IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 8, AUGUST 2003 991

Hexagonal Sigma—Delta Modulation

Glen Luckjiff and lan DobsonSenior Member, IEEE

Abstract—A novel application and generalization of sigma—delta }
(£A) modulation has emerged in three-phase power-electronic \
converters. A conventionalX A modulator with scalar signals and Py \
binary quantizer is generalized to aX A modulator with vector ‘
signhals and a hexagonal quantizer. Indeed, power-electronic ’
switching states may be thought of as determining the quantizer L
outputs. The output spectrum is a key performance measure for
both communications and power electronics. This paper analyti-
cally derives the output spectrum of the hexagonak A modulator
with a constant input using ergodic theory and Fourier series on
the hexagon. The switching rate of the modulator is important for
power-electronic design and formulas for the average switching
rate are derived for constant and slowly varying sinusoidal inputs.

sigma—delta & A) modulation, spectral analysis.

Index Terms—Ergodic, power electronics, quantization, \
\

\
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. INTRODUCTION |

HIS PAPER generalizes and applies work in sigma—delfg- 1. Output states of voltage-source inverter .

(X2A) modulation from the field of communications to ] o )
a problem of practical significance in power electronics. The The main analogy we exploit is with the methods in commu-

system ofSA modulation originated in the sixties and has redications theory of converting (modulating) an analog signal to
ceived significant attention over the past decade as an attracfivéigita! signal with a quantizer and subsequently (after trans-
alternative to conventional analog-to-digital converters [1], [2]niSSion) converting (demodulating) the digital signal back to
YA modulators or, more generally, oversampled analog-t%namg fo_rrr_l. For instance, a voltage source converter applies
digital converters achieve the performance of high-resolutiéf€ Of a finite set of discrete voltages on the converter output.
quantizers by using low resolution quantizers in a feedback lodp€ converter output is then passed through an analog low-pass
with linear filtering. These converters modulate an analog sigrfdier that removes the modulation frequencies thereby demodu-
into a simple code, usually a single bit, at a frequency mu@_,tmgthe discrete voltages ba_ckto anglog form. In both commu-
higher than the Nyquist rate. In this manner, the modulator cBifations and power electronics, an aim is to design the system
trade resolution in time for resolution in amplitude, as well &% that the input signal is transmitted with minimal distortion.
employ simple and relatively high-tolerance analog componentsOne consequence of this interpretation is that the power-elec-
[2]-[4]. tronic sw_ltchlng states determine the possible “dlg.ltlzed states”
In power electronics, switching converters can also ¥ quantizer outputs. For example, the conventional voltage
viewed as analog-to-digital converters wherein an analog réRUrce inverter [8] has seven s_thc_hmg states which correspond
erence is coded into a low-resolution set of discrete switchifg the seven output vectors in Fig. 1. We assume balanced
states [5]. Moreover, switching converters typically switch dfirée-phase signals represented by vectors with three coordi-
frequencies well in excess of the Nyquist rate. Therefia, Nates which sum to zero. The outputs of the voltage-source
modulation techniques are pertinent. IndeEdy modulators inverter are thg line-to-neutral vo'ltages, WhICh' may equal one
have been applied successfully to systems such as resonant@hReéven possible values according to the switch state. These
converters wherein the discrete timing of the circuit switchingEVen space vectors are shown as dots in Fig. 1 and can be
precludes the use of conventional modulation techniques siBRUgt of as the possible output vectors of a quantizer. Here,
as pulsewidth modulation (PWM) [5], [6]. Resonant linkV€ choose the quantizer so that a quantizer input vegtor
converters use zero-voltage switching to limit switching loss&32ps to the dot nearest ¢o The broken lines in Fig. 1 delimit
and attain relatively high switching frequencies [7]. the regions which map to each dot. This “hexagonal” vector
quantizer is a nearest neighbor quantizer and is well known in
communications [9], [10]. Moreover, this quantizer is optimal
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hexagonal lattice. If we assume a nearest neighbor partitionliagar system, we make two assumptions. The first assumption
in the binary case, the appropriate generalization is the truncaigthat the modulator input is constant. While sinusoidal wave-
hexagonal vector quantizer discussed above. Second, all mmims are also commonly used to test the system performance,
ulator signals are augmented from scalar quantities to vecttiie constant input is a useful idealization of slowly varying
and a vector integrator replaces the scalar integrator. waveforms. The second assumption is that there is no-overload
There has been extensive design and analysis of sEalar in the internal quantizer. This can be accomplished by limiting
modulators for applications in communications and sign#ie magnitude of the modulator input (i.e., dynamic range).
processing [1]. Also, vector quantization is applied (but not A key aspect of modulator performance is the output spec-
to XA modulation) in a number of applications in signatrum. Despite its complexity, we show in this paper that exact
processing [11]. The power-electronic application combinesglculation of the output spectrum can be done using results
specific vector quantizers witt A modulation and requires from ergodic theory and Fourier analysis. In this approach, the
a significant generalization of the scalar work. The vectaronlinear discrete dynamical system representing the modulator
generalization motivated by the power-electronic applicatiaathought of as iterated shifts on a torus and the typical statistics
is natural enough in communications and signal processiafithe process may be computed by integration over the torus or
since the nearest neighbor quantizer is one of the simplegbsets of the torus. The generic case of the spectrum calcula-
vector quantizers. However, it appears that the use of hexagaith first appeared in our conference paper [24].
guantizers irtS A modulators has been largely neglected. Switching rate is an important performance measure in
Two different approaches for analyzidg\ modulators have power-electronic design since device switching loss is directly
evolved: approximate methods based on the results of Benmetiportional to the switching rate. We derive the average
[12] and exact analysis. In the first approach, one tries to agwitching rate for the scalar and hexagodah modulators
proximate the quantization noise by choosing an input-indepamith generic constant inputs and then extend this calculation to
dent additive noise source having a similar long-term sampwly varying sinusoidal inputs.
distribution and power spectrum. The simplest noise model isThere is considerable advantage in using analytic formulas
white noise with a uniform distribution. Under such an approxer the output spectrum and switching rate in design because
imation, the nonlinea2A modulator is modeled as a linearsimulation of data with complicated nonperiodic structures has
system, and the performance can readily be derived by usififficulties of run time, data processing, and limited insight into
well-known linear system techniques. Moreover, approximatiee nature of the process and the parameter dependencies.
methods have been a key tool in practical design and have preAlthough themethodsaused in this paper are a generalization
dicted many aspects of system behavior to a sufficient degreéexact analysis methods for scalaA modulators in commu-
Some of the properties agree reasonably well with simulation r@eations theory, much of the current technologicuitivation
sults [4], [13]. However, two notable failures of the linear moddbr the results comes from power electronics. Therefore, while
predictions are the generation of idle channel tones and modle hexagonal A modulator may well find applications outside
lator instability [2]. power electronics, it is appropriate to conclude this introduction
Exact analysis was first applied successfully to discrete-timéth a review of the applications of oversampled analog-to-dig-
single-loopX~ A modulators with dc input [14], [15]. Instead ofital converters to power electronics.
assuming the memoryless and uniformity characteristics, thisOversampled analog-to-digital converters have been em-
approach derives the true quantizer noise behavior by solvinglayed in power electronics for nearly two decades. However,
system of nonlinear difference equations, and then determiniaiiention to these converters has been sparse in comparison to
the noise statistics and power spectrum. The major conclusitwe vast literature for pulsewidth modulators. The first reported
is that the quantizer noise, even though uniformly distributed,application of an oversampled converter (delta modulator) was
not white. In fact, the quantizer noise and output of single-lodp a conventional three-phase transistor inverter wherein the
> A modulators have discrete power spectra, which consistsiafegration of the output voltage was calculated via the output
spectral spikes whose frequency location depend in a compliesuctors. The output current closed the feedback loop and
way on system input [16]. thus could be controlled [25]. This so-called current controlled
Several researchers have applied exact analysis methoddelba modulator exhibited a nonzero steady-state output current
scalar¥ A modulators to describe their behavior, predict the&rror, which was improved by the addition of an integrator in
performance, and help develop improved systems. These waths forward path [26].
share the common goal of avoiding unjustified application of the The invention of the soft switching resonant link converter
white noise approximation. Powerful techniques from ergodiy Divan [7] fostered interest IRA modulators since they both
theory have been deployed by Gray [14], [16], Delchamps [1#gquire constrained switching instants. Studies of threefold
[18], and Heet al.[19] to derive exact formulas for the spectrascalar> A modulators applied to resonant link inverters that
of scalar modulators for various inputs. Of related interest atensidered their spectral performance and harmonic distortion
the works of Kieffer [20] on stability and convergence of one-bitsing simulation, experiment, and basic analysis were reported
guantizers, the work of Hein and Zakhor [21], and the nonlinear [27]. The threefoldA modulator uses three identical inde-
dynamics approaches of Wang [22] and Feely [23]. pendent scalar modulators to control each of the three inverter
In this paper, we build on these exact analyses to derive fleg voltages. The threefold modulator has reduced dynamic
spectrum of a vectot A modulator with a hexagonal quantizerange compared to the hexagohak modulator. A zero-output
and a constant input. To simplify our analysis of this highly nornvoltage state (i.e., all switches high/low) was introduced in [6]
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to obtain adjacent state switching. This so-called modiiexl + )&
modulator is a threefold A modulator with the provision that -1
nonadjacent states are overridden by a zero state. This wor g D Un q q(un)

differs from the hexagonal A in that the zero vector is not

chosen unless a nonadjacent state is selected. Seidl [28] derivi

the hexagonal quantizer based on its one-step ahead optimali

properties (minimum-square error) and developed a neurs

network delta modulator employing the hexagonal quantizer.

An alternative to current controlled delta modulators usingfa@- 2. Discrete-time single-bit or hexagoal modulator.D: unit delay.q:
L s single-bit or hexagonal quantizer.

one-step ahead minimization of the infinity norm of the currerit

error was proposed in [29]. Attempts to combiBé& modu- . ) ] ] ]

lation with space vector modulation [8] are developed in [30 From F|g. 2, one can write the following difference equations

and [31]. Summaries of the application of current controllefpat describe th&lA modulator:

delta modulators and (to a lesser exterith modulators to

resonant link inverters prior to 1994 are found in [32], [28], and tn41 = 3+ tn — q(tn) @

[30]. A simple coherent analysis GA modulators applied \herej s the discrete-time input,, is the modulator state, and

to resonant link converters was reported by Mertens in [33(}7.1 = q(uy) is the quantizer output at time

This work drew from the basic reference in communications p yey process in the analysis is the quantizer error sequence
for the behavior of quantization noise with dc input of Candyqfined by

and Benjamin [3]. Recently, Niezhski [34] compared the

hexagonab:A modulator to the modifie A modulator of [6] en = e(tUp) = Up — . )

and the threefold-scal2lA modulator [27], [32] and showed

that the hexagona A modulator has lower distortion power Using (1) and (2), the state and output processes can be ex-

and device switching rate. pressed in terms of the input and the error sequence

Our conference paper [5] and patent [35] introducedtie
modulator with hexagonal quantization as well as the extension Uny1 =en + ®3)
to double-loop and interpolativeA modulators. This work rep- On+1 =€n — €nt1 + 0. (4)

resented a significant improvementin spectral performance over
prior work and has been implemented in commercial powdgy substituting (3) into (2), the error sequence satisfies the non-
electronic products requiring high spectral performance.  linear difference equations

A novel insight put forth in [5] is that a power-electronic
circuit may be thought of as an analog-to-digital converter in
which the analog input is the signal to be synthesized and the
quantized digital output is the state of the circuit switches. ORg go|ytion of the Difference Equation
consequence of this interpretation is that the power-electronic .
switching states determine the possible “digitized states” rWe assume the no-overload condition that < 1/2 and

quantizer outputs. Similarly, other circuits such as the matr yol < 1'5” _fr(:1llowshthat|en|_ < 1/2 and|“g| < 1for "d: 15
converter, multilevel converters, and multiphase converterl""[ 1. Then, the quantizer error can be expressed as [15]
define particular quantizer outputs.

€0 :e(u(]) €n+1 :6(€n+/8), ’I”L:O/l/ (5)

e(u) = {u) — =, foru € [-1,1] (6)

Il. SINGLE-BIT ©A MODULATOR where(r) is the fractional part of; that is,(rr) = r— ||, where

_ _ . . . || denotes the largest integer not greater than
This section reviews the spectral calculation for a single-bit For a system with no-overload, (5) becomes

> A modulator with a generic constant input. The results are

well known [14], [15], [17], [18]. The purpose of the section is ens1 = (en + B) — 1 n=01... .. @)
to explain in a simpler context the spectral calculation method 2’ o
that is used for the hexagonal case. For convenience, define
. . 1
A. Discrete-Time Model Yn = Y(up) = 3t e(un), Uy € [-1,1] (8)

A conventional discrete-time single-lodpA modulator is
shown in Fig. 2 where?, u, e € R, ¢ is the single-bit quan-
tizer, and the unit dela with its unity feedback loop is a “dis-
crete-time integrator”

so that (7) becomes
Ynt1 = (yn + 0'), n=12,... (9)

whereg’ = g — (1/2).
The solution to (9) is [15]

(2) = %, if x>0
ar) = ‘717 otherwise. Yn = (Yo +np'). (10)
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C. Spectrum of the Quantizer Error the mean value of the almost periodic sequeigg:)e =12 *»n
The autocorrelation of thg sequence is defined as [17], [38]
L1 1 N
B S,({A\}) = lim ——— R, (n)e 2™ Apn
Ry(n) = lim — > Yk Yirn (11) YPI T N S 2N + 1 n;N v
k=0 N
: 1 . 27 (pB' —=Ap)n
whenever the limit exists. Use (10) to obtain - nglio 2N +1 Z Z |ep|Pe’® (PF'=2s)
n=—N peZ
1 L-1 1 N ( )
. _ 2 1: i2m(pB' —Ap)n
Ry(n)= Lh_I};o 7 Z (yo +kB') (yo + kB +np’) = Z lcpl ngnoo ON + 1 Z e .
k=0 peZ n=—N
L-1 (16)
: 1 / / /
= Jim = " {yo + k') {(vo + k) + ). (12)
k=0 The interchange of summations is justified sidcg. |c,|* <
. . : . . Thus
A classical result in ergodic theory due to Weyl is [36] >
Theorem I1.1: If f is a Riemann-integrable functiog,€ R 0, if pg’ # A, mod 1
is irrational, and- € R then Sy({Ap}) = { lepl?, if pB’ = Ap mod 1. (17)

L-1 1 . .
.1 B The numberg\,,p € Z} are the Bohr—Fourier frequencies of
Lh—{%o L Z F((Bk + 1)) = /0 f(s)ds. the sequence&, (n), and|c, |* are the Bohr—Fourier coefficients
k=0 of R,(n). Rewriting (17) and using = 1/2 + ¢ the spectrum

We assumeg?’ to be irrational and apply Theorem 1.1 toOf the quantization error is [14], [18]

f(s) = s (s+np') in (12) to obtain
Se(w) = D lep|*6(w — (pp"))- (18)
peEZL

Ry(n) = /0 (s) (s + np) ds. (13) beo

According to (4), the quantizer outpgts obtained by differ-
Let f, g € L2([0, 1)) have Fourier coefficientﬁp, gp.p € Z. encinge and adding3. Hence, standard linear-system Fourier-
Then, Parseval's formula is analysis techniques can be applied to obtain from (18) the fol-
lowing spectrum of the quantizer outpyt

1
f(s)g*(s)ds = f gr. (14) .
IRCLE 2 Jodi Su(w) = 6(0) +4 3 lepl?sin*(r)s( — (p)). (19)
peZ
#0
The function( ) € L?([0,1)) is periodic and has Fourier series !
(u) = 3,z cpe>™" where The output spectral densify, is purely discrete having ampli-
tudest |c,|? sin? (7w) at frequenciegps’) for 0 # p € Z, and
1 - %7 ifp=0 the square of the input at zero frequency.
cp = / (u)y ey = ; it
0 27p? T p ;é 0.
IIl. HEXAGONAL YA MODULATOR
The Fourier coefficients of(z) = (z + n') arec,e2 ™" This section describes mathematical underpinnings, in-
Applying Parseval's formula to (13) gives cluding hexagonal coordinate systems, lattices, and quantizers,

and states the difference equation for the hexagonal modulator.
R, (’I’L) — ¢ Ctefﬂﬂpnﬂ' — |C |28i27rp,ﬁ’n. (15)
! I; v 1; ' A. Hexagonal Lattices and Coordinates
Itis convenient to define the plafie = {(z,y,2)! € R | z+

Since} ez lcp|? = 1/3, the series (15) foR, (n) is absolutely 4 » = 0}, wheret denotes transpose. Defil€ : R — P
summable and this implies uniform convergence of the seriggdy : P — R2 to be

(15) with respect ta. Since almost periodic sequences are the

uniform limit of trigonometric polynomialsR,(n) is almost 1 0 9 1 _1
periodic [37]. W = 0 1 V= 3 [_1 9 _1} . (20)
We now compute the spectruffy of the almost periodic se- -1 -1

quenceR,. It is known from harmonic analysis that the spec-

trum of an almost periodic sequence is discrete (pure point). TH&V is the identity orR? andWV is the identity orP.

pure point part of the spectrui, may be recovered from the The hexagonal lattice i& = J{Wk | k € Z*} = PN Z3.
autocorrelation sequendg,(n) for any pointA, € [0,1) by The large dots in Fig. 3 show points in
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|Bi] > |83 > |85 |. The ordered coordinates are a continuous
nondifferentiable function of the original coordinates. Also, the
ordered coordinates satisfy the relation

181 = |85 + 185 - (23)

Equation (23) is proved by noting that whé is positive (say),
(3 andfs are necessarily negative; and thgt+35-+3;5- = 0.
We writeny = 6;-/|6l, 5 =1, 2, 3so tha" = - nj.

In the ordered coordinate system we may define with
economy the various regions of Fig. 3

H={zeP: |z <1} (24)
Uz{a:e’P: |x§‘|§%} (25)
S={zeP: |ay| <1} (26)
Fig. 3. Hexagonal quantizerand regions?, S, andR. R = {x eP: |zf‘| < 3 and |:L§‘| < 2} . 27)

The dual ofP is P* = {(z,y,2) € R** |z +y + 2z = 0}.
The latticedual [9] to A is B. Hexagonal Quantizer and Discrete-Time Model

Afunction f onP ishexagonally periodid f(z+\) = f(z)
N={peP"|prelforal e A}=U{qV |¢€Z*®}. forall A € A.Define() : P — H as the identity or¥ and
extend the definition of ) to P by making({") hexagonally pe-
The vertices of hexagoH in Fig. 3 are points in\*. riodic. One might call’) “hexagonal part” sincé ) generalizes
Vectors inP or A are written as column vectors and duathe scalar fractional patt).
vectors inP* or A* are written as row vectors. For example, Letz,y € P. Then
n. € P in Fig. 3 is the column vectot/3(2, —1,—1)". The
columns ofW generate\ and the rows ol generate\*. ¥y =@ +y). (28)
The Voronoi cells (points closest to a given lattice pointhof
are hexagons of sidg/2/3. Define the sefl to be the interior of Define the hexagonal lattice nearest neighbor quantization func-
the Voronoi cell containing 0, together with a specific choice afon ¢ to be
three nonopposite hexagon sides and two opposite hexagon ver-

tices. (These choices ensure that lattice translatéf tile the q(z) =z — (@) . (29)
plane with no overlapping pointsH is the dark central hexag- ) o .
onal region of Fig. 3. The area éf is |H| = v/3. _The nearest nelgh_bor_ quantizgris shown in Fig. 3. The
Define vectors: andn' by (see Fig. 3) input u to ¢ is a point in the plané® and the output(u) is
the nearest ta, of the 7 truncated hexagonal lattice points
9 _1 1 {0,£nt, £nit, £nt} in Fig. 3.
mo= 1) =i 2| a =l A discrete-time hexagonal A modulator is shown in Fig. 2.
3\ 3\ -3 9 The signals3, .., ¢., ande,, are now interpreted as vectors in
the planep.
n 0 n 1 n -1 The discrete-time model derivation exactly parallels that of
Ma = _} ™ = (1) e = (1) ) Section II-A and the error sequence satisfies the nonlinear dif-

ference equations

1 _ 1 L t,l
Also definen_;, = —ng, n=, = —n;. Note thatnin; = 0, eo = e(ug)  eni1 = e(en + B), n=01,2.... (30)

—S

Int| = V2, and|n| = \/2/3.
Coordinatesit, 8;-, B+ for P are defined by

. Lo Lo N C. Solution of the Difference Equation
Pao=Fmy Py=Fmy fo=pFng. (21 oy analysis requires the modulator stajen = 0,1,2, . ..
to be contained in the no-overload regiéhof the quantizer.

Coordinateg,, py, p. for P* are defined by R is the lightly shaded region of Fig. 3 consisting of the seven
hexagons closest to zer8.is the star-shaped shaded region of
Pa =PNa Pb=PNp  Pc = Plc. (22) Fig. 3. The following sufficient condition for no-overload can

be shown by induction. If € S andeg € H, thene,, € H and
Itis convenient to define an ordered coordinate syster®for u,, € Rforalln =0,1,2.... We assumg} € S andey € H
Let B, By, B> be an ordering ofi1, 3;-, B chosen so that and hence no-overload for the rest of the paper.
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Since the functior(u) = v — q(u) coincides with() onthe  Case 2: {s € A* | s € Z} = {mr | m € Z} for some
no-overload regiom?, the no-overload assumption implies thahonzeror € A*. Another characterization of Case 2 is tigat

the difference equation (30) can be written as has the form
€n+1:m- (31) ﬂ:am_+ia, rp €Ny o€y zel; g€l
g

(34)
Property (28) can be used to check that the solution to (31) igyhereq € Ris irrational and-, # 0. In Case 2, the sequence
en described by (32) is confined to lines i, but the sequence
en = (o + ). (32) s aperiodic and equidistributed over the lines.
Case 3: 3 has the form

D. Fourier and Ergodic Results h
) . ) . 8= —wv, veN helZ, g€l (35)
We state results about Fourier analysis and ergodic shifts. q

Let f,g : P — C be hexagonally periodic and Lebesgue
square integrable off. Then, f(x) = Zpem fp ¢i27pr \where Whereh andq are relatively prime. In Case 3, the sequence
the equallty is in theL2 sense and the Fourier coefficients aré» described by (32) is confined to discrete pointddrand is

= (1/|H|) [, f(s)e~"*mP*ds. Parseval’'s formula is periodic with periody. o _ _
The Case 1-3 characterizations are proved in Appendix II.

1 * £ oAk
@ /H f(s)g*(s)ds = Z Jp 9p- (33) A. Autocorrelation Computation
pen The autocorrelation matrix of the noise is, using (32)
These Fourier results can be obtained either as sketched in Ap-
pendix | or as a particular case of harmonic analysis on compact N
Abelian groups [39]. Re(k) = Jim i3 Z en @ Cntk
Identify points ofP differing by vectors inA to defineH = "
P/A = {x+ A |z € P}. His a compact Abelian group. A
functionf : H — Cliftstoafunctionf : H — Cif f(z+A) = LILH;O 7 Z (o +10) @ (o + 1B+ k) (36)
f(z) for all z. Lemma lll.1 gives a generic condition on the
input 5 for the dynamics (32) to induce a uniquely ergodic shift
on’H so that time averages of a functigrcan be evaluated as
an integral ovelf.
Lemma lll.1: Let 8 € P be such that the only € A* with
pB € Zisp = 0.Letf : H — R have a continuous lifting
f :H — R. Then, foralleg € P

L-1

Where® denotes outer product. The following three subsections
compute the autocorrelation in Cases 1, 2, and 3 starting from
(36).

1) Autocorrelation Computation Case Xase 1 is the
generic case in which Lemma Ill.1 applies and the calculation
proceeds as a generalization of the method for the single-bit
modulator presented in Section Il.

lim — Z f ( co+1A)) = m / £(s)ds. Equation (36) may be modified using (28) to give

L—oco L

L—1
R = tiw LS @Eap) o (E220 + 1),

Corollary I1l.1: Lemma lll.1 extends to functions: H —

R for which there exist sequences of functiofis, fio k= n=0
1,2,... with continuous liftings such thaf, (z) < f( ) <
fk( )fora”xand|f _fk|oo_)0ask_)oc Deﬁnef H—)PX,Pby _S®m Then
Lemma lll.1 can be obtained from standard results on the
torus [40] as indicated in Appendix I. —
ol PP Ro(k) = Jim %Zf()

IV. SPECTRAL ANALYSIS

This section computes the power-spectral density of the qudrach component of is continuous except on several line seg-
tizer error function and the quantizer output for the hexagonalents and satisfies the conditions of Corollary 111.1. Hence
3 A modulator with a constant input. There are three cases to
consider, depending on the value of the constant ipiithese 1 /

: oo . R.(k) = — s+ kB) ds. 37
three cases generalize the ca8dsrational andg rational for i |H | @e s (37
the single-bit modulator.

Case 1: {s € A* | sp € Z} = {0}. In Case 1, the error  Letc, be the Fourier coefficients df) for p € A*
sequence,, described by (32) is equidistributed ovérso that
Lemma lll.1 applies. Case 1 is the generic case satisfigél @y 1 —iomps
H almost everywhere. v = 1H /H @Ble ds. (38)
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Appendix Il computes:, as The Fourier coefficients of the factors inside the integral in (41)
can be obtained from their Fourier expansions, e.g.,

t

_ —i sgn (p)p mz .
= () (39) = 3 ezt me/o)pe-treo)

pEA*
] ] . — Z Z cpez27r((mz/g)pa+p50) 127rn9'
wherell andsgn are defined as follows. Using coordinates (22) = =
so thatp = (pa, s, pe), define pI;,l:n

Applying Parseval's formula (14) to (41) gives
II(p) = product of nonzero elements &, pp, pc}; p # 0

11(0) =1. Z T T eerlns /et
m=0n€Z peA*
PartitionA* = A* U (n! + A?) U (—n! + A?) and define pro=n
® Z c;,e*i%((mZ/g)p’oJrkp’/3+p'80)_ (42)
. p'€A*
0, ifpeAys pappc#0; or p=0 pri=n
&, ifpe A pappe=0; and p#0
sgn(p) = 1 if pcnt + A According to Appendix IV, the summations in (42) are abso-
_’17 if p e _(;12 + At lutely convergent and can be reordered to give
R(b)=3_ D e@eye ¥
The Fourier coefficients of (z) = arec, ¢'2m0k, n€Z pp A
Each entry of the outer product in (37) can be regarded as pri=n
an inner product of functions ovei and applying Parseval's i’”="
) g—
formula (33) to each entry gives 1 Z pi2m(m=/9)(o=#)e gi2m(p—p)eo
9 m=0
R (k) _ Z e ®c e—i27rp,3k (40) — Z e Qe /e*iQ‘n'k])//ieiZﬂ'(pfpl)EO (43)
e - P —-p . P —-p
pEA* p,p EN*
(p—p')r1=0
(p—p")o=0(mod g)
2) Autocorrelation Computation Case Recall from (34) _ Z 6 @ e e—i2mkp' B i2n(p—p)es (44)
thatin Case 23 = ar, +(z/g)o wherer ,0 € Aandz,g € Z Ten" b b
anda € R is irrational. Equation (36) for the autocorrelation (pp_”;,/)fgez
matrix may be rewritten as _ Z cp ® cS_peiQﬂ—kp’geiQﬂ—seo. (45)
p,sEA”
1 spez
Re(k): Z f () The equivalence of (43) and (44) follows from (77) in Ap-
L1 g1 pendix II.
3) Autocorrelation Computation Case Recall from (35)
= lim |
M g nz:og:of ( g Bt e that in Case 33 = (h/q)v wherev € A andh, q € Z are
g—1 relatively prime. Then (36) may be rewritten as
1 mz
A8 5 e )
L—oo L q—
m— 1 m .
=2  (Bore) o (Borkita) g
q=

Useq irrational and Weyl's ergodic theorem 11.1 to get
The Fourier coefficients of the factors inside the sum in (46) can

be obtained from their Fourier expansions, e.g.,

142 !
:_Z/ f 071+ "o+ ¢0) ) g
9 m=0 0 = Z cpei277((m/q)pv+p€0)

g—1 1 pGA*
:l Z / Or, + %J + €g
g m—0"0 — E § cpelZﬂpeo ez27rnm/q'

<97"J_ + 220 + kB + 60>d9 (41) pEA*

pv=n(mod q)
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Applying Parseval’'s formula for scalar discrete periodic funcrhe absolute summability of the series (49) is proved in Ap-

tions to (46) gives

q—1

R.(k) = E E cpeﬂ’“"e0

n=0 p'ecA*
p’v=n(mod q)

® § : c*/e—in(kp'()’—l—p'eo)
p
p/eA*
p’v=n(mod q)

q—1
N ’ N .
_ E E ¢ ® c_pre 12wkp ,36L27r(p p' e
n=0  pp'en”
pv=n(mod q)

p'v=n(mod q)

p,p'€EA”
(p—p")v=0(mod q)

- >

p,p EA*
(r—p")B€Z

_ § : cp ® cs_pez27rkpﬂ6127rseo.

p,sEAT
spez

—i2nkp’ B i2w(p—p’
Cp ® c_p/e L2TRD | et 7r(p P )so

—i2nkp’ B i2n(p—p')e
Cp @ c_pre” 2Tk Bl m(p—p)eo

B. Formal Derivation of Autocorrelation

As a supplement to the rigorous derivation above, we givetﬁ\
formal derivation of the autocorrelation that neglects issues ofe
convergence and interchange of infinite operations. The purpose
is to show the commonality between the three cases. Starting

from (36)

Z cpeiQTr(npﬂ-i-peo) ® Z cp,ei277((1¢+k)p”3+1,’50)

PEA* p'EA*
— § cp ® o 67',27Tkp',@6’i,27r(p+p/)ﬁo
p,p'EA*
1 L-1
. lim = E 1270 (p+p") B
L—oco L
=0
B 12 . ’
_ § ' ¢ ® cp,emrkp B gi2m(p+p')eo
p,p EAF
(r+p")BeZ
—i2wkpf i27se
= E Cp ® Co_pe” TP gtEmIc0, (48)
p,sEAT
sBeZ

In Case 1, (48) reduces to the rigorously derived (40) siice

(47)

pendix IV and this implies uniform convergence of (49) with
respect tok. Since almost periodic sequences are the uniform
limit of trigonometric polynomials, we conclude that each ma-
trix element ofR. (k) is almost periodic [37].

Similarly to the scalar case, the Bohr—Fourier series (49) im-
plies that the quantization error spectral maffixis purely dis-
crete having amplitudes, .. . ¢, ®cs—, €75 at frequencies

(pp) forp € A* o
Se(w) = Z Z Cp @ Cop €275 §(w — (pf)).

PEA* seA*
sBeZ

(50)

Note that the amplitudes are real becagsandc;_, are both
imaginary [see (39)] so thai, ® ¢;_, is real and because of
the symmetry of the sum ovetr In particular,sg € Z <—
—sp € L.

The quantizer outpuy,, is obtained by differencing,, and
adding according to (4). Hence, the output spectral density
matrix is

Sy(w) = B® B(w) + 4sin®(1w)S. (w). (51)

Now we examine some of the special forms of these spectra in
the Cases 1, 2, and 3 described in Section IV.

1) Spectrain Case 1For generic inputs satisfying Case 1,
error spectrum (50) reduces to

Se(w) = Z cp ® c—p 6(w — (ppB))

pEA*

(52)

and the output spectrum (51) becomes

Be AW+ Y %wmw — (08).
pEA*

Hence, the frequencies and, therefore, the amplitudes of the
spectra depend strongly on the ingiitClearly, the spectrum
is far from white noise being neither white nor continuous. The
error and the output are quasi-periodic.

2) Spectra in Case 2Recall from (34) that in Case 2, =
ary + (z/g)o wherer, ;0 € Aandz,g € Zanda € R is
irrational. Moreover{s € A* | s € Z} = {mr | m € Z}.
Then, the error spectrum (50) can be written as

i2rmreg § ( _ < E >>
E E Cp @ Cmr—p € w apry + —po .
pEA* meZ 9

3) Spectra in Case 3Recall from (35) that in Case B, =
(h/q)v wherev € A andh,q € Z. Then, the error spectrum

Z for s € A* impliess = 0 in Case 1. Moreover in Cases 2 ang50) can be written as

3, (48) is the same as (45) and (47).

C. Spectrum of Error and Output Sequence

According to (40), (45), and (47) for Cases 1, 2, and 3 the

autocorrelation matrix has the general form

Re(k) =

p,SEA”
sBeZ

§ : Cp ® Cs—p 6227\'860 67127;'])/5’]6. (49

Se@)=>. >

p,sEAT
pv=n(mod q)

. h
)

showing that frequencies are equally spaced at multiplégof
The output spectrum frequencies are spaced in the same way.
The error and the output have perigd

sv=0(mod q)
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V. MEAN AND VARIANCE B. Hexagonalb:A Modulator

This section computes the mean and variance of the quantizeYVe derive the switching rate for the hexagonal modulator
error in Case 1 of a generic constant input. with constant input vectas € S (see Fig. 3). No-overload and
Using (32) and Lemma IlI.1, the mearof the noise is genericg satisfying Case 1 are assumed.
First, use (4), (28), and the definition @in Section III-B to
L-1 L-1
1 1 show that
im — = lim — eo+n
dn g2 = Jm g

0 1 Gn+1 _qn:_en+1+26n_en—1
=0. :q(en+@)+q(en_@)'

The quan_tlzer output is obtained by differencing and adding The condition for no switching betweenandn + 1 is
0 according to (4). Hence, as expected, the mean quantizer

output isg = (. . ( ) ( _ ) .
The covariance matrix? of the quantizer error i®. (0), the i1 =t < a(ent D) +a(en- @) =0
autocorrelation matrix evaluated at zero. Calculatiorof0) —q (en + @) —0 and ¢ (en _ @) -0
from (37) is straightforward [9]
(55)
1 51 2 -1 -1
o’ = T / s5®sds= 363 -1 2 -=1]. sinced # g (en + @) =—q (en — (B)) isimpossible. Write
1 Ja -1 -1 2 H +{(f) for the hexagor translated by3) so that (55) may be

written ase,, € H — (B) ande,, € H + (). Then, the condition

The variance of one componentofs 10/108 = 0.0926. for no switching between andn + 1 is

VI. AVERAGE SWITCHING RATE e, € (H _ @) A (H + @) ) (56)
A. Single-Bit2 A Modulator

We derive the average switching rate for the singleXhi Using Corollary lll.1, the average switching rafgis

modulator with the assumptions of no-overload and constant L1

irrational input3. 1—fs= lim — Z X [no switching between n,n + 1]
First use (4) and notation from section Section II-B to show L—oo L ne0

that

= lim %:z_éx[ene (H—@)O(H-l-@)}

L
Gn+l — qn = — €ny1 +2€5 —€p1 e

S i1 fyx[e (- @) (1 + @)]
— L Area [(H - @) N (H—|— @)} . (57)

The condition for no switching betweenandn + 1 is |H |

_ _ _ Equation (57) relateg; to the overlapping area of two shifted
ntl = qn < |en +(B)] + [en =0. S 2 < ,
1 =4 L o] +1 )] hexagons as shown in Figs. 4 and 5. This is a useful geometric

Write y for the indicator function, so that the averagénterpretation. Forinstance, we immediately see fhas max-

switching ratef, is given by imum for 3 on the perimeter off . To compute the area (57) for
B € S, there are three cases.
R o Case A: 3 € U° n H. Consider the particular case gfin
I—fo= lim — > x[no switching between n,n + 1] the lower half of then;- sextant as shown in Fig. 4. According
z:(i to (57), the switching rate is
| L
= lim = > x[|len+ 8]+ len—B]|=0] 1
L—co L ;::0 fom1— " Avea(anpC) = 1- Y3 a8 |BD|. (58)
1 |H| 2|H|
:/0 x[Ils+6]+ s =Bl =0]ds (53) By computing the positions o, B, D in terms of the vertices
of H andp, it can be shown thatd B| = —2(3;- — 1)|n| and
by Theorem Il.1. By inspection (53) is |BD| = 2(8+ + 1)|n|. Hence
[ 2p, 0<B<3% 4, N
1 4

The maximum switching rat, = 1 occurs a3 = 1/2. =-3+t §(|/31f| + 185 = 187185,
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D

AN

Fig. 4. Overlap of two shifted hexagons fore U< N H.

Fig. 6. Switching-rate contour plot over regiéh

Fig. 6 shows a contour plot of the switching rate evaluated
with (59) and (60). The switching rate is zero at the origin and
has its maximum value of one on the perimetefofFor small
(3, the product term in (60) is negligible and hence the contours
are approximately hexagonal near the origin.

C. Slowly Varying Sinusoidal Inputs

We determine the switching rate for sinusoidal inputs that are
Fig. 5. Overlap of two shifted hexagons fore U. slowly varying with respect to the switching rate. Sinusoidal in-
puts correspond to circles in the pldReand the circle radius is

Using the ordered coordinates described in Section I11, the géﬁpportional to the sinusoidal input amplitude. This subsection

eral case for ang € U N H is computes the average switching rate on circles as the radius is
varied and then quantifies the deviations of the switching rate
L 4,1 1 LaL from the average switching rate as the circle is traversed
=—<+= (1851 + 18| - . (59 =T8ge SWIREINg fe : .
s 3 3 (|51 [+ 182 1= 16016, D (59) To describe the circles, it is convenient to use polar coordi-

Case B: 3 € U. Consider the particular case gfin the nates(r, #) in the planeP. The transformation to coordinates
lower half of then;- sextant as shown in Fig. 5. The switching21) i

rate is Bt -1 V3 0
—1 - L Area(ABPDC ( bL) - { 20 ] (rc?se) (61)
fs =1- Il rea( Q) g 1 _y3)| \rsin
=1— s |BP||BQ| + §|AB||AQ| ) For examplep;- has polar coordinate(s,_&) = (1,0).
|H| 2 Formulas (59) and (60) for the switching rafe have a

12-fold symmetry ing (fs is unchanged by reflection in the
axes of symmetry along,, n;", n;, 14, n, nc). Therefore,
the average switching rat&é(r) on a circle of radiusg: can be

computed on a sector of the circle suchas [0, 7 /6]

_ é 1 1 1 nl . /6
[s —4 3 (ﬁc + 8z + B ﬂa) folr) = g /0 fs(r,0) do. (62)
=5 (B + 181 =185, - '

By computing the positions ofl, B, P, @, it can be shown
that|BP| = |n|(26; + 1), |BQ| = [n*|(6; +1), |AB| =
In|(2B+ + 1), and|AQ| = |n|. Hence

To evaluate (62), there are three cases according to how the
sector of the circle intersects the regidisH, andS.

Case A:0<r< \/5/6. The sector of the circle lies inside
4 U and the switching rate formula (60) specializes to

(151 + 1631~ 18311651) . (60)sp

4 1 1L ol 8 4 2
=_ - =_ —72(1 —2cos26).
3 (131 = 1F141) ) Jo=g B mBe) = grest gtz
Case C: 8 € H°n S. Since (57) is a function off), the Fvaluating (62) using (63) gives
average switching rate gt € H° N S is equal to the average . 8 4

switching rate atff3) = 3 — ¢(3) € H. fs=—-r—= (\/5— g) r, 0<r< 5 (64)

s ™

The general case for ay € U is, using (23)

fs:

| ol
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Fig. 7. Sinusoidal input that lies partly outside.

Case B: v/3/6 < r < 1/2. The sector of the circle lies iti
foré € [0,0,] andinHNU* for # € (61, 7/6]. The boundary of
U satisfies|3y | = || = 1/2. Equations (27) and (61) yield
1 8r

144872 =3
In H N U* switching rate formula (59) specializes to

1 4
fo==5+3 B =B+ 5 by)

1

3
8 5 2 .
— gr (cos 0+ \/gcosﬂsmﬁ) .

Evaluating (62) using (63) fof € [0,6,] and (66) ford €
V3

(61,7/6] gives
+ Ercos (91 + z) +
™
,— <r<

(=) %

a=S6 -3
/ '3
4
47‘2 <—01 —
Case C:1/2 < r < 1/4/3. As shown in Fig. 7, the sector
of the circle lies inS N He for § € [0,02] and inH N U* for
0 € (62, 7/6] where

(65)

01 = sec™

+ %r (30059+\/§sin9)

(66)

1 2
— — —Cos
3 w

2, — =

G (67)

1
s 2"

By = sec 1 2r. (68)

The switching rate for the sector of the circle $hn H¢

for 8 € [0,6-] is equal to the switching rate for the reflec- Js

tion of this sector in the edge of the hexagdn(The reflected
sector may be obtained by mapping the sector ingidesing

() and then reflecting in a vertical axis. According to (57) and
the 12-fold symmetry of (60) and (59), these operations pre-
serve the switching rate). The reflected sector is a sector of the
circle of radius- centered om;- and may be parameterized by

€ [0,02] as(1 — rcosf,rsinf)" in rectangular coordinates
and as

B -1 V3 _
()-2 ez

in coordinates (21).

The reflected sector lies iff for § € [0,6;] and inH N U*
for 6 € (01,62]. Foré € [0, 6], the switching rate is obtained
using (63) and (69) as

fs = % (1 + 72— 212 cos 29) . (70)

1001

0.8

0.6

0.47

0.2

0.3 0.4 0.5
T

0.1 0.2

Fig.8. Minimum, maximum, and average switching rate$fet » < 1/v/3.

8

%

0.1 0.2 0.3

r

0.4 0.5

Fig. 9. Normalized switching rate variation for< r < 1/+/3.

Foré € (6,,06-], the switching rate is obtained using (66) and
(69) as
4 .
f5:1+§r(2rcos€—1) (\/gsmﬂ—cosﬂ). (72)

Evaluating (62) using (70) fof € [0, 64], using (71) ford €
(61, 02], and using (66) fof € (0,7 /6] gives

A 1 2 8 16
=——+4+—01+—0— —1r
3 9w s s
T T
X (cos (91 — E) — 2c¢os (92 + g))
4
— =y (i — 461 — 2cos (201 + i) + 2\/5005202) ,
T 3 6
1 1
—<r< —. 72
<< (72)

_Formulas (64), (67), and (72) give the average switching rate
fs over the rang® < r < 1/+/3 and is plotted in Fig. 8. For

r = 1/2 the average switching rate is 0.987 32. Fig. 8 also plots
the minimum and maximum switching rates.

Fig. 9 plots the variation of the switching rate against the
radius of the sinusoidal input. The switching rate variation for
a particular radius is defined as the maximum percentage the
switching rate deviates from the average switching rate over the
circle normalized to the average switching rate

100 .
f (T Oéréagér |fs(rv 0) - fs(r)|

var fq(r) = (73)

)
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Fig. 10. Simulated and theoretical spectr@mof quantization error. Fig.11. Average switching rate simulation results gndor 0 < r < 1/v/3.

The maximum variation is 9% at zero radius. Note that theversampling ratio. For instance the mean-squared error reduces
variation never reaches zero. This implies that the contourstof6.85x 105 for an oversampling ratio of 256.

Fig. 6 are never perfect circles. (Interestingly, the curve rises

rapidly beyond- = 1/2, this is because in Fig. 8 the maximum VIII. CONCLUSIONS

switching rate is unity fo(1/2) < r < (1/+/3) while the min-

. L , , Switching states in power-electronic circuits may be thought
imum switching rate decreases fairly rapidly.)

of as determining quantized outputs which are passed through a
lowpass filter to synthesize a given input signal. This process is
VIl SIMULATION RESULTS analogous to quantizing, transmitting, and demodulating signals

This section presents simulation results to illustrate and cdA-communication systems. Pursuit of this analogy in the context
firm the analytic results for the quantization error spectrum a®f >A modulation with a natural choice of a nearest neighbor
average switching rate of the hexagoBa\ modulator. guantizer yields a hexagonaA modulator for a voltage source

Numerical results for 1024 samples of the quantizatidAverter that is a nontrivial generalization of a scalak mod-
error sequencee, are obtained using recursion (32) forulator.

B = (0.229693,0.339432, —0.569125) ande, = 0. Each The output spectrum and switching rate of the hexaghdal
component ofs was chosen randomly with a precision of 3@nodulator have complicated behavior and are key performance
digits to make it likely that the value gf was representative measures. We have applied ergodic theory and Fourier analysis
of the generic Case 1 within the limitations of finite precisioi© analytically compute the output spectrum and switching rate.
computation. We have found the interplay between the hexagonal geometry

The discrete Fourier transform of the error sequence is tak@fd the intricacies of the ergodic and harmonic analysis to be
with a normalized frequency such that the sampling frequenijriguing. These calculations are foundational for hexagonal
equals one. The spectral density is evaluated at 1024 frequ&r modulators and for their application to power electronics.
cies uniformly distributed in the range [0,1) and is denoted by
triangles in Fig. 10. Fig. 10 also shows the Bohr—Fourier spec- APPENDIX |
trum predicted by formula (52) as boxes. The theoretical and FOURIER AND ERGODIC RESULTS ONH

simulated points correspond quite closely. Note that the discretyse transform standard Fourier and ergodic results from the
Fourier transform of the numerical results is computed at U@quare[o. 1)2 to H. Relate coordinates’ on [0,1)? to coor-
formly spaced frequencies whereas the Bohr—Fourier SpeCterateSx/on Hbys = (Vo) andz = _’ Relate coor-
is computed for the frequenciési) with p € A*. The locations dinatesp on A* to coordinates) on Z*2 by p/ = pW. Sup-
of the spikes correspond well, but their amplitudes differ Somﬁbse f e L2(j0,1)?) and letf = f' o ()oV € L2(H).
whgt. As expected, the error spectrum is neithercontinuo4us qq{en'f/(xl) _ f'((Vw)) _ f(x.), do — \H|da', and(p'a’) =
white. The quantlzatl_c;n error sequence ha§ mean 6164 pW (Vz)) = (px). Write (f,g) = (1/|H|) [, f(2)g*(z)dx
and variance 9.2%10~“ which agrees well with the theoreUcaIand(f/ 7) = [ e (@)g™(@)dz'. Then(f.g) = (f'.q")
results of Section V. The quantization error sequence mean and, » _i[zo;;)z R A ’
variance are close to that of a uniform sequence of random vahdfy = (f.e )= (e ) = f- Moreover
ab||:§5.11 h the simulated itchi te for si fle) =7 (Vi)

ig. 11 shows the simulated average switching rate for sinu- o gt
soidal inputs of amplitude8 < » < (1/v/3) compared to the =/ (Vi +y)) = F(+y).
average switching ratg, computed from formulas (64), (67), Hence, the following results can be transformed to the results of
and (72). The simulation length is 65536 points and the ovesection IlI-D.
sampling ratio is 64. The absolute maximum error between sim-Fourier analysis oft), 1) [41]: L?([0,1)?) is a Hilbert space
ulation andf, is 4.24x 10~2 atr = 0.128 and the mean-squaredwith inner product f/, g'). {e2'*" | p’ € Z*?} is a complete
error is 1.88x10~%. The error can be reduced by increasing therthonormal basisf’(z') = Zp'ez\? f;,emp'z' where the
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Euclid’s algorithm there i$p:, p2) € 7* with pyvy + pavs =

equality is interpreted in th? sense and!, = (f',e~12™'s"),
The Parseval formula if’, g') = Y cz.» fL 45 1. Letp = (p1,p2)V € A*. Also letv) = (—wvz,v1)V € A*.
Maré [40, Th.ll 3.2, prop. Il 2.7, Th. 1 9.2] implies the We further characterize the in Case 3 as satisfyings €
following. Let 3 € R? be such that the only’ € z*2 with A" | s8 € Z} = {z1v1 + 22qp | 21,22 € Z}. Itis clear that
P eZisp =0.Letf : R?/7*> — R be continuous. Let {s € A" | sB € Z} D {z1v1 + 22qp | 21,22 € Z}. To prove
be the canonical projectidi’> — R2/Z2. Then translation by {s € A™ [s8 € Z} C {z1v1 +22qp | 21,22 € Z}, suppose that

=3 is a uniquely ergodic shift oR?/Z? and, for alle, € R?,
limp oo (1/0) Sy F(7 (el + 1)) = Jou 0 F(s')ds
(Note that (e, + ng") . S
f o 0,1)2 — R lifts to f' so thatf’ = f’ o «. Then
limg oo (1/2) SE20 5 (el + 1)) = figay /()"

APPENDIX |
THREE CASES FOR(

We characterize the three casesfoe H.

sp = (h/q)sv = z € Z with s € A*. Then,hsv = gz andh
andgq relatively prime imply that: dividesz andzy = z/h is

7 (el +nB').) Suppose that &n integer. Theny = q(z/h)p = z2qp is a particular solution

to the equation:6 = z with x € A*. The general solution to
= zisx = z1v) + 22qp, z1 € R. Since we require € A*,
2101 = x — 2z9qp € A*, and, sincev; andwy are relatively
prime, z; is an integer.

APPENDIX Il
FOURIER COEFFICIENTS FORD

Case 1is{s € A* | sf € Z} = {0}. Suppose that Case

1 does not hold; that is, thereise A*, r # 0 with r3 =

We derive (39) for the Fourier coefficients of the hexagon part

2 € 7. We describe the general form of such aSuppose that oPerator(). Equation (38*) implieg, = 0. Now, we compute
r = (r1,72)V where(r1, ) € Z*2 and letg be the greatest ¢p for p # 0. Definea : P* — R by a(p) = — [; e™*™*da.

common divisor of-{, r,. By dividing » andz by any common
factors ofz andg, we may assume thatandg are relatively

prime. Also,r1/g, r2/g are relatively prime and by Euclid’s

algorithm there i§o1, 02)! € 7% with (r1/g)o1 + (r2/g)02 =
1.Letoc = W(o1,02)" € A. Thenyro = gandz = (z/g)oisa

particular solution to the equation: = z. The general solution

torz = zisz = ary +(z/g)o wherer, = W(—rq,m1)t € A
anda € R. Therefore

B =ar, + 2o (74)
g

for somex € R. Case 2 isy irrational and Case 3 is rational.

First, we further characterize thtein Case 2 as satisfying

{se AN |spel}={mr|mel} (75)

{s € A*|sp € Z} D {mr | m € Z} is clear. To prove
{s € A | sp € Z} C {mr | m € Z}, suppose thatf =
asry + (z/g)sc = 2/ € Z for s € A*. Then, sinceso € Z,
asr | must be rational, and it follows from irrational that) =

T2
) =sorT

sry = (81,82)VW <_7”1
(76)

andgz’ = gsf = (so)r(z/g)o = (so)z. Butg andz are rela-
tively prime, so thay dividesso and (76) implies thatso) /g =
m IS an integer such that= mr.

Now we use (75) to prove in Case 2 that foe A*

= 7182 — I'281. Now

o s1(rio1 + reo2)
gs =
s2(r101 + ro02)

> _ (817"101 + Sa1102

517201 + S2T202

sr; =0

so=0 (77)

sﬁeZ@{ (modg)}'
Suppose that € Z. Then, (75) implies that = mr for
m € Z and, hence, thatr; = 0. Moreover,sg = s((z/g)o) =
(z/g9)sc € Z and sincey andz are relatively primeg divides
so andso = 0 (mod g). < in (77) follows from (74).

In Case 33 = ar, +(z/g)o with a rational. Thenf has the
form 8 = (h/q)v for v = W (v, v2)t € A, whereh andg are
integers. Without loss of generality we can assumefitatdg
are relatively prime and that; andv, are relatively prime. By

Then
¢ :L/ @e s = 1 (Dyalp) (79)
PH] g i2r|H| P

and the calculation reduces to finding
p —i2wpr\t

= D, e " TPT)

a(p) i2mppt ./H( " )ds
S
i2n|p[*Int| Jom

St

sex{a,b,c}

eiﬂm’enj‘ dl

1/2
/ e—’i27‘rpaS (t) dt
J—-1/2

whereo,(t) = (1/2)nt + ngt, t € [-1/2,1/2] parameterizes
the hexagon edges. Letting = pn, andp = pnt gives

|

~i2n[p[?[nt]

i N /2
op) =T D P sin(2mpos (t))dt
7r|7’L ||p| se{a,b,c} i/
:2_712 Z zﬁsin(wps)sm(”pj)' (79
V3PP (e P

Substituting (79) in (78), differentiating, and evaluating at
p € A* (thenpt € Z andsin(mpy) = 0) yields

. 1
(3 Ps .
=573 E == sin(7ps) cos(mpl)nt. (80)
672p| Ps
s€{a,b,c}

Whenp € A — {0}, ps € Z andsin(mps)/(7ps) = 0 and
¢, = 0 except wherp, = 0. Whenp, = 0,p = knt', k € Z,
pt = 2k and (39) withp € A* — {0} follows from (80).

To simplify (80) whenp € A* — At, considerf, : A* — R
fs(p) = 2sin(mps) cos(mp; ) = sin(mpn ) + sin(mpn, )
wheren® = n, + nt. Note thatht € 2A**. Let A € A. Then
fs(p +A") = sin(n(p + X)) +sin(w(p + X)n7) = fs(p)

sincen® € 2A*! implies that\‘n T is aneveninteger. This pe-
riodicity of f, implies thatf, is constant on each af, + A* and
—nt 4+ A*. The respective constants can be directly calculated
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asf,(£nt) = +v3 for s = a,b,ec. Then f(p) = sgn (p)\/§
and, forp € A* — At

isgn (p) P
Cp =" 1 Pe
P 4\/§7r2|])|2 se{Ea;b;C} P
, Pa=Pc | Pa=Pb
i) | o
4V372p|? |, + b
Pa by

Usingpq + py + p. = 0 we obtain (39) fop € A* — AL,

APPENDIX IV
ABSOLUTE SUMMABILITY

We prove that the coefficenis, . .. [[c, ® ;] ;] < oo.
For the case € {(n! + A") U (—nl + A"}, ¢, ~ p'/1L(p).
Usingp = £nl + (n1,n2) Wt where(n,ns) € 72

D 2

pe{(nf+A)U(—nl+A")} (n1,m2)€2?

< 0.
2.2
113

Ilep ® cpliil ~

For the case € {A*|p.ppp. = 0,p # 0}, the sum is over

. . . t
points in three lines and, ~ (pa/pope,Po/PabesDe/Pabs) -
Usingp = (n1,n2)W* where(ny,ns) € 72

e @ il ~ 3 = < oo

pE{At|paprp.=0,p#0} nez
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