filtered by the signal
transfer function (STF) matrix (I + G(z))~'G(z) and the quantizer noise E filtered by the noise
transfer function (NTF) matrix (I + G(z))™!. G can be designed so that the NTF is small in the
baseband and the STF is approximately unity in the baseband. In this manner the SNR in the
baseband can be made large [18]. Two possible choices of the filter G are:

z—l

G = =P (7.8)
2712 —27h)
Ga = 1—2z"14 z‘2P (7.9)

These are vector generalizations of the conventional single-loop modulator, and (up to a prefilter

on the input) the conventional double-loop A modulator.
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This double-loop hexagonal XA modulator is an adaptation of the modulator proposed by
Candy in [9] and is superior to the single-loop hexagonal £A modulator because it only requires a
moderate increase in circuit complexity, and yet it achieves a 15 dB/octave tradeoff between SNR
and OSR, whereas the single-loop hexagonal A modulator achieves only 9 dB/octave. Further-
more, both modulators have the same stable input range (dynamic range).

A typical simulated output line-neutral waveform (reference superimposed) and spectrum for
the double-loop hexagonal XA modulator is shown in Fig. 7.7 and Fig. 7.8 respectively. The
OSR is 64 and the input amplitude is 80% of the full-scale linear range. Note that in contrast

to the single-loop case, the double-loop hexagonal A modulator produces more non-adjacent

1.0 F s
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transitions.

02

5 00
-0.2
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Figure 7.7 Waveform of a double-loop hexagonal VSI ©A modulator.

7.4.2 Modulation Noise Analysis

Recall that if L is a multivariate linear filter with transfer function matrix B(f) and y(t) =
L(z(t)), then the spectral density matrix functions of the input and output are related by the ex-

pression [62]
Sy(f) = B(f)S:(f)B(f)" (7.10)
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Figure 7.8 Spectrum of a double-loop hexagonal VSI £A modulator.

The modulation noise vector, n is the quantization error vector, e filtered by the NTF matrix.

For the single-loop hexagonal XA modulator, the spectral density of the modulation noise is

Sn(f) — (I + G1(€i27rf/fs))_1 S, (I + GI(eiZWf/fs))_l
= 4sin*(nf/f) Se (7.11)

Then the modulation noise power for the single-loop hexagonal YA modulator in the baseband

0<f<fois

2 . 572 3 2 2
= | Su(f)df ~ ZOSRTP, f2> f (7.12)

Similarly, for the double-loop hexagonal £A modulator, the modulation baseband noise power can
be shown to be
4
o2 g—4OSR“5P, > (7.13)
Fig. 7.9 shows SNR curves for the single-loop and double-loop XA modulator versus OSR. A
sine wave input of full-scale linear range amplitude is used. These graphs are derived from (7.12)

and (7.13) and demonstrate that as modulator order increases the lines become steeper; this implies

that the double-loop filter realizes higher resolution from oversampling.
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Figure 7.9 SNR as a function of OSR for single-loop and double-loop hexagonal ©A modulators.
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7.4.3 Dynamic Range

The trackable input signal range for the single-loop and double-loop hexagonal XA modulators
is the shaded hexagon which passes through the outer six output space vectors of Fig. 7.10. When
the input signal exceeds this range, the modulator’s integrators wind-up. However, overmodulation
causes the input signal to exceed the stable range. To address this problem, limiters may be placed
on the input signal to ensure it remains in the shaded region. This stabilization technique ensures
that the output voltage waveforms gradually degrade into six-step mode as the input signal is
increased beyond the stable input signal range. This technique may also be applied to higher-order
(> 2) modulators which always have the potential for oscillation when the input exceeds the stable

input range [18, 28].

Figure 7.10 Stable input signal range and boundary of the linear range for the hexagonal TA
modulator.

A parameter of interest in power electronics is the range within which the TA modulator is
linear for sinusoidal inputs. For the hexagonal ¥A modulator, the boundary of the linear range
is given by the inscribed circle of the shaded hexagon in Fig. 7.10. This boundary coincides with
the linear range of space vector PWM, which is 2/+/3 larger than the linear range of sine-triangle

PWM and the threefold-scalar ¥A modulator [10, 46, 63].
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Chapter 8

Simulation And Hardware Results

This chapter first presents simulation results computed with MATHEMATICA that numer-
ically confirm the analytic formulae for the quantization error and output spectra, and average
switching rate of the hexagonal ¥A modulator. We then discuss aspects of a MATLAB based
toolbox for computation of the SNR versus input amplitude, and average switch rate. Thirdly,
this chapter provides hardware results pertaining to the application of various ©A modulators to
the resonant dc link converter. Finally, we briefly detail two hardware implementations of SA

modulators for power electronic applications.

8.1 Quantization Error

Numerical results for 1024 samples of the quantization error sequence ¢,, are obtained using
recursion (4.13). Fig. 8.1 shows the a-component of e,, for 3 = (0.229693, 0.339432, —0.569125)
and ep = 0. The components of 5 are allowed a precision of 30 digits so that they resemble
irrational numbers.

The discrete Fourier transform of the error sequence is taken with a normalized frequency such
that the sampling frequency equals one. The spectral density is evaluated at 1024 frequencies uni-
formly distributed in the range [0, 1) and is denoted by triangles in Fig. 8.2. Fig. 8.2 also shows
the Bohr-Fourier spectrum predicted by formula (4.34) as boxes. The theoretical and simulated
points correspond quite closely. Note that the discrete Fourier transform of the numerical results is
computed at uniformly spaced frequencies whereas the Bohr-Fourier spectrum is computed for the

frequencies (p3) with p € A*. The locations of the spikes correspond well, but their amplitudes
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differ somewhat. As expected, the error spectrum is neither continuous nor white. The quantiza-
tion error sequence has mean 6.64 x 10™* and variance 9.27 x 10~2 which agrees well with the
theoretical results of section 4.9. The quantization error sequence mean and variance are close to

that of a uniform sequence of random variables.

0.6
0.4t |

0.2}

0 200 400 600 800 1000

Figure 8.1 Simulated quantization error sequence e,,.

8.2 Quantizer Output

We present simulation results of the power spectral density of the quantizer output of the hexag-
onal ¥ A modulator. The simulation parameters are identical to section 8.1. The simulated spectral

density of the first component (i.e. a-component) of the quantization output sequence,

Gnt1 =€ —€ns1 + 0 8.1)

for constant input is shown in Fig. 8.3.
The discrete Fourier transform of the output sequence is taken with a normalized frequency
such that the sampling frequency equals one. The power spectral density is evaluated at 1024

frequencies uniformly distributed in the range [0, 1) and is denoted by triangles in Fig. 8.4.
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Figure 8.2 Simulated and theoretical spectrum S, of quantization error.



67

The spectral coefficients predicted by (4.35) are denoted as boxes in Fig. 8.4. As with the
quantization error, the theoretical and simulated points correspond quite closely, even though the

number of sample points is only 1024.
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Figure 8.3 Simulated output sequence.

8.3 Average Switch Rate

Fig. 8.5 shows the simulated average switching rate for sinusoidal inputs of amplitudes 0 <
r<1/ V3 compared to the average switching rate fs computed from formulas (6.12), (6.15), and
(6.20). The simulation length is 65,536 points and the oversampling ratio is 64. The absolute
maximum error between simulation and f, is 4.24 x 10~2 at 7 = 0.128 and the mean-squared error
is 1.88 x 107*. The error can be reduced by increasing the oversampling ratio. For instance the

mean-squared error reduces to 6.85 x 107° for an oversampling ratio of 256.

8.4 Simulation of the Hexagonal XA Modulator

The following results were obtained from an adaptation of Richard Schreier’s MATLAB Delta-
Sigma toolbox [64]. The SNR versus input amplitude plot for a double-loop hexagonal A modu-

lator with an OSR of 32 is shown in Fig. 8.6. The procedure to generate this graph is: First, simulate
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Figure 8.4 Power spectrum of simulated output sequence and the theoretically predicted spectral

Ts

Figure 8.5 Average switching rate simulation results and f, for 0 < r < 1 /V/3.
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modulator output sequences of length 8192 for a set of input tones. Second, Hann-windowed FFT's

are computed for each input tone. Finally, the SNR is calculated as the the ratio of the sine wave

power to the power in all in-band bins other than those associated with the input tone.
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Figure 8.6 SNR versus input level for double-loop hexagonal ¥A modulator with OSR=32.
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Switching rate is an important performance measure in power electronic design since device

switching loss is directly proportional to switching rate. Fig. 8.7 shows the simulated average

switching rate for sinusoidal inputs of amplitudes within the linear range. The simulation length is

65,536 points and the OSR is 64. In Fig. 8.7 the lower curve and upper curve are the single-loop

and double-loop hexagonal XA modulators.

8.5 Resonant Link Converters

In power electronics, XA modulators have been applied successfully to systems such as res-

onant link converters (Fig. 8.8) where the discrete timing of the circuit switching precludes the

use of conventional modulation techniques such as pulse-width modulation (PWM). Resonant link

converters use zero voltage switching to limit switching losses and allow much higher switching

frequencies.
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Figure 8.8 Resonant dc link inverter schematic.
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An interpolative modulator suitable to the RDCL is shown in Fig. 8.9. This modulator is
the same as the VSI modulator of Fig. 2.4 with the exceptions that a linear filter G replaces the
analog integrator, and the latch is clocked at the zero-voltage instants of the RDCL bus instead
of a constant rate fs. Inherent to the RDCL is the resonant pulse width irregularity and resultant

wrregularity (jitter) of zero-voltage instants [12].

‘fres
Vv
z(t) G(s) u(t) O q(u(t)) Lateh RDCL vit)

Figure 8.9 Resonant dc link interpolative modulator.

One motivation for ©A modulation of the resonant dc link inverter (Fig. 8.8) is the spectral
performance that can be achieved. Experifnental and simulation results for a 40 kVA, 75 kHz
actively clamped resonant dc link inverter using single and double-loop ©A modulators with a
resonant frequency of 75 kHz and a control bandwidth (base band) of 2 kHz are given in our paper
[10].

More recent results for RDCL inverter employing single-loop and double-loop hexagonal XA
modulation and a bandpass interpolative modulator are given below. The resonant pulse frequency
is 75 kHz and the output drives a light passive inductive-resistive load (< 10% rated current). This
modulation system was implemented in a digital signal processor (DSP) and field programmable
gate array (FPGA). A half-scale, three-phase balanced sinusoidal input with and frequency 60 Hz
is used throughout.

The output line-neutral voltage waveforms and spectra for single-loop, double-loop, and band-
pass hexagonal £A modulators are shown in Fig. 8.10 and Fig. 8.11; Fig. 8.12 and Fig. 8.13;
and Fig. 8.14 and Fig. 8.15, respectively. Note the broadband spectrum which contrasts with the

discrete spectrum of PWM.



72

Tek EXEH 250kS/s

Ch i RTRY ' ~~M 2605 ChT\ =1.05V 24 Mar 2000
19:46:01

Figure 8.10 RDCL with single-loop hexagonal YA modulator waveform.
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Figure 8.11 RDCL with single-loop hexagonal A modulator spectrum.
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Figure 8.12 RDCL with double-loop hexagonal ¥A modulator waveform.
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Figure 8.13 RDCL with double-loop hexagonal A modulator spectrum.
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Figure 8.14 RDCL with band-pass hexagonal A modulator waveform.
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Figure 8.15 RDCL with band-pass hexagonal ¥A modulator spectrum.
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8.6 XA Modulator Implementations

The hardware implementation of the hexagonal A modulator has gone through two gener-
ations. The first generation modulator was implemented in analog form as shown in Fig. 8.16.
A reference is generated by the DSP and sent to the analog ¥A modulator through a D/A con-
verter. The modulator loop consists of a filter implemented with three op-amps, hexagonal quan-
tizer implemented with nine comparators, three latches, and an analog multiplexor to synthesize
the modulator feedback from the switch states and resonant voltage V(. Finally, the modulator
output, which represents the switch states, is sent to the semiconductor devices via gate drive cir-
cuitry. The modulator is clocked and the semiconductor devices are switched at the zero instants
of the resonant voltage to minimize the semiconductor switching losses. In hard-switched VSI

applications the modulator is clocked at a fixed rate.

Reference Loop-Filter fLink

- |

H | q
DSp D/A /-l_-\%—ﬁ J ’—»‘ Hexagonal M Gate
I'd [ iQuantizer r Latch Drives

[— | Analog
Multiplexor
A
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Figure 8.16 Analog Hexagonal £¥A Modulator.

The second-generation modulator was implemented in digital form as shown in Fig. 8.17. A
60MHz TMS320C32 DSP implements the modulator. The A modulator lends itself well to soft-
ware implementation because of its algorithmic nature [46, 63]. Also, note that unlike PWM, a A
modulator does not require high-resolution hardware timers other than a low-resolution timer to
set the sampling rate of the modulator routine. The loop filter, quantizer, and reference are gener-
ated by and are internal to the DSP. The quantizer feedback is synthesized in the DSP by sampling
the integral of the resonant bus voltage, V. at the link frequency. The output switch states of the

modulator is generated internal to the DSP and is written directly to the field programmable gate
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array (FPGA) where the switch states are latched at the link frequency and then sent to the gate

drive circuitry.
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Figure 8.17 Digital Hexagonal ¥A Modulator.
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Chapter 9

Conclusions and Future Work

In general there is a history of methods devised in communications such as PWM being ef-
fective when adapted and applied to power electronics. In this dissertation, we think of the power
electronic circuit acting as an analog-to-digital converter. Switching states in power electronic cir-
cuits may be thought of as determining quantized outputs which are passed through a low pass
filter to synthesize a given input signal. This process is analogous to quantizing, transmitting and
demodulating signals in communication systems. Pursuit of this analogy in the context of $A
modulation with a natural choice of a nearest neighbor quantizer yields a hexagonal A modu-
lator for a voltage source inverter that is a nontrivial generalization of a scalar A modulator. In
particular, we formulate the problem of reproducing a desired signal with a high frequency power
electronic circuit by regarding the circuit as performing quantization in an interpolative A mod-
ulator. The binary quantizers of conventional scalar ©A modulators generalize easily to the vector
quantizers appropriate to power electronic circuit topologies.

The output spectrum and switching rate of the hexagonal ©A modulator have complicated be-
havior and are key performance measures. We have applied ergodic theory and Fourier analysis to
analytically compute the output spectrum and switching rate. We have found the interplay between
the hexagonal geometry and the intricacies of the ergodic and harmonic analysis to be intriguing.
These calculations are foundational for hexagonal ¥A modulators and for their application to

power electronics.
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Viewing high frequency power electronic circuits as performing quantization allows them to be
regarded as part of the modulator topology (Fig. 2.4). Then noise-shaping methods from commu-
nications theory can then be applied to shape the quantization noise so that it is pushed to higher
frequencies and will be attenuated by the load.

XA modulation is well established in communications and higher order ©A modulator archi-
tectures [28, 29, 65] and stability issues [26, 18] are discussed extensively in the communications
literature. We have found that these more complex architectures can similarly be extended to the
vector case and in particular to modulators with hexagonal quantization. Thus we propose single-
loop and double-loop hexagonal £A vector modulator designs for a VSI. Analysis and simulation
of these designs show that the approach yields significant improvements in spectral performance.

A new XA modulator for power electronic applications was invented by generalizing the ideas
from scalar 3A modulators that are applied in communications and signal processing. The power
electronic circuitry requires the conventional binary quantizer to be generalized to a hexagonal

quantizer of vector signals. Specifically, this work makes the following contributions:

» The insight that a power electronic circuit may be thought of as an analog-to-digital converter
in which the analog input is the signal to be synthesized and the quantized digital output is

the state of the circuit switches.

e Invention of the hexagonal ©A modulator as well as the extension to double-loop and in-
terpolative LA architectures. This work represents a significant improvement in spectral

performance over prior work in power electronics.

e Rigorous derivations of the hexagonal A modulator’s output and error spectra, autocorre-
lation, mean, and variance for generic and non-generic constant inputs using ergodic theory

and Fourier series on the hexagon. These results are corroborated numerically.

e Generalization of the conventional white noise analysis of a scalar ©A modulator to the

hexagonal A modulator.
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e Derivation of the switching frequency of scalar YA modulator and generalization to the
hexagonal case. This result is of practical interest in power applications since switching

frequency is directly related to semiconductor power loss.

o Adaptation of Richard Schreier’s MATLAB Delta-Sigma toolbox [64] for the hexagonal

YA modulator. This is a useful design and analysis tool.

» Development of a set of MATHEMATICA programs for lattice generation; and computation

of the hexagonal Fourier series, switching rate, autocorrelation, and spectra.

 Demonstration of hardware and simulation results which significantly improve the spectral
characteristics of power electronic converters. Single and double-loop hexagonal A mod-
ulators as well as variations thereof in analog and digital forms have been implemented in
hardware. These modulators are currently manufactured at Soft Switching Technologies,

Madison, WI for spectrally demanding commercial power electronic applications.

 Adaptation of £A modulation technology to a host of applications including electric sub-
marines and vehicles, solar distribution systems, active filters, aircraft frequency converters,

and wind turbines.

The publications produced are a patent [47], a submitted journal article [48], a journal article

in preparation [32], and two conference papers [10, 27].

9.1 Open Problems and Suggestions for Future Work

Future work includes:

1. Attempt various generalizations of the spectral analysis of Chap. 4. For example, the analysis
could consider sinusoidal inputs, or second order modulators, or the effect of the “diameter”
of the central hexagon region. (Sinusoidal inputs are a practical case, showing that quanti-
zation error of the double-loop modulator is white would validate the use of the white-noise
approximation, and experimental results suggest that the “diameter” of the central hexagon

region has a significant impact on the output spectrum.)
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2. Explore other potential applications in power electronics and elsewhere. In power electron-
ics, the hysteretic modulator appears to have much in common with the ©A modulators, but
has not been rigorously analyzed. Perhaps the methods similar to those employed in Chap. 4
would apply to the hysteretic modulator to derive its spectrum. This modulator is shown in
Fig. 9.1 and is identical to £ with the exception that the comparator and single-bit latch are
replaced by a single-bit hysteretic comparator. Thus, the system is no longer synchronously
sampled. Instead the output flips according to the integrator state. Outside power electronics,
explore the application of vector £A modulation to fields such as color imaging [66], sonar,

and acoustics.

3. Within the context of control systems, apply the linear model of the ©A modulator to inves-
tigate the stability and spectra of the overall system. Consider the dc/ac power conversion
system shown in Fig. 9.2. The system consists of a full-bridge resonant dc link converter
driving a second-order low-pass output filter and passive first-order load. The control ob-
Jective is for the filter capacitor voltage Vi , to track a 0-73 Hz sinusoidal reference with a
maximum SNR of 60 dB over the baseband of 820 Hz. More generally, this system is an
instance of the control block diagram of Fig. 9.3 wherein the design consists of choosing a

suitable modulator, state feedback k, and compensator G to meet the control objectives.

4. Inherent to the RDCL is the resonant pulse width irregularity and resultant irregularity (jitter)
of zero-voltage instants [12]. Attempts to quantify the effects of jitter for the A modulator

have been reported [67].

z(t)

Analog .

y(t)=

Digital

1-bit Hysteretic
Comparator

Figure 9.1 Hysteretic modulator.
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Figure 9.2 A dc/ac power conversion system.

} e
v u Y
G(s) Modulator —  Plant >
z
k

Figure 9.3 System block diagram.
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Appendix A: Fourier and Ergodic Results on //

We transform standard Fourier and ergodic results from the square [0, 1)? to H. Relate coordi-

nates z’ on [0, 1)? to coordinates x on H by

(Vz)
)

Relate coordinates p on A* to coordinates p’ on Z*? by

' =
T =

p=pW
Suppose f' € L*([0,1)?) andlet f = f o () oV € L?*(H). Then

@)= f((Va)) = f(z)
dr = |H|dz'

(p'z’) = (pW (Vz)) = (pz)

Write
1 *
(9)= 7 [ F@" @o
I = [ e e
Then
(f,9)=(f.9)
fp — (f, e—i27rp1') — (f/, e—i27rp/z’) — f;}/
Moreover,

I )=V ) =F(V(z+) =z +v))

Hence the following results can be transformed to the results of section 4.4:



38

Fourier analysis on [0,1)? [68]: L?([0,1)?) is a Hilbert space with inner product (f’, g').
{e?™'s" | o € Z*?} is a complete orthonormal basis.
Z f/ i2rp’z’
p GZ*z

where the equality is interpreted in the L? sense and
f,/ _ (f/7 e—i27rp’z’)
P

The Parseval formula is
=2 iy
prez*z
Mané [53] (Theorem II 3.2, Proposition II 2.7, Theorem I 9.2) implies: Let / € R? be such
that the only p' € Z*? with p’8’ € Zis p’ = 0. Let f : R?/Z2? — R be continuous. Let 7 be the

canonical projection R — R?/Z?. Then translation by 73" is a uniquely ergodic shift on R2/Z>

and, for all ¢ € R?,

(Note that 7(ey + nf’) = 7 (e; + nf’').) Suppose that £’ : [0,1)? — Rlifts to f’ so that f/ = f/or.
Then

L
lim — Z ({eg +nB'Y) f(sds'

[0,1)2
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Appendix B: Three Cases for

We prove that there are three cases for § € H and characterize them.

Case 1is {s € A* | s8 € Z} = {0}. Suppose that Case 1 does not hold; that is, there is 7 € A*,
r # 0 with 73 = z € Z. We describe the general form of such a 3. Suppose that r = (r{,75)V
where (r1,7;) € Z*? and let g be the greatest common divisor of 77, 7. By dividing 7 and 2 by
any common factors of z and g, we may assume that z and g are relatively prime. Also r1/g,72/g
are relatively prime and by Euclid’s algorithm there is (07, 05)* € Z? with Do+ 26y = 1. Let
o =W(o1,02)t € A. Thenro = gand z = (2/g)o is a particular solution tgthe equgation rT = 2.
The general solution to rz = zis x = ar, + (z/g)o where r;, = W(—rqs,7)! € A and o € R.
Therefore

ﬁzonl-l-ga (B.1)

for some o € R. Case 2 is « irrational and Case 3 is « rational.

First we further characterize the 3 in Case 2 as satisfying
{seAN |sfeZ}={mr|meZ} (B.2)

Itis clear that {s € A*|s8 € Z} D {mr |m € Z}. Toprove {s € A*| s € Z} C {mr |m € Z},
suppose that s§ = asr; + (z/g)sc = 2’ € Z for s € A*. Then, since so € Z, asr, must be

rational and it follows from « irrational that

O =87 = (51, SQ)VVV =T189 — T281
T1
Now
s1(r101 + 1202) 8171071 + 897102
gs = = =sor (B.3)
So(r107 + 1202) §1T9071 + 8972079

and g2’ = gsf3 = (so)r(z/g)o = (so)z. But g and z are relatively prime, so that ¢ divides so and

(B.3) implies that (so)/g = m is an integer such that s = myr.
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Now we use (B.2) to prove in Case 2 that for s € A*,

sr; =0
s ElL <— (B.4)
so =0 (mod g)

Suppose that s¢ € Z. Then (B.2) implies that s = mr for m € Z and hence that s7; = 0.
Moreover s = s((z/g)o) = (2/g)so € Z and since g and z are relatively prime, g divides so
and so = 0 (mod g). The implication < in (B.4) follows directly from (B.1).

In Case 3, 8 = ar, + (z/g)o with « rational. Then £ has the form 3 = (h/q)v for v =
W{vy,ve)t € A, where h and g are integers. Without loss of generality we can assume that h
and g are relatively prime and that v; and v, are relatively prime. By Euclid’s algorithm there is
(p1, p2) € Z*? with pyvy + pove = 1. Let p = (p1,p2)V € A*. Also let v) = (—wq,v1)V € A™.

We further characterize the § in Case 3 as satisfying {s € A* | s € Z} = {zuv, +
22qp | 21,22 € Z}. Ttis clear that {s € A* | s8 € Z} D {zvL + 2qp | 21,20 € Z}. To
prove {s € A* | s8 € Z} C {z1vL + 22qp | 21,22 € Z}, suppose that s3 = bsu=z€1
with s € A*. Then hsv = gz and h and g relatively prime imply that & divides z and 2, = z/h
is an integer. Then z = g(z/h)p = zqp is a particular solution to the equation z3 = z with
z € A. The general solution to 23 = zis £ = z;v) + 22gp, 2; € R. Since we require z € A*,

z1VL = Z — zqp € A*, and, since v; and v, are relatively prime, z; is an integer.
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Appendix C: Fourier Coefficients for ()

We derive (4.21) for the Fourier coefficients of the hexagon part operator () . Equation (4.20)
implies ¢y = 0. Now we compute ¢, for p # 0. Define a : P* — R by a(p) = — [, e #"*dz.
Then

1 —i27ps — 1 i
c :E /H (s) e ds = W(Dpa(p)) (C.1H

and the calculation reduces to finding an expression for a(p):

a(p) — p /(Dme—-i%rpz)tdx
H

12mppt

p —i2mpl, L
= € n;df
i2n|pl*Int| Jou ¢

"I’LI Z / —-1271'1)0 (t)

pn; s dt

T
227rlp ITL i sex{a,b,c} %

where 04(t) = iny +ngt,t € [~1/2,1/2] parameterizes the hexagon edges. Then letting ps = pn,

and p: = pn gives

=l 5~ /
a 5 sin(27pos(t))dt

s&{a,b,c}

-1 Py
W2\/_|p|2 > Sm(ﬂps) sin(mpy) (C.2)

se{a,b c}

Substituting (C.2) in (C.1), differentiating, and evaluating at p € A* (then pj € Z and
sin(wpy) = 0) yields

pt
Z == sin(mp,) cos(mpL )ny (C.3)
s€{a,b,c}

q
ENT=E

In the case p € A* — {0}, p; € Z and sin(np,)/(7ps) = 0 and ¢, = 0 except when p, = 0.
When p, = 0, p = knt', k € Z, py = 2k and (4.21) with p € A* — {0} follows from (C.3).
To simplify (C.3) in the case p € A* — A%, consider f; : A* — R defined by

fs(p) = 2sin(7ps) cos(mpy) = sin(rpn) + sin(7pn; )
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where n = ny + nt. Notice that n¥ € 2A*. Let A € A. Then

s+ X') =sin(n(p + A)nf) + sin(n(p + A\)n]) = f.(p)

+

since n;

€ 2A* implies that A\'nZ is an even integer. This periodicity of f, implies that f, is
constant on each of n}, + A* and —n!, + A*'. The respective constants can be directly calculated:

fo(£Enk) = £+/3 for s = a,b, c. Then f,(p) = sgn (p)v/3 and

isgn (p) Py 1
Cp =— = —n
P 4\/371‘2 [p[2 se{za,:b,c} Ds

Pa—Pc Pa—Db
. Pb Pe
—__.___Z sen (p) Pb—Pc Pb—Pa c A*— Al
TN I +RP| p :
4\/571- lp! Pa Pc
Dc—Pb + Pc—Pa
Pa Py

Using p, + p» + pe = 0 we obtain (4.21) for p € A* — AL,
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Appendix D: Absolute Summability

We prove that the coefficents

e~ 6o ® )i 5| < oo for each matrix element indexed by i, j.
For the case p € {(n}, + AY) U (—n + A}, ¢, ~ —H‘%. Using p = £nf + (ny, ne)W* where

(n1,ng) € Z* we have

1
1A <
E |[cp ® cp]w| _S_ : n%n% o0

pe{(nt+AY)U(—nL+AY)} (n1,n2)€Z2

For the case p € {A'|p,pyp. = 0,p # 0}, the sum is over points in three lines and ¢, ~

(2o, 2o, 22)". Using p = (mu, na)W* where (ny, ms) € Z° we have

DpPe’ PaPc’ Pabb
. 1
S lmeghi~ D h <o

pe{At|papppc=0,p#0} nez



