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Estimating propagation and distribution of load shed in simulations of cascading
blackouts

Janghoon Kim, Kevin R. Wierzbicki, Ian Dobson, Rodney C. Hardiman

Abstract—We estimate with branching process models the
propagation of load shed and the probability distribution of total
load shed in simulated cascading blackouts of electric power
systems. The average propagation of the simulated load shed
data is estimated and then the initial load shed is propagated with
two different branching process models of cascading failure to
estimate the probability distribution of total load shed. The first
model discretizes the load shed and then applies a Galton-Watson
branching process. The second model is a continuous state
branching process. We initially test the estimated distributions of
total load shed using load shed data generated by the OPA and
TRELSS cascading outage simulations. We discuss for the first
model the effectiveness of the estimator in terms of how many
cascades need to be simulated to predict the distribution of total
load shed accurately.

Index Terms—power system reliability, risk analysis, cascading
failure, stochastic processes, branching process

I. INTRODUCTION

Large blackouts are rarer than small blackouts, but are
costly to society and have substantial risk [1]. Large black-
outs generally become widespread by a cascading process of
successive failures [2]–[4]. It is useful to study mechanisms of
cascading failure so that blackout risk may be better quantified
and mitigated. The electric power infrastructure is vital in
maintaining our society, and maintaining high reliability is
especially important as the electric power infrastructure is
being transformed in response to changes in energy sources,
loads, technologies, markets and climate.

There are many and diverse mechanisms in power systems
by which components tripping or failures cause further compo-
nents tripping [1]–[5]. These include line overloads, failures in
protection, communication, maintenance or software, various
types of instability, and errors in coordination, situational
awareness, and planning or operations. It is infeasible to
analyze a full range of these mechanisms with one simulation,
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so cascading failure simulations model and analyze a selected
subset of these mechanisms [5]. In this paper we analyze load
shed data produced by the OPA simulation of cascading line
overloads and the TRELSS simulation of multiple cascading
mechanisms. Each simulated cascade has successive genera-
tions in which transmission lines are tripped and load is shed,
and the total amount of load shed is a measure of the size of
the blackout.

In the OPA simulation [6], the power system is represented
with a standard DC load flow approximation. Starting from
a solved base case, blackouts are initiated by random line
outages. Whenever a line is outaged, the generation and load
is redispatched using standard linear programming methods.
The cost function is weighted to ensure that load shedding is
avoided where possible. If any lines were overloaded during
the optimization, then these lines are outaged with a specified
probability. The process of redispatch and testing for outages
is iterated until there are no more outages. Then the total
load shed is the power lost in the blackout. The OPA model
neglects many of the cascading processes in blackouts and the
timing of events. However, the OPA model does represent in
a simplified way a dynamical process of cascading overloads
and outages that is consistent with some basic network and
operational constraints. This paper uses a restricted form of
the OPA model in which the power grid is fixed and does
not evolve or upgrade; in other work the OPA model also
represents the complex dynamics of an evolving grid [1], [7],
[8].

TRELSS (Transmission Reliability Evaluation of Large
Scale Systems) is a commercially available tool for reliability
assessment of composite generation and transmission systems
developed by EPRI in cooperation with Southern Company
Services [9], [10]. TRELSS uses enumeration of generation
and transmission contingencies to evaluate power system relia-
bility. System failure criteria include circuit overloads, voltage
violations, capacity deficiency, islanding, and area interchange
failures. Here we use the TRELSS Simulation Module (TSM)
to simulate cascading failure.

Branching processes have long been used in a variety of
applications to model cascading processes [11], [12], but their
application to the risk of cascading failure is recent [13], [14].
In particular, Galton-Watson branching processes give a high-
level and tractable probabilistic model of cascading failure.
There is some initial evidence that Galton-Watson branching
processes can capture some general features of simulated and
observed cascading line trips [14]–[18] and can approximate
other probabilistic models of cascading failure [13], [19], [20].
The branching process gives a simple probabilistic description
of the cascading process as an initial disturbance followed by
an average tendency for the cascade to propagate in stages
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until the cascade dies out or all the components fail.
In previous work [15], [17], [21], we obtained cascading

failure data from the OPA simulation with 118 and 300 bus
IEEE standard test systems, estimated the initial number of
lines tripped and average propagation of line trips from this
data, and then used the branching process to predict the
probability distribution of the total number of lines tripped.
This predicted distribution was then shown to match well with
the empirical distribution produced by exhaustively running
the OPA simulation in most of the cases tested. It is useful to
predict the distribution of total number of lines tripped via the
branching process because this can be done with significantly
fewer simulated cascades. The total number of lines tripped is
a measure of blackout size of interest to utilities, whereas load
shed is a measure of blackout size of much more direct interest
to all users of electricity. In this paper we test estimating the
propagation and probability distribution of load shed.

In contrast with the case of number of lines tripped, which
are nonnegative integers, the amounts of load shed are non-
negative real numbers. We estimate the initial distribution of
load shed and the average propagation λ from the simulated
load shed data. Then we discretize the continuous initial dis-
tribution of load shed and use this discrete distribution as the
initial distribution of a Galton-Watson branching process with
average propagation λ to estimate a discretized distribution of
the total load shed.

We also use an alternative approach [21]–[23] using a
continuous state branching process model [24]–[26] to esti-
mate the distribution of the total load shed. The offspring
distribution is assumed to be a gamma distribution, with
mean λ and variance estimated from the data. Then computer
algebra is used to manipulate cumulant generating functions
to compute the distribution of total load shed.

We assume some detailed explanations in previous papers.
The OPA simulation is explained in [6], the TRELSS
simulation is explained in [9], [10], and a variety of cascading
failure methods and simulations are explained and referenced
in [1], [5]. The branching process model and parameter
estimation are explained in [17] and branching processes are
explained in [11], [12], [24]–[26]. Initial versions of parts of
this paper appeared in the conferences [22], [27].

II. ESTIMATING PROPAGATION AND DISTRIBUTION OF
LOAD SHED WITH BRANCHING PROCESSES

This section describes the procedures for estimating the
propagation and probability distribution of load shed with a
branching process.

A. Processing load shed data

For each simulated cascade, the total load shed as well as
the load shed at each intermediate generation of the cascade
is recorded. The first step is to round very small load shed
amounts that are considered negligible (less than 0.5% of total
load) to zero. Then the data is modified so that each cascade
starts with a nonzero amount of shed. In particular, the first
step is that cascades with no load shed are discarded. The
remaining K cascades are those with some non-negligible load

shed. Therefore the computed statistics, such as the probability
distributions of initial and total load shed, are conditioned
on the cascade starting with some non-negligible amount of
load shed. The second step is that for the cascades with no
load shed in initial generations and non-negligible load shed
in subsequent generations, we discard the initial generations
with no load shed so that generation zero always starts with
a positive amount of load shed.

Now the data has K cascades that start with non-negligible
load shed. Letting Xi

n denote the load shed at generation n of
cascade i, the data looks like this:

gen. 0 gen. 1 gen. 2 · · ·
cascade 1 X

(1)
0 X

(1)
1 X

(1)
2 · · ·

cascade 2 X
(2)
0 X

(2)
1 X

(2)
2 · · ·

...
...

...
...

...
cascadeK X

(K)
0 X

(K)
1 X

(K)
2 · · ·

The total load shed in cascade i is

Y (i) = X
(i)
0 +X

(i)
1 + . . .

The estimator for the average propagation λ is the standard
Harris estimator [12], [24], [31], [32]:

λ̂ =

K∑
k=1

(
X

(k)
1 +X

(k)
2 + ...

)
K∑
k=1

(
X

(k)
0 +X

(k)
1 + ...

) (1)

The Harris estimator (1) is an asymptotically unbiased max-
imum likelihood estimator [12], [32]. Our cascading process
is assumed to be subcritical (λ < 1) and saturation effects are
neglected. (In supercritical or saturating cases, other estimators
for λ are appropriate as discussed in [17].)

The load shed amounts X(1)
0 , X

(2)
0 , · · · , X(K)

0 are samples
from the probability distribution of initial load shed, assuming
that some non-negligible load is shed. The average initial load
shed is estimated as

θ̂ =
1

K

K∑
k=1

X
(k)
0 . (2)

B. Discretization Method

To estimate the probability distribution of total load shed
from the initial load shed and the estimated propagation λ̂,
we discretize the samples of the initial load distribution and
assume they are propagated by a Galton-Watson branching
process with a Poisson offspring distribution of mean λ̂.

There are general arguments suggesting that the choice
of a Poisson offspring distribution is appropriate. A Poisson
approximation is a good approximation when there are a large
number of other load shed decrements that have small proba-
bility and are independent [28]. Moreover, the assumption of
strict independence between the load decrements can be re-
laxed by allowing some dependence between load decrements
on the same or a small number of neighboring buses [29] or
even also some small dependence on load decrements at other
buses [30].
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We choose an amount of load shed ∆ as the unit of
discretization. Then each initial load shed sample Xk

0 is
discretized to an integer multiple of ∆:

Zk0 = int
[
Xk

0

∆
+ 0.5

]
, (3)

where int[x] = integer part of x.1 Write Z0 for the initial load
shed expressed in integer multiples of ∆. Then the empirical
probability distribution of Z0 is

P [Z0 =z0] =
1

K

K∑
k=1

I[Zk0 =z0]. (4)

It is known in branching processes that the total number
of individuals starting from z0 parents in a branching process
with Poisson offspring distribution of mean λ̂ is distributed
according to the Borel-Tanner distribution:

P [r total failures] = z0λ̂(rλ̂)r−z0−1 e−rλ̂

(r − z0)!
, r ≥ z0 (5)

Hence, given the probability distribution (4) of the initial
distribution Z0 and the average propagation estimated from
(1), the discretized total load shed is distributed according to
a mixture of Borel-Tanner distributions:

P [Y =r∆] =

r∑
z0=1

P [Z0 =z0]z0λ̂(rλ̂)r−z0−1 e−rλ̂

(r − z0)!
(6)

The sum in (6) runs from z0 = 1 to r since these are the
possible numbers of initial multiples of ∆ shed for r∆ total
load shed.

C. Continuous state branching process

This subsection explains continuous state branching pro-
cesses informally and states formulas to compute the dis-
tribution of the total amount of load shed. Kallenburg [25]
and Seneta and Vere-Jones [26] give useful and systematic
accounts of continuous state branching processes, and can be
consulted for a more formal background to this subsection.

The branching process starts with an initial amount of load
shed X0 in stage 0 and proceeds to generate a sequence
of load shed amounts X1, X2, X3, . . . in stages 1, 2, 3,
. . . respectively. X0, X1, X2, X3, . . . are nonnegative real
numbers. The offspring distribution H(x) is defined to be the
probability density function (PDF) of load shed in any stage
if the load shed in the preceding stage is 1. We write X for
a random variable with PDF H(x). The expected value of X
is λ.

We will first assume that the initial load shed X0 is a
constant. The load X1 shed in stage 1 is a random variable
determined by the offspring distribution H(x) in the following
way: In the special case of X0 = 1, X1 has PDF H(x). In
general, X1 has PDF (H(x))∗X0 where (H(x))∗X0 is the
convolution of H(x) with itself X0 times and the PDF of
the sum of X0 independent copies of X . (The computation of
(H(x))∗X0 using Laplace transforms when X0 is a noninteger

1Adding 0.5 before taking the integer part ensures that the expectations of
Zk

0 and Xk
0 /∆ are the same.

positive real number is discussed below.) X1 is realized by
sampling from (H(x))∗X0 . Then the load X2 shed in stage 2
has PDF (H(x))∗X1 that is the PDF of the sum of X1

independent copies of X . X2 is realized by sampling from
(H(x))∗X1 . Then the load X3 shed in stage 3 has PDF
(H(x))∗X2 , and so on.

The computation of these PDFs is simplified by working in
terms of their cumulant generating functions (CGFs). The CGF
h(s) of the offspring distribution is the negative logarithm of
the Laplace transform of H(x):

h(s) = − ln

∫ ∞
0

e−sxH(x)dx = − lnEe−sX

The Laplace transform of (H(x))∗X0 is the Laplace transform
of H(x) to the power X0:

Ee−sX1 = (Ee−sX)X0

Hence the CGF of the load X1 shed in stage 1 is

h1(s) = − lnEe−sX1 = − ln
(
(Ee−sX)X0

)
= X0h(s)

The CGF of the load X2 shed in stage 2 is

h2(s) = − lnEe−sX2

= − lnE[E[(e−sX)X1 |X1]]

= − lnE[e−h(s)X1 ]

= h1(h(s)) = X0h(h(s)) (7)

Similar reasoning shows that the CGF of X3 is X0h(h(h(s)))
and that the CGF of Xn is

hn(s) = − lnEe−sXn = X0h
(n)(s) (8)

where h(n) is the n-fold functional composition of h.
As the cascade proceeds, the load shed accumulates and the

running total of the load shed at stage n is given by

Yn = X0 +X1 + . . .+Xn.

If λ < 1, the cascade will die out and Yn converges to the
total load shed or blackout size

Y = lim
n→∞

Yn.

Assuming the subcritical case λ < 1, the distribution of
the total load shed Y can be computed from the offspring
distribution. First consider the case of X0 = 1 and let k•(s)
be the CGF of Y when X0 = 1. Then k•(s) satisfies the
implicit equation

k•(s) = s+ h(k•(s)). (9)

If we assume the subcritical case of λ < 1, (9) can be solved
by the Lagrange inversion method [35]:

k•(s) = s+

∞∑
a=1

1

a!

da−1

dsa−1
(h(s))a (10)

In practice we use 15 terms of the infinite sum in (10) to
obtain a good approximation for k•(s).

Equation (9) can be understood as follows. Consider Y−1 =
Y −X0 = X1 +X2 +X3 + .... If X1 = 1, then the CGF of
Y − 1 is k•(s). If X1 is constant, then the CGF of Y − 1 is
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X1k•(s). This follows from the independence of the branching
process generated by different portions of X1. For example,
if X1 = 2, Y − 1 can be regarded as being produced by the
sum of two independent branching processes with X1 = 1 so
that the CGF of Y − 1 is 2k•(s). If X1 has CGF h(s), as it
does when X0 = 1, then the CGF of Y − 1 is

− lnEe−s(Y−1) = − lnE[E[(e−s(Y−1)|X1]]

= − lnE[eX1k•(s)]

= h(k•(s)) (11)

Now (9) follows since the CGF of Y − 1 is also

− lnEe−s(Y−1) = − lnEe−sY − s = k•(s)− s. (12)

This subsection has so far assumed that the initial load shed
X0 is a constant whereas the branching process model of
this paper assumes that X0 is a random variable with CGF
m(s). That is, stage 0 of the branching process is generated
using m(s) and all subsequent stages are generated using h(s).
When X0 has CGF m(s), the CGF of Xn in (8) becomes

hn(s) = m(h(n)(s)) (13)

Let k(s) be the CGF of Y when X0 has CGF m(s). Then

k(s) = m(k•(s)) (14)

The expected value of X0 is θ and the expected value of the
offspring distribution X is λ. The expected value of load shed
in stage n can be evaluated by differentiating (13) and setting
s = 1 to obtain

EXn = θλn (15)

Once k(s) has been obtained as an explicit function of s
using (14), the PDF K(x) of the total load shed Y is obtained
as the inverse Laplace transform of e−k(s) using the Post-
Widder method [36]:

K(x) = lim
a→∞

(−1)a

a!

(a
x

)a+1
(
da

dsa
e−k(s)

∣∣∣∣
s=a/x

)
(16)

In practice we use a = 15 in (16) to obtain a good approxi-
mation for K(x).

The general procedure for estimating the blackout size PDF
K(x) is

1) Assume a parametrized form for the initial load shed
CGF m(s) and offspring CGF h(s).

2) Estimate the parameters of m(s) and h(s) from the data.
3) Compute the blackout size CGF k(s) from m(s) and

h(s) using (9) and (14)
4) Compute the inverse Laplace transform of e−k(s) to

obtain the blackout size PDF K(x) using (16).
The procedure estimates parameters of an explicit form of
m(s) and h(s) so that the computation of k(s) and the Laplace
inversion can be done using computer algebra.

We assume, as discussed at the end of the subsection, that
the offspring distribution is a gamma distribution with mean
λ and shape κ. Then the CGF of the offspring distribution is

h(s) = κ ln

(
1 + s

λ

κ

)
. (17)

The pdf of the initial load shed is parameterized as a weighted
sum of the pdfs of two gamma distributions with respective
means θ1 and θ2 and respective shapes κ1 and κ2.

fX0(x) = c1
(κ1/θ1)κ1

Γ(κ1)
xκ1−1 e−xκ1/θ1+

(1− c1)
(κ2/θ2)κ2

Γ(κ2)
xκ2−1 e−xκ2/θ2 (18)

Then the Laplace transform of the distribution of initial load
shed is

e−m(s) = c1

(
1 + s

θ1

κ1

)−κ1

+(1−c1)

(
1 + s

θ2

κ2

)−κ2

(19)

The parameters of the initial distribution θ1, θ2, κ1, κ2 are
obtained by numerically finding a good fit of (18) to the
empirical pdf of the initial load shed X0.

The offspring mean λ is estimated from the data as de-
scribed in the previous subsection. The offspring shape κ
seems harder to estimate and our initial approach used here is
to apply the method of moments to X1. The second moment
of X1 is

EX2
1 =

d2

ds2
e−m(h(s))

∣∣
s=0

= λ2

[
c1

(
θ1

κ
+
θ2

1(κ1 + 1)

κ1

)
+

(1− c1)

(
θ2

κ
+
θ2

2(κ2 + 1)

κ2

)]
.

Then the estimated offspring shape κ̂ is found by solving

1

J

J∑
i=1

(X
(i)
1 )2 = λ̂2

init

[
c1

(
θ1

κ̂
+
θ2

1(κ1 + 1)

κ1

)
+

(1− c1)

(
θ2

κ̂
+
θ2

2(κ2 + 1)

κ2

)]
,

where

λ̂init =

K∑
i=1

X
(i)
1

K∑
i=1

X
(i)
0

.

Here K is the number of cascades with a non-trivial amount
of load shed.

We now discuss the choice of the form of the offspring
distribution. Any parametrized, nonnegative distribution that is
infinitely divisible can be a candidate to describe the offspring
distribution. There should be a minimal number of parameters
and they should be easy to estimate from data. Moreover, it
is advantageous for the computations for the distribution to
have a tractable CGF. This makes it more difficult to work
with some seemingly more natural choices such as the log-
normal distribution. Also, estimating the offspring distribution
empirically from data has some challenges. We have not so
far found any single choice of offspring distribution that has
tractable CGF, fits well with data in a range of cases, or has
general arguments supporting it. To give a first demonstration
of the method in this paper, we choose the gamma distribution
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because it has a tractable CGF for which the computations
of the distribution of the total load shed can be carried out
by computer algebra. We hope that future work may produce
a better, or better justified choice of offspring distribution
based on some combination of further insights and advances
in estimation procedures and computational approaches.

III. RESULTS

A. Discretization method applied to results from OPA

The cascading failure data in this subsection is produced by
the OPA simulation on the IEEE 300 bus standard test system
[37]. Three load levels are considered: 1.0, 1.05 and 1.1 times
the base case load. 20 000 cascades were simulated for each
load level. The number of cascades K with non-negligible load
shed is shown in Table I for each load level. The probability
of a cascade with non-negligible load shed is K/20000.

For the IEEE 300 bus system the load shed discretization
∆ is chosen to be 952 MW, which is 4% of the base case load
of 23 800 MW. This value of ∆ is chosen by experimenting
with a range of values. (As a possible point of reference, the
power system contains 409 lines as discrete elements and each
line comprises 0.24% of the total number of lines.) Too small
a value of ∆ does not allow sufficient samples within each
discretization bin to get a good estimate of the frequency of
blackouts in that discretization bin. Too large a value of ∆
gives insufficient resolution in the load shed. In the cases tested
we find that varying ∆ by a factor of 2 has not much effect
on the results. The choice of ∆ does affect the way that the
branching process models the cascading load, and we hope
that future work will establish more systematic methods for
the choice of discretization.

The average propagation λ is estimated using (1) for each
load level and is shown in Table I. The average initial load
shed θ estimated using (2) for each load level is also shown
in Table I.

TABLE I
AVERAGE PROPAGATION λ̂ AND AVERAGE INITIAL LOAD SHED θ̂

load level λ̂ θ̂ (GW) K
1.0 0.09 3.72 4137
1.05 0.21 3.57 8568
1.1 0.42 3.29 9381

Case: OPA on IEEE 300 bus

For the base case load level, the probability distribution
of total load shed estimated via the branching process is
compared to the empirical distribution of total load shed
in Figure 1. Although both probability distributions are dis-
cretized in load, the distribution of total load shed estimated
via the branching process has its points joined by a line so
it can be clearly distinguished. The match is good, but this is
expected in this case since the average propagation λ̂ = 0.09 is
small and the cascading effect is small, so that the distribution
of total load is close to the initial distribution of load.

For the higher load level 1.05 times the base case, the
probability distribution of total load shed estimated via the
branching process is compared to the empirical distribution
of total load shed in Figure 3. The average propagation

1.0 10.05.02.0 3.01.5 7.0
0.001

0.005

0.010

0.050

0.100

0.500

1.000

loadshed (GW)

p
ro

b
ab
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it

y

Fig. 1. Probability distributions of total load shed by OPA on IEEE 300 bus
system at the base case load level. Dots are the empirical distribution; line is
estimated with the branching process.

λ̂ = 0.21 and the match is good. The empirical initial load
shed distribution is shown in Figure 2. The cascading has the
effect of changing the initial distribution of load shed into a
distribution of total load shed with larger blackouts.

For the higher load level 1.1 times the base case, the
probability distribution of total load shed estimated via the
branching process is compared to the empirical distribution of
total load shed in Figure 5. The average propagation λ̂ = 0.42
and the match is good except for the sharply dropping portion
of the tail. The empirical initial load shed distribution is shown
in Figure 4.

B. Discretization method applied to results from TRELSS

The cascading data in this subsection is generated by the
TRELSS simulation. The case used in the TRELSS analysis
contains approximately 6250 buses, 9850 branches, and 1200
plants. In TRELSS, a subset of the case called the study
area is selected and analyzed. The study area comprises 4100
buses, 4750 branches, 600 transformers, and 325 plants. The
study area is modeled at anticipated summer peak conditions.
The study area load is almost 48 GW and the online system
generation is approximately 51 GW.

In the results, the number of non-negligible cascades is
K = 305. The application of the discretization method to this
TRELSS data is the same as for the OPA data considered
in subsection III-A, except that an alternative method of
computing the load shed discretization ∆ is used. The load
shed discretization of ∆ = 12 MW is computed as the sum of
total load shed divided by the sum of total number of outaged
lines. For this system, it is better not to estimate ∆ using the
total system load because most cascades are confined in extent
and do not typically involve a large fraction of the system load.

The average propagation λ is estimated using (1) and is
shown in Table II. The average initial load shed θ estimated
using (2) is also shown in Table II.

The empirical distribution of initial load shed is shown
in Fig. 6. For larger amounts of initial load shed, there are
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Fig. 2. Probability distribution of initial load shed by OPA on IEEE 300 bus
system at load level 1.05 times the base case.

1.0 10.05.02.0 3.01.5 15.07.0
0.001

0.005

0.010

0.050

0.100

0.500

1.000

loadshed (GW)

p
ro

b
ab

il
it

y

Fig. 3. Probability distributions of total load shed by OPA on IEEE 300
bus system at load level 1.05 times the base case. Dots are the empirical
distribution; line is predicted with the discretized branching process.

TABLE II
AVERAGE PROPAGATION λ̂ AND AVERAGE INITIAL LOAD SHED θ̂

λ̂ θ̂ (MW) K
0.33 140. 305

Case: TRELSS

few samples in each discretization bin and the empirical
distribution is noisy and discretized to multiples of 1/K. The
distribution of total load shed estimated using the discretized
branching process is compared to the empirical distribution of
of total load shed in Fig. 7. In Fig. 7 the empirical distribution
of total load shed for the larger amounts of load shed is
computed for larger bins in order to maintain at least ten
samples per bin.

These cases using two different simulations show how
discretizing the load shed and then applying a Galton-Watson
branching process can be used to estimate the distribution
of total load shed given the average propagation and the
distribution of initial load shed.
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Fig. 4. Probability distribution of initial load shed by OPA on IEEE 300 bus
system at load level 1.1 times the base case.

1.0 10.05.02.0 20.03.0 30.01.5 15.07.0
0.001

0.005

0.010

0.050

0.100

0.500

1.000

loadshed (GW)

p
ro

b
ab

il
it

y

Fig. 5. Probability distributions of total load shed by OPA on IEEE 300 bus
system at load level 1.1 times the base case. Dots are the empirical distribution;
line is predicted with the discretized branching process.

C. Continuous state branching process method

The method is tested on the IEEE 118 bus test system with
data produced by the OPA simulation. K = 5000 cascades
with nontrivial amounts of load shed are simulated for each
of the four loading levels 0.85, 0.90, 0.95, and 1.0 times the
base case loading. These loading levels are chosen so as to
avoid significant saturation effects.

Ten stages of each cascade are simulated. The load shed is
measured as a fraction of the total load so that the maximum
possible load shed is 1.0, or total blackout.

The estimated propagation λ̂, offspring distribution variance
σ2

off , and initial load shed distribution parameters are estimated
for the OPA data according to the methods described in
section II. The empirical PDF of load shed is also obtained.

1) Estimated propagation λ̂ : The estimated propagation at
each load level computed from the load shed data is shown in
Table III. As expected, λ̂ increases with loading.

2) Blackout size PDF: Table IV shows the parameters of
the initial load shed and offspring distributions estimated from
the load shed data. All cases considered are subcritical (λ < 1)
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Fig. 6. Distribution of initial load shed. Data produced by TRELSS.
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Fig. 7. Distribution of total load shed estimated by the discretized branching
process (line) is compared to the binned empirical distribution of total load
shed (circles). Data produced by TRELSS.

TABLE III
AVERAGE PROPAGATION λ̂

load level λ̂
0.85 0.128
0.9 0.159
0.95 0.264
1.0 0.429

Case: OPA on IEEE 118 bus

as required for the Lagrange inversion (10).
Figure 8 compares the empirical and estimated PDFs for

load level 0.85 times the base case load, and Figure 9 compares
the empirical and estimated PDFs for the base case load level.
The blackout size is plotted on a log scale over two decades,
from a small blackout shedding 0.01 of the total load to a total
blackout shedding all of the load.

3) Initial load shed and offspring distributions: We discuss
the choices of the forms of initial load shed and offspring
distributions that are assumed in the computations.

The initial load shed gamma distribution parameters θ̂ and
σ̂2
init shown in Table IV are relatively insensitive to loading

changes. For all these cases σ̂2
init ≈ θ̂2 and hence the initial

load shed is approximately exponentially distributed. Figure 10

shows estimated and empirical initial failure distributions for
the base case load level.

Figure 11 shows the estimated offspring distribution PDF
for the base case load level. This is a gamma distribution
with mean 0.0383 and variance 0.0016 that is approximately
a normal distribution. However, the offspring PDF becomes
more asymmetrical when the load level is decreased.

IV. NUMBER OF CASCADES FOR ACCURATE ESTIMATES

This section considers the number of cascades needed for
accurate estimates with the discretized load shed method.
In particular, it roughly estimates how many fewer cascades
are needed to estimate propagation and then estimates the
probability distribution of discretized load shed with the
Galton-Watson branching process compared to direct empirical
estimation of the probability distribution of load shed.

In our case of a Poisson offspring distribution, the asymp-
totic standard deviation of the Harris estimator can be worked
out using the methods of [32] to be

σ(λ̂) ∼
√
λ(1− λ)√
Kθ/∆

(20)

Note that θ̂/∆ estimates EX0/∆ = EZ0, which is the mean
number of discretized amounts of initial load shed.

Let pbranch be the probability of shedding total load S,
computed via estimating λ from Kbranch simulated cascades
with non-negligible load shed and then using the branching
process model. pbranch is conditioned on a non-negligible
amount of load shed. Assume that the initial distribution of
load shed is known with high accuracy. Then the standard
deviation of pbranch is

σ(pbranch) =

∣∣∣∣dpbranch

dλ

∣∣∣∣σ(λ̂)

=

∣∣∣∣dpbranch

dλ

∣∣∣∣
√
λ(1− λ)∆

Kbranchθ
(21)

Let pempiric be the probability of shedding total load S,
computed empirically by simulating Kempiric cascades with
non-negligible load shed. Then the standard deviation of
pempiric is

σ(pempiric) =

√
pempiric(1− pempiric)

Kempiric
(22)

If we require the same standard deviation for both methods,
then we can equate (21) and (22) to approximate the ratio of
the required number of simulated cascades as

Kempiric

Kbranch
=
pempiric(1− pempiric)θ

λ(1− λ)∆

(
dpbranch

dλ

)−2

(23)

To obtain a rough estimate of the ratio, we evaluate (23)
for total load shed S = 9.52 GW for each of the three load
levels. dpbranch/dλ is estimated by numerical differencing. We
find that Kempiric exceeds Kbranch by an order of magnitude
or more. That is, if the initial load shed distribution is
known accurately, then accurately estimating the distribution
of the total amount of load shed via discretization and the
Galton-Watson branching process requires substantially fewer
cascades.
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TABLE IV
INITIAL LOAD SHED AND OFFSPRING DISTRIBUTION PARAMETERS

load level λ̂ θ̂ σ̂2
init σ̂2

off

0.85 0.128 0.0520 0.00198 0.00431
0.9 0.159 0.0482 0.00195 0.00568
0.95 0.264 0.0445 0.00182 0.00995
1.0 0.429 0.0383 0.00160 0.01230

Case: OPA on IEEE 118 bus
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Fig. 8. Probability density function of total load shed on log-log plot. PDF
estimated with continuous state branching process (dashed line) is compared
to empirical PDF (dots). Empirical data from OPA on IEEE 118 bus system
with load level 0.85 times the base case.

V. CONCLUSION

In this paper, we suggest approximating the cascading
process of load shed in simulations of cascading blackouts
by two methods. The load shed data is the load shed in each
generation or stage of each simulated cascade. Both methods
preprocess the load shed data in the same way and estimate
the average propagation of failures λ using the standard Harris
estimator.

In the first method, we discretize the load shed and then
use a Galton-Watson branching process. The Galton-Watson
branching process model estimates the probability distribution
of load shed from the discretized distribution of initial load
shed and the estimate of propagation λ. We test this estima-
tion on cascading failure data from the OPA simulation of
cascading transmission line outages in the IEEE 300 bus test
system and on another case using the TRELSS simulation. The
estimated distribution is close to the empirical distribution in
most of the cases tested, suggesting that the branching process
model with an averaged propagation can capture some aspects
of the cascading of load shed, at least for the purpose of
estimating the probability distribution of total load shed.

In the second method, we directly apply a continuous state
branching process to the preprocessed load shed data. Then
the continuous state branching process model estimates the
probability distribution of load shed from the distribution
of initial load shed and the estimate of λ. We test this
estimation on cascading failure data from the OPA simulation
of cascading transmission line outages in the IEEE 118 bus
test system. The estimated distribution is similar, but not very
close, to the empirical distribution in the cases tested. There
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Fig. 9. Probability density function of total load shed on log-log plot. PDF
estimated with continuous state branching process (dashed line) is compared
to empirical PDF (dots). Empirical data from OPA on IEEE 118 bus system
with the base case load level.
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Fig. 10. Probability density function of initial load shed X0 on log-log plot.
Estimated PDF (dashed line) is compared to empirical PDF (dots). Empirical
data from OPA on IEEE 118 bus system with the base case load level.

are several ways that the second method could be improved.
It is not yet known what form of offspring distribution fits
power system cascading data well (here we choose the gamma
distribution because it is easy to compute with). Also, there
remain challenges in estimating parameters of the offspring
distribution other than the mean and in computing the distri-
bution of load shed for other choices of offspring distribution.
These challenges for the second method may be met in the
future, but at present, the first method appears to be easier
and more accurate.

The approach via propagation and the branching process
opens opportunities for estimation of the probability distribu-
tion of load shed from fewer observed or simulated cascades.
We assume that the probability distribution of initial load
shed is known accurately. These initial load shed statistics
can be estimated by methods of conventional reliability or by
observations, since some load is shed much more frequently
than there is a large cascading blackout. Given that the prob-
ability distribution of initial load shed is known accurately,
our initial testing of the estimation via the branching process
of the probability distribution of total load shed suggests that
an order of magnitude or more fewer cascades are needed for
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Fig. 11. Probability density function H(x) of offspring distribution that is
a gamma distribution with mean λ = 0.429 and variance σ2

off = 0.0123.
Parameters computed from data from OPA on IEEE 118 bus system with the
base case load level.

this estimation in the tail of the distribution than is needed for
direct empirical estimation of the probability distribution of
load shed. This is useful in reducing simulation times, which
are always burdensome and often prohibitive for cascading
failure simulations of large power system models. Obtaining
useful results from fewer cascades would also be a crucial
attribute in designing practical methods of estimating the
probability distribution of load shed from cascades observed
in the power system. Empirical methods of accumulating
blackout statistics that simply wait for enough cascades to
occur take too long to be practical when estimating the rare
but important large blackouts in the tail of the distribution.

This paper estimates average propagation and the distri-
bution of load shed using branching process models. These
first results are sufficiently promising that further testing with
cascading failure data from other power system models and
other cascading failure simulations is warranted.
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