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• Extreme weather events are gradually increasing in frequency and 
size, and this continues to pose a risk of blackouts.
This talk focuses on distribution; similar comments apply to transmission.

• To do resilience engineering and influence resilience investments and 
policy, we need to quantify the risk to customers of the larger blackouts.

• Risk combines probability and cost. As blackout cost increases, the 
probability goes down – But how fast does probability go down?

• Are large blackouts rare but expected (heavy tails), or are they outliers?
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Detailed distribution system outage data from 
Outage Management Systems OMS

• OMS data include outage and restore times to the nearest 
minute, customers out, and other descriptions of each outage

• Utilities have this data and there is also some public data:
ENW in UK, Massachusetts, Brazil, EAGLE-I; see last slide



Extracting Events from 
Utility Data

• Larger events are usually 
caused by extreme weather

• Events characterized by
an overlapping accumulation 
of outages bunching up in time

• Grouping outages into events 
is the basis for resilience 
analysis driven by data
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outage restore
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Key point is to have algorithms to automatically extract events from data based on outage timings
The larger events can be confirmed by finding the associated weather. 
This gives events of all sizes and causes. 



Distribution system event performance curves tracking customers out
Performance curve = number of customers out in event at time t
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• Customer hours of an event = Area under the performance curve 
= Sum of [customers out x duration]* = what event would contribute to numerator of SAIDI

• Customer cost of an event  ∝ customer hours lost in event
- state of the art (but needs further advances)
- proportionality constant combines the different effects of 
   industrial, commercial, and residential loads

• Then get the empirical distribution of customer cost of all the events

customers
out 

Area =
customer 
hours 

performance curve

Customer cost of events

*I Dobson, Models, metrics, and their formulas …, 
IEEE Trans. Power Systems, 2023



Customer risk described by distribution of event cost

• Exceedance function has very heavy 
power law tail with
         P[event cost > c] ∝ c-a

a=0.75 is slope magnitude on log-log plot
… probability goes down very slowly

• Very heavy tail implies 
- high risk of large blackout
- no typical large blackout
- mean of large blackouts is ill defined 
  or impractical to estimate. 

(Exceedance function = CCDF = 1-CDF = Survival function)

LOG-LOG PLOT OF EXCEEDANCE FUNCTION

Risk is given by Exceedance function P[event customer cost > c] (Kaplan 1981)
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solve it with logarithms …
logarithms convert power law to exponential 

estimate mean with 
exponential decrease 
in probability with cost

estimate mean with 
power law decrease 
in probability with cost

does not work for very heavy tail 

works with usual statistics



Blackout probability decreasing exponentially with cost
Probability of a blackout with cost X exceeding c = P[X>c] = e-ac 

If you double the cost c, P[X>c] is squared: e-a2c = (e-ac)2
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slope magnitude  a

Mean = 1/a



Samples from Exponential and estimating mean
Take 1000 samples from Exponential with a = 0.5; mean = 2; mean is typical
Strong Law of Large Numbers: If and only if the mean is finite, 
!"#	%&	!'#()*!

+"#,*-	%&	!'#()*!
 tends to mean as number of samples increases
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Blackout probability decreasing as a power law with cost
Probability of a blackout with cost X exceeding c = P[X>c] = c-a , c≥1 
This is a Pareto distribution
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a=2

a is slope magnitude on log-log plot

a=1

a=0.5



Blackout probability decreasing as a power law with cost c
Probability of a blackout with size exceeding c = P[X>c] = c-a , c≥1
This is a Pareto distribution with constant a
If you double the cost c, P[X>c] is multiplied by 2-a: (2c)-a = 2-a c-a 
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a = 0.5

a = 1

a = 2



WARNING FROM MATH about Pareto with slope magnitude a
a ≤ 1:  Mean is infinite; 

estimates of mean do not converge

a > 1:  Mean  is      aa!" 

estimates of mean do converge, but how fast?
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400 samples of 
Pareto with  a = 0.5 
(2 significant figures given)

mean is infinite
median = 4



Samples from Pareto and trying to estimate mean
Take 1000 samples from Pareto with a = 0.5; Cannot estimate the infinite mean 
Occasional samples are gigantic; there is no typical large sample
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Large event customer risk

• clarge is large event threshold = 2.4 $ (costs are normalized by number of customers served)
• plarge = P[event cost > clarge] = 0.1

350 events per year so
annual large event frequency 

      flarge = 35 per year 

• Exceedance curve has very heavy tail
with P[event cost > c] ∝ c-a

a=0.75 is slope magnitude on log-log plot
… probability goes down very slowly

• Heavy tail implies no typical large blackout
and mean of large blackouts and CVAR are
ill defined and/or impractical to estimate. 

• plarge and a metrics describe heavy tail 
and large event risk. 

plarge

Risk is given by P[event customer cost > c]
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Log[Pareto] = Exponential

Therefore 
Mean of Log cost data = 1/a
and estimates of mean converge!



ALEC = Average Log Event Cost

IDEA:  Take log of the large event data before taking the mean
Taking log converts heavy tail into light tail and enables mean to be estimated.

Annual frequency of large blackouts flarge and ALEC (implies slope magnitude a)
determine large blackout risk even with the heavy tails

large event normalized costs = c1, c2, c3, …., cnlarge 

ALEC determines estimates of slope magnitude: 

= mean of log of large event costs



19

ALEC is average log cost of large events per event

ALCRI = Annual Log Cost Resilience Index is per year

ALCRI combines frequency flarge and log cost into a single resilience risk index
This is especially useful when optimizing resilience
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Exceedance curves 
for the 5 utilities 
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Data and Metrics for 5 USA Distribution Utilities
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Exceedance 
curves 
for Brazilian 
and English
utilities  



Relation to VaR and CVaR
• We fix large cost threshold clarge and evaluate plarge=P[cost>clarge]
• VaR fixes plarge and evaluates corresponding clarge

• CVaR is mean of costs exceeding clarge and for our data CVaR is impractical 
to estimate with the limited number of large cost events
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plarge

S Poudel, A Dubey, A Bose, Risk-based probabilistic quantification of
power distribution system operational resilience, IEEE Systems Journal, 2020



Extrapolating beyond the largest observed blackout
and the question of the largest possible blackout

• Assuming a maximum blackout cost 
cmax gives a finite mean, 
but requires extrapolation beyond 
the largest observed blackout cost.

• One choice of cmax is the cost 
equivalent to  a one month 
blackout of the entire system

• We can extrapolate the largest 
blackout cost trend to cmax under a 
linear or other assumption, and our 
results show that the mean is still 
impractical to estimate.
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cmaxDecreasing plarge and decreasing ALEC (increasing a) improves the 
large cost blackout trend and its linear extrapolation up to cmax

slope magnitude a



Major event days (MED) … and heavy tails 
It is well known that customer hours are heavy tailed and 
yearly SAIDI is erratic unless major event days are excluded. 

SAIDI excluding major event days measures reliability  
(that is, SAIDI usefully measures normal conditions over the year)

ALEC and ALCRI focus on and quantify the heavy tails and the large 
events to measure resilience risk
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Comparing ALCRI and SAIDI
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If we set cost per Customer Minute Interrupted = 1 and take nyear = 1,
normalized event costs ci become normalized CMI
and ALCRI becomes

whereas 

a resilience metric

a reliability metric

MED = Major Event Day



Conclusions

• Huge variability in customer event costs - well known from major event days
- very heavy tails in cost exceedance function; slope magnitude a < 2
- no typical or representative large cost event
- mean values of event costs do not converge and impractical to estimate
- high risk of large cost events

• Logarithmic metrics can describe the large event customer risk
- group outages into events and calculate customer hours and customer cost 
  for each event
- set a threshold so that large cost events have cost > clarge
- take log of large event costs 
- ALEC metric is the Average Log large Event Cost (per event)
- ALCRI metric is the Annual Log Cost Resilience Metric (per year)

• Can plausibly quantify, monitor, optimize resilience risk with these metrics
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DISTRIBUTION SYSTEMS
– Electricity Northwest UK: register to get access 

https://electricitynorthwest.opendatasoft.com/pages/homepage/  
– Brazilian Electric Regulatory Agency ANEEL 

https://dadosabertos.aneel.gov.br/dataset/interrupcoes-de-energia-eletrica-nas-redes-de-distribuicao 
– Massachusetts data from Unitil, Eversource Energy, National Grid:

https://www.mass.gov/info-details/power-outages#historic-power-outages 
– EAGLE-I USA Data at DOE: https://eagle-i.doe.gov/login 

TRANSMISSION SYSTEMS
– Bonneville Power Admin. BPA www.bpa.gov/energy-and-services/transmission/operations-information 
– NYISO http://mis.nyiso.com/public/P-54Blist.htm 

see NK Carrington, I Dobson, Z Wang, Transmission grid outage statistics extracted from a web page logging 
outages in Northeast America, NAPS, College Station, TX USA, Nov 2021 
https://iandobson.ece.iastate.edu/PAPERS/carringtonNAPS21preprint.pdf 

– SPP https://transoutage.spp.org

PUBLIC OUTAGE DATA: A Gold Mine for Resilience!
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EXTRA SLIDES FOLLOW



Pareto = eExponential ; Exponential = ln Pareto

Let Y be Exponential so that  P[Y>y] = e-ay , y≥0
Let X = eY and x = ey

Then P[X>x] = P[eY > ey] = P[Y>y] = e-ay = x-a, so X is Pareto 
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There is a similar relation between normal and lognormal distributions:
If N is normal, then eN is lognormal

Exceedance function and PDF slopes on log-log plot differ by one: 
If P[X>x] ～ x-a, then PDF[X] ～ x-(a+1) 
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Samples from Pareto and trying to estimate mean
Take 10000 samples from Pareto with a = 1.5; Occasional samples are large; 
Can estimate the mean but with large number of samples
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Samples from Pareto and trying to estimate mean
Take 1000 samples from Pareto with a = 3; Samples are bounded; 
Can estimate the mean with hundreds of samples
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