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We use Melnikov's method to study the chaotic dynamics of an attitude fransition
maneuver of a torque-free rigid body in going from minor axis spin to major axis spin
under the influence of small damping. The chaotic motion is due to the formation of
Smale horseshoes which are caused by the oscillation of small subbodies inside the
satellite. The equations of motion are derived and then transformed into a form suitable
for the application of Melnikov’s method. An analytical criterion for chaotic motion is
derived in terms of the system parameters. This criterion is evaluated for its significance
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1 Introduction

This paper deals with the dynamics of an attitude transi-
tion from minor to major axis spin’ of a quasi-rigid, single-
body spacecraft perturbed by small oscillating subbodies. A
single-body satellite is directionally unstable in the presence
of energy dissipation when perturbed from spinning about its
minor axis (Hughes, 1986). In the absence of active stabiliza-
tion, the body will eventually reorient itself and spin about
the major axis. Oscillating subbodies can produce chaos in a
region of the phase space traversed by the satellite during
this attitede maneuver. This maneuver is of great practical
interest since the initial rotation of many spacecraft js about
their minor axis after launch vehicle separation. The addition
of oscillating subbodies allows for simple modeling of pertur-
bations within the carrier body. These perturbations might
include: asymmetric rotors, reciprocating engines, and crew
movement within the vehicle. It should be noted that we
prove the existence of horseshoes, which imply the existence

'In this work, the minor axis corresponds to the principal axis with the
smallest mass moment of inertia, while the major axis denotes the princi-
pal axis with the largest inertia. ‘
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to the design of artificial satellites.

of chaotic transients (Greenspan and Holmes, 1983; Gucken-
heimer and Holmes, 1983). Therefore, throughout this work,
when we refer to chaos or chaotic dynamics, we are generally
referring to transient chaos and not the chaos associated with
a strange attractor.

Certain aspects of the dynamics of attitude transition
maneuvers have been studied for the special class of space-
craft called dual-spin satellites. These satellites are reori-
ented by spin-up of rotors relative to the main spacecraft
body. Attitude resonances in this maneuver, occurring during
the spin-up or spin-down, have been investigated using per-
turbation techniques and numerical simulation (Adams, 1980;
Cochran and Holloway, 1980; Gebman and Mingori, 1976;
Hall and Rand, 1991; Or, 1991). In the case of single-body
satellites, the direction and control of the final major axis
orientation have been studied by authors such as Barba et al.
(1973), Cronin (1978), Kaplan and Cenker (1973), and Rahn
and Barba (1991), but the dynamics of the maneuver itself
have not been extensively investigated.

The non-Hamiltonian perturbations of rigid-body dynam-
ics dealt with in this paper are due to time-periodic enforced
motions of subbodies within a satellite possessing an energy
dissipation mechanism. While the occurrence of chaos in this
class of systems is not surprising, our application of Melnikov’s
method to detect the onset of chaos in this class of systems is
new. We have overcome considerable difficulties in model
formulation and in the application of Melnikov’s method to
obtain a criterion for chaos which can be used in satellite
design. The most closely related work (Dovbysh, 1989; Holmes
and Marsden, 1983; Koiller, 1984; Ziglin, 1982) is limited to
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chaos in satellite attitude dynamics when the perturbations
are Hamiltonian. Some work has been done for non-Hamilto-
nian perturbations to spacecraft dynamics, but it has dealt
almost exclusively with the stability of equilibria (Baillienl
and Levi, 1987; Krishnaprasad, 1985; Krishnaprasad and
Marsden, 1987; Rubanovskii, 1988). In particular, the non-
Hamiltonian perturbations studied in this work are explicit
functions of time, resulting in equations of motion with
time-dependent coefficients. This type of perturbation is of
considerable practical importance in satellite design. For
example, the enforced time-dependent motion, modeled
herein by harmonic functions of the form A cos £+, could be
caused by reciprocating masses, unbalanced rotors with con-
stant angular velocities, or rotor with time-dependent spin
rates.

2 Satellite Model

The model used in this study is a torque-free, quasi-rigid
body that is perturbed by time-dependent subbody motion.
The quasi-rigid-body approximation is often used as a tool to
study complex spacecraft systems and obtain analytical infor-
mation about their global behavior. Understanding these
rigid-body approximations is often the first step in a com-
plete study of a complex spacecraft. The damping, which is
implied by the term “quasi-rigid,” is modeled by a quaniita-
tive energy sink technique recently derived by Kammer and
Gray (1992).

The specific spacecraft model used in this investigation is
shown in Fig. 1. The system’s mass center ¢ does not move
relative to the carrier body since the two subbodies oscillate
symmetrically with respect to ¢ along the x-axis. The position
of the subbodies relative to the carrier is a known periodic
function of time and is denoted by n(¢). The n = 0 position is
located a distance ! from the mass center c. We let x, v, z
denote a body-fixed orthogonal coordinate sysiem aligned
with the principal axes of the carrier body and centered at c.
The principal moments of inertia of the carrier with respect
to ¢ are designated I,, I, I;. The moments of inertia are
distinct and we assume I, < I, < I

In order to apply Melnikov’s methed, it is assumed that
the subbodies of mass m are “small” in comparison to the
main body. In addition, the damping is assumed to be small.
What we mean by small will be defined later with respect to
a perturbation parameter e. Therefore, both the subbodies

" and the damping mechanism are assumed to have an O(e)
perturbing effect on the spacecraft.

3 Equations of Motion

Using standard methods such as Lagrange’s equations or
Newton-Euler techniques, the undamped equations of mo-
tion can be derived in terms of principal, body angular
momentum components f, Ay, iz as

b= e [t W
(B+A)C +A)
. 1 1
hy = (Z_m)h1h3 )
. 1 1
hz = (B T A - Z)I'Hha (3)

where A 21, B2 L, +2ml?, C2 1, + 2ml*, A=A =
2mn(e)Y21 + n(0)], and the dot (") denotes differentiation
with respect to time, d()/dt.

The damping terms modeling the quasi-rigid body are
readily added via the argument presented in Kammer and
Gray (1992). The damping is implemented via a nonlinear
control design that quantitatively simulates the effects of
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Fig. 1

The model spacecraft configuration

internal damping mechanisms which can be accurately mod-
eled as energy sinks. The controller dissipates kinetic energy
while maintaining the magnitude of the angular momentum
vector. The control torques are nonlinear functions of the
angular momentum components expressed in the body-fixed
frame. Kammer and Gray (1992) specify a control law by
identifying the conditions which must be met by the con-
troller to simulate onboard energy dissipation. Assuming an
asymmetric rigid-body representation for a spacecraft with
principal mass moments of inertia [, < I, < I;, Euler's equa-
tions for the attitude motion in momentum space are given
by

L1,

hl = Ehth + 4y

, L—I

hz = IlIS h1h3 + Uq

. L-I

hy = hoho + us 4
LI

where the k; are the components of the angular momentum
vector H measured along the body-fixed principal axes and
the u, are the control torques which are nonlinear functions
of the #; to be determined.

The conditions that the controfler must satisfy are that the
magnitude of the angular momentum vector H must be
conserved, the time derivative of the system kinetic energy
must be negative semi-definite, and the controller must not
dissipate energy for a pure spin about any of the principal
axes. Although these conditions do not uniquely determine
the form of the control law, for the purpose of energy sink
simulation, we choose the control design given by

Uy = '—Bhlh%
Ly, = th(h% - h%)
s = Bhsh% (5)

where 8 is a positive valued control gain to be specified.

It can be shown that the control law given by Eq. (5}
satisfies the above three conditions and that the closed loop
equations of motion possess the same topological structure as
the equations for a damped single-body spacecraft.

The equations of motion in Eqs. (1)-(3) become

B-C

by = [(B +A)C + A) (6)

]h2h3 - Bhlh%7

) 1 1
hy = (Z — C—+&)h1h3 + Bhy(hi — R3), N

: 1 1 '
hy= (B A Z)hlhz + Bhih;. (8)

It is clear that A is the term that makes the system nonau-
tonomous since A = A(#) and n is a specified function of
time.
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We now nondimensionalize Eqs. (6)~(8). In order to per-
form the transformation, we define the following scaled

quantities:
L 02 hoap pa B
€= ml*/B i =S h/H hi“F‘hi
P - HB?
AL — 2 & H/B
eB B=B mi? T =Y
n&C/mB  r,2A4/B

where H is the total angular momentum and differentiation
with respect to nondimensional time 7 is denoted by a prime,
() = d()/dr. All quantities except ,¢ are ©(1). Notice that

the number of moment of inertia parameters has been re-

duced to two, r; and r,. The size of the parameter region
- involving the moments of inertia is now restricted to an easily
determined domain due to the assumptions made on their
relative size and the natural physical limitations restricting
the choice of moments of inertia. We have assumed that
[, <1, <1, therefore 4 < B < C. It immediately follows
that 0 <r, <1 < r. In addition, since it can be shown that
the individual moments of inertia are interrelated by 4 + B
> C, it follows that r, + 1 > r; and therefore

O0<r<l<r<l+nr,

&)

These inequalities will restrict the size of the parameter
space involving r; and r, that needs to be studied,

We do not use the vsual Smelt {often calied DeBra-Delp,
see Rimrott, 198Y) parameters since they. were originally
defined to simplify equations of motion when written in
terms of angular velocity components, not angular momen-
tum components. Our equations are much simpler when
using the definitions for r; and r, given above. The final
results will also be written in terms of the Smelt parameters
so that the results can be shown in more familiar terms.
Carrying out the above change of variables leads to an
equivalent set of dimensionless equations:

~, TN k- e, (10
1_—(1+ef\)(r1+eﬁ)23 eBhihz, (19)
- 1 1 - = AL (52 _ 72
2= E N r, + €A hihs + eth(hl - h3)’ an
- 1 1. - BT
e e hyhy + eBR2h, (12)

Equations (10)~(12) are the full nondimensional equations of
motion explicitly containing the perturbation parameter e.
No assumptions have yet been made about the size of any of
the quantities in the development of the equations, although
the definitions of the nondimensional quantities and e are
convenient for assumptions made later.

4 The Unperturbed Phase Space

In order to apply Melnikov’s method to the system of Eqgs.
(10)—(12), there must be a heteroclinic cycle in the unper-
turbed phase space, and the unperturbed system must be
integrable. The solution to the unperturbed system is needed
since Melnikov’s method makes use of the globally com-
putable solutions of the unperturbed infegrable system in
computing the perturbed solutions. It can be shown that the
attitude dynamics of a torque-free rigid body, when mea-
sured in body angular momentum components, occur on the
surface of the angular momentum sphere (see Fig. 2). This
sphere is also the reduced phase space for Euler’s equations
of motion for a torque-free rigid body. These equations are
given by .
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heteroclinic
orbits

Fig. 2 The momentum sphere illustrating the heteroclinic orbits
and the hyperbolic saddle points. The curves are orbits of constant
energy.

- 1""?’1, -
= Aok, (13)
r
- I‘l—rz - ,..-
h, = Ak, 14
s 2 1)
. rp—=13. .
Wy = P hih,. (15)
2 .

Equations (13)-(15) are just the equations of motion, Egs.
(10)-(12), with e =0, ie., the unperturbed equations of
motion. Euler's equations are integrable in terms of Jacobi
elliptic functions or hyperbolic functions, depending on the
angular momentum and energy. The phase space is a two-di-
mensional surface imbedded in R® This phase space pos-
sesses six fixed points or equilibria corresponding to positive
and negative spin about each of the three principal axes of
the satellite. Two of the fixed points, corresponding to spin
about the intermediate principal axis, are hyperbolic fixed
points or saddles. In addition, there are four beteroclinic
orbits linking the hyperbolic fixed points as shown in Fig. 2.
During the transition of an energy dissipating satellite from
spin near the minimum moment of inertia axis to spin about
the maximum moment of inertia axis, the trajectory must
cross the heteroclinic orbits in the phase space. More pre-
cisely, the trajectory of the damped system must cross a
heteroclinic orbit of the undamped system. We study the
chaotic motion in the perturbed system that may occur near
the heteroclinic orbits. :

5 Melnikov’s Method and Equation Transformation

Melnikov’s method is applied to detect chaos in the system
of Egs. (10)~(12). For a detailed exposition of Melnikov
theory, see Guckenheimer and Holmes (1983} and Wiggins
(1990). Briefly, Melnikov’s method is a perturbation tech-
nique for proving the existence of transverse heteroclinic?
orbits to hyperbolic periodic orbits in a class of time-periodic
vector fields. Though it is perturbation method, Melnikov’s
method gives global information about the system’s dynam-
ics. The essential idea in Melnikov’s method is to use the
globally computable solutions to the unperturbed integrable
system in studying the perturbed solution. The existence of
transverse heteroclinic orbits implies the existence of horse-
shoes and chaos via the Smale-Birkhoff Theorem. These
horseshoes appear near the unperturbed heteroclinic orbit in
a “chaotic layer.” A typical trajectory, when going from minor
axis t0 major axis spin, must go through this chaotic layer,
and possibly near the horseshoe. Although horseshoes are
not attractors, their existence has profound consequences for
physically realizable motions. The orbits in the horseshoes
are saddle-type hyperbolic and a nearby orbit can first be

2The method applies equally well to systems with homoclinic orbits.
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attracted to the chaotic horseshoe orbits and then be re-
pelled from them. Therefore, when horseshoes are present, it
is possible to see long chaotic transients before orbits settle
down to equilibria or periodic orbits, see (reenspan and
Holmes (1983), Guckenheimer and Holmes {1983), and Palis
and Takens {1993). '

However, the phase space, and in particular the chaotic
layer, is very complex. Numerical and theoretical work on
Duffing’s equation suggests that stable subharmonic motions
are possible, although the stable subharmonics of high period
in the chaotic layer are thought to be unobservable. This is
because the basins of attraction of the high period subhar-
monics are so small that numerical or physical noise domi-
nates and perturbs the orbit out of a basin, making the orbit
appear like transient chaos. Numerical work on Duffing’s
equations also shows “strange attractor” chaos for moderate
values of damping and forcing, but the strange attractor does
not coexist with stable T-periodic orbits. Since the stable
T-periodic orbits correspond to slightly perturbed major axis
spin in the satellite equations, this suggests that a chaotic
attractor might not occur for parameter ranges of interest
when studying the satellite attitude transition maneuver. Here
we are assuming that it is reasonable to study the attitude
transition to major axis spin only when the satellite design
has already ensured that the final major axis spin dynamics
are a simple periodic orbit. For a detailed discussion of all of
these issues, see Greenspan and Holmes (1983) and Gucken-
heimer and Holmes (1983).

We are now left with the tasks of solving for the hetero-
clinic crbit qg(t) of the unperturbed system, writing the
perturbed equations of motion such that only terms through
O(e) are kept, and then obtaining the two independent
equations of motion {in convenient coordinates) describing
the dynamics on the surface of the momentum sphere.

5.1 Solution for the Unperturbed Heteroclinic Orbit
go(t). For a torque-free rigid body with equations of mo-
tion given by Egs. (13)—(15), therc are two integrals of the
motion-—momentumn and energy. In nondimensional coordi-
nates, these integrals are given by

B2+ hi+h3=1  (momentum) (16)
N -

— +hi+—=T (energy) (17)
¥y r

where T £ 2BT/H? is the nondimensional total energy and
T is the total energy. Any trajectory on the momentum
sphere is determined by the intersection of the momentum
sphere § defined by Eq. (16) and the encrgy ellipsoid &
defined by Eq. (17). Recall that when viewed in body coordi-
nates, the angular momentum vector appears to mave such
that its tip always remains on a partjcular intersection of 8§
and &. The radius of 8, which is H = 1, must lie between
the smallest and largest semiaxes of the ellipsoid. Since
A < B < C, or nondimensionally 0 < r, < 1 <ry, the condi-
tion on the radius of § is given by r,T < 1 < r,T. Since the
heteroclinic orbits are formed when the § and & surfaces
are tangent at the points (0, +1, 0), the energy level for the
heteroclinic orbits must be given by T = H*(2B),or T=1
in terms of our nondimensional parameterization. The en-
ergy integral then becomes

P
1 3

(18)

Using Egs. (13), (14), (15), (16), and (18), it can be shown that
the solutions for the &; along the heteroclinic orbits are given
by (Hughes, 1986)
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-r V2 Fo — -Tr vz
ﬁlﬁi[rzu 1)] Sech{{(z na 1)] }
f2—nh i

(19)
- -1
by, = itanh{[(i"z—gfl—-ﬁ] 1-} (20)
rr _
TSI I _ N
by = i[———r]grz_ rl)] sech{[—-——( - ?fl rl)] T}
(21

where the subscript u signifies an unperturbed quantity,
r = 0 has been chosen to eliminate constants of integration,
and the appropriate signs are chosen to give the four hetero-
clinic trajectories.

52 Equations of Motion to O(e). Using binomial ex-
pansions, the equations of motion given by Egs. (10)-(12) can
be expressed as

- 1-r)- - 1—r2Y_. . -
Ry = hyhy — € 7 |Ahohy + Bhyhy (22)

- =1y o R . e

By = ( = )hlkz + e BRZR; - Rhihy) (24
2

where only terms through ©(e) have been retained.

We now transform to spherical coordinates. It is conve-
nient to choose the coordinate transformation so that one of
the new coordinates is zero along the unperturbed trajectory.
This can easily be done since the heteroclinic orbits are great
circles on the momentum sphere. Consider the heteroclinic
orbit that lies_in the region 4, > 0 and A5 > 0. The angle »
between the /,—4, plane and this heteroclinic orbit can be
shown to be

_ 12
ri{r; 1)] . (25)

ra(1—ry)

Starting with a set of coordinates &), &5, &3 aligned with the
hy, ho, ks system, rotate the § coordinate system through the
angle —v about the A -axis so that the positive £y-axis
pierces the heteroclinic orbit in the region k>0, hy > 0.
We can then transform from the ¢ coordinates to the dimen-
sionless spherical coordinates ¢ and 6 to obtain the follow-
ing equations relating the %;, and », 6, and &:

v = arctan[

h, = cos v cos 6 cos ¢ — sin ¥ sin¢, (26)
b, = sin 8 cos ¢, 27
ht, = sin v ¢os 6 cos ¢ — cos ¥ sing. (28)

Note that there is no radial dependence since the angular
momenturn sphere has a constant radius. The derivatives
with respect to 7 are also needed and they are given by
R, = ¢'(—cos v sin ¢ cos 8 — sin v cos¢)

— §’cosvsin @cos ¢, (29)
H, = 6'cos Bcos ¢ — &' sin Bsing, (30)
R, = ¢'(cos v cos ¢ — sin v cos @ sin ¢)

— ¢'sin v sinfcos ¢. (31)
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Equations (26)-(31) are then substituted into Egs. (22)-(24)
and any two of the resulting three equations are then solved,
using computer algebra (Wolfram, 1991), for ¢’ and ¢’. Note
that only two of the equations are independent due to the
fact that our phase space lies on the surface of the sphere
and is therefore two dimensional. This gives the final two
first-order differential equations to which Melnikov's method
is applied

¢ = {[(r; —r)eve2y + ry(r; ~ 1)cv]c¢c65‘¢s€
+[(ry = r)esy + ry(r, — 1)sv]c%bcs0
+(r, = rp)etvsvsips8) riry(sveded + cvsg)
+ E{B [(2cvs7'v - rfcv)cq&c@sq&sﬂ
+(5% = risv)cipcs0 + closvshso |
+ B[ rEsv(dc — 1)c%bchsds™ + 2ricvs’borbes™
+ricve2veds’ps®| ) ri(sveded + cvsd). (32)
and
8 = {(r, — ry)[evsPce® + svc2vcpetsd
+ csve’pesd —cvsivedsth + cve2vedc s
— ctrsvec¥p| +ry(r; — V)| svcbebsps?o
+ cvedss ]} rira(sve’ped + cvepsd)
+efA[cvstcipe® + svelvelpebsd + cusvcipeBsd
— cvsveds® +evelvede0s% — csves?
+(1 = r})(svcpebsds™ + cvcdsips™)]
+ B[ risvc2ucipc®s0 — dricvsvcibehsdso

+ ricve2ucpcBsps —risvc2vcipsipso

— 4rictvsveipcBsipso
—ricvedvepedsips
+ricvc¥pelsps — risvepsipsB | }
/ri(sve’pcd + cvedsd), (33)
where
52 sinand ¢ £ cos. (34)

Equations (32) and (33} are in the desired form, ¢’ =f; +
€g, and @' =f, + eg, (see the following section). Finally,
the unperturbed solutions given by Egs. (19)-(21) must be
transformed to the same set of spherical coordinates. This
transformation gives -

- —ry 1%
sin 8, = _tanh{[w] -r} (35)

Fir
g — - r vz
cos , = sech{[(i—-?r(l—l)] 1—} (36)
¢, =0 (37)

along the selected unperturbed heteroclinic orbit, and time
was chosen to move along the trajectory from positive to
negative /.
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6 The Melnikov Funection
Melnikov’s method considers systems of the form

={3}5R2 (38)

where g is of Eeriod T in ¢, f(x) is a Hamiltonian vector field
defined on R* and eg(x, ¢) is a small perturbation which is
not necessarily Hamiltonian.

We define the Melnikov function

Mt) = | B(an() A glao(t) £ +10)de (39)

where the symbol A is the wedge operator, defined bya A b
=a,b, — ayb,.

Referrmg 0 Eqgs. (38), (32), and (33}, we can easily identify
the components of the vector functions f= (f;, f,) and

= (g, g2) for use in the Melnikov integral, Eq. (39). We
must now prescnbe the tmle—dependem form of n by letting
a& i, Q2 QB/H, and 7 £ 5, cos(Q). This definition
corresponds to a simple periodic oscillation of the masses,
thus modeling phenomena such as reciprocating masses, un-
balanced rotors with constant angular velocities, or rotors
with time-dependent spin rates.

Any time-dependent form may be chosen for », but it is
clear that some are more tractable than others, and the
periodic form we choose accurately models the phenomena
we have discussed. It follows that the nondimensional form
of A is then

% = f(x) + eg(x,t),

A = 7%+ 45 cos(7) + 72 cos(28r). (40)
Substituting the unperturbed solutions q,(r), given by Egs.
(35}-(37), into £(q,(7)) and glq,(7}, 7 + 7,), carrying out the
wedge product, and substituting the result into the Melnikov
integral given by Eq. (39) yields
M(ro) = [~ [~C,Cs7? sech? (C;r) tanh (Cyr)

—4C,Cypcos (Q(r + 75)) sech® (Cy7) tanh (Cyr)
~C,C57% cos (28(7 + 7)) sech® (Cyr) tanh (Cy7)

+C, B sech? (Cyr) tanh? (Cy7)] d7.

where the following new quantities have been defined:

qé[m—na—m

(41)

] = Cy(r.r3)s (42)

L)
rn—(r,-rn—-1)
C é = C,(r.r,), 43
3 By 3(r1:72) (43)
20r, — D)(r, — 1
¢, e XD oy @
rz—rl

The evaluation of the integrals in Eq. (41) can be accom-
plished via the residue theorem of complex variable theory.
Upen carrying out the integration, we obtain the following
Melnikov function:

20,8 27Cn0?
M(7y) = C“l + C}
sin ($7g) sin (287,
p = 1n— = (45)
sinh [wﬂ/(ZCl)] sinh (7 Q,/C;)

Melnikov theory states that the condition for chaos is that
M(7,) change sign for some 7,. Inspection of the Melnikov
function reveals that there are two harmonic terms, one with
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Fig. 3 The surface separating chaotic from nonchaotic motion for
the parameter space -7k, as given by the Melnikov criterion in
Eq. (49). The parameters 3 and k3 were chosen to have the values
0.1 and 2/3, respectively.

twice the frequency of the other. Therefore, the maximum
amplitude of the factor containing the harmonic terms is
some function F,,, of both of the harmonic amplitudes. Tt
can be shown that F__is given by

Fre = %(3& +V@? + 32 ®%)

1 a 1”2
x|=+ a2+32e-a ,
2 32(52( )

(46)

Given this relationship for F,,,. the criterion for chaos
becomes

3m(r, — 7 — Dy 70 Fp
2(r, - 1)\/"1("1 -1 —ry)

Fquation (47) gives the analytical condition for chaos. This
result divides the parameter space into regions where horse-
shoes and chaotic transients exist from regions where they do
not. Close inspection reveals that Eq. (47) is a function of the
five system parameters, ry, rp, 7, £, and B. If Eq. (47) is
satisfied, then the system modeled by Egs. (10)-(12) exhibits
chaotic dynamics near the heteroclinic orbits for sufficiently
small e.

Before discussing the analytical Melnikov result, we first
write Eq. (47) in terms of the Smelt (DeBra-Delp) parame-
ters so that it can also be interpreted within that framework.
Various authors define the Smelt parameters differently, but
here we use the same definitions that DeBra and Delp (1961)
used in their original paper

C-B
1 £ T ’ kz & ks & —.
Then, choosing to use k; and k, as the two moment of
inertia parameters, r; and r, become

1+k; ‘ (48)
T 1T kky 2 1+ koky
Since 4 <B <, it can be shown (Rimrott, 1989) that
0<ky<land0 <k, <l

Using the relations in Egs. (48), the definition for Fp,,
remains unchanged, but the definition for C, becomes

C, = kik;

and, the expression in Eq. {47} of the criterion for chaos
becomes

AN

81
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Fig. 4 The surface separating chaotic from nonchaotic motion for
the parameter space £)-i-8 as given by the Melnikov criterion in
Eq. (47). The parameters k, and k; were chosen to have the values
0.8 and 2/3, respectively.

3wl + k(1 + k k) HQF 0
2Ues(1 + ky) ok
where F, . is given by Eq. (46).

> B (49)

7 Results

We have analytically proven the existence of transient
chaos in the attitude motion of a quasi-rigid satellite with
non-Hamiltonian, time-periodic perturbations. The derived
criterion can be used to find chaotic and nonchaotic regions
in parameter space and, if necessary, avoid chaotic motion in
this class of satellite systems. The Melnikov criterion for
chaos depends on five parameters: moment of inertia param-
eters r, and r, (or k,; and k;), forcing frequency {}, forcing
amplitude 7, and the damping B. By fixing two of the
parameters, the others can be studied in a three-dimensional
parameter space. Parametric studies of three-dimensional
parameter subspaces for Egs. (47) and (49) are shown in Figs.
3-6. '

Figure 3 shows the dividing surface between chaotic and
nonchaotic motion in (-7-k, space as determined by Eq.
(49). The moment of inertia parameter k;_was chosen to be
equal to 2/3 and the damping parameter $ was set equal to
0.1. By fixing £ at 0.1, we are not only fixing the amount of
damping, but we are also fixing the size of the perturbing
masses. Values of the parameters above the surface are
chaotic. The surface “flattens” out at # = 1 since we impose
# < 1 due to limits in the motion of the perturbing subbod-
ies, i.e., we do not consider values of % > 1, corresponding to
motion of the masses which pass through the spacecraft’s
mass center ¢. This is true for all figures where the surface
flattens at 7 = 1. We can see that as k; increases it becomes
easier to achieve chaotic motion. In addition we see what
appears to be a resonance condition in the {1-% plane. This
resonance frequency changes slightly as k; changes and
therefore depends on the shape of the satellite. The depen-
dence of this resonance’ frequency upon the “natural” fre-
quencies occurring in the motion of a torque-free rigid body,
such as precessional and nutational frequencies, is being
investigated. For small and large values of €1, it is impossible
to obtain chaos for any value of § < 1. Whereas for interme-
diate values of Q (e.g., O = (.25-0.35), chaos is much easier
to attain and is virtually assured for large values of k; — 1.
We also see that for values of k; approaching zero, which
corresponds to a nearly symmetric, prolate rigid body, no
chaotic motion occurs for the constant values of &, and B8

chosen and for 7 < 1 and any values of O and k,.
Figure 4 illustrates the dividing surface between chaotic
and nonchaotic regions in {}-7%-3 space as determined by Eq.
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Fig. 5§ The surface separating chactic from nonchaotic motion for
the parameter space (-7}-r, as given by the Melnikov criterion in
Eq. (47). The parameters # and r, were chosen to have the values
0.1 and 1.5, respectively.
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Fig. € The surface separating chaotic from nonchaotic motion for
the parameter space g-k;-k, as given by the Melnikov criterion in
Eq. (49). The parameters 4 and 2 were chosen to have the values
0.9 and 0.5, respectively.

(47). As in Fig. 3, the chaotic region is above the surface. We
again see the resonance effect in the -5 plane, but now at
= 0.5. The resonance frequency is constant in this figure
since the moments of inertia of the satellite (k; and k) are
fixed for all values of %, {2, and B and therefore the shape of
the satellite does not vary. As 8 — 0, chaotic motion occurs
for all values of ) and #, which is what we expect from the
theory of Hamiltonian systems: a generic perturbation of a
Hamiltonian system yields chaotic motion in a layer sur-
rounding a heteroclinic orbit (Lichtenberg and Lieberman,
1992). In addition, we see that if § is increased to large
enough values, it is impossible to attain chaotic motion for
values of % < 1. This too is physically reasonable: sufficient
damping suppresses the chaos. We should also note that
B o 1/m, where m is the perturbing mass. Thus, as m is
increased, B decreases and we find that the chaotic surface is
more casily reached. This too agrees with intuition. Larger
perturbations (i.e., oscillating masses) are more likely to
produce chaotic motion. If the masses are made small enough
for a fixed amount of satellite damping, they will have a
negligible effect on the satellite and chaotic motion will be
impossible.

Figure 5 shows the dividing surface between chactic and
nonchaotic motion in }-%-r, space for 8 = 0.1 and r; = 3/2.
Motion is chaotic for values above the surface. The parame-
ter r, ranges from 0.5 to 1 since »;, was chosen to be 1.5 (see
Eq. (9). The behavior is very interesting in that chaotic
motion is virtually assured for values of r, approaching unity
and small values of Q. This corresponds to a nearly symmet-
ric oblate spacecraft with small perturbing frequencies. This
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supplements the result described above for a nearly symmet-
ric prolate spacecraft where chaos is impossible to attain.
These results are not obvious and are a subject for further
study.

In Fig. 6 the chaotic region is above the surface shown, It
cant be seen that for smaller values of k; and larger values of
k,, chaos can be achieved for a range of 8. On the other
hand, as k) — 0 and %; — 1, chaos cannot be achieved no
matter how small 8 is made, Again, k; — 0 corresponds to a
neatly symmetric and prolate body, and it is impossible to
have chaos. As &, — 0 the body becomes nearly symmetric
and oblate and chaotic motion is assured for a large range of

B.

It is important to note that the results correspond specifi-
cally to the case where the oscillating masses are aligned with
the minor principal axis.

8 Conclusion

We have derived an analytical criterion for the occurrence
of a chaotic region of phase space in terms of system parame-
ters for an energy dissipating, quasi-rigid satellite with time-
periodic perturbations. The analytical criterion for the occur-
rence of chaos is obtained by applying Melnikov's method to
a quasi-rigid sateilite model. This model is a Hamiltonian
system perturbed by a non-Hamiltonian perturbation in the
form of oscillations of subbodies and damping in the satellite.
It is obvious from the modern theory of nonlinear dynamics
that chaos can occur via the breakup of heteroclinic orbits in
this class of systéms. The contribution of this paper is the
formulation of physically reasonabie spacecraft models to
which Melnikov's method can be applied and the perfor-
mance of the difficult calculations required to obtain an
uncomplicated criterion for chaos that can easily be used for
satellite design.

The chaotic region occurs near heteroclinic orbits in the
system’s phase space and is traversed during a typical attitude
maneuver, Since the chaotic region couid introduce uncer-
tainties into both the attitude maneuver and simulations
checking the maneuver, it is prudent, at the present state of
knowledge, to design the satellite so that the chaotic region
does not exist. Chaos in the equations of motion for a
satellite implies a sensitive dependence on initial conditions
and a very complicated structure of the phase space. The
sensitive dependence on initial conditions rules out the cur-
rent practice of a straightforward check on the satellite
attitude maneuver by a sample numerical integration, More
extensive or elaborate simulations would have to be devel-
oped and applied to achieve confidence in a satellite design

which maneuvered through a chaotic region. The specific

effects of the chaotic region on the satellite mission are not
well understood, but we suggest that the spacecraft could
possibly be trapped in the chaotic layer for an unacceptably
long time. The analytical criterion we have developed will be
of great value in designing satellites such that chaotic motion
is avoided.

In addition, subspaces of the full parameter space are
readily studied to obtain a qualitative understanding of the
interactions of the various parameters during chaotic motion.
The complete Melnikov result is casily used to obtain the
quantitative information needed when a satellite and its
subsystems are being designed. Future work will further
investigate this parameter space and extend our approach to
better understand the onset of chaos in other classes of
spacecraft.
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