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Hexagonal Sigma–Delta Modulation
Glen Luckjiff and Ian Dobson, Senior Member, IEEE

Abstract—A novel application and generalization of sigma–delta
(��) modulation has emerged in three-phase power-electronic
converters. A conventional��modulator with scalar signals and
binary quantizer is generalized to a�� modulator with vector
signals and a hexagonal quantizer. Indeed, power-electronic
switching states may be thought of as determining the quantizer
outputs. The output spectrum is a key performance measure for
both communications and power electronics. This paper analyti-
cally derives the output spectrum of the hexagonal��modulator
with a constant input using ergodic theory and Fourier series on
the hexagon. The switching rate of the modulator is important for
power-electronic design and formulas for the average switching
rate are derived for constant and slowly varying sinusoidal inputs.

Index Terms—Ergodic, power electronics, quantization,
sigma–delta (��) modulation, spectral analysis.

I. INTRODUCTION

T HIS PAPER generalizes and applies work in sigma–delta
( ) modulation from the field of communications to

a problem of practical significance in power electronics. The
system of modulation originated in the sixties and has re-
ceived significant attention over the past decade as an attractive
alternative to conventional analog-to-digital converters [1], [2].

modulators or, more generally, oversampled analog-to-
digital converters achieve the performance of high-resolution
quantizers by using low resolution quantizers in a feedback loop
with linear filtering. These converters modulate an analog signal
into a simple code, usually a single bit, at a frequency much
higher than the Nyquist rate. In this manner, the modulator can
trade resolution in time for resolution in amplitude, as well as
employ simple and relatively high-tolerance analog components
[2]–[4].

In power electronics, switching converters can also be
viewed as analog-to-digital converters wherein an analog ref-
erence is coded into a low-resolution set of discrete switching
states [5]. Moreover, switching converters typically switch at
frequencies well in excess of the Nyquist rate. Therefore,
modulation techniques are pertinent. Indeed, modulators
have been applied successfully to systems such as resonant link
converters wherein the discrete timing of the circuit switching
precludes the use of conventional modulation techniques such
as pulsewidth modulation (PWM) [5], [6]. Resonant link
converters use zero-voltage switching to limit switching losses
and attain relatively high switching frequencies [7].
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Fig. 1. Output states of voltage-source inverter .

The main analogy we exploit is with the methods in commu-
nications theory of converting (modulating) an analog signal to
a digital signal with a quantizer and subsequently (after trans-
mission) converting (demodulating) the digital signal back to
analog form. For instance, a voltage source converter applies
one of a finite set of discrete voltages on the converter output.
The converter output is then passed through an analog low-pass
filter that removes the modulation frequencies thereby demodu-
lating the discrete voltages back to analog form. In both commu-
nications and power electronics, an aim is to design the system
so that the input signal is transmitted with minimal distortion.

One consequence of this interpretation is that the power-elec-
tronic switching states determine the possible “digitized states”
or quantizer outputs. For example, the conventional voltage
source inverter [8] has seven switching states which correspond
to the seven output vectors in Fig. 1. We assume balanced
three-phase signals represented by vectors with three coordi-
nates which sum to zero. The outputs of the voltage-source
inverter are the line-to-neutral voltages, which may equal one
of seven possible values according to the switch state. These
seven space vectors are shown as dots in Fig. 1 and can be
thought of as the possible output vectors of a quantizer. Here,
we choose the quantizer so that a quantizer input vector
maps to the dot nearest to. The broken lines in Fig. 1 delimit
the regions which map to each dot. This “hexagonal” vector
quantizer is a nearest neighbor quantizer and is well known in
communications [9], [10]. Moreover, this quantizer is optimal
in the sense that the mean-square error from input to output is
minimized [9].

To apply the conventional architecture with binary quan-
tization to three-phase converters requires some generalization.
First, the output voltages of the voltage source inverter are lim-
ited to a set of seven output vectors which form a truncated
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hexagonal lattice. If we assume a nearest neighbor partition as
in the binary case, the appropriate generalization is the truncated
hexagonal vector quantizer discussed above. Second, all mod-
ulator signals are augmented from scalar quantities to vectors
and a vector integrator replaces the scalar integrator.

There has been extensive design and analysis of scalar
modulators for applications in communications and signal
processing [1]. Also, vector quantization is applied (but not
to modulation) in a number of applications in signal
processing [11]. The power-electronic application combines
specific vector quantizers with modulation and requires
a significant generalization of the scalar work. The vector
generalization motivated by the power-electronic application
is natural enough in communications and signal processing
since the nearest neighbor quantizer is one of the simplest
vector quantizers. However, it appears that the use of hexagonal
quantizers in modulators has been largely neglected.

Two different approaches for analyzing modulators have
evolved: approximate methods based on the results of Bennett
[12] and exact analysis. In the first approach, one tries to ap-
proximate the quantization noise by choosing an input-indepen-
dent additive noise source having a similar long-term sample
distribution and power spectrum. The simplest noise model is
white noise with a uniform distribution. Under such an approx-
imation, the nonlinear modulator is modeled as a linear
system, and the performance can readily be derived by using
well-known linear system techniques. Moreover, approximate
methods have been a key tool in practical design and have pre-
dicted many aspects of system behavior to a sufficient degree.
Some of the properties agree reasonably well with simulation re-
sults [4], [13]. However, two notable failures of the linear model
predictions are the generation of idle channel tones and modu-
lator instability [2].

Exact analysis was first applied successfully to discrete-time
single-loop modulators with dc input [14], [15]. Instead of
assuming the memoryless and uniformity characteristics, this
approach derives the true quantizer noise behavior by solving a
system of nonlinear difference equations, and then determining
the noise statistics and power spectrum. The major conclusion
is that the quantizer noise, even though uniformly distributed, is
not white. In fact, the quantizer noise and output of single-loop

modulators have discrete power spectra, which consists of
spectral spikes whose frequency location depend in a complex
way on system input [16].

Several researchers have applied exact analysis methods to
scalar modulators to describe their behavior, predict their
performance, and help develop improved systems. These works
share the common goal of avoiding unjustified application of the
white noise approximation. Powerful techniques from ergodic
theory have been deployed by Gray [14], [16], Delchamps [17],
[18], and Heet al. [19] to derive exact formulas for the spectra
of scalar modulators for various inputs. Of related interest are
the works of Kieffer [20] on stability and convergence of one-bit
quantizers, the work of Hein and Zakhor [21], and the nonlinear
dynamics approaches of Wang [22] and Feely [23].

In this paper, we build on these exact analyses to derive the
spectrum of a vector modulator with a hexagonal quantizer
and a constant input. To simplify our analysis of this highly non-

linear system, we make two assumptions. The first assumption
is that the modulator input is constant. While sinusoidal wave-
forms are also commonly used to test the system performance,
the constant input is a useful idealization of slowly varying
waveforms. The second assumption is that there is no-overload
in the internal quantizer. This can be accomplished by limiting
the magnitude of the modulator input (i.e., dynamic range).

A key aspect of modulator performance is the output spec-
trum. Despite its complexity, we show in this paper that exact
calculation of the output spectrum can be done using results
from ergodic theory and Fourier analysis. In this approach, the
nonlinear discrete dynamical system representing the modulator
is thought of as iterated shifts on a torus and the typical statistics
of the process may be computed by integration over the torus or
subsets of the torus. The generic case of the spectrum calcula-
tion first appeared in our conference paper [24].

Switching rate is an important performance measure in
power-electronic design since device switching loss is directly
proportional to the switching rate. We derive the average
switching rate for the scalar and hexagonal modulators
with generic constant inputs and then extend this calculation to
slowly varying sinusoidal inputs.

There is considerable advantage in using analytic formulas
for the output spectrum and switching rate in design because
simulation of data with complicated nonperiodic structures has
difficulties of run time, data processing, and limited insight into
the nature of the process and the parameter dependencies.

Although themethodsused in this paper are a generalization
of exact analysis methods for scalar modulators in commu-
nications theory, much of the current technologicalmotivation
for the results comes from power electronics. Therefore, while
the hexagonal modulator may well find applications outside
power electronics, it is appropriate to conclude this introduction
with a review of the applications of oversampled analog-to-dig-
ital converters to power electronics.

Oversampled analog-to-digital converters have been em-
ployed in power electronics for nearly two decades. However,
attention to these converters has been sparse in comparison to
the vast literature for pulsewidth modulators. The first reported
application of an oversampled converter (delta modulator) was
to a conventional three-phase transistor inverter wherein the
integration of the output voltage was calculated via the output
inductors. The output current closed the feedback loop and
thus could be controlled [25]. This so-called current controlled
delta modulator exhibited a nonzero steady-state output current
error, which was improved by the addition of an integrator in
the forward path [26].

The invention of the soft switching resonant link converter
by Divan [7] fostered interest in modulators since they both
require constrained switching instants. Studies of threefold
scalar modulators applied to resonant link inverters that
considered their spectral performance and harmonic distortion
using simulation, experiment, and basic analysis were reported
in [27]. The threefold modulator uses three identical inde-
pendent scalar modulators to control each of the three inverter
leg voltages. The threefold modulator has reduced dynamic
range compared to the hexagonal modulator. A zero-output
voltage state (i.e., all switches high/low) was introduced in [6]
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to obtain adjacent state switching. This so-called modified
modulator is a threefold modulator with the provision that
nonadjacent states are overridden by a zero state. This work
differs from the hexagonal in that the zero vector is not
chosen unless a nonadjacent state is selected. Seidl [28] derived
the hexagonal quantizer based on its one-step ahead optimality
properties (minimum-square error) and developed a neural
network delta modulator employing the hexagonal quantizer.
An alternative to current controlled delta modulators using a
one-step ahead minimization of the infinity norm of the current
error was proposed in [29]. Attempts to combine modu-
lation with space vector modulation [8] are developed in [30]
and [31]. Summaries of the application of current controlled
delta modulators and (to a lesser extent) modulators to
resonant link inverters prior to 1994 are found in [32], [28], and
[30]. A simple coherent analysis of modulators applied
to resonant link converters was reported by Mertens in [33].
This work drew from the basic reference in communications
for the behavior of quantization noise with dc input of Candy
and Benjamin [3]. Recently, Nieznan´ski [34] compared the
hexagonal modulator to the modified modulator of [6]
and the threefold-scalar modulator [27], [32] and showed
that the hexagonal modulator has lower distortion power
and device switching rate.

Our conference paper [5] and patent [35] introduced the
modulator with hexagonal quantization as well as the extension
to double-loop and interpolative modulators. This work rep-
resented a significant improvement in spectral performance over
prior work and has been implemented in commercial power-
electronic products requiring high spectral performance.

A novel insight put forth in [5] is that a power-electronic
circuit may be thought of as an analog-to-digital converter in
which the analog input is the signal to be synthesized and the
quantized digital output is the state of the circuit switches. One
consequence of this interpretation is that the power-electronic
switching states determine the possible “digitized states” or
quantizer outputs. Similarly, other circuits such as the matrix
converter, multilevel converters, and multiphase converters
define particular quantizer outputs.

II. SINGLE-BIT MODULATOR

This section reviews the spectral calculation for a single-bit
modulator with a generic constant input. The results are

well known [14], [15], [17], [18]. The purpose of the section is
to explain in a simpler context the spectral calculation method
that is used for the hexagonal case.

A. Discrete-Time Model

A conventional discrete-time single-loop modulator is
shown in Fig. 2 where , , , is the single-bit quan-
tizer, and the unit delay with its unity feedback loop is a “dis-
crete-time integrator”

if
otherwise.

Fig. 2. Discrete-time single-bit or hexagonal��modulator.D: unit delay.q:
single-bit or hexagonal quantizer.

From Fig. 2, one can write the following difference equations
that describe the modulator:

(1)

where is the discrete-time input, is the modulator state, and
is the quantizer output at time.

A key process in the analysis is the quantizer error sequence
defined by

(2)

Using (1) and (2), the state and output processes can be ex-
pressed in terms of the input and the error sequence

(3)

(4)

By substituting (3) into (2), the error sequence satisfies the non-
linear difference equations

(5)

B. Solution of the Difference Equation

We assume the no-overload condition that and
. It follows that and for

[15]. Then, the quantizer error can be expressed as [15]

for (6)

where is the fractional part of; that is, , where
denotes the largest integer not greater than.

For a system with no-overload, (5) becomes

(7)

For convenience, define

(8)

so that (7) becomes

(9)

where .
The solution to (9) is [15]

(10)
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C. Spectrum of the Quantizer Error

The autocorrelation of the sequence is defined as

(11)

whenever the limit exists. Use (10) to obtain

(12)

A classical result in ergodic theory due to Weyl is [36]
Theorem II.1: If is a Riemann-integrable function,

is irrational, and then

We assume to be irrational and apply Theorem II.1 to
in (12) to obtain

(13)

Let , have Fourier coefficients , , .
Then, Parseval’s formula is

(14)

The function is periodic and has Fourier series
where

if
if

The Fourier coefficients of are .
Applying Parseval’s formula to (13) gives

(15)

Since , the series (15) for is absolutely
summable and this implies uniform convergence of the series
(15) with respect to . Since almost periodic sequences are the
uniform limit of trigonometric polynomials, is almost
periodic [37].

We now compute the spectrum of the almost periodic se-
quence . It is known from harmonic analysis that the spec-
trum of an almost periodic sequence is discrete (pure point). The
pure point part of the spectrum may be recovered from the
autocorrelation sequence for any point by

the mean value of the almost periodic sequence
[17], [38]

(16)

The interchange of summations is justified since
. Thus

if
if

(17)

The numbers are the Bohr–Fourier frequencies of
the sequence , and are the Bohr–Fourier coefficients
of . Rewriting (17) and using the spectrum
of the quantization error is [14], [18]

(18)

According to (4), the quantizer outputis obtained by differ-
encing and adding . Hence, standard linear-system Fourier-
analysis techniques can be applied to obtain from (18) the fol-
lowing spectrum of the quantizer output:

(19)

The output spectral density is purely discrete having ampli-
tudes at frequencies for , and
the square of the input at zero frequency.

III. H EXAGONAL MODULATOR

This section describes mathematical underpinnings, in-
cluding hexagonal coordinate systems, lattices, and quantizers,
and states the difference equation for the hexagonal modulator.

A. Hexagonal Lattices and Coordinates

It is convenient to define the plane
, where denotes transpose. Define

and to be

(20)

is the identity on and is the identity on .
The hexagonal lattice is .

The large dots in Fig. 3 show points in.
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Fig. 3. Hexagonal quantizerq and regionsH , S, andR.

The dual of is .
The latticedual [9] to is

The vertices of hexagon in Fig. 3 are points in .
Vectors in or are written as column vectors and dual

vectors in or are written as row vectors. For example,
in Fig. 3 is the column vector . The

columns of generate and the rows of generate .
The Voronoi cells (points closest to a given lattice point) of

are hexagons of side . Define the set to be the interior of
the Voronoi cell containing 0, together with a specific choice of
three nonopposite hexagon sides and two opposite hexagon ver-
tices. (These choices ensure that lattice translates oftile the
plane with no overlapping points.) is the dark central hexag-
onal region of Fig. 3. The area of is .

Define vectors and by (see Fig. 3)

Also define , . Note that ,
, and .

Coordinates , , for are defined by

(21)

Coordinates , , for are defined by

(22)

It is convenient to define an ordered coordinate system for.
Let , , be an ordering of , , chosen so that

. The ordered coordinates are a continuous
nondifferentiable function of the original coordinates. Also, the
ordered coordinates satisfy the relation

(23)

Equation (23) is proved by noting that when is positive (say),
and are necessarily negative; and that .

We write , 1, 2, 3 so that .
In the ordered coordinate system we may define with

economy the various regions of Fig. 3

(24)

(25)

(26)

(27)

B. Hexagonal Quantizer and Discrete-Time Model

A function on ishexagonally periodicif
for all . Define as the identity on and
extend the definition of to by making hexagonally pe-
riodic. One might call “hexagonal part” since generalizes
the scalar fractional part .

Let , . Then

(28)

Define the hexagonal lattice nearest neighbor quantization func-
tion to be

(29)

The nearest neighbor quantizer is shown in Fig. 3. The
input to is a point in the plane and the output is
the nearest to of the 7 truncated hexagonal lattice points

in Fig. 3.
A discrete-time hexagonal modulator is shown in Fig. 2.

The signals , , , and are now interpreted as vectors in
the plane .

The discrete-time model derivation exactly parallels that of
Section II-A and the error sequence satisfies the nonlinear dif-
ference equations

(30)

C. Solution of the Difference Equation

Our analysis requires the modulator state,
to be contained in the no-overload regionof the quantizer.

is the lightly shaded region of Fig. 3 consisting of the seven
hexagons closest to zero.is the star-shaped shaded region of
Fig. 3. The following sufficient condition for no-overload can
be shown by induction. If and , then and

for all We assume and
and hence no-overload for the rest of the paper.
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Since the function coincides with on the
no-overload region , the no-overload assumption implies that
the difference equation (30) can be written as

(31)

Property (28) can be used to check that the solution to (31) is

(32)

D. Fourier and Ergodic Results

We state results about Fourier analysis and ergodic shifts.
Let be hexagonally periodic and Lebesgue
square integrable on . Then, where
the equality is in the sense and the Fourier coefficients are

. Parseval’s formula is

(33)

These Fourier results can be obtained either as sketched in Ap-
pendix I or as a particular case of harmonic analysis on compact
Abelian groups [39].

Identify points of differing by vectors in to define
. is a compact Abelian group. A

function lifts to a function if
for all . Lemma III.1 gives a generic condition on the

input for the dynamics (32) to induce a uniquely ergodic shift
on so that time averages of a functioncan be evaluated as
an integral over .

Lemma III.1: Let be such that the only with
is . Let have a continuous lifting

. Then, for all

Corollary III.1: Lemma III.1 extends to functions
for which there exist sequences of functions, ,

with continuous liftings such that
for all and as .

Lemma III.1 can be obtained from standard results on the
torus [40] as indicated in Appendix I.

IV. SPECTRAL ANALYSIS

This section computes the power-spectral density of the quan-
tizer error function and the quantizer output for the hexagonal

modulator with a constant input. There are three cases to
consider, depending on the value of the constant input. These
three cases generalize the casesirrational and rational for
the single-bit modulator.

Case 1: . In Case 1, the error
sequence described by (32) is equidistributed overso that
Lemma III.1 applies. Case 1 is the generic case satisfied by

almost everywhere.

Case 2: for some
nonzero . Another characterization of Case 2 is that
has the form

(34)
where is irrational and . In Case 2, the sequence

described by (32) is confined to lines in, but the sequence
is aperiodic and equidistributed over the lines.

Case 3: has the form

(35)

where and are relatively prime. In Case 3, the sequence
described by (32) is confined to discrete points inand is

periodic with period .
The Case 1–3 characterizations are proved in Appendix II.

A. Autocorrelation Computation

The autocorrelation matrix of the noise is, using (32)

(36)

where denotes outer product. The following three subsections
compute the autocorrelation in Cases 1, 2, and 3 starting from
(36).

1) Autocorrelation Computation Case 1:Case 1 is the
generic case in which Lemma III.1 applies and the calculation
proceeds as a generalization of the method for the single-bit
modulator presented in Section II.

Equation (36) may be modified using (28) to give

Define by . Then

Each component of is continuous except on several line seg-
ments and satisfies the conditions of Corollary III.1. Hence

(37)

Let be the Fourier coefficients of for

(38)
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Appendix III computes as

(39)

where and are defined as follows. Using coordinates (22)
so that , define

product of nonzero elements of

Partition and define

if ; or
if ; and

if
if

The Fourier coefficients of are .
Each entry of the outer product in (37) can be regarded as

an inner product of functions over and applying Parseval’s
formula (33) to each entry gives

(40)

2) Autocorrelation Computation Case 2:Recall from (34)
that in Case 2, where , and
and is irrational. Equation (36) for the autocorrelation
matrix may be rewritten as

Use irrational and Weyl’s ergodic theorem II.1 to get

(41)

The Fourier coefficients of the factors inside the integral in (41)
can be obtained from their Fourier expansions, e.g.,

Applying Parseval’s formula (14) to (41) gives

(42)

According to Appendix IV, the summations in (42) are abso-
lutely convergent and can be reordered to give

(43)

(44)

(45)

The equivalence of (43) and (44) follows from (77) in Ap-
pendix II.

3) Autocorrelation Computation Case 3:Recall from (35)
that in Case 3, where and , are
relatively prime. Then (36) may be rewritten as

(46)

The Fourier coefficients of the factors inside the sum in (46) can
be obtained from their Fourier expansions, e.g.,
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Applying Parseval’s formula for scalar discrete periodic func-
tions to (46) gives

(47)

B. Formal Derivation of Autocorrelation

As a supplement to the rigorous derivation above, we give a
formal derivation of the autocorrelation that neglects issues of
convergence and interchange of infinite operations. The purpose
is to show the commonality between the three cases. Starting
from (36)

(48)

In Case 1, (48) reduces to the rigorously derived (40) since
for implies in Case 1. Moreover in Cases 2 and

3, (48) is the same as (45) and (47).

C. Spectrum of Error and Output Sequence

According to (40), (45), and (47) for Cases 1, 2, and 3 the
autocorrelation matrix has the general form

(49)

The absolute summability of the series (49) is proved in Ap-
pendix IV and this implies uniform convergence of (49) with
respect to . Since almost periodic sequences are the uniform
limit of trigonometric polynomials, we conclude that each ma-
trix element of is almost periodic [37].

Similarly to the scalar case, the Bohr–Fourier series (49) im-
plies that the quantization error spectral matrixis purely dis-
crete having amplitudes at frequencies

for

(50)

Note that the amplitudes are real becauseand are both
imaginary [see (39)] so that is real and because of
the symmetry of the sum over. In particular,

.
The quantizer output is obtained by differencing and

adding according to (4). Hence, the output spectral density
matrix is

(51)

Now we examine some of the special forms of these spectra in
the Cases 1, 2, and 3 described in Section IV.

1) Spectra in Case 1:For generic input satisfying Case 1,
the error spectrum (50) reduces to

(52)

and the output spectrum (51) becomes

Hence, the frequencies and, therefore, the amplitudes of the
spectra depend strongly on the input. Clearly, the spectrum
is far from white noise being neither white nor continuous. The
error and the output are quasi-periodic.

2) Spectra in Case 2:Recall from (34) that in Case 2,
where and and is

irrational. Moreover, .
Then, the error spectrum (50) can be written as

3) Spectra in Case 3:Recall from (35) that in Case 3,
where and . Then, the error spectrum

(50) can be written as

showing that frequencies are equally spaced at multiples of.
The output spectrum frequencies are spaced in the same way.
The error and the output have period.
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V. MEAN AND VARIANCE

This section computes the mean and variance of the quantizer
error in Case 1 of a generic constant input.

Using (32) and Lemma III.1, the meanof the noise is

The quantizer output is obtained by differencingand adding
according to (4). Hence, as expected, the mean quantizer

output is .
The covariance matrix of the quantizer error is , the

autocorrelation matrix evaluated at zero. Calculation of
from (37) is straightforward [9]

The variance of one component ofis .

VI. A VERAGE SWITCHING RATE

A. Single-Bit Modulator

We derive the average switching rate for the single-bit
modulator with the assumptions of no-overload and constant
irrational input .

First use (4) and notation from section Section II-B to show
that

The condition for no switching betweenand is

Write for the indicator function, so that the average
switching rate is given by

(53)

by Theorem II.1. By inspection (53) is

(54)

The maximum switching rate occurs at .

B. Hexagonal Modulator

We derive the switching rate for the hexagonal modulator
with constant input vector (see Fig. 3). No-overload and
generic satisfying Case 1 are assumed.

First, use (4), (28), and the definition ofin Section III-B to
show that

The condition for no switching betweenand is

(55)

since is impossible. Write

for the hexagon translated by so that (55) may be
written as and . Then, the condition
for no switching between and is

(56)

Using Corollary III.1, the average switching rateis

(57)

Equation (57) relates to the overlapping area of two shifted
hexagons as shown in Figs. 4 and 5. This is a useful geometric
interpretation. For instance, we immediately see thatis max-
imum for on the perimeter of . To compute the area (57) for

, there are three cases.
Case A: . Consider the particular case ofin

the lower half of the sextant as shown in Fig. 4. According
to (57), the switching rate is

(58)

By computing the positions of , , in terms of the vertices
of and , it can be shown that and

. Hence
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Fig. 4. Overlap of two shifted hexagons for� 2 U \H .

Fig. 5. Overlap of two shifted hexagons for� 2 U .

Using the ordered coordinates described in Section III, the gen-
eral case for any is

(59)

Case B: . Consider the particular case of in the
lower half of the sextant as shown in Fig. 5. The switching
rate is

By computing the positions of , , , , it can be shown
that , ,

, and . Hence

The general case for any is, using (23)

(60)

Case C: . Since (57) is a function of , the
average switching rate at is equal to the average
switching rate at .

Fig. 6. Switching-rate contour plot over regionS.

Fig. 6 shows a contour plot of the switching rate evaluated
with (59) and (60). The switching rate is zero at the origin and
has its maximum value of one on the perimeter of. For small

, the product term in (60) is negligible and hence the contours
are approximately hexagonal near the origin.

C. Slowly Varying Sinusoidal Inputs

We determine the switching rate for sinusoidal inputs that are
slowly varying with respect to the switching rate. Sinusoidal in-
puts correspond to circles in the planeand the circle radius is
proportional to the sinusoidal input amplitude. This subsection
computes the average switching rate on circles as the radius is
varied and then quantifies the deviations of the switching rate
from the average switching rate as the circle is traversed.

To describe the circles, it is convenient to use polar coordi-
nates in the plane . The transformation to coordinates
(21) is

(61)

For example, has polar coordinates .
Formulas (59) and (60) for the switching rate have a

12-fold symmetry in ( is unchanged by reflection in the
axes of symmetry along , , , , , ). Therefore,
the average switching rate on a circle of radius can be
computed on a sector of the circle such as

(62)

To evaluate (62), there are three cases according to how the
sector of the circle intersects the regions, , and .

Case A: . The sector of the circle lies inside
and the switching rate formula (60) specializes to

(63)
Evaluating (62) using (63) gives

(64)
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Fig. 7. Sinusoidal input that lies partly outsideH .

Case B: . The sector of the circle lies in
for and in for . The boundary of

satisfies . Equations (27) and (61) yield

(65)

In switching rate formula (59) specializes to

(66)

Evaluating (62) using (63) for and (66) for
gives

(67)

Case C: . As shown in Fig. 7, the sector
of the circle lies in for and in for

where

(68)

The switching rate for the sector of the circle in
for is equal to the switching rate for the reflec-
tion of this sector in the edge of the hexagon. (The reflected
sector may be obtained by mapping the sector insideusing

and then reflecting in a vertical axis. According to (57) and
the 12-fold symmetry of (60) and (59), these operations pre-
serve the switching rate). The reflected sector is a sector of the
circle of radius centered on and may be parameterized by

as in rectangular coordinates
and as

(69)

in coordinates (21).
The reflected sector lies in for and in

for . For , the switching rate is obtained
using (63) and (69) as

(70)

Fig. 8. Minimum, maximum, and average switching rates for0 � r < 1=
p
3.

Fig. 9. Normalized switching rate variation for0 � r < 1=
p
3.

For , the switching rate is obtained using (66) and
(69) as

(71)

Evaluating (62) using (70) for , using (71) for
, and using (66) for gives

(72)

Formulas (64), (67), and (72) give the average switching rate
over the range and is plotted in Fig. 8. For

the average switching rate is 0.987 32. Fig. 8 also plots
the minimum and maximum switching rates.

Fig. 9 plots the variation of the switching rate against the
radius of the sinusoidal input. The switching rate variation for
a particular radius is defined as the maximum percentage the
switching rate deviates from the average switching rate over the
circle normalized to the average switching rate

(73)
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Fig. 10. Simulated and theoretical spectrumS of quantization error.

The maximum variation is 9% at zero radius. Note that the
variation never reaches zero. This implies that the contours of
Fig. 6 are never perfect circles. (Interestingly, the curve rises
rapidly beyond , this is because in Fig. 8 the maximum
switching rate is unity for while the min-
imum switching rate decreases fairly rapidly.)

VII. SIMULATION RESULTS

This section presents simulation results to illustrate and con-
firm the analytic results for the quantization error spectrum and
average switching rate of the hexagonal modulator.

Numerical results for 1024 samples of the quantization
error sequence are obtained using recursion (32) for

and . Each
component of was chosen randomly with a precision of 30
digits to make it likely that the value of was representative
of the generic Case 1 within the limitations of finite precision
computation.

The discrete Fourier transform of the error sequence is taken
with a normalized frequency such that the sampling frequency
equals one. The spectral density is evaluated at 1024 frequen-
cies uniformly distributed in the range [0,1) and is denoted by
triangles in Fig. 10. Fig. 10 also shows the Bohr–Fourier spec-
trum predicted by formula (52) as boxes. The theoretical and
simulated points correspond quite closely. Note that the discrete
Fourier transform of the numerical results is computed at uni-
formly spaced frequencies whereas the Bohr–Fourier spectrum
is computed for the frequencies with . The locations
of the spikes correspond well, but their amplitudes differ some-
what. As expected, the error spectrum is neither continuous nor
white. The quantization error sequence has mean 6.64
and variance 9.27 which agrees well with the theoretical
results of Section V. The quantization error sequence mean and
variance are close to that of a uniform sequence of random vari-
ables.

Fig. 11 shows the simulated average switching rate for sinu-
soidal inputs of amplitudes compared to the
average switching rate computed from formulas (64), (67),
and (72). The simulation length is 65 536 points and the over-
sampling ratio is 64. The absolute maximum error between sim-
ulation and is 4.24 at and the mean-squared
error is 1.88 . The error can be reduced by increasing the

Fig. 11. Average switching rate simulation results andf̂ for 0 � r < 1=
p
3.

oversampling ratio. For instance the mean-squared error reduces
to 6.85 for an oversampling ratio of 256.

VIII. C ONCLUSIONS

Switching states in power-electronic circuits may be thought
of as determining quantized outputs which are passed through a
lowpass filter to synthesize a given input signal. This process is
analogous to quantizing, transmitting, and demodulating signals
in communication systems. Pursuit of this analogy in the context
of modulation with a natural choice of a nearest neighbor
quantizer yields a hexagonal modulator for a voltage source
inverter that is a nontrivial generalization of a scalar mod-
ulator.

The output spectrum and switching rate of the hexagonal
modulator have complicated behavior and are key performance
measures. We have applied ergodic theory and Fourier analysis
to analytically compute the output spectrum and switching rate.
We have found the interplay between the hexagonal geometry
and the intricacies of the ergodic and harmonic analysis to be
intriguing. These calculations are foundational for hexagonal

modulators and for their application to power electronics.

APPENDIX I
FOURIER AND ERGODIC RESULTS ON

We transform standard Fourier and ergodic results from the
square to . Relate coordinates on to coor-
dinates on by and . Relate coor-
dinates on to coordinates on by . Sup-
pose and let .
Then , , and

. Write
and . Then

and . Moreover

Hence, the following results can be transformed to the results of
Section III-D.

Fourier analysis on [41]: is a Hilbert space
with inner product . is a complete
orthonormal basis. where the
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equality is interpreted in the sense and .
The Parseval formula is .

Manē [40, Th.II 3.2, prop. II 2.7, Th. I 9.2] implies the
following. Let be such that the only with

is . Let be continuous. Let
be the canonical projection . Then translation by

is a uniquely ergodic shift on and, for all ,
.

(Note that .) Suppose that
lifts to so that . Then

.

APPENDIX II
THREE CASES FOR

We characterize the three cases for .
Case 1 is . Suppose that Case

1 does not hold; that is, there is , with
. We describe the general form of such a. Suppose that

where and let be the greatest
common divisor of , . By dividing and by any common
factors of and , we may assume thatand are relatively
prime. Also, , are relatively prime and by Euclid’s
algorithm there is with
. Let . Then, and is a

particular solution to the equation . The general solution
to is where
and . Therefore

(74)

for some . Case 2 is irrational and Case 3 is rational.
First, we further characterize thein Case 2 as satisfying

(75)

is clear. To prove
, suppose that

for . Then, since ,
must be rational, and it follows from irrational that

. Now

(76)
and . But and are rela-
tively prime, so that divides and (76) implies that

is an integer such that .
Now we use (75) to prove in Case 2 that for

(77)

Suppose that . Then, (75) implies that for
and, hence, that . Moreover,

and since and are relatively prime, divides
and ( ). in (77) follows from (74).

In Case 3, with rational. Then, has the
form for , where and are
integers. Without loss of generality we can assume thatand
are relatively prime and that and are relatively prime. By

Euclid’s algorithm there is with
. Let . Also let .
We further characterize the in Case 3 as satisfying

. It is clear that
. To prove

, suppose that
with . Then, and

and relatively prime imply that divides and is
an integer. Then, is a particular solution
to the equation with . The general solution to

is , . Since we require ,
, and, since and are relatively

prime, is an integer.

APPENDIX III
FOURIER COEFFICIENTS FOR

We derive (39) for the Fourier coefficients of the hexagon part
operator . Equation (38) implies . Now, we compute

for . Define by .
Then

(78)

and the calculation reduces to finding

where , parameterizes
the hexagon edges. Letting and gives

(79)

Substituting (79) in (78), differentiating, and evaluating at
(then and ) yields

(80)

When , and and
except when . When , , ,

and (39) with follows from (80).
To simplify (80) when , consider

where . Note that . Let . Then

since implies that is aneveninteger. This pe-
riodicity of implies that is constant on each of and

. The respective constants can be directly calculated
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as for . Then
and, for

Using we obtain (39) for .

APPENDIX IV
ABSOLUTE SUMMABILITY

We prove that the coefficents .
For the case , .

Using where

For the case , the sum is over
points in three lines and .
Using where
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