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Abstract — Design techniques for interpolative LA
modulators from communications are applied and
adapted to improve the spectral characteristics of high
frequency power electronic applications. Interpolative
TA modulators with hexagonal quantization are pro-
posed for 3 phase resonant dc link converters. Ex-
perimental and simulation results for a resonant dc
link show significant improvements in spectral perfor-
mance.

I. INTRODUCTION

In power electronics, simple interpolative ©A modu-
lators have been applied successfully to systems such as
resonant link converters where the discrete timing of the
circuit switching precludes the use of conventional modu-
lation techniques. Resonant link converters use zero volt-
age switching to limit switching losses and allow much
higher switching frequencies [7].

In communications, interpolative XA modulators are
practical for high rate analog-to-digital conversion and
data compression because of their simplicity and robust-
ness against circuit imperfections [4]. They operate by
coarsely quantizing the input signal at a sampling rate
much higher than the Nyquist rate. Using a combina-
tion of feedback and integration, the resulting modula-
tion noise is pushed to higher frequency, where it may be
removed by filtering.

Converters such as the resonant link can also be thought
of as analog-to-digital converters in which an analog ref-
erence is reproduced or modulated by discrete switching
states. Moreover, the increased switching frequency ca-
pability of these types of converters corresponds to a high
degree of oversampling. Therefore interpolative modula-
tion techniques are pertinent to improving system per-
formance. Over the past decade, numerous advances in
interpolative A modulation technology have appeared
in the communications literature. This paper adapts and
applies these improvements to the analysis and design of
interpolative modulators for high frequency power elec-
tronic systems. Our experimental and simulation results
demonstrate substantial improvement in spectral perfor-
miance over previous work.
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Fig. 1. Conventional sigma-delta modulator.

I[I. A MODULATORS

This section explains a conventional scalar £A modu-
lator, and how a half-bridge converter may be included in
the modulator structure. These ideas are then generalized
to the vector modulator of central interest in this paper.

A. Scalar XA Modulator

We give an example to clarify the operation of over-
sampled interpolative modulators. The simplest form of
an interpolative modulator is the ©A modulator shown
in Fig. 1. z is the input signal, u is the integrator state
and y is the latch output. The comparator is thought of
as a quantizer whose output g(u) is £b according to the
the sign of the integrator state u. The latch samples the
comparator or quantizer output g(u) at rate f, and holds
that signal until the next sampling instant.

Intuitively, the £A modulator uses feedback to lock
onto a scalar band-limited input signal z(t). As explained
in [5), “Unless the input signal z(t) exactly equals on¢
of the discrete quantizer output levels, a tracking error
results. The integrator accumnulates the tracking errof
over time and the quantizer and latch feed back a value
that will minimize the accumulated tracking error. Thus
the quantizer output y(¢) toggles about the input signal
z(t) so that the average quantizer output is approximately
equal to the average of the input.”

An equivalent discrete time model of a scalar A mod-
ulator is given by the following nounlinear difference equa
tion:

s = 20— (1) + O

where z is the input signal, u 1s the integrator state, and
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Fig. 2: Discrete-time equivalent of the XA modulator.

¢ is the output of the quantizer (Fig. 2):
+b u>0
ww={ 1 L35 ®

The quantizer ¢ can be understood as mapping its input
u to +b or —b depending on which is nearest to the input.
Thus ¢ 1s a nearest neighbor quantizer.

To illustrate how a power electronic circuit can be em-
bedded in a XA modulator, consider the modulator for
the half-bridge converter shown in Fig. 3. In this arrange-
ment the comparator, gating circuitry, and half-bridge of
Fig. 3 replace the comparator in Fig. 1 (the placing of the
latch is also changed). The comparator and latch set the
switch state for each sampling period 7 = 1/ f, according
to the sign of the input u at the sampling instant. Now the
switch state impresses {2b} on the output voltage y(¢).
Since Fig. 3 and Fig. 1 are different implementations of
the same overall quantizing and latch functions, the cor-
responding modulators have identical behavior. Thus, by
taking the input signal z(t) to be the desired output volt-
age, the actual output voltage y(t) will approximate the
desired output voltage. As will be seen, this approxima-
tion can be improved by generalizing the integrator in
Fig. | to a linear filter or by increasing the switching fre-
quency.

The modulator described in this section is a special case
of the block diagram shown in Fig. 4 (the comparator of
Fig. 1 is regarded as a quantizer in Fig. 4).

B. Vector A Modulators with Hezagonal Quantization

We now consider XA modulators which include conven-
tional 3 phase voltage source inverters. In this case, all
the signals in Fig. 4 become vectors. We assume a bal-
anced representation of the signals by vectors with two
coordinates (d-q) or, equivalently, by vectors with three
coordinates (a-b-c) which sum to zero. The outputs of
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Fig. 3: A modulator for a half-bridge converter.
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Fig. 4: General sigma-delta modulator.

the voltage source inverter are the line-to-neutral voltages
which may equal one of seven possible values according to
the switch state. These seven space vectors are shown as
dots in Fig. 5 and can be thought of as the possible output
vectors of a quantizer. Here we choose the quantizer so
that a quantizer input vector u maps to the dot nearest
to u. The broken lines in Fig. 5 delimit the regions which
map to each dot. This “hexagonal” vector quantizer is a
nearest neighbor quantizer and is well known in commu-
nications [6]. Moreover, this quantizer is optimal in the
sense that the mean-square error from input to output is
minimized [6].

A ¥ A modulator for voltage source inverters is obtained
by replacing the quantizer block in Fig. 4 with the hexag-
onal quantizer of Fig. 5, gating circuitry, and the voltage
source inverter (the latch is placed between the hexago-
nal quantizer and the gating circuitry). This vector A
modulator with nearest neighbor hexagonal quantization
is a straightforward generalization of the scalar A mod-
ulator discussed in the previous section.

We note that a similar modulator was suggested by Ha-
betler in {9] for application to resonant link converters and
the hexagonal quantizer was also derived based on its one
step ahead optimality properties by Seidl [13]. In the re-
mainder of the paper, we show that generalizations of the
YA modulator with hexagonal quantization can yield sig-
nificant improvements in the spectral performance of 3
phase converters.

I1I. Interpolative XA Modulators

A. White Noise Approzimation

For some design purposes, the operation of the A
modulator (Fig. 1) is analyzed by modeling the integrator
with its discrete-time equivalent and the quantizer by an
additive noise source e(z) as shown in Fig. 6. The quan-
tization noise e(z) is the z-transform of the quantization
error sequence e, defined by e, = ¢(u,) — u,.

A common approximation for scalar modulators is that
the quantization noise e(z) is a white, uniform noise
source which is statistically uncorrelated with the input.
This assumption can often be justified if the input signal
or the modulator is sufficiently complex to decorrelate the
noise source from the input signal. However, for dc¢ in-
puts to simple modulators such as the scalar modulator
of section II.A., the quantization noise spectrum consists
of discrete spikes whose amplitudes and frequencies are




Fig. 5: The seven dots are the quantizer outputs and
switching states. Each input vector is mapped to the
nearest dot.
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Fig. 6: Discrete-time model of the A modulator. The
quantizer 1s modeled by an additive noise source.

correlated with the input signal [8]. Nevertheless, prac-
tical design of modulators for A/D conversion often uses
the quantization noise approximation {2, 1, §].

We expect that similar considerations apply to the vec-
tor modulators described in this paper, and we assume for
the purpose of design that the vector quantization noise e
is a white, uniform noise source which is statistically un-
correlated with the input. This assumption greatly sim-
plifies analysis since the resulting system is linear and con-
ventional linear system techniques may be applied to de-
duce aspects of the modulator behavior and performance.

B. Noise-Shaping

To introduce noise shaping we review the scalar LA
modulator example (Fig. 1). The discrete time linear
model of the scalar XA modulator with quantization noise
sequence e(z) and input sequence z(z) is

q(z) = 27 2(2) + (1 = 27 Ne(2). (3)

That is, the quantizer output sequence ¢(z) is the sum of
the input signal z(z), delayed, plus a difference (a discrete
time derivative) of the quantization noise e(z).

Frequency, Hz fs/2

Fig. 7: Output spectrum |¢(z)| for £A modulator.

We call the frequency band 0 < f < f, the baseband;
it includes the frequency of the input signal and the band
over which we wish to reduce noise in the output. The
baseband can be chosen according to the load character-
istics. If the input signal z is a tone (i.e. sinusoid) in
the baseband, the modulator’s output spectrum }g(z)] is
similar to that shown in Fig. 7. When the modulator is
sampling much faster than the Nyquist rate 2f, (i.e. over-
sampling), the quantization noise in the baseband will be
greatly attenuated and the bulk of the noise power will be
concentrated above the baseband. That is, the quantiza-
tion noise will be pushed or shaped to higher frequencies.
This shaping of the noise is advantageous since the high
frequency noise can be removed by a low pass filter. In
power electronic applications, the low pass filter may take
several forms such as leakage inductance in machines and
transformers or filters in uninterruptable power supplies
(UPS).

To better shape the quantization noise and thus im-
prove the spectrum in the baseband, we can replace the
integrator of the A modulator with more complex filters.
The resulting topology is in known as an interpolative XA
modulator and is shown in Fig. 8. Here, a linear discrete
time filter H(z) is placed in the modulator loop and (3)
generalizes to

H(z2) 1

q(z) = H—MI(Z) + me(z)

(4)
(For example, the choice H(z) = %T yields the mod-
ulator of Fig. 2.) Equation (4) is a fundamental relation
describing interpolative ©A modulators. It states that
the output of the modulator consists of the sum of two
terms: the input signal z modified by the signal transfer

function and the quantizer noise e modified by the

H(z)
14H(:)
noise transfer function ﬁ-‘ilT(Ti H can be designed so that

the noise transfer function Tﬂlﬁ“)' is small in the baseband al
AdR
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Fig. 8: Discrete time model of the interpolative T A mod-
ulator.

and the signal transfer function T}% is approximately

unity in the baseband. In this manner the signal-to-noise
ratio in the baseband can be made large [12].

The modulator performance, which can be measured
by the signal-to-noise ratio (SNR) over the baseband, is
mainly governed by the “order” of the modulator and the
oversampling ratio (OSR), which is the ratio of the sam-
pling frequency to the Nyquist rate 2f,. Otrder refers to
the order of the filter H. For instance, the ZA modulator
of Fig. 1 is first-order. Similarly to conventional filter de-
sign, a higher SNR requires a higher order filter and thus
increased hardware complexity. The advantage of choos-
ing a higher order filter is an improved SNR for a given
OSR.

The main limitation of interpolative modulators, espe-
cially those of higher order (> 2), is their stability prob-
lems [10] in which large-amplitude low-frequency oscilla-
tions can appear. These oscillations can drive the modu-
lator into sustained modes of integrator saturation.

C.  Noise Shaping for Vector LA Modulators

Within the context developed above, modulator design
consists of choosing a filter H that will ensure stability
and satisfy spectral performance criteria such as a given
OSR and input bandwidth. These design considerations
readily generalize to vector modulators. For the vector
modulator, the filter H(z) has a vector input and out-
put. Two possible choices of the filter H for use with the
hexagonal quantizer of Fig. 5 are:

-1

z
Hl = l_z_l I (5)
7Nz = 2)
= "1 6
Hy 1 —2z71 4 272 (6)

where ] is an identity matrix of appropriate dimensions.

H, yields the first order ZA modulator introduced in
section 11.A., while Hy yields an interpolative second-
order £A modulator. This second-order ZA modulator is
an adaptation of the modulator proposed by Candy in (3]
and is superior to the first order ZA modulator because
it only requires a moderate increase in circuit complexity,
and yet it achieves a 15 dB/octave tradeoff between SNR
and OSR, whereas the first order LA modulator achieves
only 9 dB/octave. Furthermore, both modulators have
the same stable input range (dynamic range).

The noise-shaping filter H(z) is usually designed in
discrete-time. However, modulators for power electronic
applications have been implemented in continuous-time
with op-amps, comparators, and latches. A discrete-time
modulator can be converted to an equivalent continuous-
time modulator using the impulse-invariant transforma-
tion of [14].

IV. SIMULATION AND EXPERIMENTAL RESULTS

Results for the first and second order modulators pro-
posed in section 1I1.C. are presented. A regularly sam-
pled 75 kHz hard-switched voltage source inverter (VSI) is
simulated and experimental results for a 40 kVA, 75 kHz
actively clamped resonant DC link inverter (ACRDCL)
with a R-L load are presented. Although a 75 kHz VSl is
not practical, its simulation provides a reference point for
comparison with the experimental ACRDCL. The results
are obtained with first and second order XA modulators
specified by the nearest neighbor hexagonal quantizer and
filters H; or Hz. A 3 phase balanced sinusoidal input with
peak amplitude 0.72 (maximum is 1.0) and frequency 75
Hz is used throughout. We assume a baseband of 5 kHz
which corresponds to an OSR of 7.5.

The spectra of the line-line voltage for the first and sec-
ond order modulators are shown in Fig. 9 for the simulated
VSI. Comparison between the two modulators shows ap-
proximately 23 dB of modulation noise improvement up to
1 kHz of the second order over the first order modulator,
and the spectra converge at approximately the baseband
limit frequency (f, = 5kH z). For simulations, FFTs were
performed on over 32,000 data points using a Blackman
window. The envelopes of the voltage waveforms for the
simulated VSI and the experimental ACRDCL are simi-
lar.

Fig. 10 shows the ACRDCL line-to-line voltage and line
current waveforms for the first order modulator. Fig. 11
shows results of the same signals for the second order
modulator. The spectra of the line-line voltage for both
modulators are shown in Fig. 12 for the ACRDCL. Com-
parison between the two modulators shows that up to
approximately 500 Hz the modulation noise for the first
order modulator is approximately 5 dB less than that of
the second order modulator. Beyond 500 Hz, the second
order modulator shows approximately 7-10 dB of modu-
lation noise improvement, with a maximum improvement

of 12 dB at 2 kHz.

The differences between the modulation noise spectra
of the VSI and the ACRDCL are perhaps due to the sam-
pling frequency jitter (pulse width irregularity) and hard-
ware inaccuracies which are inherent in the ACRDCL [7}.
Further, the output voltage pulse of the VSI has a rectan-
gular shape, whereas the experimental ACRDCL output
voltage pulse has a clipped sinusoidal shape.

The stable input signal range for the first and second or-
der £A modulators is the hexagon which passes through
the outer six output space vectors of Fig. 5. When the
input signal exceeds this range, the modulator’s integra-
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Fig. 9: Simulated VSI line-neutral voltage spectra for
first and second order modulators.
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Fig. 10: Experimental ACRDCL Line-line voltage and
line current for the first order modulator.
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Fig. 12: Experimental ACRDCL line-line voltage spectra
for first and second order modulators.

tors wind up. However, overmodulation causes the input
signal to exceed the stable range. To address this prob-
lem, clippers may be placed on the integration capacitors.
The thresholds of the clippers are selected to be slightly
greater than the integrator voltages during stable opera-
tion. This stabilization technique ensures that the output
voltage waveforms gradually degrade into six-step mode
as the input signal is increased beyond the the stable in-
put signal range. This technique may also be applied to
higher-order (> 2) interpolative modulators which always
have the potential for oscillation when the input exceeds
the stable input range [12, 1].

V. OVERVIEW

This section explains some general features of the view
of power electronics which inform our proposed modulator
designs. The main analogy we exploit is with the methods
in communications theory of converting an analog signal
to a digital signal with a quantizer and subsequently (af-
ter transmission) converting the digital signal back to an
analog signal. We think of the power electronic circuit
acting as an A/D converter in which the analog input
1s the signal to be synthesized and the quantized digital
output is the state of the circuit switches. In a voltage
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 source circuit, the switches impress discrete voltages on

{ the load. Then the low-pass filtering action of typical
¢ Joads remove the modulation frequencies and hence con-

E Jert these discrete voltages back to analog form. In both
! communications theory and power electronics, the aim is
E to design the system so that the input signal is passed

through the system with minimal distortion from noise.
One consequence of this interpretation is that the power

b clectronic switching states determine the possible “digi-

" tized states” or quantizer outputs. For example, the volt-

age source inverter has seven switching states which cor-
respond to the seven output vectors in Fig. 5. Similarly,
other circuits such as the matrix converter, multilevel con-

b verters, and multiphase converters define particular quan-
 tizer outputs.

Although the quantizer outputs are determined by the

" power electronic circuit, the modulator designer may
i choose the set of input vectors which map to each quan-
¢ tizer output. The quantizers presented so far are nearest
. neighbor quantizers which map each input to the nearest
b output. However, other choices are possible. For exam-
' ple, consider the hexagonal quantizer of Fig. 5. Here, the
£ parameter h determines the size of the inner hexagonal
. region and may be altered to obtain another quantizer.

Setting h to zero eliminates the central output vector

entirely and the resulting circuit is simplified because the
§. number of comparators required is reduced from nine to
¥ three. However, the penalty for this circuit simplification

is significant for the first order modulator and relatively
small for the second order modulator. A similar discussion
for scalar first and second order modulators is in [11].

Viewing high frequency power electronic circuits as con-
tributing to quantization allows them to be regarded as
part of the interpolative modulator topology (Fig. 8). It
follows that noise-shaping methods of filter design may be
applied to optimize the spectral characteristics.

The first and second order vector XA modulators pro-
posed in section 111.C. demonstrate the feasibility of de-
signing converters using methods from communications.
Higher order interpolative A modulator architectures
(1, 5] and stability issues [10, 12] are discussed exten-
sively in the communications literature. We have found
that these more complex architectures can similarly be ex-
tended to the vector case and in particular to modulators
with hexagonal quantization.

V1. CONCLUSION

This paper formulates the problem of reproducing a
desired signal with a high frequency power electronic cir-
cuit by regarding the circuit as performing quantization
in an interpolative XA modulator. The binary quantiz-
ers of conventional scalar A modulators generalize easily
to the vector quantizers appropriate to power electronic
circuit topologies. For example, a nearest neighbor hexag-
onal quantizer is one obvious choice for a 3 phase voltage
source inverter. Linear design methods from communica-
tions theory can then be applied to shape the quantization

noise so that it is pushed to higher frequencies and will be
attenuated by the load. First and second order modula-
tor designs are proposed for a voltage source inverter and
are tested experimentally on a resonant dc link. These
examples show that the approach yields significant im-
provements in spectral performance.
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