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Approximating a loading-dependent cascading
failure model with a branching process
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Abstract—We quantify the closeness of the approximation
between two high-level probabilistic models of cascading failure.
In one model called CASCADE, failing components successively
load the unfailed components, whereas the other model is based
on a Galton-Watson branching process. Both models are generic,
idealized models of cascading failure of a large, but finite number
of components. For suitable parameters, the distributions of
the total number of failures from the branching process and
CASCADE models are close enough to make the branching
process a useful approximation.
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NOMENCLATURE

A(r, θ, λ, n) Absolute difference
|B(r, θ, λ, n)− C(r, θ/n, λ/n, n)|

B(r, θ, λ, n) Probability of r components failed in
branching process

C(r, d, p, n) Probability of r components failed in
CASCADE

CASCADE Loading-dependent cascading failure model
d Initial disturbance in CASCADE
G(r, θ, λ) Generalized Poisson distribution
Mi Number of components failed in generation i

of branching process
n Number of components
p Load increment when a component fails

in CASCADE
Q(r, d, p, n) Quasibinomial distribution
R(r, θ, λ, n) Ratio B(r, θ, λ, n)/C(r, θ/n, λ/n, n)
R1 Upper bound on R in Lemma 1
R2 Upper bound on R in Lemma 2
R3 Lower bound on R in Lemma 3
R1max Upper bound on R1

Rmax Upper bound on R in proofs
x ((1− λ)r − θ)/(n− r)
θ Mean initial failures in branching process
λ Mean of offspring distribution in branching

process

I. INTRODUCTION

Cascading failure is a sequence of s-dependent component
failures that successively weaken a system. Here we consider
aspects of cascading failure in large interconnected systems in
which the large numbers of components makes it infeasible
to enumerate the cascading failure sequences exhaustively.
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One example is electric power transmission systems which
can contain tens of thousands of components that can interact
in a variety of intricate ways [1], [2], [3]. Cascading failure
of electric power systems causes large blackouts [1], [2].
High-level, idealized models of cascading failure, such as
the CASCADE and branching process models considered in
this paper, are useful in describing some essential features of
observed and simulated cascading failure in these systems. We
now give an introductory overview of these models.

The CASCADE model is an analytically tractable proba-
bilistic model of cascading failure that captures the weakening
of the system as the cascade proceeds [3]. There are a large but
finite number n of identical components and each component
has a level of loading or stress. The initial load on each
component is an s-independent uniform random variable over
a fixed range of loading. There is an initial disturbance to
the system that adds additional loading to each component.
Each component has a maximum loading threshold and fails
if this threshold is exceeded. When any component fails, all
the other components are additionally loaded so that initial
failures can lead to a cascading sequence of failures as
components successively overload and additionally load the
other components. The cascade continues until there are no
further failures or all the components are failed. The total
number of failed components in the CASCADE model follows
a saturating variant of the quasibinomial distribution. The main
parameters are the size d of the initial disturbance and the
amount p by which load of other components is incremented
when a component fails, which controls the extent to which
the cascade propagates.

The branching process model of cascading failure is a
standard Galton-Watson branching process [4] with Poisson
offspring distributions, except that there are a finite number
n of components. The failures are produced in generations.
In generation zero, there is an initial Poisson distribution of
failures with mean θ that represents the initial disturbance
to the system. Each failure in each generation produces
further failures according to a Poisson offspring distribution
with mean λ until no more failures are produced or all
the components fail. The total number of failures follows a
saturating variant of the generalized Poisson distribution. The
main parameters are the mean size θ of the initial disturbance
and the mean number of offspring failures λ which controls
the extent to which the cascade propagates.

In pursuing high-level probabilistic models of cascading
failure it is useful to know how different high-level models
relate. It is known qualitatively that branching processes
can approximate the CASCADE model in some parameter
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ranges (see section III-C and [5]). Also it is known that the
two models are asymptotically the same when there are an
infinite number of components [5], [6]. However, to make this
approximation more useful in applications, it is necessary to
consider the finite number of components and to quantify the
approximation to be able to more precisely describe when the
approximation is good. Particular reasons for wanting to apply
this approximation are

1) The branching process model is simpler than the CAS-
CADE model but the CASCADE model more directly
summarizes a successive loading mechanism of cascad-
ing failure. It is advantageous to use the simpler branch-
ing process model when it is a good approximation.

2) There is a substantial and useful literature on applying
branching processes to other cascading processes [4],
[7], [8].

3) It is easier to determine when CASCADE and branching
process models capture the main features of cascading
failure data if the overlap and difference between CAS-
CADE and branching processes is known precisely. For
example, verifying one of the models in a particular
cascading failure application automatically verifies the
other model within the range in which they closely
agree.

The purpose of this paper is to quantify how well a satu-
rating Galton-Watson branching process model approximates
the CASCADE model. In particular, explicit bounds are given
for the closeness of the probability distributions of the total
number of failures for the CASCADE and branching models.
The paper completely reworks and refines some initial results
in the MS thesis [9].

Sections II and III review the literature and specify and
explain the CASCADE and branching process models. Section
IV quantifies the closeness of the models and gives examples
of the approximation. Detailed proofs are in Section V and
Section VI concludes the paper.

II. LITERATURE REVIEW

The CASCADE model [3] was first introduced in [10],
[11], and has close connections to fiber bundle models of
material strength and waiting time models in queues [3]. The
generalization to failures only causing further failures in a
subset of other components is considered in [12]. Significant
generalizations by Lefèvre and Gathy to inhomogeneous or
random additional or initial loadings are in [13], [6]. The
generalized CASCADE model can be related to the Reed-
Frost model of epidemics [6]. The CASCADE model is
related to simulated blackout data in [14], [15]. The total
number of failed components in the CASCADE model follows
a saturating variant of the quasibinomial distribution. The
quasibinomial distribution was originally introduced for other
purposes by Consul [16], [17], [18].

Branching processes are a standard model for cascades
in many other subjects, including genealogy, cosmic rays,
and epidemics [4]. Although branching processes are natural
candidates for modeling cascading failure in risk analysis, this
application of branching processes first appeared recently in

[5], [19]. There is some initial evidence that branching process
models can represent probability distributions of blackout size.
Observed [20], [21] and simulated [22], [23], [24], [25], [21]
blackout statistics show qualitative features such as probability
distributions of blackout sizes with power law regions and
criticality. These qualitative features can also be produced
by saturating branching processes [5]. Moreover, branching
processes have approximately reproduced the distribution of
blackout sizes obtained from data or initial simulations [26],
[27], [28], [29]. Branching processes well approximate epi-
demic models similar to cascading models as the number of
susceptible individuals grows large [30], [31], [32], [6].

Chen and McCalley describe an accelerated propagation
model for the number of transmission line failures in [33].
For parameters based on combined data for North American
transmission line failures from [34], the accelerated propaga-
tion model applies to up to 7 failures. They examine the fit
of the accelerated propagation model, a generalized Poisson
distribution, and a negative binomial distribution to the North
American transmission line failure data. Both the accelerated
propagation model and the generalized Poisson distribution are
consistent with the data.

There is an extensive literature on cascading in graphs
[35], [36] that is motivated in part by propagation of failures
in the internet. The dynamics of cascading is related to
statistical properties of the graph topology. Work on cascading
phase transitions and network vulnerability that accounts for
network loading includes Watts [37], Motter [38], Crucitti [39]
and Lesieutre [40]. Roy [41] considers Markov models for
reliability on abstract influence graphs.

There are some general approaches to cascading failure risk
for systems with a modest number of components. Sun [42]
and Lindley [43] represent cascading failure by increasing the
failure rate of remaining components when a component fails.
Sun [42] applies accelerating failure to gradual degradation of
a mechanical system.

Simulations of cascading failure blackouts in electric power
systems are reviewed in [21], [44]. These simulations approx-
imate the physics of some selection of the actual cascading
mechanisms and compute some possible cascading sequences
for a set of initial conditions. The network and the patterns of
power flow and power injection change according to circuit
laws and operational procedures as power system components
fail. The changing network structure as cascading failure pro-
ceeds is also represented by Greig [45] in more general flow
networks. Cascading blackouts pose substantial challenges
to risk analysis because of the large size of the networks
and the complexity and variety of the cascading mechanisms
and interactions. A detailed direct analysis is intractable and
even simulation approaches are greatly simplified. High-level
probabilistic models are a useful complement to the more
detailed models and simulations.

III. CASCADE AND BRANCHING PROCESS MODELS

This section states the CASCADE and branching process
cascading failure models and illustrates their qualitative agree-
ment.
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A. CASCADE

The normalized form of the CASCADE model has n iden-
tical components with random and s-independent initial loads
that are uniformly distributed in [0, 1]. Components fail when
their load exceeds 1. When a component fails, a fixed amount
of load p ≥ 0 is transferred to each of the components. To
start the cascade, there is an initial disturbance that loads each
component by an additional amount d ≥ 0. Then components
whose loads exceed 1 fail, and the failure of any of these
components will distribute an additional load p to all the
components that can cause further failures in a cascade. The
model can be defined more precisely in algorithmic form:

Normalized CASCADE algorithm [3]

(0) All n components are initially unfailed and have initial
loads that are n s-independent random variables uni-
formly distributed in [0, 1].

(1) Add the initial disturbance d to the load of each com-
ponent. Initialize the generation number i to zero.

(2) Test each unfailed component for failure: For j =
1, ..., n, if component j is unfailed and its load > 1
then component j fails. Suppose that mi components
fail in this step. If mi = 0, stop.

(3) Increment the component loads according to the number
of failures mi: Add mip to the load of each component.

(4) Increment generation number i and go to step 2.

In this paper we are interested in systems with a large
number of components, but for purposes of illustration we
show in Table I a simple example of one realization of the
CASCADE model with 5 components producing a cascade.
Fig. 1 shows the succession of load increases in this cascade
labelled with their generation number.

TABLE I
COMPONENT LOADS INCREASING IN A SMALL EXAMPLE OF CASCADE

n = 5 components
initial disturbance d = 0.3
load increment p = 0.1
generation number i

component number
i 1 2 3 4 5
0 0.8 0.6 0.75 0.45 0.1 initial random loads
1 1.1 0.9 1.05 0.75 0.4 initial disturbance d added
2 1.3 1.1 1.25 0.95 0.6 1 and 3 fail; 2p added
3 1.4 1.2 1.35 1.05 0.7 2 fails; p added
4 1.5 1.3 1.45 1.15 0.8 4 fails; p added

This cascade ends with components 1,2,3,4 failed.

The total number of failures in the normalized CASCADE
model has the probability distribution [3]

C(r, d, p, n) =



(
n

r

)
d(rp+ d)r−1(max{1− rp− d, 0})n−r,

0 ≤ r < n,

1−
n−1∑
s=0

C(s, d, p, n), r = n.

(1)
If np+ d > 1, note that C(r, d, p, n) = 0 for 1−d

p ≤ r < n.
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Fig. 1. Component loads increasing in the small example cascade with
5 components described in Table I. The random initial loads in generation
0 are shown by zeros, the generation 1 loads are shown by ones, and the
generation i loads are shown by the numeral i. The loads increase due to
the initial disturbance d = 0.3 or due to the load added to each component
p = 0.1 for each component that fails.

For p = 0, there is no cascade propagation after the
initial disturbance and (1) reduces to the binomial distribution.
Fig. 2 shows examples of the probability distribution (1) as
p increases in the case of n = 5000 components and small
initial disturbance d = 0.0002. The distribution for p = 0.0001
and np = 0.5 has an exponential tail slightly heavier than
binomial. Hence there is an extremely small probability of
cascades in which a large fraction of the components fail. The
tail becomes heavier as p increases and the distribution for
p = 0.0002 and np = 1 has an approximate power law region
over a range of r. This implies a non negligible probability
of cascades that extend to the system size, and, in this case,
the probability of all 5000 components failing is 0.00054. The
distribution for p = 0.0003 and np = 1.5 has an approximately
exponential tail for small r, zero probability of intermediate r,
and a probability of 0.44 of all 5000 components failing. (If
an intermediate number of components fail, then the cascade
always proceeds to all 5000 components failing.)

For np+d < 1 and r < n, (1) reduces to the quasibinomial
distribution [16], [17], [18]:

Q(r, d, p, n) =

(
n
r

)
d(rp+ d)r−1(1− rp− d)n−r, (2)

0 ≤ r ≤ n and np+ d < 1.

The CASCADE model and (1) extend the quasibinomial
distribution to stressed systems with np + d ≥ 1 that have
a high probability of all components failing, such as the case
np = 1.5 shown in Fig. 2.

Fig. 3 shows the probability distribution of the total number
of failures for p = 0.0001 and np = 0.5, but with a larger
initial disturbance d = 0.0002 that gives a mean initial
disturbance of nd = 10 components failed.

In the CASCADE model, each failure adds load to all the
other components, but a variant of CASCADE in which load
is added to a randomized subset of other components has
been studied [12]. When applying the CASCADE model, it



PREPRINT OF DOI 10.1109/TR.2010.2055928, IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010, PP. 691-699 4

is common to use an unnormalized version of CASCADE,
which allows free choices of the load at which components fail
and the upper and lower bounds on the initial distribution of
loading [3]. Since the unnormalized and normalized versions
only differ by a rescaling of parameters and have identical
probability distributions, it is convenient in this paper to only
consider the normalized version of CASCADE.

B. Branching process

The branching process model for cascading failure [5], [19],
[27], [26] is a standard Galton-Watson branching process,
except that the process saturates when all n components fail.
The failures are produced in generations. The initial number
of failures M0 in generation zero is given by a Poisson
distribution of mean θ ≥ 0, except that it saturates at n
components:

P [M0 = m] =


θm

m!
e−θ, 0 ≤ m < n,

1−
n−1∑
s=0

θs

s!
e−θ, m = n.

(3)

In subsequent generations, if there are Mi failures in genera-
tion i and 0 < Mi < n, then the kth failure in generation i

produces M (k)
i+1 failures in generation i + 1 according to a

Poisson distribution of mean λ ≥ 0:

P [M
(k)
i+1 = m] =

λm

m!
e−λ, m ≥ 0, (4)

where M (1)
i+1, M (2)

i+1, · · · , M (Mi)
i+1 are s-independent. Then the

number of failures in generation i+ 1 is

Mi+1 = min
{
M

(1)
i+1 +M

(2)
i+1 + · · ·+M

(Mi)
i+1 ,

n− (M0 +M1 + ...+Mi)
}
. (5)

In (5), n− (M0 +M1 + ...+Mi) is the remaining number of
unfailed components after generation i. In any generation, if
the number of failures is Mi = 0 or Mi = n, then the cascade
stops.

The use of the Poisson distribution as a suitable approx-
imation of the offspring distribution can be derived from an
assumption that the failures propagate so that each failure has a
small uniform probability of independently causing failure in a
large number of other components [18]. In modeling cascading
failure with the branching process, we do not imply that each
failure in some sense “causes” its offspring failures in the next
generation; the branching process simply produces random
numbers of failures in each generation that can statistically
match the outcomes of the cascading process. The modeling
of saturation is further considered in [27], [5], [15].

The total number of failures in the Galton-Watson process
with an unlimited number of components has a generalized
Poisson distribution for 0 ≤ λ < 1 [17], [18]. It follows
that the distribution of the total number of failures in our
branching process model with a finite number of components
n is the following saturating variant of the generalized Poisson

distribution:

B(r, θ, λ, n) =


θ(rλ+ θ)r−1

e−rλ−θ

r!
, r < n,

1−
n−1∑
s=0

B(s, θ, λ, n), r = n.
(6)

For 0 ≤ λ < 1, and for an infinite number of components
n, (6) becomes the generalized Poisson distribution [17], [18]:

G(r, θ, λ) = θ(rλ+ θ)r−1
e−rλ−θ

r!
, (7)

0 ≤ r <∞ and 0 ≤ λ < 1.

The saturating branching process and (6) model a finite num-
ber of components and enable the study of stressed systems
with λ ≥ 1 that have a high probability of all components
failing, such as the case λ = 1.5 shown in Fig. 4.

C. Qualitative agreement and asymptotic agreement between
models

The parameters of the CASCADE and branching process
models correspond according to

θ = nd (8)
λ = np (9)

This can be understood as follows: At generation zero of
the CASCADE model, the components that will fail when
the initial disturbance d is added are exactly those that have
loading in (1−d, 1]. Therefore, the probability of any particular
component failing when the initial disturbance is added is d
and the mean number of initial failures is nd. Since the mean
number of initial failures in the branching process is θ, we
obtain (8). To similarly obtain (9), observe that each failure in
CASCADE causes a load increment of p. Then an approximate
result is that the mean number of failures of other components
due to the load increment of p is np. This approximation is
valid for large n and small p and is examined in detail in [5].
Since the mean number failures in the next generation due to
one failure in the branching process is λ, we obtain (9).

Comparing Figs. 2 and 4 illustrates the qualitative agree-
ment between the CASCADE and branching process models.
The model parameters chosen in Figs. 2 and 4 correspond
according to (8) and (9). Also note the difference between the
models for np = λ = 1.0 and more than 3000 components
failed. Plotting the branching process probability distribution
corresponding to the CASCADE distribution in Fig. 3 yields
a figure indistinguishable from Fig. 3.

Now we consider the asymptotic agreement between mod-
els. Suppose that the number of components n → ∞, with
d = θ/n→ 0 and p = λ/n→ 0 so that θ and λ given by (8)
and (9) remain constant. Then the quasibinomial distribution
(2) tends to the generalized Poisson distribution (7). Indeed,
Consul [17] proved that, as n→∞,

Q(r,
θ

n
,
λ

n
, n) = G(r, θ, λ)

(
1 +

r − (r(1− λ)− θ)2

2n

)
+O(n−2).
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Fig. 2. Probability distribution of total number of failures from CASCADE
model with n = 5000 components, initial disturbance d with nd = 1 and
each failure causing load increment p with np = 0.5 (light gray dots), np =
1.0 (dark gray dots), and np = 1.5 (black dots). The probability of 5000
failures is negligible for np = 0.5, 0.00054 for np = 1, and 0.44 for
np = 1.5. The probability of zero failures is 0.3678 in all cases.
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Fig. 3. Probability distribution of total number of failures from CASCADE
model with n = 5000 components, initial disturbance d with nd = 10 and
each failure causing load increment p with np = 0.5. The probability of
5000 failures is negligible. The probability of zero failures is 0.000045.

It follows that the CASCADE distribution (1) tends to the
branching process distribution (6) as n→∞. This is a basic
result relating CASCADE with its branching process approxi-
mation. However, it does not give quantitative bounds for our
intended applications with a finite number of components n.

IV. QUANTIFYING CLOSENESS OF MODELS

To quantify the difference between the CASCADE and
branching process models when their parameters correspond
according to (8) and (9), we define the ratio and absolute
difference:

R(r, θ, λ, n) =
B(r, θ, λ, n)

C(r, θ/n, λ/n, n)

=
(n− r)!nne−rλ−θ

n!(n− rλ− θ)n−r
, (10)

0 ≤ r < min
{n− θ

λ
, n
}
. (11)
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Fig. 4. Probability distribution of total number of failures from branching
process model with n = 5000 components, initial disturbance θ = 1 and
offspring mean λ = 0.5 (light gray dots), λ = 1.0 (dark gray dots), and λ =
1.5 (black dots). The probability of 5000 failures is negligible for λ = 0.5,
0.011 for λ = 1, and 0.44 for λ = 1.5. The probability of zero failures is
0.3679 in all cases.

(The condition r < n−θ
λ ensures that C(r, θ/n, λ/n, n) 6= 0.

If 0 ≤ λ ≤ 1 − θ
n , then n ≤ n−θ

λ and (10) is valid for
0 ≤ r < n.)

A(r, θ, λ, n) =
∣∣B(r, θ, λ, n)− C(r, θ

n
,
λ

n
, n)
∣∣ (12)

Now we state lemmas bounding these differences. All proofs
are postponed to section V.

For the ratio R in (10), we have

Lemma 1: Suppose that 0 ≤ λ < 1 and θ > 0. Then

R(r, θ, λ, n) < R1 = exp

(
(r(1− λ)− θ)2

2(n− r)

)
for

θ

1− λ
≤ r < min

{
n− θ
λ

, n

}
.

Lemma 2: Suppose that λ > 1/3 and 0 ≤ θ ≤ 2n/3. Then

R(r, θ, λ, n) < R2 = exp

(
(r(1− λ)− θ)2

n− r

)
for 0 ≤ r < min

{ 2
3n− θ
λ− 1

3

, n

}
.

Lemma 3: Suppose that λ > 0 and 0 < θ < n. Then

R(r, θ, λ, n) > R3 =

√
1− r

n

for 0 ≤ r < min

{
n− θ
λ

, n

}
.

The bounds on the ratio R in Lemmas 1, 2 and 3 yield bounds
on the absolute difference A in (12):

Lemma 4:
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(i) Suppose that 0 ≤ λ < 1 and 0 < θ < n. Then

A(r, θ, λ, n) < B(r, θ, λ, n)max{R−13 − 1, 1−R−11 }

for
θ

1− λ
≤ r < min

{
n− θ
λ

, n

}
.

(ii) Suppose that λ > 1/3 and 0 ≤ θ ≤ 2n/3. Then

A(r, θ, λ, n) < B(r, θ, λ, n)max{R−13 − 1, 1−R−12 }

for 0 ≤ r < min

{ 2
3n− θ
λ− 1

3

, n

}
.

It is often the case that B > C for large r:

Lemma 5: Suppose that n > 100, 0 ≤ λ < 2, and θ > 0.
Then

B(r, θ, λ, n) > C(r, θ/n, λ/n, n)

for
√
n+ θ

|1− λ|
< r < min

{
n,
n+ θ

2− λ

}
. (13)

Moreover, if either 0 ≤ λ < 0.92 − 2θ
n or 1 − θ

n ≤ λ < 2,
then

B(r, θ, λ, n) > C(r, θ/n, λ/n, n)

for
√
n+ θ

|1− λ|
< r < n. (14)

We also note the monotonicity properties of B:

Lemma 6:
(i) If 0 ≤ λ < 1 and θ+1

1−λ ≤ r < n, then B(r, θ, λ, n) is
increasing in λ.
(ii) If λ ≥ 1 and 0 ≤ r < n, then B(r, θ, λ, n) is decreasing
in λ.
(iii) If 0 ≤ λ < 1 and θ−1

1−λ ≤ r < n, then B(r, θ, λ, n) is
decreasing in r.

We now illustrate the use of the Lemmas.

A. Example 1

In our motivating application of cascading failure blackouts
in power transmission networks, estimates for the costs vary
widely. For example, estimates for direct costs of the August
2003 blackout of Northeastern America vary from about 4 to
12 billion dollars. And indirect costs, such as when there is ri-
oting or damage to other infrastructures, can readily double or
triple the costs, but are uncertain and hard to quantify. Suppose
that risk is computed as probability of blackout times cost.
Then there is little use for estimates of blackout probability
that are significantly more accurate than the costs. For the
sake of illustration, we measure the cascading blackout size
by the number of failures and require blackout probabilities
to be accurate within a factor of 2. That is, we require our
branching process approximation to have ratio R in (10) satisfy
1
2 < R < 2.

Assume that 0 < λ < 1, r ≤ n
2 , and θ ≤ n

2 (note that
θ ≤ n

2 and 0 < λ < 1 imply n−θ
λ > n

2 ). Then the upper
bound

R1 = exp

(
(r(1− λ)− θ)2

2(n− r)

)
from Lemma 1 is bounded above by R1max, where

R1max = exp

(
(r(1− λ)− θ)2

n

)
.

And

r <
0.83
√
n+ θ

1− λ
⇒ R1max < 2.

Moreover, Lemma 3 implies that R > 1
2 when r ≤ 3n

4 . We
conclude that 0 < λ < 1 and θ ≤ n

2 and

θ

1− λ
< r < min

{
0.83
√
n+ θ

1− λ
,
n

2

}
⇒ 1

2
< R < 2.

The range over which the approximation is valid increases
with n.

B. Example 2

Practical industry models for power transmission networks
typically range from hundreds to tens of thousands of nodes.
We choose n = 1000 nodes, a small initial disturbance θ = 1
and λ = 0.5. Then the Lemma 1 upper bound R1 < 2 for
2 ≤ r ≤ 73 and the Lemma 3 lower bound R3 > 1

2 for
r ≤ 750. That is, Lemmas 1 and 3 imply that 1

2 < R < 2
for 2 ≤ r ≤ 73. The Lemma 2 upper bound R2 < 2 for
0 ≤ r ≤ 53. Combining the results from Lemmas 1, 2 and 3,
we obtain 1

2 < R < 2 for 0 ≤ r ≤ 73. This bound is fairly
tight: direct calculation shows that in this case, the maximum
range of r over which 1

2 < R < 2 is 0 ≤ r ≤ 76.
The probability of 73 total failures in the branching model

is B(73, 1, 0.5, 1000) = 2.48 × 10−9. Lemma 5 shows that
B > C for r ≥ 66 and Lemma 6 shows that B(r, 1, 0.5, 1000)
is decreasing in r, except for r = 1000. Therefore the Lemmas
yield 1

2 < R < 2 for 0 ≤ r ≤ 73 and C < B < 2.48× 10−9

for 73 ≤ r < 1000.
To show the effect of increasing n, redoing Example 2 with

n = 10000 nodes yields 1
2 < R < 2 for 0 ≤ r ≤ 234 and

C < B < 1.40× 10−23 for 234 ≤ r < 1000.

C. Example 3

We choose n = 1000, θ = 1 and λ = 0.98. The Lemma
1 upper bound R1 < 2 for 50 ≤ r ≤ 826, the Lemma 2
upper bound R2 < 2 for r ≤ 731, and the Lemma 3 lower
bound R3 > 1

2 for r ≤ 750. Therefore 1
2 < R < 2 for

0 ≤ r ≤ 750. For comparison with these bounds, R is plotted
as a function of r in Figure 5. Note the rapid increase in R
for r > 800. The probability of 750 failures in the branching
model is B(750, 1, 0.98, 1000) = 8.15 × 10−6 and Lemma 6
shows that B(r, 1, 0.98, 1000) is decreasing in r for 0 ≤ r <
1000.

Redoing Example 3 with n = 10000 nodes yields 1
2 < R <

2 for 0 ≤ r ≤ 4439.
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Fig. 5. Ratio R(r, θ, λ, n) of branching and CASCADE probabilities for
n = 1000, θ = 1, and λ = 0.98.

V. PROOFS

A. Proof of Lemma 1

The Stirling approximation

√
2nπnne−n+

1
12n+1 < n! <

√
2nπnne−n+

1
12n (15)

[46] applied to (10) yields

R(r, θ, λ, n) <Rmax,

where Rmax =
√
1− r/n (n− r)n−rer+

1
12(n−r)−

1
12n+1

× (n− λr − θ)r−ne−λr−θ.

We have n > r ≥ θ
1−λ > 0. Therefore n − r ≥ 1 and r ≥ 1

and

1
2 ln

[
1− r

n

]
+

1
12 (r +

1
12 )

(n− r)(n+ 1
12 )

< − r

2n
+
r + 1

12

12n
< 0.

Hence

lnRmax < (1−λ)r−θ−(n−r) ln
[
1 +

(1− λ)r − θ
n− r

]
(16)

and, writing

x =
(1− λ)r − θ

n− r
, (17)

lnRmax < (n− r) (x− ln[1 + x]) . (18)

Then θ
1−λ ≤ r < n implies x ≥ 0. Since

x− ln[1 + x] ≤ x2

2
for x ≥ 0,

lnR < lnRmax ≤
((1− λ)r − θ)2

2(n− r)
.

B. Proof of Lemma 2

First we check that r is in the range (11) in which R is
defined. If λ ≤ 1− θ

n , then r < n ≤ n−θ
λ . If λ > 1− θ

n , then
r <

2
3n−θ
λ− 1

3

< n−θ
λ .

Now consider the case r = 0. θ ≤ 2n/3 implies that
−θ/n ≥ −2/3, and since

x− ln [1 + x] < x2 for x > −2

3
, (19)

lnR(0, θ, λ, n) = −θ − n ln
[
1− θ

n

]
<
θ2

n
.

The proof of Lemma 2 for r ≥ 1 is similar to the proof of
Lemma 1 up to and including (18). Then r <

2
3n−θ
λ− 1

3

implies
x > − 2

3 . And (18) and (19) yield

lnR < lnRmax < (n− r)x2 ≤ ((1− λ)r − θ)2

n− r
.

C. Proof of Lemma 3

In the case r = 0,

lnR(0, θ, λ, n) = −θ − n ln
[
1− θ

n

]
> 0.

Now consider the case r ≥ 1. Using (15),

R(r, θ, λ, n) >

√
n− r
n

(
1 +

r(1− λ)− θ
n− r

)r−n
× exp

[
r(1− λ)− θ − 1

12n
+

1

12(n− r) + 1

]
.

r ≥ 1 implies 1
12n <

1
12(n−r)+1 so that

R >

√
n− r
n

( ex

1 + x

)n−r
, (20)

where x is given in (17).
Now r < n−θ

λ implies x > −1. Since

x− ln[1 + x] ≥ 0 for x > −1,

R >

√
1− r

n
.

D. Proof of Lemma 4

0 < B(r, θ, λ, n) < 1 and 0 ≤ C(r, θ/n, λ/n, n) < 1.
Therefore

A = |B − C| < B

∣∣∣∣1− C

B

∣∣∣∣
≤ Bmax

{
|1−min{C

B
}|, |max{C

B
} − 1|

}
.

Applying lemmas 1 and 3 or lemmas 1 and 2 yields the result.
(For (ii), note that if λ ≤ 1 − θ

n , then n ≤ n−θ
λ , whereas if

λ > 1− θ
n , then

2
3n−θ
λ− 1

3

< n−θ
λ .)
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E. Proof of Lemma 5

Noting that r >
√
n+θ
|1−λ| implies r ≥ 1, the proof of Lemma

5 is the same as the proof of Lemma 3 for r ≥ 1 up to and
including (20). If n − λr − θ ≤ 0, then B > 0 = C and
the lemma is proved. Therefore in the following we assume
n− λr − θ > 0, or, equivalently, x > −1.

(i) Consider the case r ≤ n+θ
2−λ . In this case, x ≤ 1. Since

x− ln [1 + x] ≥ x2

2e for −1 < x < 1, (20) becomes

R >

√
n− r
n

exp

[
(r(λ− 1) + θ)2

2e(n− r)

]
.

r >
√
n+θ
|1−λ| yields (r(λ− 1) + θ)2 > n. Then

R >

√
n− r
n

exp

[
n

2e(n− r)

]
≥ 1,

where the second inequality is verified by squaring both sides,
writing n

e(n−r) = t, and using ln t ≤ 1− t for t > 0.
(ii) Consider the case 1 − θ

n ≤ λ < 2. Then n ≤ n+θ
2−λ and

(13) becomes (14).
(iii) Consider the case r > n+θ

2−λ and λ < 0.92 − 2θ
n . In

this case, x > 1. Since ln [1 + x]− 0.7x < 0 for x > 1, (20)
becomes

R >

√
n− r
n

e0.3(r(1−λ)−θ).

Define f(r) = 0.5 ln n−r
n +0.3(r(1−λ)−θ). It is straightfor-

ward to check that f(r) is concave. Moreover, since f(n2 ) > 0
and f(n− 1) > 0 for λ < 0.92− 2θ

n and n ≥ 100, f(r) > 0
for n

2 ≤ r ≤ n− 1. Therefore, since r > n+θ
2−λ ≥

n
2 , R > 1.

F. Proof of Lemma 6

(i) and (ii)

∂B

∂λ
=

θ

r!
r(rλ+ θ)r−2e−rλ−θ(r(1− λ)− (1 + θ))

(iii)

B(r + 1, θ, λ, n)

B(r, θ, λ, n)
=

((r + 1)λ+ θ)r

(r + 1)(rλ+ θ)r−1
e−λ

= (λ+
θ

r + 1
)

((
1 +

λ

rλ+ θ

)rλ+θ) r−1
rλ+θ

e−λ

< (λ+
θ

r + 1
)e1−λ−

θ+λ
rλ+θ

≤ (λ+
θ

r + 1
)e1−(λ+

θ
r+1 )e−

λ
r+1 < 1,

(21)

where (21) follows since (1− λ)r − θ ≥ −1 implies r + 1 ≥
rλ+ θ and since te1−t ≤ 1 for t > 0.

VI. CONCLUSION

High-level probabilistic models of cascading failure such
as the CASCADE model are emerging as one of the useful
approaches in the study of large blackouts and may find future
testing and potential application in cascading failure of other
large, interconnected systems. In this paper we approximate
CASCADE with a Galton-Watson branching process and give

quantitative bounds on the closeness of the approximation for
the probability distribution of the total number of failures.
Since the branching process is a simple and well understood
probabilistic model, it is advantageous to use it when it is
a good approximation. The analysis accounts for the large
but finite number of components needed in the intended
engineering applications.
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