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Splitting method for speedy simulation of cascading blackouts
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Abstract—Simulation of cascading blackouts poses many chal-
lenges, including fast simulation of long series of rare interactions
in large grid models. The splitting method advances the simu-
lation by stages, resampling from each stage to advance to the
next stage. We apply the splitting method to the simulation of
cascading blackouts to efficiently determine the probability dis-
tribution of blackout size. Testing on a blackout simulation shows
that splitting can quickly compute large blackouts inaccessible
to other methods.

Index Terms—Simulation, failure analysis, probability, power
transmission system reliability

I. INTRODUCTION

Reliable electric power transmission is essential to our
society and to transforming its energy infrastructure. Many
of the new sources and loads transforming our electric energy
infrastructure are enabled by the power transmission system
and require the high reliability of the current transmission
network to be maintained or improved. Also, the grid itself
is being transformed towards a “smart grid.” In pursuing
these transformations, the substantial risks of large, cascading
failure blackouts cannot be ignored [1]. A key barrier to
quantifying and mitigating these risks is to be able to compute
the probability distributions of blackout sizes by running
simulations. However, simulating the long, complicated series
of rare events in large blackouts is very challenging, and
conventional methods of simulation are severely limited by the
combinatorial explosion of possible sequences of events and
intractable simulation times. In this paper, we extend and apply
a simulation method known as splitting that enables rapid and
practical computation of large blackout probabilities.

A typical large blackout has an initial disturbance followed
by a sequence of cascading events. For example, long and
intricate cascades of events caused the August 1996 blackout
in Northwestern America [2] that disconnected 30 390 MW
to 7.5 million customers [3]. The August 2003 blackout in
Northeastern America disconnected 61 800 MW to 50 million
people [4]. The interactions involved are diverse and include
deviations in power flows, frequency, and voltage as well
as operation or misoperation of protection devices, controls,
operator procedures and monitoring and alarm systems [5],
[6]. Moreover, the interactions are often rare, unusual, or
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unanticipated because the likely and anticipated failures are
already accounted for in power system design and operation.

Each event in a cascading blackout tends to further weaken
and stress the system and make subsequent events more likely.
The result is that, although large blackouts are significantly
less frequent than small blackouts, they get rarer slowly
in a power law fashion1 as the blackout size increases [7],
[8]. Blackout risk is the product of blackout probability
and blackout cost. The importance of the power law in the
distribution of blackout size is that larger blackouts become
rarer at rate similar to the increase of the cost. This implies
that the risk of large blackouts is comparable to, or even
exceeding, the risk associated with small blackouts [1]. Thus
large blackouts cannot be ignored. However, large blackouts
consist of complicated sequences of rare events and their
study is strongly limited by simulation speed. For example,
to encounter one simulated case of 30 line outages in a 300
bus model of an electrical grid by brute force enumeration may
require more than one million cascades to be simulated. Large
blackouts often have more than 30 line outages and practical
grid models range up to tens of thousands of buses. Many of
the compromises currently made in system size and modeling
detail can be traced to the lack of fast simulation methods [6],
[9].

The idea of splitting is to divide the simulation into stages
defined by the number of lines outaged. The simulation starts
by sampling a grid operating condition and an initial outage,
simulates until either the cascade ends or enough lines outage
to reach the second stage, and then saves the state information
of the simulation. The simulation of the first stage is repeated
until there are enough cases that reach the second stage. We
then sample from these cases using the saved state information
as starting point and simulate until either the cascade ends or
enough lines outage to reach the third stage. The simulation
of the second stage is repeated until there are enough cases
that reach the third stage. We continue this process in further
stages until enough stages are simulated to include the large
blackouts of interest.

In this paper, instead of computing the probability of single
rare event, we compute the entire probability mass function of
the number of lines outaged, since the entire probability mass
function is required to assess blackout risk. We show that a
straightforward estimator of the probability mass function ap-
proximates a maximum likelihood estimator, derive an optimal
number of stages for the splitting algorithm, and compare the
efficiency of the splitting method to direct simulation.

Cascading blackouts arise from three interacting sources
of variation, namely variation in the grid conditions, varia-

1For example, if blackout size is measured by number of lines outaged, the
probability of n lines outaged during a blackout is roughly proportional to
1/nα for a range of n, where α is the exponent of the power law.
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tion in the initial outages, and variation in the subsequent
cascading outages. Therefore to estimate with a simulation
the probability mass function of the number of lines outaged
we need to sample from each of these sources of variation.
Accordingly, each simulated power grid cascade starts with
random sampling of the grid conditions and the initial outage,
and then continues by sampling the subsequent stages of the
cascade. In this paper we focus on the most difficult part of
the problem which is the sampling from stages of cascades.
The objective of the splitting algorithm is to efficiently obtain
the probability mass function of the number of lines outaged.

After an initial test of splitting on a branching process
stochastic model that is known to capture some bulk aspects
of cascading failure in power systems [10]–[12], we test
the splitting methods on the OPA (Oak Ridge-PSerc-Alaska)
power systems simulation of cascading blackouts [13]–[15].
OPA represents cascading failure with standard models of the
cascading line outages based on simplified power systems
physics and operations. The splitting simulation strategy is
completely independent of the power system modeling issues,
and we emphasize that our goal here is to develop methods that
can be used regardless of the actual power system simulation
used. That is, OPA functions in this paper only as an indicative
test bed, and the splitting method applies generally to any
simulation.

II. LITERATURE REVIEW

Splitting has received much recent interest in the telecom-
munications literature. A version of this method, called
RESTART was introduced in [16] and amplified in various
papers [17]–[19] with some elegant probabilistic analysis
in [20]. In addition to being used in some communication
system simulations, it also has been used in certain physics
applications [21], [22]. Optimal choice of splitting stages is
addressed in [23].

Wang et al. [24] apply splitting to power system cascading
simulation to estimate the probability of a rare event. Based
on [23], Wang et al. derive an optimal scheme for choosing
levels that minimizes the variance of the event probability.
Wang et al. use a simulation of a hidden failure mechanism
of cascading failure to compute the probability of the event
that more than half the load is shed in the IEEE 118 bus
test system with a two stage splitting method. Wang et al.
then vary the initial line trip to compute a line trip that
has the highest probability of leading to this event. Their
hidden failure cascading model probabilistically trips adjacent
lines according to their loading. Further work by Shortle on
the application of splitting to blackouts, including experience
in choosing splitting levels for computing the probability of
blackout events, will appear in [25].

Our results in this paper applying splitting to power system
simulation were developed in the thesis [26] independently of
[24] and focus on estimating the probability distribution of the
number of line outages and the performance of splitting for
many stages. We test splitting with the OPA power systems
simulation of cascading line overloads in which initial line
outages are randomly chosen and cascading line outages can

either be near or far away from the preceding line outages.
The results of both this paper and [24] support the conclusion
that splitting is a very promising method for fast and accurate
simulation of power system cascading.

There are other approaches to fast simulation used in
cascading failure simulations in power systems. For example,
Chen et al. [27] use importance sampling [28]–[30] and
Kirschen et al. [31] apply correlated sampling and Monte
Carlo simulation.

The OPA simulation represents cascading outages and line
overloads with a DC load flow model [13], [15]. Varying
grid conditions under which the cascades are initiated are
generated by sampling from randomly changing patterns of
load that keep the total load constant. Cascades are initiated
by random line outages, and whenever a line is outaged, the
generation and load are redispatched using standard linear
programming methods.2 The cost function is weighted to avoid
load shedding and lines that are limited during the optimization
are outaged with a fixed probability. The process of redispatch
and testing for outages is iterated until the cascade stops and
then the total load shed is recorded.

OPA can also represent the complex systems dynamics of
a power system slowly upgrading in response to increasing
load and reliability requirements [14], but here we use OPA to
simulate a fixed power system. OPA is the simplest cascading
line outage blackout model that is based on standard power
system physics and operational procedures. The complex sys-
tem dynamics form of OPA has been validated with data from
the Western interconnection of the USA [32].

Branching process models, long applied to other cascading
processes [33], [34], have recently been applied to approximate
the gross features of cascading blackouts for both simulated
data [10] and observed data [11], [12]. Other idealized proba-
bilistic model of cascading failure [35] are well approximated
by a branching process [36].

III. DISCUSSION OF ALTERNATIVE APPROACHES

Before explaining the splitting method in the next section,
we briefly comment on the nature of the simulation problem
and some problems with alternative approaches.

We observe that cascading outages of power network gen-
erally involve both local and global interactions. For example,
the cascade can progress by outages of lines nearby or far from
the preceding outages. Since there are many lines that could
potentially, albeit with small and varying probability, outage
at any stage of a cascade, this implies a huge combinatorial
explosion in the number of possibilities that a cascading
simulation has to consider and select from. The simulation
technique employed must make use of the probabilistic struc-
ture of the cascading failure in order to efficiently estimate the
risk.

One version of the statistical problem of evaluating blackout
risk estimates the probability mass function (pmf) p(n) of the

2When simulating many outages, as in this paper, islanding can occur.
Since OPA implements line outages by making both the line reactance high
and enforcing zero line flow [13], the generator redispatch and load shed
optimization used in OPA will shed load as needed both in the entire grid
when it is connected and in each island when it is islanded.
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number of line outages. A first approach to this challenging
problem would be a direct Monte Carlo simulation. After
simulating an initial disturbance, one uses power system
modeling coupled with a probabilistic model for line outages
to simulate the power system. Each simulation produces a
certain number of line outages. We then count the number
of times we see n line outages and divide by the total number
of simulations to get an estimate, p̂(n).

There are several important problems with such a naive
approach. The vast majority of simulations will terminate with
very few lines outaged. Thus we are heavily sampling from
the most likely parts of the distribution. For example, we may
have ninety five percent of our samples falling in the range of
zero to five line outages. While our estimates for the pmf will
be excellent for its first 5 or so values, our estimates for the
more unlikely higher number of lines (but of greater interest
due to their higher impact) will likely be very poor indeed.
For example, OPA simulation of the IEEE 300 bus test system
would need more than a year to get 100 samples of more than
30 line failures when a Pentium Dual Core 3.0 GHz computer
is used.

A second possible approach is to use importance sampling
[37] to drive the simulation deeper into the tree of possibilities.
However, this approach also has problems. Experience has
shown that choosing the sampling distribution must be done
with great care. It is easy enough to “over” bias and obtain
samples deep into the tree; however, the variance associated
with such procedures can easily be greater than the variance
of not using importance sampling at all and proceeding with
the direct Monte Carlo. In reality different biasing would
be required for every possible value desired in the pmf,
thus leading to a simulation strategy of great complexity and
inefficiency. Furthermore, we should note that there is a long
history of observations in the importance sampling community
over the difficulty of designing good biasing schemes for
simulations of long cascading trees. It is a very difficult
problem that is still very much unresolved.

IV. SPLITTING

We use a splitting technique [38], [39] to perform the
simulation. The splitting method simulates the cascades in
stages defined by numbers of line outages. Suppose there are
L splitting stages, with 0 = S0 < S1 < S2, . . . , SL−1 < SL =
M line outages respectively, as shown in Figure 1. The stage
one simulation starts by sampling a grid operating condition
and an initial disturbance and then simulates until we have a
“sufficient” number of trajectories, denoted as K1, that have
greater than S1 line outages. We denote N1 as the total number
of simulations necessary to achieve these K1 trajectories. The
K1 trajectories will make up our empirical entry distribution
of trajectories that have greater than S1 line outages. Define
N1(k) as the number of trajectories in the stage one simulation
that have exactly k lines outaged for k = 1, 2, . . . , S1. Define
p̂(k) as the relative frequency estimator of the probability of
k outages. Then

p̂(k) = N1(k)/N1, 1 ≤ k ≤ S1. (1)

Define A(k) as the event that there are greater than k outages.
Then the estimated probability of A(S1) is

P̂ [A(S1)] =
K1

N1
. (2)

We now view the K1 trajectories of the cascading process
that reached A(S1) as an empirical distribution from which
to begin the next stage of the simulation. That is, these
states form an empirical distribution over the ensemble of all
trajectories that enter the set A(S1).

Now, sampling randomly from those K1 points, we simulate
trajectories until either the trajectory stops or reaches greater
than S2 lines outaged. We continue simulating (say it requires
N2 times) until we have K2 trajectories with greater than S2

lines outaged. Define N2(k) = number of trajectories in the
stage two simulation that have exactly k lines outaged for
k = S1 + 1, S1 + 2, . . . , S2. Then

p̂(k|A(S1)) =
N2(k)

N2
(3)

and

p̂(k) = p̂(k|A(S1))P̂ (A(S1)) =
K1

N1

N2(k)

N2
, S1 < k ≤ S2.

(4)

A(S2) is the event that there are greater than S2 outages. Then
the estimated probability of A(S2) given that S1 occurred is

P̂ [A(S2)|A(S1)] =
K2

N2
(5)

and, since S1 < S2, A(S1) ⊃ A(S2) and

P̂ [A(S2)] = P̂ [A(S2) ∩A(S1)]

= P̂ [A(S2)|A(S1)]P̂ [A(S1)] =
K1

N1

K2

N2
. (6)

The K2 trajectories that have greater than S2 lines outaged
then form an empirical distribution. That is, these states form
an empirical distribution over the ensemble of all trajectories
that enter the set A(S2) given that they have already occurred
in A(S1). We continue this process for the successive stages
3, 4, . . . , L. For Si−1 < k ≤ Si,

p̂(k) =
K1

N1

K2

N2
...
Ki−1

Ni−1

Ni(k)

Ni
. (7)

One of the most attractive features of splitting is that we can
efficiently generate samples of the whole probability mass
function as we move out over these successive stages.

The data that we collect during the simulation consists of

Ni, i = 1, . . . , L,
Ni(k), Si−1 < k ≤ Si, i = 1, . . . , L,
Ki, i = 1, . . . , L.

(8)

From the simulation data (8), we would like to compute
the maximum likelihood estimators p̂(k), k = 1, 2, . . . ,M ,
for the probability mass function of the number of lines
outaged. It appears to be very difficult to find the precise
likelihood function for the data (8). If, however, we assume
that at stage i, the number of points Ki that make up the
empirical entry distribution is large enough to allow the next
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      stage 1

Fig. 1. Splitting method trajectories and stages. Sampling distributions for each stage are shown in gray. In this figure, S1 = S2 = · · · = 4,K1 = K2 =
· · · = 4, N1 = 7, N2 = 8, N3 = 8, . . . , NL = 7.

stage simulation to proceed as if it were being sampled from
the true entry distribution, we may easily write down the
likelihood function using multinomial probabilities. Thus, the
approximate likelihood function is

L∏
l=1

Nl!

Kl!
Sl∏

k=
Sl−1+1

Nl(k)!

(
γ(Sl)

γ(Sl−1)

)Kl Sl∏
k=

Sl−1+1

(
p(k)

γ(Sl−1)

)Nl(k)

(9)

where

γ(s) = P [number of outages > s] = 1−
s∑

j=1

p(j). (10)

Note that since S0 = 0, γ(S0) = 1. Since Nl = Kl +
Nl(Sl−1+1)+...+Nl(Sl), the approximate likelihood function
(9) becomes

C

L∏
l=1

γ(Sl)
Klγ(Sl−1)

−Nl

Sl∏
k=

Sl−1+1

p(k)Nl(k), (11)

where C is a constant. As we will see, the values of p(k)
for k = 1, 2, . . . ,M that maximize (11) are precisely the
maximum likelihood estimates. Taking the logarithm of (11)
and neglecting constant terms, our estimation problem for p(k)
is to maximize

Z =

L∑
l=1

[
Kl log γ(Sl)−Nl log γ(Sl−1)

+

Sl∑
k=Sl−1+1

Nl(k) log p(k)

]
.

We have

γ(Sl) = 1−
Sl∑
j=1

p(j) =
K1K2...Kl

N1N2...Nl
,

so that

γ(Sl) = γ(Sl−1)
Kl

Nl
.

Then, for Si−1 < k ≤ Si,

∂Z

∂p(k)
=

L∑
l=i

−Kl

γ(Sl)
+

L∑
l=i+1

Nl

γ(Sl−1)
+
Ni(k)

p(k)

=
−Ki

γ(Sl)
+
Ni(k)

p(k)
,

which vanishes when p(k) is the straightforward estimator (7).

V. DESIGNING OPTIMAL NUMBER OF STAGES

For given maximum target number of failures M , it is
known [23] that when the number of stages L is given, the
optimum choice of stages S1, S2, ..., SL is given by identical
probabilities of reaching next stage so that γ(SL|SL−1) =
... = γ(S1|S0) and the number of simulation in each stage
is the same so that N1 = N2 = ... = NL. This section
gives a way to choose an optimal number of stages L. Letting
γ = γ(SL) be the probability of reaching final stage SL =M
from the start, our goal is to find the optimal L that minimizes
the variance of the estimate γ̂.

It is known from [23] that

σ2(γ) = σ2(γ(S1|S0)...γ(SL|SL−1)) ≈ γ2
L∑

i=1

1

Ki
(12)

γ = γ(SL) is a fixed constant since M is given. We minimize
the total number of simulations when the variance of estimated
probability σ2(γ) is a constant v:

minimize
L∑

i=1

Ni = LN subject to
L∑

i=1

1

Ki
= v.

Since Ki = Niγ(Si+1|Si) = Nγ
1
L , the constraint becomes

L = Kv = Nγ
1
L v and

LN =
L2

vγ
1
L

. (13)

Differentiating (13) with respect to L gives
1

vγ
1
L

(2L+ ln γ) (14)

so that L = − 1
2 ln γ, rounded to the nearest integer, is the

optimal number of stages.
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VI. EFFICIENCY OF SPLITTING METHOD

To compare the efficiency of both methods, we analyze
how many samples the splitting method and direct method
need to get the same variance of probability estimates for
both methods. Before the first splitting, when 0 < k ≤ S1,
there is no difference between the splitting and direct methods.
Therefore we will consider S`−1 < k ≤ S` for ` ≥ 2.

For the direct method, the number of occurrences of the
event of k outages in n samples is binomial, and the variance
of the estimated probability is

σ2(p(k)) =
p(k)(1− p(k))

n
≈ p(k)

n
(15)

for p(k) << 1. Since the true value of p(k) is unknown, the
estimated empirical p̂(k) is used instead as an approximation.

For the splitting method, we assume that the design of all the
stages is optimal as in section V. Then K1 = K2 = ... = K`

are the same constant K, and the expected number of
simulations N1 = N2 = ... = N` are the same constant
N . We write c = K/N . The design entails that K >> 1
and Nl(k) >> 1. And, although it is up to design, one
can readily select the stages so that γ(Sl+1|Sl) << 1 and
Nl(k)/Nl << 1. Then the estimator of p(k) becomes

p̂(k) =

(
K

N

)`−1
N`(k)

N`
= c`−1N`(k)

N`
. (16)

Recall that [23] derived expression (12) for σ2(γ) when
Ki >> 1 and γ(Si+1|Si) << 1 for all i. A similar calculation
yields

σ2(p(k)) = σ2(γ(S1|S0)...γ(S`−1|S`−2)
N`(k)

N`
(17)

≈ (p(k))2
(
`− 1

K
+

1

N`(k)

)
, (18)

when N`(k) >> 1 and N`(k)
N`

<< 1 in addition to K >> 1
and γ(Si+1|Si) = γ << 1 for all related i.

The splitting method has `N samples, so the ratio R of the
number of splitting method samples to the number of direct
method samples is R = `N/n. Small R indicates a better
relative efficiency of the splitting method.

If both methods give the same variance, equating (15) and
(18), and substituting for p(k) from (16) yields

R =
`N

n
= `

(
(`− 1)N`(k)

K
+ 1

)
c`−1. (19)

Since N`(k)/K ≤ N/K = c−1 > 1, we can obtain the bound

R ≤ `2c`−2. (20)

Since c << 1, the bound (20) shows a large relative efficiency
of the splitting method of estimating p(k) when the number
of splitting stages ` to reach k outages is moderate or large.

The total computing time of the simulation is most influ-
enced in a straightforward way by the number of cascades
sampled. The total computing time is also affected by the
average cascade length and the overhead for each cascade
sampled. The splitting method cascade samples are limited
to one splitting stage, and therefore are on average faster

to compute than the unlimited cascade samples of the direct
method. However, each splitting method cascade sample that
reaches the next stage must save the entire system state in
addition to the diagnostics of the cascading, and this additional
overhead takes some simulation time.

VII. TESTING ON A BRANCHING PROCESS

We use splitting to evaluate the probability mass function
of the total number of progeny of a simple branching process.
Branching processes have advantages of simplicity and ana-
lytic tractability that allow us to develop splitting methods on
branching processes before applying these methods to a power
system blackout simulation.

The Galton-Watson branching process model [33], [34]
gives a way to quantify the propagation of cascading fail-
ures with a propagation parameter λ. In the Galton-Watson
branching process, the failures are regarded as produced
in stages. Stage 0 has one initiating failure. The failures
in each stage independently produce further failures in the
next stage according to a probability distribution called the
offspring distribution with mean λ. We are ultimately inter-
ested in computing the probability mass function, p(n) =
P (number of lines outaged = n) for values of n from one to
some large number. Equivalently, we compute the complemen-
tary cumulative probability distribution or survival function,
S(n) = P (number of lines outaged > n) for this same range
of n. In the setting of a Galton-Watson branching process we
have, in some cases, an analytic expression for p(n) and we
can compare our simulation estimates to the “gold standard”
of the true value. Since, these probabilities can vary several
orders of magnitude over the ranges of n that we use, we
will compare splitting with direct simulation by computing
and comparing the relative error R(n), where

R(n) =
S(n)− Ŝ(n)

S(n)
, (21)

and S(n) is the true value of the survival function and Ŝ(n)
is the Monte-Carlo estimate produced by either a splitting or
direct simulation.

In Figures 2 and 3 we see the relative error R(n) in comput-
ing the survival function of the number of lines outaged from
one to one hundred lines via direct and splitting simulations
for a Galton-Watson branching process with Poisson offspring
distribution with mean value λ = 0.7. (In this case, the total
number of lines outaged follow a Borel distribution, which
means that we can compute S(n) analytically.) To obtain
simulations that have relative errors even on the order of
one third, we found that we needed about 12 million direct
simulations with an elapsed time on a laboratory workstation
of 50,000 seconds. Using splitting, we can produce a better
relative error with 7600 simulations and an elapsed time of
little more than 26 seconds; that is, a speedup of over 3 orders
of magnitude.
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Fig. 2. Relative error R(n) versus n to show performance of direct
simulation of a branching process (12 000 000 runs). Mean offspring
propagation λ = 0.7.
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Fig. 3. Relative error R(n) versus n to show performance of splitting
simulation of a branching process (7600 runs). Mean offspring propagation
λ = 0.7.

VIII. TESTING ON OPA

We test the performance of the splitting method with the
OPA simulation on the IEEE 118 bus and 225 bus systems.3

A. Simulating to reach 12 line outages with 3 stages

We first check that the splitting method gives the same
probability estimates as the direct method using the IEEE 118
bus system. A large number of cascades are simulated to obtain
good accuracy.

For the splitting method, we choose three stages L = 3
with S0 = 0, S1 = 4, S2 = 8, S3 = 12 line outages.
We simulate 50 000 cascades to obtain N1 = 4900 nonzero
cascade samples for stage S1 = 4, N2 = 40 000 times for
stage S2 = 8, and N3 = 30 000 times for stage S3 = 12. The
total number of samples of cascade stages is 120 000.

3The parameters of OPA are: p0 is 0.001 and p1 is 0.15. Generation margin
is 0.3 and κ is 0.04. The load level is 1.0 and the daily load fluctuation is
1.2. There is no upgrade of lines or generators.
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Fig. 4. Probability distribution of the number of line outages using the
splitting method on the IEEE 118 bus system.

For the direct method, we simulate 200 000 samples of
cascades and obtain from these n = 38 000 nonzero cascade
samples in which there is at least one line outage.

Table I shows the probability distribution of the total number
of line outages from the two methods. And Fig. 4 shows the
probability distribution of the total number of line outages
from the splitting method. The distribution from the direct
method is empirical, and the distribution from the splitting
method is calculated using the estimator (7). Both methods
show similar distributions.

TABLE I
DISTRIBUTION OF THE NUMBER OF OUTAGES FOR THE TWO METHODS

failures direct splitting standard deviation
1 0.4406 0.4296 0.003
2 0.2816 0.2774 0.003
3 0.1194 0.1375 0.002
4 0.0675 0.0766 0.001
5 0.0509 0.0367 0.001
6 0.0250 0.0272 0.0008
7 0.0086 0.0088 0.0005
8 0.0039 0.0037 0.0003
9 0.0016 0.0017 0.0002
10 0.0003 0.0004 0.00009
11 0.00054 0.00021 0.00001
12 0.00013 0.00013 0.00005

Now we compare the speed advantage of the splitting
method to the direct method for 8 line outages, an example
of a mildly rare event. To do this, we change the number of
samplings of the splitting method so that the variance of p(8)
estimated with the splitting method is the same as the variance
of p(8) estimated with the direct method.

For the direct method, Table I shows that p̂(8) = 0.0039
and the number of samples is n = 38 000. According to (15),

σ2(p(8)) ≈ 1.02× 10−7. (22)

For the splitting method, we choose N1 = 5886, N2 = 4689
and obtain K1 = 475, K2 = 131, and N2(8) = 215. Then,
using (18), the variance of p(8) for the splitting method in this
set up is also given by (22).

This same variance was produced by 5886+4689 ≈ 10 600
sample cascades of the splitting method and 38 000 sampled
cascades of the direct method. The ratio R of the number of
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Fig. 5. Probability distribution of the number of line outages using the
splitting method on the IEEE 225 bus system.

sampled cascades is about 0.3. We conclude that the splitting
method is faster than the direct method for estimating the
probability of mildly rare events such as 8 line outages, but for
these mildly rare events the speed advantage is not dramatic.

Finally, we note that the approximate formula (19) gives the
similar results

R = 2

(
215

475
+ 1

)
475

5886
= 0.23 (23)

However, the approximate upper bound (20) is not effective
for early stages such as l = 2. The upper bound (20) becomes
useful for l ≥ 3.

B. Simulating to reach 44 line outages with 11 stages

We now show the splitting method estimating the very small
probabilities of large numbers of line outages. Although rare
events, these cascades are important because they correspond
to large blackouts that have high impact on society [1]. To
check the validity of the method on different systems, we use
the IEEE 225 bus test system. This test shows the power
of the splitting method to estimate the probability of rare
cascading events. Indeed comparison with the direct method
is impossible because the direct method is much too slow
to be able to compute such rare events. The stages are
S0 = 0, S1 = 4, S2 = 8, ..., S11 = 44 outages and there
are Ki = 100 samples for each stage i.

The probability to reach each stage is shown in Table II
and the probability distribution of the number of outages is
shown in Fig. 5. These results demonstrate that the splitting
method can estimate probabilities of very rare cases such as
35 outages, which are inaccessible to direct methods.

IX. DISCUSSION OF FUTURE APPLICATIONS

The splitting method is tested in this paper on a version of
OPA with a fixed power grid, but our analysis of splitting is
general and suggests that splitting could be generally applied
to speed up cascading simulations that sample many cascades
to determine cascading probabilities and risk.4 For simulations

4Note that the software modifications to implement splitting by storing out-
comes of simulation stages and sampling from these to restart the simulation
are straightforward.

TABLE II
PROBABILITY TO REACH NEXT STAGE

stage(failures) probability
1(4) 0.25879
2(8) 0.039401

3(12) 0.020346
4(16) 0.0075438
5(20) 0.0059884
6(24) 0.0068752
7(28) 0.0050715
8(32) 0.0042935
9(36) 0.003792
10(40) 0.0001896
11(44) 0

with a probabilistic framework that estimate cascading risk
by repeated sampling in fixed power grids (for example, [10],
[13], [27], [31], [40]), it seems clear that splitting could poten-
tially offer substantial gains in performance. And there may be
other calculations that splitting could speed up. For example,
the random chemistry algorithm of [41] successively divides
a large sample of initiating contingencies to find an unbiased
minimal sample of multiple initiating contingencies that cause
large blackouts. Simulation is used repeatedly to compute the
cascading caused by the various initiating contingencies and
could potentially be sped up using splitting.5 It may also be
possible to use splitting to speed up methods of testing of
controls to mitigate cascading, such as [42], [43]. In all these
applications, the splitting method would play the limited and
purely technical role of making cascade samples quicker to
calculate, but the increase in speed could lead to a significant
expansion of the range of applicability, particularly in enabling
systematic sampling from all sources of variation and the use
of larger grid models.

There are also applications in which it is not obvious how
or whether splitting can be applied. For example, the complex
systems dynamic version of OPA [14], [15] samples cascades
from a slowly evolving grid, and it is not clear how the
evolution should be integrated with the resampling for the
splitting.

X. CONCLUSION

Simulation speed is a key barrier in assessing the risk of
large cascading blackouts. We analyze the splitting method
and test it on a standard power system simulation of cascading
transmission line outages by estimating the probability mass
function of the number of line outages. We show that the
probability estimates are approximately maximum likelihood
estimates and show how to design the optimal number of
stages in the splitting method. While the splitting method has a
modest speed advantage over direct Monte Carlo computation
for estimating the probability of a small number of line out-
ages, it is able to compute very rare samples of large numbers
of line failures that correspond to the large blackouts of high
risk to society. Direct Monte Carlo methods cannot be used
to compute these rare samples because of their impractically
excessive simulation times.

5The uniformity of sampling with splitting would be used but it would not
be necessary to calculate the probabilities of the cascades.
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The splitting method is a very promising method for
significantly improving the performance of cascading failure
simulations. The splitting method is well aligned with and
takes advantage of the structure of the cascading processes.
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