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Switching Time Bifurcations in 
a Thyristor Controlled Reactor 

Sasan Jalali, Ian Dobson, Robert H. Lasseter, and Giri Venkataramanan 

Abstract-Thyristor controlled reactors are high power switch- 
ing circuits used for static VAR control and the emerging tech- 
nology of flexible ac transmission. The static VAR control circuit 
considered in the paper is a nonlinear periodically operated 
RLC circuit with a sinusoidal source and ideal thyristors with 
equidistant firing pulses. This paper describes new instabilities in 
the circuit in which thyristor turn off times jump or bifurcate as 
a system parameter varies slowly. The new instabilities are called 
switching time bifurcations and are fold bifurcations of zeros 
of thyristor current. The bifurcation instabilities are explained 
and verified by simulation and an experiment. Switching time 
bifurcations are special to switching systems and, surprisingly, 
are not conventional bifurcations. In particular, switching time 
bifurcations cannot be predicted by observing the eigenvalues of 
the system Jacobian. We justify these claims by deriving a simple 
formula for the Jacobian of the Poincare map of the circuit and 
presenting theoretical and numerical evidence that conventional 
bifurcations do not occur. 

I. INTRODUCTION 

vv 
E study the stability of a high power switching circuit 
with a thyristor controlled reactor. This nonlinear cir- 

cuit can exhibit novel bifurcation instabilities and our main 
objective is to explain and verify the new instabilities using 
simulation and experiment. A state space approach is used to 
derive a simple formula for the Jacobian of the Poincare map 
of the circuit and confirm the nature of the new instabilities. 

A thyristor controlled reactor is a fixed inductor in series 
with two oppositely poled thyristors as shown in the right 
most branch of Fig. 1. C.ontrolling the firing (switch on) of 
the thyristors controls the thyristor conduction time and hence 
the proportion of time for which the inductor is included 
in the circuit. One approximation which is often used to 
understand the thyristor controlled reactor in a periodic steady 
state is that it acts as a continuously variable inductor. The 
value of the inductance depends on the thyristor conduction 
time. The thyristor controlled reactor is often combined with 
a fixed capacitor in parallel so that varying the thyristor 
conduction time varies the effective impedance of the parallel 
combination. 
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Fig. I. Single phase static VAR system. 

Since the mid-1970’s, thyristor controlled reactors have 
been used at the loaded ends of transmission lines to control 
the reactive power supplied from a fixed shunt capacitor so that 
voltage can be maintained when system loads or transmission 
line configurations change [ 111, [20]. More recently, thyristor 
controlled reactors have been used as one of the economical 
alternatives for the emerging technology of flexible ac trans- 
mission (FACTS) [2]. The expected benefits of flexible ac 
transmission include increased and controllable power flows 
on transmission lines and’the enhancement of power system 
stability. 

Despitethe significance of high power circuits with thyristor 
controlled reactors, little nonlinear theory has been developed 
for their analysis. The standard approach is to replace the 
thyristor controlled reactor by an average inductor model 
and then apply linear techniques to the resulting circuit [l 11, 
[20]. While this average inductor approximation is sometimes 
effective for predicting steady state behavior, it fails to capture 
much of the circuit nonlinearity and it breaks down when large 
harmonic distortions occur. Operating conditions with large 
harmonic distortions are documented in [l], [12], [27], [13]. 
While detailed time domain simulation is valuable in analyzing 
nonlinear effects in thyristor controlled reactor circuits, there is 
also a need to develop mathematical concepts and approaches 
so that the simulated or actual nonlinear phenomena may be 
understood and predicted. 

This paper describes new’ instabilities of a thyristor con- 
trolled reactor circuit called switching time bifurcations in 
which thyristor switch off times jump or bifurcate as a 
parameter is slowly varied. The thyristor controlled reactor 
circuit and its classical operation are described in Sections 
II and III. The large harmonic distortions asfociated with 
switching time bifurcations are briefly summarized in Section 
IV. Sections V and VI explain that switching time bifurcations 
are fold bifurcations of the zeros of the thyristor current. Sec- 
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tion VII presents simulations of a thyristor controlled reactor 
circuit for static VAR control which shows switching time 
bifurcations in detail: The circuit was developed by Bohmann 
and Lasseter to study harmonic interactions and distortions 
[l]. This simulation evidence for switching time bifurcations 
is followed in Section VIII by experimental work .showing 
switching time bifurcations on a single phase equivalent of 
the static VAR compensator installed near Rimouski, Quebec 
cw. 

The occurrence of switching time bifurcations raises expec- 
tations that they should.be related to well known generically 
occurring’ bifurcations. It is interesting that this is not the 
case and that switching time bifurcations appear to be a 
novel mechanism for instability. In particular, the occurrence 
of the switching time bifurcations cannot be predicted from 
eigenvalues of the system Jacobian. The remainder of the 
paper is devoted to explaining how the special properties of 
the thyristor controlled reactor circuit precludes conventional 
bifurcations. Sections. IX, X, and XI compute the. Poincare 
map [IO], [25] of the circuit and the Jacobian of the Poincare 
map. The formula for this Jacobian is simplified considerably 
by the special properties of the thyristor turn off and is the 
same formula that would be obtained for fixed turn off times. 
Section XII computes the eigenvalues of the Jacobian to show 
that conventional bifurcations do not occur and explains how 
the Jacobian simplification ensures that switching time bifur- 
cations are not predicted by the eigenvalues of the Jacobian. 
This paper differs from the initial conference paper [14] by 
including experimental results and reworked theory. 

We briefly review other approaches to bifurcations in 
switching circuits. Switching circuits with high switching rates 
and ideal switches are well approximated using averaging 
methods [19], [17], [23] and the stability of the averaged 
system can be investigated using bifurcation theory [21], [24]. 
The high power switching circuits addressed in this paper 
have switching rates comparable to the 60 Hz frequency of the 
voltage sources and averaging methods have not been shown 
to be applicable. There are also simple low power switching 
circuit models that exhibit bifurcations and chaos when the 
nonlinear junction capacitance of a diode is modeled [4], [3]. 

In deriving the Jacobian of the Poincare map, we use 
a state space analysis of switching circuits which overlaps 
with contributions of other authors. The fundamental work 
of Louis [18] computes PoincarC maps for switching circuits 
including controls. The varying dimensions of the state vector 
and switching conditions are discussed and formulas for the 
propagation of first order deviations through switchings are 
stated. The formulas show that Louis had used the Jacobian 
simplification which is highlighted in Section X. Louis com- 
putes as an example the Jacobian of the Poincare map of an 
acfdc convertor with a current regulator. Verghese et al. [26] 
give a general approach to computing Poincare maps and their 
Jacobians for switching circuits. Circuit controls and symme- 
tries and the automation of the computations are discussed but 
the Jacobian simplification and the varying dimension of the 
state vector are not treated. The linearized dynamics of a series 
resonant convertor are computed and studied. Grotzbach and 
Lutz [9] computed Jacobians of Poincare maps of switched 

Fig. 2. Classical operation of thyristor controlled reactor. 

circuits including control actions. They develop Newton al- 
gorithms for computing steady state solutions and compute 
eigenvalues for ac/dc convertors with controls. The extension 
to nonlinear circuits and the derivation of averaged circuit 
models are discussed. Dobson [6] derives the Jacobian of a 
general switching circuit with RLC elements and ideal diodes 
or thyristors with an emphasis on the Jacobian simplification. 

The work in this paper has stimulated further work on the 
thyristor controlled reactor circuit such as its novel transient 
dynamics [22] and analyzing damping and resonance phenom- 
ena [5]. The effects of thyristor firing synchronization schemes 
on the Jacobian are computed and presented in [ 161, [ 151. 

II. SYSTEM DESCRIPTION 

Fig. 1 shows a single phase static VAR compensator con- 
sisting of a thyristor controlled reactor and a parallel capacitor. 
The controlled reactor is modeled as a series combination of an 
inductor L, and resistance R,. The static VAR compensator is 
connected to an infinite bus behind a power system impedance 
of an inductance L, and a resistance R, in series. 

The switching element of the thyristor controlled reactor 
consists of two oppositely poled thyristors which conduct 
on alternate half cycles of the supply frequency. A thyristor 
conducts current only in the forward direction, can block 
voltage in both directions, turns on when a firing pulse is 
provided and turns off when the thyristor current, becomes 
zero. (The phenomenon of thyristor misfire [22] is not ad- 
dressed here.) The thyristors are assumed ideal so that detailed 
nonlinearities in the turn on/off of the thyristors are neglected. 
The dependence of the thyristor switch off times on the system 
state causes circuit nonlinearity. The firing pulses are supplied 
periodically and the system is controlled by varying the phase 
4 (delay) of the firing pulses. The system is studied with the 
phase as an open loop control parameter. In practice a closed 
loop control would modify the firing phase. 

III. CLASSICAL ANALYSIS 

The classical, idealized operation of a thyristor controlled 
reactor is explained in Fig. 2. In this figure, the gray line 
represents the thyristor controlled reactor voltage Vc(t) (cf. 
Fig. 1) and the solid line represents the thyristor current. 

If the thyristors are fired at the point where the voltage 
Vc(t) is at a peak, full conduction results. The circuit then 
operates as if the thyristors were shorted out, resulting in a 
current which lags the voltage by 90’. If the firing is delayed 
from the peak voltage, the current becomes discontinuous with 
a reduced fundamental component of reactive current and a 
reduced thyristor conduction time 0. As the phase angle 4 
ranges between 90’ and 180” the thyristor conduction time 0 
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(b) 

I time 

Fig. 3. Appearance of a new thyristor current zero. (a) 4 < 4*. (b) 4 =. d* 

ranges between 180’ and 0”. The classical analysis assumes 
that the voltage Vc(t) is a pure sinusoid. 

IV. HARMONIC DISTORTION 

The classical analysis is often applicable, but can, as demon- 
strated here and in [l] and [ 121, fail for certain circuit 
parameters and operating conditions. Under these conditions, 
both the voltage and the current waveforms become greatly 
distorted with large harmonic components. This distortion is 
associated with a resonance phenomenon in which the natural 
frequencies of the circuit, from when the reactor is fully on 
to when it is fully off, span an odd harmonic [l], [5]. This 
harmonic distortion can lead to instabilities as switching times 
suddenly change or bifurcate as follows. It is useful to recall 
that fold bifurcations (also called saddle node bifurcations) can 
either create or annihilate pairs of zeros of functions or vector 
fields [lo], [25]. 

(b) 

time 

Fig. 4. Disappearance of a thyristor current zero. (a) 4 <’ v. (b) I$ = 4’. 
Cc) 4 > d-. 

zero disappears. As the phase delay of the firing pulses slowly 
increases, the fold in the dotted line rises until, passing through 
the critical phase 4*, the current zero disappears and a later 
zero of the thyristor current applies (see Fig. 4(b) and (c)). 
The switching off time of the thyristor has suddenly increased 
in a switching time bifurcation and stability has suddenly been 
lost. Note how the zero of the actual thyristor current coalesces 
with a zero of the virtual current indicated by the dotted line 
and disappears in a fold bifurcation. As soon as the switching 
time bifurcates and system stability is lost, a transient starts. 

V. INSTABILITY WHEN A NEW 
THYRISTOR CURRENT ZERO APPEARS 

Fig. 3 describes one way in which the system can lose 
stability. Suppose that harmonic distortion produces a fold or 
dip in the thyristor current as shown in Fig. 3(a). As the phase 
delay 4 of the firing pulses slowly increases, the fold lowers 
until, passing through the critical phase 4*, a new, earlier zero 
of the thyristor current is produced by a fold bifurcation of 
the thyristor current as shown in Fig. 3(b). (The new zero 
of the thyristor current in Fig. 3(b) is in fact a double zero.) 
The thyristor switching off time has suddenly decreased and 
the stable operation of the system at the previous periodic 
orbit has been lost. We call this qualitative change a switching 
time bifurcation. As soon as the switching time bifurcates, a 
transient starts. 

VI. INSTABILITY WHEN A THYRISTOR 
CURRENT ZERO DISAPPEARS 

Fig. 4 explains another type of switching time bifurcation 
in which the system loses stability as a thyristor current zero 
disappears. Fig. 4(a) shows a periodic solution for the thyristor 
current with the solid line. The gray line shows the thyristor 
current that would occur if the thyristor did not switch off 
for negative current. This part of the current is referred to 
here as “virtual”. The virtual current does not occur in circuit 
operation but it is useful in understanding how the current 

Fig. 5 shows how the conduction time 0 of periodic orbits 
varies as the phase 4 is varied. To simplify the calculations, 
only periodic orbits which are half wave symmetric are com- 
puted, using (16) and (17) from Section XI. As can be seen, 
two separate sets of periodic solutions are computed. One set 
starts at 0 = 180” and ends at 0 z 91”. The other starts at 
0 = 0” and ends at 0 M 60”. The classical model predicts 

VII. SIMULATION RESULTS 

The switching time bifurcations are illustrated with the 
single phase static VAR circuit of Fig. 1 described in [l]. On 
a 1 MVA, 1 kV base, the source impedance has a per-unit 
magnitude of 7.35% with an angle of 89”, the reactor is a 
series combination of 62.6% inductive reactance and a 3.13% 
resistance. The capacitor bank has a capacitive reactance 
of 177%. Alternatively,, the per unit component values can 
be specified as L,$ =0.195 mH, R, =0.9 mR, L, =1.66 
mH, R, =31.3 mR, and C =1.5 mF. The firing pulses are 
equidistant and the phase 4 is the relative phase of the firing 
pulses with respect to the stiff ac source u(t) = sin wt shown 
in Fig. 1. 0 denotes the conduction time of the thyristors. 

In this example, the system impedance and the capacitor 
bank have a natural frequency which is 4.9 times the funda- 
mental frequency 60 Hz. If the controlled reactor is included 
in the circuit, the natural frequency shifts to 5.18 times the 
fundamental frequency. Thus the natural frequencies of the 
circuit from when the reactor is fully on to when it is fully 
off span the fifth harmonic. This crossing of an odd harmonic 
indicates that system odd harmonics can be large and that 
voltage and current wave forms can be significantly distorted 
Ul, [51. 
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Fig. 5. Conduction time d versus firing delay ~5. 

only one set of solutions starting from (T = 0” and ending at 
u = 180”. 

In order to investigate how the system loses stability when 
stable periodic orbits disappear, the ElectroMagnetic Transient 
Program (EMTP) was used [7], [8]. Periodic orbits 1 through 
6 in Fig. 5 were chosen to study in detail how harmonic dis- 
tortion can cause periodic solutions to disappear in switching 
time bifurcations. 

The loss of a stable periodic solution at u near 91” is a 
switching time bifurcation in which a new thyristor current 
zero appears. The EMTP simulation in Fig. 6(a)-(c) shows 
periodic solutions of the thyristor current at periodic orbits 1, 
2, and 3 respectively. Note that as we move toward periodic 
orbit 3, the harmonic distortion produces a fold in the thyristor 
current. Fig. 6(c) shows that as the phase delay of the firing 
pulses is slightly increased, the fold in the thyristor current 
lowers and a new, earlier zero of the thyristor current is 
produced and a transient starts. 

The loss of a stable periodic solution at (T near 60” is a 
switching time bifurcation in which a thyristor current zero 
disappears. Fig. 7 shows how the periodic solutions behave 
as the switching time bifurcation is approached. The plots in 
Fig. ‘7 are on an expanded time scale so as to closely observe 
the behavior of the thyristors as they turn off. The dotted lines 
show the virtual current which would have occurred if the 
thyristors did not turn off as the current decreased through 
zero. As the phase is decreased, the periodic orbit progresses 
through periodic orbits 4, 5, and 6 and the zeros of the virtual 
and the actual current approach each other, coalesce, and 
disappear. The stable periodic solution disappears when the 
actual current zero disappears and the switch off time of the 
thyristor suddenly increases. The initial portion of the transient 
which occurs when the stable periodic solution disappears is 
shown in Fig. 8. The system will eventually converge slowly 
to another stable periodic solution. 

Even though many systems enforce equidistant firing in 
steady state operation, the firing pulses may or may not 
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Fig. 6. A new thyristor current zero appears. (a) periodic orbit I. (b) Periodic 
orbit 2. (c) Periodic orbit 3 up to 1.3 s. Q is increased by 2’ at 1.3 s. 

be equidistant during transients. Therefore, the detail of the 
transient depends heavily on the assumptions used in modeling 
the control of the thyristor firing pulses. The intent of the 
simulation results is to show the.existence of the transient as a 
consequence of the switching time bifurcation rather than the 
detail of the transient. However, the computations of steady 
state periodic orbits as in Fig. 5 are valid for any firing control 
scheme that enforces equidistant firings in steady state. 
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Fig. 7. Thyristor current on an expanded time scale for periodic orbits 4, 
5, and 6. 
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Fig. 8. Two current zeros coalesce and disappear. Periodic orbit 6 up to 0.3 
s. C$ is decreased by 2’ at 0.3 s. 

VIII. EXPERIMENTAL RESULTS 

This section gives experimental results showing switching 
time bifurcations in the single phase equivalent of the static 
VAR compensator installed near Rimouski, Quebec [20, ch. 61. 
This compensator is a three phase delta connected thyristor 
controlled reactor and ungrounded wye-connected capacitor 
banks interfaced to a 230 kV system through a step down 
transformer as shown in Fig. 9. 

This experiment used a 115 V, 60 Hz ac line which was 
assumed to be a stiff and harmonic free source. The circuit 
components were scaled as shown in Table I. The reactance 
to resistance ratio was measured as ~20 for the inductors and 
~70 for the capacitor. The control circuit used a zero voltage 
detector synchronized directly across the ac line and a firing 
pulse generator to build a train of equally spaced firing pulses. 

230 kV 
I 

l~MVA h ‘Is x =ll% 
230124 kV 

‘yr^A t 

431 PF 

Fig. 9. Rimouski static VAR compensator. 

TABLE I 
RIMOUSKI AND EXPERIMENTAL CIRCUIT COMPONENTS 

Data Rimouski(34) Experiment( 14) 

1% I. ( KL N ) 230 (132.8) kV 115.0 v 

- 

b 

1 

Power 100 MVA 301.4 VA 
Zbvse 529 (1 43.88 i2 

A& (1.07 p.u.1 566 Cl 46.95 R 
St,,(O.288 p.u.1 152.3 (2 12.64 61 

St (0.11 p.u.) 58.2 0 4.83 61 
z&(0.016 p.u.) 8.46 II 0.70 cl 

t \L 1 
zo- 

100 120 140 160 
# (Degrees) 

Fig. 10. 6 versus 0. 

The firing pulses are delayed by a time delay generator and 
transmitted to the back-to-back thyristor modules through a 
pair of fiber optics. The thyristors used were Westinghouse 
model 707408 rated 1000 V and 200 A. 

Fig. 10 shows how the conduction time 0 varies as the phase 
d, is varied. The solid line is computed using (16) and (17) 
from Section XI and the triangles show the experimental mea- 
surements. The solution at point A- is lost when the thyristor 
firing is slightly increased and the system state converges to 
a new steady state at point A+. This instability occurs when 
the thyristor conduction time is. suddenly decreased due to 
the appearance of a new earlier current zero. The steady-state 
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solution at point B- is lost when the thyristor firing phase 
is slightly decreased upon which the system converges to a 
new steady state at point B+. This instability occurs when 
the thyristor turn off time is suddenly increased due to the 
disappearance of the thyristor current zero. 

In this example, the switching time bifurcations are asso- 
ciated with the two natural frequencies of the circuit (the 
thyristor fully on and fully off) spanning the third harmonic. 
For example, when the short circuit MVA of the system is 
infinite’(X, = 0), the two natural frequencies do not span the 
3rd harmonic and the bifurcation instabilities are absent. 

IX. POINCAR~ MAP 

The PoincarC map of the static VAR system can be computed 
by integrating the system equations and taking into account a 
change in coordinates when the switchings occur. The thyristor 
turn on time is controlled by the phase parameter 4 which 
specifies the delay of the firing pulse. The thyristor turn off 
occurs when the thyristor current decreases through zero. The 
thyristors are modeled as short circuits when on and open 

*circuits when off. 
The system state vector z(t) specifies the thyristor current, 

capacitor voltage and the source current: 

IT(t) 
x:(t) = K(t) 

( ) 1s (t) 

The system input u(t) is the source voltage function shown 
in Fig. 1. u(t) is assumed to be periodic with period T. 
During the conducting time of each of the thyristors, the 
system dynamics are described by the following set of linear 
differential equations 

i=Ax+Bu (1) 

where 

( 

-R,L,l L,l 
A= -C-l 0 

0 -L;l m$;;l) andB= (L;l). 

During the off time of each thyristor, the circuit state is 
constrained to -lie in the plane 1, = 0 of zero thyristor 
current. In this mode, the system state vector y(t) specifies 
the capacitor voltage and the source current: 

K(t) y(t) = Is(t) ( > 
and the system dynamics are given by the linear system 

G = PAPty + PBu (2) 

where P is the projection matrix P = 
0 1 0 

( ) 0 0 1 . 
Fig. 11 describes the system dynamics as the system state 

evolves over a period T. A thyristor starts conducting at time 
~$0. This mode as described by (1) ends when the thyristor 
current goes through zero at time 40 + ~1. The nonconducting 
mode as described by (2) follows the conducting mode and 
continues until the next firing pulse is applied at time ~$1. This 

ON OFF 
(A,B) 1 (PAP’,PB) (i;) 1 (PfifpB) 

I 
40 40 + Cl 41 41 +a 40 +T 

J i”~ ------+-c------Tze 

Fig. 11. System dynamics from time &O to do + T 

starts a similar on-off cycle which lasts until the next period 
starts at time 40 f T. 

The state at the switch on time do is denoted either by the 
vector y/(40) or by the vector ~($0). These representations of 
the state at the switch on time are related by 

X(40) = ptY(do). (3) 

Equation (3) expresses the fact that the z representation of the’ 
state at a switch on is computed from the y representation by 
adding a new first component which has value zero. 

The state at the switch off time ~$0 + g1 is similarly denoted 
either by ~(40 + ~1) or y(& + al) and these are related by 

YY(40 + al) = Px(40 + 01). (4) 

The matrix P in (4) may be thought of as projecting the vector 
x onto the plane of zero thyristor current. 

Given a time interval [sl, sz], it is convenient to write 
f(., ~1,‘s~) for the map which advances the state at s1 to ihe 
state at ~2. For example, a Poincark map which advances the 
state by one period T starting at the switch on time 40 may 
be written f(y(&), 40, $0 + T). (If the time s2 at the end of 
the interval is a switching time, then there is ambiguity about 
whether f(.,sl, ~2) evaluates to y(s2) or x(s2). We adopt 
the convention that f(x(s1),sl,s2) evaluates to x(s2) and 
f(y(sl), sl, ~2) evaluates to y(sz). For example, the PoincarC 
map f(~Y(do), 40~40 + T) evaluates to y(& + T).) If the 
thyristor is on during all of the time interval [sl, sq], we write 
f(z(si), sl, SP) as fon(x(si), ~1, sp) and if the thyristor is off 
during [a, 921, we w&e f(y(sl), ~1, ~2) as .fo~(y(sl), SI, SP). 
fon(x(sl),~lr 32) or fod~(sl),sl,s2) can be computed by 
integrating the corresponding linear system (1) or (2) over the 
time interval [sl, ~‘21. 

Now we construct in stages an expression for the Poincark 
map f(~(do), 40,40 + T) in term of fan and .f,,ff and the 
coordinate changes (3) and (4). At the start of the period at time 
40, the state is expressed in the y coordinates as y/(40) or, using 
(3), is expressed as x(40) = P”y(&) in the 2 coordinates. The 
state x(&,+~l) is obtained by integrating the on linear system 
(1) with initial state Pty(&,) from time 40 to 40 + 01: 

x(40 + Cl) =fcn,(ptY(~o)> 40740 + 01) 

=eAol (P’y@,,) + lo’ CA’Bu(7 + (Oo)dr). 

(5) 
The switch off time s,ff = 40 4 o1 is dtitermined by an 
equation including P which constrains the thyristor current 
to be zero: 

0 = (I - PtP)x(s&) = (6) 
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The coordinate change (4) at the switch off and integration of 
the off linear system (2) yields 

Y(h) = foff(P440 + m)140 + Olr41). (7) 

A half cycle map is given by combining (5) and (7): 

. [x+2) + lIoff eA(t2-‘)Bu(r)d7 
I 

+ 
s 

t3 ePAP”(t3--r)pBu(T)&. (11) 
sow 

Differentiating with respect to x(h) and keeping in mind that 
the thyristor turn off time .sOe is a function of x(ta), we obtain 

foff(%n(ptY(40)r do, 40 + m),40 + ~lr41). Df(x(tz), t2r t3) = 
The Poincare map may now be written by composing two 
successive half cycle maps and then neglecting the gory details 
of the time arguments: 

f(~l(40), do,40 + T) 7 f(.f(~($o), do, h), 41,40 + T) (8) 
= f~ffPf”~P”f~ffPf~~~“(Y~~O)). (9) 

ePAPt(t3--s,rr)peA(s,rf-tz) + ePAP’(ts-sorr)pA(~ _ ptp) 

[ s 

Soff 
eAborr-tz) x(t2) + eAct2 -) Bu(~)h DS,E 

tz 1 
(12) 

Note that the two terms associated with sOff in the limits of 
the two integrals of (11) cancel. The row vector DS,E is the 
gradient of s,tf with respect to x(t2). The second term of (12) 
may be written as 

X. STABILITY OF PERIODIC SOLUTIONS 

When the static VAR circuit is in steady state with a periodic 
trajectory of period T, the Poincare map has a corresponding 
fixed point. That is, 

ePAPt(t3-sorf)PA(I - PtP)x(s,R)Ds,tf 

which vanishes according to the constraint equation (6) so that 
we obtain the surprising and simple result 

f(~(40), 40, do + T! = ~(401. 

The stability of the periodic orbit can be computed from 
the Jacobian of the Poincare map evaluated at the fixed 
point [lo], [25], [26]. In particular, the periodic orbit is 
exponentially stable if the eigenvalues of the Jacobian lie 
inside the unit circle. Since the thyristor turn off time s,,~ 
and the Poincare map are discontinuous at a switching time 
bifurcation [22], [6], we assume when computing the Jacobian 
in this section that the system is not exactly at a switching 
time bifurcation. 

Df(x(tz), t2, t3) = e PAPt(ts-s,rf)peA(~urr-ttz). (13) 

Result (13) implies that the switch off time may be regarded 
as constant when deriving the Jacobian. 

The map advancing the state over the combined interval 
[tl, t3] can be written as the composition 

f(y(t1),t1,t3) = f(f(y(t1),t1,tz),tz,t3) 

and the chain rule yields 

To compute the Jacobian of the Poincare map, we first 
compute the Jacobian of maps which advance the state from 
the beginning to the end of a time interval containing one 
switching. Let [tl, t2] be a fixed time interval including a 
thyristor turn on at time s,, and no other switchings. The 
map f(y(tl), tl, t2) advances the state y(tl) to the state x(t2) 
and we want to compute the Jacobian Df(y(ti), ti, t2) which 
is a 3 X 2 matrix. 

DfMh), tl, t3) = Df(x(tz), t2, kx)Df(dh), tl; t2) 

so that substitution from (10) and (13) gives 

Df(y(h),tl, t3) = 

f(Y(tl),tl;t2) = fon(ptf,ff(Y(tl),tl,s,,),Son,t2) 
= eA(t2-s,,)ptePAPt(s,,,- tl)y(tl) + function( son, tl, t2 ). 

Differentiating with respect to y(tl) and keeping in mind that 
the thyristor turn on time son is a fixed quantity (recall that 
the thyristor firing is equidistant), we obtain 

Df(y(tl), tl, t2) = eA(t2--S,“)ptePAP’(s,,-tI). (10) 

.Let [t2, t3] be a fixed time interval including a thyristor 
turn off at time s0a and no other switchings. The map 
f(x(t2), t2, t3) advances the state x(t2) to the state y(tj) and 
we want to compute the Jacobian Df(x(tZ), t2, t3) which is 
a 2 x 3 matrix. 

In particular, let tl = son = 40, sol = 40 + 01, t3 = 41 and 
Tl = 41 - ~$0 to obtain the Jacobian of the half cycle map: 

Df(y(qbo), $o, 41) = ePAPL(T1-gl)PeAulPt. (14) 

Applying the chain rule to (8) and using (14) for the Jacobians 
of the half cycle maps yields the 2 x 2 Jacobian of the Poincare 
map: 

Df(y($o), 40,40 + T) 
=e PAPt(T*-al)peAuzptePAP1(T~-ul)peAulpt. (15) 

f(z(tz),tz,t3) = foff(Pf,,,(x(ta),tP,Soff 1 rsoff,t3) 

One of the interesting and useful consequences of (15) is that 
the stability of the periodic orbit only depends on the state and 
the input via g1 and ~72. It is remarkable that (15) is also the 
formula that would be obtained for fixed switching times 01 
and 02; the varying switching times apparently introduce no 
additional complexity in the formula, but the nonlinearity of 
the circuit is clear since ~1 and 02 vary as a function of ~($0). 
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XI. SIMPLIFICATION FOR SYMMETRIC PERIODIC ORBITS 

It is convenient to take advantage of symmetry when the 
periodic orbits are half wave symmetric. Half wave symmetry 
of a periodic orbit means that the thyristor firing pulses are 
sent every half cycle and the orbit is half wave symmetric. 
In particular, the two conduction times g1 = c2 = cr are 
equal. Moreover, the system states at the half cycle are equal 
in magnitude and opposite in sign to the system states at the 
beginning of the cycle. That is, if y(&) is the system state at 
the beginning of the period, then: 

f’(Y(do), $0, do + T/2) = -Y/(40). (16) 

The conduction time g of the conducting thyristor is given by 
the constraint equation 

0 = (I - PP)x(& + LT). (17) 

The fixed points ~($0) corresponding to half wave symmetric 
periodic orbits can be computed by solving (16) and (17) 
simultaneously. In addition, the Poincark map Jacobian in (15) 
simplifies to: 

~f(y(40),qb0,~0 + T) = (epAp’(T/2-n)reA”p’)z. (18) 

XII. CONVENTIONAL BIFURCATIONS 

We review the instabilities expected from conventional 
bifurcation theory. The thyristor controlled reactor circuit 
becomes a discrete time nonlinear system when analyzed with 
the Poincark map. Conventional bifurcation theory (e.g., [lo], 
1251) describes several typical ways in which a discrete time 
nonlinear system can become unstable as parameters vary. 
The system is assumed to be initially operating in a stable 
periodic fashion before the bifurcation occurs and the nature 
of the bifurcation is determined by where a critical eigenvalue 
of the Jacobian of the Poincare map crosses the unit circle. 
(The stable periodic orbit disappears in a fold bifurcation if an 
eigenvalue crosses the unit circle at 1, becomes modulated 
with another frequency or becomes unstable in a Niemark 
or secondary Hopf bifurcation if a complex conjugate pair 
of eigenvalues crosses the unit circle and period doubles if 
an eigenvalue crosses the unit circle at - 1.) Several authors 
(e.g., [4], [3], 1211) have investigated instabilities such as Hopf 
and period doubling bifurcations in averaged models of fast 
switching power electronic circuits. 

The Jacobian formula (18) can be used to rule out con- 
ventional bifurcations of half wave symmetric periodic orbits 
in the thyristor controlled reactor. circuit. The Jacobian in 
(18) is a complicated function of the initial state ~(40) and 
the input u(t), .but it only depends on ~($0) and u(t) via 
the switching time U. Thus to determine stability, it is only 
necessary to test the stability of the Jacobian in (IS) as fl 
varies over its range of 0 to 180”‘. Numerical computation of 
the eigenvalues of the Jacobian in (18) as 0 varies over this 
range as shown in Fig. 12 indicates that the absolute values 
of the eigenvalues are less than 0.98 for both the simulation 
and the experimental examples. This demonstrates that, for the 
given component values, the circuits do not lose stability in a 
conventional bifurcation. We conclude that the eigenvalues of 

Fig, 12. Eigenvalues of Jacobian as c varies. 

the Jacobian of the PoincarC map are strictly inside the unit 
’ circle as a switching time bifurcation is approached; that is, the 
eigenvalues give no warning of the switching time bifurcation. 
The points in the eigenvalue locus of Fig. 12 at which an 
eigenvalue approaches the unit circle can be predicted and 
associated with resonance effects; see [5]. 

The switching time bifurcation can be detected as a zero 
gradient of the thyristor current at the switch off time; what 
may be surprising is that this zero gradient has no effect 
on the Jacobian. As a thyristor current zero disappears in a 
fold bifurcation, the gradient of the thyristor current evaluated 
at the current zero tends to zero and one might expect this 
to influence the Jacobian. In particular, the gradient of the 
thyristor current tending to zero implies that the sensitivity 
DSOff of the switch off time with respect to the initial state 
becomes infinite. If the Jacobian contained a term including 
Ds,tf (cJ: (12)), at least one eigenvalue of Df would leave the 
unit circle and a conventional bifurcation would occur before 
the switching time bifurcation was encountered. However, this 
analysis is wrong because the Jacobian simplification shows 
that the term in the Jacobian involving Dso~ vanishes (cf 
the vanishing of the second term of (12)). Thus the Jacobian 
simplification ensures that the fold bifurcation’ of the thyristor 
current is not expressed in the eigenvalues of the Jacobian 
and that the switching time bifurcation will occur. See [6] for 
a more rigorous explanation. In the case of a switching time 
bifurcation in which a new thyristor current zero appears, the 
gradient at the thyristor current zero before the bifurcation does 
not become zero as the bifurcation occurs and the Jacobian is 
unaffected by the bifurcation. 

XIII. CONCLUSION 

This paper studies instabilities in a thyristor controlled 
reactor circuit used for reactive power control of power sys- 
tems in which switching times change suddenly, or bifurcate 
as a system parameter (phase of the thyristor firing) varies 
slowly. The switching time bifurcations are explained and their 
mechanisms are illustrated by simulation and experiment. In 
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particular, we have shown how distortion of current waveforms 
can cause a thyristor switch off time to disappear or a 
new thyristor switch off time to suddenly appear by fold 
bifurcations of the thyristor current. The consequence of the 
sudden change in switch off time is that stable periodic 
operation of the circuit is lost and a transient occurs. These 
switching time bifurcations are not explained by the analysis 
of thyristor controlled reactor circuits with average inductor 
models. Nor are the switching time bifurcations explained by 
the conventional theory of bifurcations in which stability is lost 
when eigenvalues of the Jacobian matrix cross the unit circle. 

The thyristor controlled reactor circuit is a nonlinear, peri- 
odically operated circuit. The PoincarC map can be computed 
by integrating the system equations and taking into account a 
change in coordinates when switchings occur. We have derived 
a simple formula for the Jacobian of the PoincarC map (also see 
[18], [6]). This Jacobian describes the stability of the steady 
state periodic operation of the circuit under an open loop 
equidistant firing pulse control. In particular, the Jacobian for- 
mula is used to demonstrate numerically that none of the con- 
ventional bifurcations occur in our circuit examples. For simu- 
lation evidence of switching time bifurcations in a single phase 
thyristor controlled series capacitor circuit see [13] and [15]. 

This paper makes progress in describing and understanding 
instabilities in a nonlinear thyristor controlled reactor circuit 
with a simple topology. However, despite the simple topology, 
we expect that this circuit may well contain other novel 
behaviors. One of our objectives is to develop new ways of 
understanding and computing instabilities of general switching 
circuits by first studying in detail the thyristor controlled 
reactor circuit. The genericity of fold bifurcations suggests 
that switching time bifurcations describe typical ways in which 
general switching circuits with thyristors become unstable. 
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