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Ranking the Impact of Interdependencies on
Power System Resilience using

Stratified Sampling of Utility Data
Molly Rose Kelly-Gorham, Paul D.H. Hines, Ian Dobson

Abstract—It is well known that interdependence between elec-
tric power systems and other infrastructures can impact energy
reliability and resilience, but it is less clear which particular
interactions have the most impact. There is a need for methods
that can rank the relative importance of these interdependencies.
This paper describes a new tool for measuring resilience and
ranking interactions. This tool, known as Computing Resilience
of Infrastructure Simulation Platform (CRISP), samples from
historical utility data to avoid many of the assumptions required
for simulation-based approaches to resilience quantification. This
paper applies CRISP to rank the relative importance of four types
of interdependence (natural gas supply, communication systems,
nuclear generation recovery, and a generic restoration delay) in
two test cases: the IEEE 39-bus test case and a 6394-bus model
of the New England/New York power grid. The results confirm
industry studies suggesting that a loss of the natural gas system
is the most severe specific interdependence faced by this region.

Index Terms—Resilience, Critical Infrastructure, Interdepen-
dence

I. INTRODUCTION

THERE are many known interdependencies between bulk
power systems and other critical infrastructure (CI) sys-

tems that impact energy resilience. But which interdepen-
dencies are most important? To the authors’ knowledge, this
question remains unanswered (and mostly unasked). This
paper presents a method to rank the effects of several interde-
pendencies on the resilience of a power transmission system
based on data collected by electric utilities.

A. Motivation

Extended, large power outages come with very high social
costs. It is well known, but not particularly well quantified, that
these costs are exacerbated by interdependence between CI
systems. Communication towers, traffic lights, water filtration
and supply systems, and even natural gas compressors, all
of which become critical during times of emergency, need
reliable electricity (to varying extents) to operate. And all of
these systems are important to the operation and restoration
of electric power systems. Developing policies that enhance
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societal resilience therefore requires that we deeply understand
the interdependencies between electric power systems and
other infrastructure systems. The interactions among power
generation, the electricity transmission network, and other CI
are often stressed even under normal operating conditions.
Disturbances can easily push things over the edge and trig-
ger cascades of failures that lead to large-scale disasters.
These disturbances include earthquakes, fires, hurricanes, wind
storms, trees interacting with power lines, line icing, snow
storms, and flooding. While dependable electricity supply is
already critical today, the ongoing electrification of energy
services, such as transportation and heating, will make it even
more important that we deeply understand how interdepen-
dence impacts energy resilience.

An important example of critical interdependence is natural
gas and electricity. Natural gas generators need continuous
access to gas through pipelines to generate electricity. Many
natural gas compressor stations and extraction wells require
electricity to operate [1]. During times of harsh cold conditions
(cold snaps) gas demand for heating often takes priority over
gas for electricity generation due to the contracts used by
natural gas generators. Especially under severe cases, cold
conditions can lead to load shedding as the only option for
stabilizing the electric grid. The February 2021 Texas cold
snap left 4.5 million customers without power. A primary
cause of this event was natural gas generation failing due to
cold temperatures [2].

A second example is communication systems. Commu-
nication towers are usually powered by the electric grid,
often with battery systems for backup power. While the
core communication systems used by the bulk power grid
(SCADA) are typically separated from the public internet and
cellular communication systems, and have their own battery
backup systems, important interdependencies remain. During
restoration of grid infrastructure, repair crews will use the
public cellular networks to communicate with coordinators.
Given that backup power systems for cellular towers can only
operate for a limited time without access to grid power, there is
an interdependence that will only arise during longer outages.

Nuclear generators are naturally interdependent on electric
grids, because they require power from the grid to operate
various safety systems. When power from the grid is seen
by the plant as potentially unreliable (e.g., significant voltage
fluctuations), nuclear plants are designed to disconnect from
the grid and use local backup power systems to initiate a
controlled plant shutdown. This creates an interdependence



AUTHOR PREPRINT; TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS IN 2023 c©IEEE DOI 10.1109/TPWRS.2023.3260119 2

that can both increase the size of a blackout by removing
large generators from the supply, and the length of a blackout
because once a nuclear plant initiates the shutdown process, it
can be days to weeks before it is available to generate power
again [3].

When CI systems have been damaged for extended time
periods, restoring key elements of the power grid becomes
even more challenging. This was seen in Puerto Rico after
Hurricane Maria [4]. This concept, which we call compound-
ing risk over time, is difficult to model precisely, but is clearly
present in the history of large power grid failures, where
large restoration projects become increasingly difficult as more
infrastructure systems have been out for longer periods of time,
leading to complicated and often unanticipated interactions.

B. Paper description

The Computing Resilience of Infrastructure Simulation
Platform, CRISP, used in this paper, was initially presented
in [5], [6], where it was used to evaluate transmission system
resilience as a single infrastructure including renewables. In
this paper, the CRISP framework is extended to evaluate
transmission system resilience focusing on interactions with
other infrastructures. A key feature of CRISP is its use of
data collected by electric utilities about transmission (and
here generation) outages to build probability distributions.
These probability distributions combine the outcomes of the
various processes involved in resilience, and sampling from
these probability distributions can efficiently reproduce the
response and resilience of the power system under stress.
CRISP samples from these distributions to generate represen-
tative sets of line/generator outages and restoration times. This
allows us to consider a large set of events caused by many
different disturbances (e.g., fire, weather, human error) as the
source of disturbance without needing to explicitly model
each mechanism. CRISP then uses a grid model to track the
progress of restoration and quantify the size, duration, impact,
and risk of resilience events.

Conventional sampling methods such as Monte Carlo tend
to under sample from extreme events, resulting in either mas-
sive computing requirements or an inaccurate estimate of the
risk associated with large events [7]. To address this problem,
this paper uses stratified sampling to find the low probability,
high impact events in sufficient quantity to quantify the risk.
Sampling a sufficient number of large events is already crucial
to measuring the resilience of power systems, and when
interdependencies between power systems and other CIs are
included sampling methods become even more important.

This paper estimates the impact of several types of inter-
actions and ranks them to find the effect on the resilience of
two power system networks. As a first effort to incorporate in-
teractions into the resilience quantification methods developed
in [5], [6] these interaction models are appropriately simple.
There are three specific interaction models: communications,
natural gas supply, and nuclear restorations, as well as the
more generic compounding risk over time.

C. Literature Review

The idea of measuring resilience, before its use in engineer-
ing, stems from the literature on Social-Ecological Systems,
where interdependencies and the effects of different scales are
seen as critical to measuring the resilience of these complex
systems [8]. The field of civil engineering pioneered frame-
works for resilience of infrastructure systems [9]. As reviewed
in [10], the quantification of resilience of an infrastructure
system requires measures of system performance under differ-
ent stages of resilience events, including disaster prevention,
damage propagation, and recovery. While there are many
overlapping definitions of power system resilience, such as
from IEEE [11], [12] and others [13], [14], the most succinct
definitions are from CIGRÉ [15]: “Power system resilience
is the ability to limit the extent, severity, and duration of
system degradation following an extreme event” and from
the US government [16] defining resilience as “the ability to
anticipate, prepare for, and adapt to changing conditions and
withstand, respond to, and recover rapidly from disruptions.”
All these definitions of resilience involve the power system’s
response to events or extreme events. The electrical engineer-
ing resilience literature focuses on understanding high impact
low probability events that are not considered in standard
reliability assessment [17]. In addition, a number of papers
have shown that it is helpful to model resilience events using
a sequence of stages, including initial failures, propagation,
and restoration [14], [17]. CRISP analyzes all the phases of
events as they dynamically evolve with special attention to
sampling methods that are able to approximately quantify the
most extreme events, and is therefore a method of assessing
resilience.

In order to understand resilience in power systems, we
need to understand the key elements of events that degrade
resilience. These elements include the initial disturbance [18],
which causes failures, which can then initiate cascades of
outages [19], [20], which is followed by a restoration pro-
cess [21]. Initiating outages are often modeled using fragility
curves, with outage probabilities that are dependent on the
nature of the external hazard [22]. Stratified sampling from
utility data is applied in [23] to represent cascading outages
in the electric transmission grid after an earthquake in order
to optimize investment to harden the grid against earthquakes.
Power system resilience to wind storms [24], earthquakes [9],
and less frequently multiple hazards [25] are also explored in
the engineering literature.

While the resilience of interdependent CI has been studied
for decades [26], much of the problem remains open [27]–[29].
Several papers use multi-network models to study interdepen-
dent CI [30], [31]. Much of the work in this field studies the
cascading failure between interdependent infrastructures [32],
[33]. Vulnerable components considering the interdependence
between CI are modeled in [34]. Others develop restoration
strategies for multiple interdependent CI [30], [35]–[37]. Spe-
cific combinations of interdependent power and other CI are
being investigated, for example, by finding the impact of
specific events on interdependent communication and elec-
tricity infrastructure [14]. There are many ongoing challenges
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for modeling the resilience of these interdependent systems.
For example, a review of communication systems and power
systems [38] describes several mechanisms of interdependence
in the case of smart grids and severe weather conditions that
need further study. Many key interdependencies are increasing
over time, such as transportation and electricity with the
growth of electric vehicles. Indeed, benchmark problems are
being formulated to encourage further research on this rela-
tionship [39]. Others are using data-based component failure
models [40], and proposing creative ideas for utilizing interde-
pendence to improve resilience [41]. Interdependence between
natural gas and electric transmission networks is being studied
not only in resilience settings [42], but also under normal
operating conditions [43], [44] to understand interconnected
energy systems that provide both heat and electricity [45].
Water and power networks are increasingly stressed by their
interdependencies and are beginning to be investigated [46].

D. Contributions

This paper presents a novel method for ranking and approx-
imately quantifying the impact of multiple interdependencies
on the resilience of a bulk power system. The paper makes
three primary contributions to methods for assessing the re-
silience of interdependent energy infrastructure:

1) The paper characterizes the outcomes of outage initi-
ation, cascading, and restoration in the grid using the
statistical patterns of historical data for transmission and
generation. This method works directly from standard
data already collected by utilities, and avoids many of
the assumptions needed for simulation models.

2) The paper applies stratified sampling to the problem of
resilience event modeling so that high impact low fre-
quency events can be practically and efficiently sampled.

3) The paper approximately quantifies and ranks the re-
silience impact of interdependencies between electricity
and gas, nuclear, and communications infrastructures,
using data from the Northeastern US and 39-bus and
6394-bus grid models.

A ranking and approximate quantification can guide utility
management, regulators, business, government, and the public
towards investments that mitigate the highest-risk threats to
resilience, and help avoid ineffective investments. Further, with
these three innovations together, the methods in this paper
can inform large-scale infrastructure investment priorities by
providing decision makers with information about the relative
importance of particular interdependencies that make society
less resilient to various hazards.

In what follows, we present our methods in Sec. II, results
in Sec. III, and conclusions in Sec. IV.

II. METHODS

CRISP is a novel approach that quantifies the resilience of
a power system to generator and transmission outages using a
data-driven method that represents each process in resilience
events from initiating disturbances through restoration. CRISP
represents five specific processes: stress leading to initial

failures, cascade of failures through the network, the post-
disturbance degraded system state, restoration, and quantifying
the impact of the event [5]. The model for each process com-
bines real-world historical data from electric utility systems
with a power system model. Many salient characteristics of
historical power systems events will recur in the future. In
particular, CRISP follows the statistical patterns of previous
events, not specific historical events, and therefore CRISP
generates events that have not previously happened, but are
consistent with past patterns. The statistical patterns of the
past responses of the grid (but not usually the detailed events)
will recur to a large extent in the future. At the same time, it
is the case that some new statistical patterns can emerge that
are not manifested in historical data. Moreover, we do not rely
on statistical patterns from previous events only; we also use
a network model with an OPF to help determine the response
of the grid. As a result, this method does allow us to test the
impact of modifications to a system, as evidenced by the fact
that we are able to test the response of our two test cases
to different interdependence scenarios. After each simulation,
CRISP delivers multiple measures of event impact, including
event duration (hours), event size (MW), the number of
components lost, and energy not served or ENS (MWh). Quan-
titatively describing the distribution of event duration, size, and
ENS over a broad spectrum of initiating events is a valuable
way to understand the resilience of a given power network.

CRISP models the combination of initiating outages and
cascading outages by sampling from historical transmission
line and generator outage data collected and reported by
utilities. Using historical data in this way avoids the need
to model cascading outages in detail, eliminating the need
to make difficult assumptions about how particular cascading
failures may propagate in a given power system [47], [48].
After sampling outages in this way, CRISP uses an optimal
load shedding algorithm (see [5]) to calculate the size of the
event in total load shed (MW). Restoration is modeled by
sampling from historical data for both transmission line and
generator restoration times, and then calculating the maximum
load that can be served in each hourly time step until the sys-
tem is fully restored, or 6 months have elapsed. Computations
were performed, in part, on the Vermont Advanced Computing
Center.

Fig. 1 shows a flow diagram for one event simulation in
CRISP. The model begins with historical outage data and
power system network data. From there the initial outages
are sampled from the statistics of the historical outage data,
and applied to the power network. The initial grid state
for the event is found with optimal load shedding through
an OPF. The same OPF is subsequently used to compute
the load shed at each time step of the model in the loop
shown in Fig. 1. The unavailable (outaged) components are
restored once the time-step reaches the restoration time for
that component. The sampled restoration times are subject to
update in the interdependence model, where restoration times
may be increased. When all load is restored, or the maximum
time step is reached, the model exits the loop and reports the
event duration (hours), initial event size (MW), and the ENS
(MWh).
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Fig. 1. Flow diagram for the CRISP model including interactions.

This section describes the data used in this paper, the
statistical distributions used for line and generator outages,
the stratified sampling method, and several important im-
provements made relative to previously published versions of
CRISP. Key among the CRISP improvements is the ability
to model internal and external interdependencies that impact
power system resilience. This allows CRISP to quantify these
interdependencies and to rank their impacts on power system
resilience. We use CRISP to study the impact of four types
of interactions: communications, natural gas supply, nuclear
restoration, and a more abstract model of compounding risk
over time. To rank interdependencies, an initial (baseline)
resilience assessment of the power system is found through
CRISP. CRISP then reassesses power system resilience for
each interaction model using the same set of events as the
baseline assessment. This allows one to compare the impacts
of each interaction model on power system resilience and rank
them.

A. Case studies and sources of data

This paper presents results from applying CRISP to two
power system test cases based on data from the Northeastern
US. The first case study uses the network data from the IEEE
39-bus case [49] covering New England in the US.1 The

1The original IEEE 39-bus test case was updated to be N−1 secure by
increasing line power flow limits and adding repeated lines where necessary.
The modified test case has 55 lines and 10 generators and is available at [50].

network data for the second case study was developed from an
Independent System Operator-New England (ISO-NE) PSS/E
planning model designed to represent the 2018/19 winter-peak
in Vermont and covers New England and New York in the US.
We refer to this case as the 6394-bus NE-NY case.2

Additional generator properties, such as startup times, shut-
down times, are included based on properties of the most
similar generators in the 73-bus reliability test case [51]. We
collected the forced outage rates (FOR) for different generator
types from [52] via [53] for temperature conditions below
−15◦C, which range from FOR = 1.9% to FOR = 21.2%.
Restoration times come from Northeast Power Coordinating
Council (NPCC) Generating Availability Data System (GADS)
data from 2012-2015, as reported in [54].

The transmission line automatic outage data describing
cascade size and spread comes from the New York Indepen-
dent System Operator, NYISO, as processed from public data
in [48]. The distribution of transmission line restoration times
comes from automatic outages reported in the North American
Electric Reliability Corporation’s Transmission Availability
Data System (TADS) for the US Eastern interconnection [55].

B. Number of line outages after cascading

Initiating a CRISP simulation requires the probability dis-
tribution of the total number of lines outaged after the initial
outages and cascading. To build this distribution from the
NYISO data, we first found the empirical probability of exactly
one line outage to be p1 = 0.664. Next, we found the Zipf
distribution (or zeta distribution) for two or more lines out,
which has the form

P [k lines out] =
1− p1
ζ(s)− 1

1

ks
, k = 2, 3, ..., nmax (1)

where the slope of the Zipf distribution on a log-log plot is
−s, ζ is the Riemann zeta function, and nmax = 1695 is
the number of lines in the network. The Zipf portion of the
distribution was fit by adapting the formula in [56] to the
condition k ≥ 2, giving the estimate s = 3.59. The purpose
of using the Zipf distribution is to smooth the noisy data
for large numbers of line outages with a plausible form of
the distribution tail. (Note that the probability of (1) yielding
more than 1695 lines out is of order 10−9 and is therefore
neglected.)

Line restoration times from Eastern Interconnect data are fit
to a log-normal probability distribution, as shown in Fig. 2.
The resulting log-normal distribution with parameters µ =
4.77 and σ = 2.63 is used to sample the line restoration times
for both case studies.

C. Selecting which lines outage

After selecting the number of lines out after cascading, N ,
CRISP next chooses which specific lines go out by sampling

2The original network was somewhat reduced in size by aggregating all
“leaf” buses so that the resulting model includes only buses of degree 2
and higher. The resulting network contains 6394 buses. The HVDC lines
were modeled as generators (positive or negative), with the power produc-
tion/consumption limited between the operating point and the negative of that
value. The line limits were increased so that the base case produces no flows
above the line rating for each N−1 contingency using a DC power flow.
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Fig. 2. Empirical distribution and log-normal fit of Eastern interconnect
transmission line restoration times from TADS data.

Fig. 3. Empirical distribution of network distances between all lines within
a cascade using NYISO transmission line outage data.

from the empirical distribution of network distance between
lines in the observed cascades from NYISO data shown in
Fig. 3. In the first step, CRISP randomly samples one line
in the network to be included in the cascade, L1. At each
subsequent step k, such that 2 ≤ k ≤ N , CRISP samples a
distance d from the empirical distribution shown in Fig. 3, and
randomly selects another line Lk from the set of not-outaged
lines that are a distance d from line L1. This line is then
included in the set of lines-to-go-out, k is advanced, and the
process repeats until N lines are selected.

D. Generator outages

In this paper, CRISP models generator outages based on
historical generator outage data under cold weather conditions.
Specifically, we collected the forced outage rates (FOR) for
different generator types from [52] via [53] for temperature
conditions below –15◦C, which range from FOR = 1.9% to
FOR = 21.2%. Because different extreme events will have
dramatically different outcomes in terms of how many gener-
ators are out, we took the FOR data above and synthesized
a broad-ranging generator outage probability mass function
(PMF) to represent the number of generators out after a
cascade. 3 The resulting PMF comes from an evenly weighted
average of one million binomial generator outage distributions
from one million evenly spaced outage rates in the range
1.9 ≤ FOR ≤ 21.2, as shown in Fig. 4.4 At the start of each

3The PMF is based on the available generator FOR data. For generators
with limited data such as wind and solar we use the same PMF.

4The PMF depends on the total number of generators in the case, as the
total number of generators is a parameter of the binomial outage distribution.
For the 39-bus system with 10 generators, Fig. 4a shows that the probability
of NG generators being unavailable decreases from 0.35 for 0 generators
unavailable to nearly 0 for 6 or more generators unavailable. For the larger
6394-bus NE-NY case with 1695 generators, Fig. 4b shows that the probability
of 0 generators being unavailable is very small, and the probability increases
until NG is approximately 50. Although the probability of an individual
generator being unavailable is low, when there are many generators, the
probability of a few or more generators being unavailable is high.

Fig. 4. Probability distributions of generator outages for (a) IEEE 39-bus
case, and (b) 6394-bus NE-NY case.

simulation, CRISP samples from this PMF to determine the
number of generator outages, and then chooses the particular
generators that go out using a uniform distribution.

In order to build a distribution for generator restoration
times, we use log-normal probability distributions fit to the
NPCC GADS data for each of three types of outages: startup
failures, unscheduled outages, and unscheduled deratings,
which are distributed in the GADS data at 0.01%, 0.27%, and
0.72% respectively, as reported in [54]. For each generator
restoration, CRISP chooses the type of outage according to
the distribution above, and then samples the restoration time
from the respective log-normal distribution.

E. Stratified Sampling

While large outages are rare, they contribute substantially to
overall risk [57]. This comes from the fact that the distribution
of outage sizes, measured by the number of lines out (1), has a
heavy tail. One consequence is that straightforward, brute force
Monte Carlo sampling of outage size is inherently ineffective
because large cascades rarely appear in these samples. Thus,
brute force Monte Carlo methods require an impractically
large sample size to accurately evaluate the risk associated
with large events.

To address this issue, we sample much more uniformly
across the range of cascaded outage size. That is, instead of
sampling directly from (1) and the generator outage distribu-
tion, we use stratified sampling [58, ch. 8] to sample more
efficiently. The key idea is to divide the cascade sizes into
bins or strata. We calculate the probability of each bin and
then use CRISP to estimate the probability of an outcome,
such as load shed of samples in each bin; that is, the load
shed probability conditional on each bin. Then the load shed
probability is obtained by weighting the probability of load
shed conditional on each bin by the bin probabilities. This is
described in more detail in the following.
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The cascade size is given by the number of lines out
N and the number of generators out G. We choose bins
B1, B2, ..., BK for the cascade size by specifying for each bin
the range of numbers of lines out and the range of numbers
of generators out:

Bk = {Nmin
k ≤ N ≤ Nmax

k and Gmin
k ≤ G ≤ Gmax

k } (2)

The bins partition the possible cascade sizes; that is, the bins
are disjoint and they cover the full ranges of number of lines
out from 1 to nmax and number of generators out from 0 to
gmax. The number of bins K is the product of the number of
line bins and the number of generator bins.

Since the line and generator outages are assumed indepen-
dent, the probability of each bin is easily computed from (1)
and the generator outage distribution:5

P[Bk] = P[Nmin
k ≤ N ≤ Nmax

k ] P[Gmin
k ≤ G ≤ Gmax

k ] (3)

Given the number of lines out N and generators out G,
CRISP can evaluate a sample of the load shed S and the ENS.
Here we illustrate the process by estimating the distribution
of the load shed S. One can similarly estimate ENS by
substituting ENS for S. Suppose we take s samples from
bin Bk and use CRISP to calculate s samples of load shed
S
(k)
1 , S

(k)
2 , ..., S

(k)
s . Then we estimate the survival function of

load shed assuming that the cascade size is in bin Bk as

P[S > ` | Bk] =
1

s

s∑
j=1

I[S
(k)
j > `] (4)

I[·] is the indicator function and the summation in (4) counts
the number of samples with load shed larger than load level `,
where ` is a free variable ranging from zero to the total load.
Then the survival function of load shed is given by weighting
(4) estimated with CRISP with the bin probabilities calculated
from (3):

P[S > `] =
K∑

k=1

P[S > ` | Bk] P[Bk] (5)

Brute force Monte Carlo corresponds to stratified sampling
with only one bin (K = 1), and one can see how having
many bins over the range of cascade sizes and sampling
equally from each bin distributes the sampling effort much
more equally across the range of cascade sizes, since sampling
from only one bin will greatly oversample the common small
cascades, and greatly undersample the rare large cascades of
most interest. Indeed, stratified sampling not only reduces the
variance of the estimated quantities for the large cascades by
increasing the number of large cascade samples, but enables
much rarer and larger events to be sampled. Moreover, the bin
probabilities are computed exactly from (3), which also gives
lower variance estimates relative to empirical sampling from
the entire distributions. To take full advantage of this, the bins
are chosen so that the load shed does not vary too much over
the bin [58, ch. 8.4].

5If the extreme event has significant correlations between transmission
lines and generator failures, these are easily accommodated by computing
the probability of each bin according to the joint distribution of transmission
line and generator failures.

F. Interaction Models

A key to understanding the resilience of electric power
systems is to understand the dependence of other CIs on
the electric grid and its own dependence on those CIs. Here
we describe models of several interdependencies between CI
systems and the electric power grid.

1) Natural Gas Pipelines: Electric and natural gas networks
are interdependent in many ways. To measure the impact of
these interactions on the resilience of the power system, a
probabilistic model of the natural gas interaction with the
electric grid was created. Within this model, the natural gas
delivery system (as a whole) will fail with a probability that
is equal to the ratio of the number of lines outaged N to the
total number of lines in the electric network. If the natural
gas delivery system fails, then the model samples from a log-
normal distribution with parameters µ and σ of 3 days and 1
day respectively to find the amount of time that the natural
gas power plants will go without fuel supply.

2) Communication Infrastructure: This model represents
interactions between the communication system and electric
system when under stress, such as the fact that electric utility
repair crews may not be able to use cellular systems during
the restoration process if cell tower electricity supplies go
down and their batteries run out. The model assumes each bus
with load has a communication tower associated with it and
each communication tower has a back-up battery. The model
assumes that each tower’s back-up battery has a duration
drawn from a uniform probability distribution that ranges from
4 to 24 hours. CRISP samples from this distribution for each
load to find the battery duration for each event. After finding
the battery duration of each bus the model finds the initial
demand unserved (load shed) at each node. If there is load
shedding on that bus the probability of the tower failing is
proportional to the load shed at that bus. To model the fact
that if one or more towers fail, restoration in the vicinity of
the failed towers becomes more difficult, CRISP increases (one
time only) the restoration times of any lines connected to a
bus with a failed communication system by a factor of 1.5.

3) Nuclear Restoration: Nuclear power plants have (appro-
priately) complicated safety procedures. This is particularly
true when there are voltage fluctuations or when “Loss of off-
site power” events occur, which typically trigger a long chain
of shutdown procedures. Restoring normal plant operations
after a safety shutdown event can take days to months. For
example, a nuclear reactor can become poisoned with Xenon-
136 gas if it is disconnected from the grid and must shutdown,
and it can takes days for the gas to dissipate, which must
occur before the plant restart process can begin. This nuclear
poisoning can happen during blackouts and delay restoration
of the nuclear plant. The long restoration times of nuclear
plants can be seen in historical generator outage data [54].

In CRISP, this interaction occurs any time a nuclear gener-
ator has been switched off for three hours. If this does occur,
then after the normal shutdown period, the nuclear plant is
forced to wait t hours until starting up again, where t is
sampled from the distribution of the mean time to recovery
(MTTR) for nuclear generators as found in [54].



AUTHOR PREPRINT; TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS IN 2023 c©IEEE DOI 10.1109/TPWRS.2023.3260119 7

4) Compounding Risk Over Time: It is well known in
power system restoration that when restoration periods become
longer and critical services lack access to electricity, the
restoration process itself becomes more difficult and delayed.
One example is infrastructure employees being unable to drive
to work when their gas tanks are empty and filling stations
do not work, or when their cellular telephone batteries run
out and charging is not easily available. Another example
is increased traffic delays when traffic lights fail. There are
many such interactions, and they may only emerge in longer
and more widespread blackouts. Sometimes such interactions
are surprising and only recognized when they occur. It is
not feasible to model all the possible mechanisms of these
interactions, but we can model the overall effect in which
the restoration process during long and large events becomes
increasingly severe, compounding over time. CRISP models
this compounding risk over time effect as follows: The model
checks each outaged line every 8 hours of restoration, and
increases the restoration time by a factor of 1.05 with a
probability that is the total fraction of load shed, at the
current time step, in the local region (the nodes at either
end of the line). The factor 1.05 came from the results of
an early sensitivity study, where we found this model is very
sensitive to the parameter chosen, with larger factors leading
to unrealistically large impacts on the risk.

Each interdependence model depends on historical data in
two ways. First, the models are impacted by the system state,
and thus by the sampled generation and transmission outages.
Second, each model has parameters selected based on literature
about these particular interactions, and which could, in future
work, be sampled from distributions representing detailed data
about that particular interaction.

III. RESULTS

This paper uses three metrics to describe the impact caused
by resilience events: outage duration (hours), event size (max
MW of load shed), and energy not served (ENS in MWh). We
then use two different methods to visualize the statistical dis-
tributions that result from the full range of sampled events: the
complementary cumulative distribution function (CCDF) of
ENS and a new visualization that we call “Risk Boxes,” which
represent all three dimensions (duration, size and probability-
weighted ENS). Together with our approach to stratified
sampling, we consider these metrics and visualizations to be a
useful way to describe the resilience of a particular system to
extreme events. In contrast to conventional reliability analysis
methods, such as Monte Carlo sampling, which tend to under
sample from extreme events, the stratified sampling method
used in CRISP captures the response of a given system to a
wide range of high impact, low frequency events. Furthermore,
our simulation method describes both the initial size of the
outage and the restoration phase, which is critical to resilience
analysis.

Figs. 5, 8, 9, and 11 show the CCDF of ENS for various
test cases and scenarios. The CCDF allows one to see the
full range of event impacts and their relative probabilities,
and to compare the various interaction models. While the

CCDF is useful, it is sometimes difficult to understand overall
risk, which is a combination of cumulative probability and
impact, in the CCDF. Also, the tail of the CCDF has significant
uncertainty, due to the relatively small number of large events
sampled and the small probabilities involved. Furthermore, the
CCDF of ENS only describes the total energy associated with
an event, which means that short duration, large size events
are viewed similarly to long duration, small size events.

In order to provide further insight into system resilience,
we introduce a second visualization technique, which we call
Risk Boxes, that shows the overall risk measured as probability
times impact (ENS). Each Risk Boxes plot has 9 boxes placed
along coordinates of event sizes (MW) and event durations
(hours). The plots show the risk from blackout events of
different sizes (small, medium, large) and durations (short,
medium, long) along coordinates for size and duration. The
summed risk for each range of size and duration is indicated
by the area of the box, which is normalized by the area
of the largest box in the figure. The resulting Risk Boxes
are shown in Figs. 6, 7, and 10. The combination of these
two visualization methods (CCDF and Risk Boxes) provides
additional insight into the resilience of a given system beyond
either metric alone.

The following subsections discuss the results for two dif-
ferent test cases: (1) a modified version of the IEEE 39-bus
test case [50] and (2) the 6349-bus NE-NY case.

A. IEEE 39-bus Test Case

In order to implement stratified sampling for the IEEE 39-
bus case, we created one bin for each possible combination
of lines out (1 to 55) and generators out (0 to 10), giving 605
bins. Stratified sampling was then applied with 100 samples
drawn from each bin.

Fig. 5. The CCDF of ENS for the IEEE 39-bus test case for the base case and
each of the interaction models. The inset shows more detail for the distribution
of large event sizes.

1) 39-bus test case results: Figs. 5 and 6 compare the
4 interactions and the base case of no interactions for the
IEEE 39-bus test case. Fig. 5 shows the CCDF of ENS. The
small and medium ENS events show no significant difference
from the base case with no interactions, while for some
interaction models the ENS of the large events increased from
the base case. Fig. 6 shows the Risk Boxes for the 39-bus



AUTHOR PREPRINT; TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS IN 2023 c©IEEE DOI 10.1109/TPWRS.2023.3260119 8

Fig. 6. Risk Boxes for the IEEE 39-bus case. The vertical position of each box indicates events with a small, medium, or large amount of MW load shed
and the horizontal position of each box indicates events with a small, medium, or large outage duration. The area of each box indicates the relative risk
associated with the events associated with that box. Each box has the shade and color associated with the MW shed and duration of those events. The shade
of the color is lightest for small MW shed and darkest for large MW shed. The short duration events are blue, the medium duration events are purple, and
the large duration events are red. The threshold between small and medium sizes events is 4000 MW, between medium and large event sizes is 6000 MW,
between short and medium duration events is 48 hrs, and between medium and long duration events is 250 hrs.

Fig. 7. Risk Boxes showing parameter sensitivity analysis results for the natural gas interaction model applied to the 39-bus test case, using the same method
and thresholds as in Fig. 6.

case with the three specific interaction models and the general
compounding risk over time model applied and compared
with the base case. The results clearly indicate that natural
gas interaction substantially increases the risk of long events
over small, medium, and large event bins. In addition, the
compounding risk over time interaction substantially increases
the risk of long events of all sizes. The communication
and nuclear restoration interactions had very little impact
on resilience. Furthermore, Fig. 5 suggests that the nuclear
restoration interaction does not substantially impact resilience.
However, there are visible increases in the ENS of large
events from the communication, natural gas, and compounding
risk interactions. The compounding risk over time interaction
clearly illustrates the potential impact of continued lengthening
of restoration times and is the most severe interaction for the
39-bus test case.

2) Sensitivity Analysis: Each of the interaction models has
various parameters that naturally impacted the outcomes. Here
we discuss results from sensitivity analysis of key parameters
in the interaction models for the 39-bus test case.

The assumed model parameters in the nuclear generation
interaction are minimal since that model mainly used data
presented in [53]. While there was one modeling parameter of
the number of hours a nuclear plant needed to be out before
this interaction could be initiated, changing that number from
3 hours to either 2 or 1 hours showed no effect on the results.

The communication model sensitivity analysis examined the
two model parameters: the range of battery durations and the
multiplication factor on the restoration time. The range of
battery durations was switched from 4 to 24 hours to 1 to

4 hours. The 1 to 4 hour battery parameter results show that
the shorter battery life made little difference, or even slightly
improved the resilience from the original battery interaction
model. The other parameter in the communication model is
the factor 1.5 by which the restoration times of the adjacent
lines are multiplied. This factor was increased to 1.75 and 2
for the sensitivity analysis, and both increases to this factor
decrease the resilience of the power system as expected.

The log-normal distribution used to model the natural gas
interaction has two parameters: µ and σ. Increases to µ or
σ decreased the resilience of the power system. As shown in
Fig. 7, the assumed values of µ and σ did impact the results
of the study. As shown in Fig. 8, changes in µ and σ had the
most impact on large and small ENS event impacts for the
higher probability, medium events.

We also tested various values for the parameters in the com-
pounding risk over time model. Changing the time parameter,
set to 8 hours in the original model, by a few hours did not
significantly impact the results. However, changing the factor
parameter, set to 1.05 in the original model, had a significant
effect on this interaction model.

3) Comparison With Monte Carlo Sampling: To validate
and assess the performance of stratified sampling, we com-
pared the results from stratified sampling to conventional
Monte Carlo sampling. Fig. 9 shows results from stratified
sampling with bins from 1 to 55 lines and 0 to 10 generators
and standard Monte Carlo sampling, both with 60 500 samples
on the IEEE 39-bus case. In order to quantify the uncertainty
in each of these methods we used a bootstrapping technique
using sampling with replacement from the 60 500 samples.
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Fig. 8. CCDFs of ENS for the natural gas interaction model sensitivity
analysis on the IEEE 39-bus case for the full range of events. Inset shows
detail for large events.

Fig. 9. Comparison of Monte Carlo sampling and stratified sampling
results for the IEEE 39-bus case. To show the variance in each, we show
10 bootstrapping runs for each method. The figure shows event impacts
≥ 103 MWh; the data for smaller event impacts is identical for both methods.

The results clearly show that for small events the Monte Carlo
method provides less uncertainty, while for large events the
stratified sampling method shows data for far more of the tail
in the distribution. The benefit of stratified sampling is the
added range of event impact, and the trade off for that added
range is lower accuracy for smaller events. Stratified sampling
allows the sampling to be deployed much more effectively
across the full range of event impacts.

B. 6349-bus NE-NY Case

To implement stratified sampling for the 6394-bus NE-NY
case, bins were chosen to cover a large range of line and
generator outages and include rare, massive contingencies.6

The bins were selected based on the expected wide range of
outcomes from different lines and generators being sampled.
The generator outages were modeled only up to 400 generators
outaged at once, since the probability of more than 400
generators being out at one time is very small.

Fig. 10 shows the Risk Boxes for the three specific in-
teraction models: communications, natural gas, and nuclear
restoration, as well as a base case with no interactions. The
results for the NE-NY test case clearly show the enormous
impact that a natural gas shortage could have on the system.
Most notably, the natural gas interaction substantially increases
the risk associated with long duration and large load shed

6The bins for the NE-NY case are as follows: line bins are (Nmin, Nmax)
= [(1,1), (2,2), (3,3), (4,4), (5,10), (11,20), (21,40), (41,80), (81,100),
(101,150), (151,200), (201,250), (251,300), (301,350), (351,400), (401,450),
(451,500), (501,550), (551,600), (601,1695)]; and generator bins are
(Gmin, Gmax) = [(0,0), (1,1), (2,5), (6,10), (11,20), (21,50), (51,60),
(61,70), (71,80), (81,90), (91,100), (101,130), (131,160), (161,200), (201,230),
(231,260), (261,300), (301,330), (331,360), (361,400)].

events. The nuclear restoration interaction once again shows
no significant effects on the risk of the power system to any
size or duration of events, while the communication interaction
model shows a small increase in the risk of long events of all
sizes. Fig. 11 shows the CCDF of ENS for each interaction
over the full range of event impacts. Fig. 11 also shows that the
natural gas interaction ranks as the most severe in decreasing
resilience to large events, in the NE-NY case.

C. Discussion

The large number of extreme resilience events identified by
the stratified sampling method, clearly shows the advantages
of this method over conventional sampling. Stratified sampling
captures low probability and extremely high impact events that
Monte Carlo would not find without an unreasonable amount
of sampling. This is due to the simple fact that stratified
sampling samples more frequently from the extreme initiating
events that are more likely to result in large blackout events,
and less frequently from smaller initiating events. The captured
extreme events provide us with results that we can visualize in
new, insightful ways. The Risk Boxes used here give us insight
into resilience, because they specifically highlight changes in
risk from low probability, high impact events. In particular,
the Risk Boxes show that interdependencies most substantially
affect the risk of large scale and long duration blackouts.

One of the bases for the approach in this paper is that
there are robust patterns in the statistics of transmission system
failures. There is both theoretical and observational evidence
for the robustness of the power law behavior in the distribution
of observed ENS that is shown in Figs. 5, 8, 9, 11, and 12. The
power law character for various measures of blackout impact
has been documented across different power grids in [57], [59],
[60], and its robustness has been theoretically explained as a
consequence of engineering upgrades using methods of self-
organized criticality in [59]. It is plausible that the distribution
of distances between cascaded transmission lines and the
distribution of generator outages observed over many years are
characteristic of the grid and the generator fleet respectively
and that these patterns will persist for future events (indeed,
similar sorts of assumptions are routinely made for reliability
statistics). At the very least, the forms of these statistics are
arguably as reliably predictive as simulation models of failures.

The results in this study are presented as conditional prob-
abilities, in which we describe the probability of a certain
event, given that at least one transmission line is out. While
the outage probability distributions are based on historical
data, there were naturally very few observations for very large
initiating events, making it difficult to accurately estimate
the probabilities for the very large sets of transmission and
generator outages, such as would result from a large winter
storm and/or a cascading blackout. Therefore, the probabilities
presented here should be treated as relative values for ranking;
there is significant uncertainty in the actual small probabilities.
Nevertheless, it may be instructive to map these conditional
probabilities to annual probabilities that are more easily inter-
preted. In order to do so, we first need to know how often
events occur. The transmission line outage data used here is
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Fig. 10. Risk Boxes showing the relative risk for events of various sizes and durations of 3 specific interactions compared with the base case simulated on
the 6349-bus NE-NY case, using the same method and thresholds as in Fig. 6.

Fig. 11. CCDF of ENS for the 3 specific interaction models compared with
the base case on the 6394-bus NE-NY case. Inset shows detail for large events.

based on 9,600 automatic line outages that occurred over 12
years, which is 800 unplanned outages per year [48]. So for
this dataset, a one-in-a-million event (Pr = 10−6) corresponds
to an annual probability of 0.0008.

We found it somewhat surprising that the communication
interaction model resulted in only a small reduction in system
resilience, despite the fact that communication systems and
electric power systems are increasingly intertwined. This is
likely the result of the fairly limited mechanisms through
which communication failures could extend power outages in
our model. Future power systems, with a larger number of
small, internet-connected devices, like wifi-connected, behind-
the-meter DERs and demand response programs, will be
more interdependent with communication networks and these
modeling assumptions may need to be revisited.

The results of the compounding risk over time interaction
model on the IEEE 39-bus case surprised us, as well, with
the large impacts of small compounding factors to decrease
resilience. This generic compounding risk model nicely illus-
trates the potentially extreme effects that the many mecha-
nisms delaying restoration taking place in concert can have.

Finally, in both test cases the natural gas interaction clearly
ranked as the most severe specific interaction reducing power
system resilience. This sheds light on the enormous potential
social costs that could plausibly result from a long natural gas
system outage in the Northeastern US. This reliance on natural
gas for a very large portion of electricity supply in the North-
east region is well known, and has been highlighted in congres-
sional testimony as a major risk [61]. The results in this paper
suggests an approach to quantifying the magnitude of this

Fig. 12. The CCDF of ENS for the IEEE 39-bus test case for the base case
and each of the interaction models are shown in solid lines and in dashed
lines. The solid lines use line data for the entire year and the dashed lines
use line data for the winter months.

risk and highlight the importance of prioritizing solutions that
could mitigate this particularly severe risk. Our paper gives
some quantification of this regional energy security risk and
highlights the importance of identifying solutions to this risk.

D. Tailoring statistics to a specific threat or season

One goal of this paper is to show how sampling from
statistics derived from historical data can represent the grid’s
response to resilience threats. To do this for grid resilience
threats from multiple interactions with different infrastruc-
tures, we have used general historical data. The line outage
statistics used in the other parts of this paper were obtained
from line outage data collected year round (not from any
particular season). However, it is also feasible to do the
sampling from statistics derived from data that is tailored
to a specific threat, or a specific season. Accordingly, we
recalculate the statistics of Section IIB for the data from the
New York State winter months (November - March). Note
that the generation outage statistics already assumed cold
weather. For the winter probability distribution of the total
number of lines outaged after the initial outages and cascading,
the empirical probability of exactly one line outage becomes
p1 = 0.690, and the Zipf distribution log-log slope becomes
s = 4.29. For the winter line restoration times, the fitted log-
normal distribution parameters for the Eastern interconnection
become µ = 4.99 and σ = 2.59.
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Fig. 12 compares the CCDF of ENS obtained for the year-
round data to that obtained for the winter months. While
some small differences can be seen, the overall results and
interaction rankings remain the same. That is, the overall
conclusions from this paper were not sensitive to seasonal
changes in the outage distributions of the transmission lines.
Since we are studying the impact of interactions on the
electrical grid, we did not consider the seasonality of the
impact on building heating systems. Clearly, a winter outage
would have higher total societal cost due to the impact on
heating systems.

IV. CONCLUSIONS

This paper demonstrates a new method, called CRISP, to
rank the risk associated with interdependencies between power
systems and other infrastructures, based on sampling from
the statistics of historical data that is commonly available to
electric transmission utilities. We used the method to model
and rank the risk associated with three specific types of
interdependencies: communications, nuclear restoration, and
natural gas. Natural gas supply failure clearly ranked as the
most severe specific risk for the Northeastern US, confirming
the importance of natural gas supply security in the region. We
also modeled generic interactions due to several mechanisms
by which restoration time delays can compound. The results
show that compounding risk can have a severe impact on
resilience.

In order to understand the impact of interdependence on
power system resilience, it is essential to capture low probabil-
ity, high impact events. The results in this paper clearly show
that stratified sampling is a useful tool for describing the risk
associated with low probability events. Conventional sampling
methods, such as Monte Carlo, do not sufficiently sample from
large, long-duration blackout events to accurately describe this
risk. Many samples of small blackouts do not capture the
most significant risks. This paper uses a new visualization tool,
called Risk Boxes, with box area indicating risk placed along
dimensions of load shed and duration. This tool allows one
to see how blackout size and duration change under different
circumstances.

The new methods advanced in this paper suggest a number
of directions for future work. First, while we combined the
best data that is generally available for the region of our case
study from a number of sources, the method would benefit
from systematically using the proprietary models and data that
are routinely available to a single utility or system operator.
Second, CRISP represents interdependencies with high-level
models that approximate complicated interactions; these high-
level models could be improved by developing statistical
models from detailed physical interaction models, and/or data
from observed interactions. For example, several detailed
physics-based models of the gas and electricity interaction
have recently been developed [43], [44]; it would be useful
to train a statistical model on the results from such physics-
based models. Other interactions could be modeled, especially
when the method is applied to other regions. For example,
the interactions between water and electricity infrastructure

could be modeled by using the statistics of large increases
or decreases in hydro resources and their impact on energy
system resilience, and the impact of energy on water (and
waste water) system resilience. Similarly, this approach could
be used to study interactions between transportation systems
and electrical systems, given the increased coupling that is
brought about through transportation electrification. There is
also an emerging need to extend the communication systems
interaction model to better understand the implications of
the growing reliance on distributed energy resources that use
the public internet for communications. In addition, future
work could specifically quantify the impact of policies or
technologies that could improve resilience.
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