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Motivation and questions

* Extreme weather events are gradually increasing in frequency and

size, and this continues to pose a risk of blackouts.
This talk focuses on distribution; similar comments apply to transmission.

* To doresilience engineering and influence resilience investments and
policy, we need to quantify the risk to customers of the larger blackouts.

* Risk combines probability and cost. As blackout cost increases, the
probability goes down — But how fast does probability go down?

* Are large blackouts rare but expected (heavy tails), or are they outliers?

utility group customer customer customer
outage | — | outages — | hours for — | cost for — | event cost

data into events each event each event probabilities




Detailed distribution system outage data from
Outage Management Systems OMS

e OMS data include outage and restore times to the nearest
minute, customers out, and other descriptions of each outage

e Utilities have this data and there is also some public data:
ENW in UK, Massachusetts, Brazil, EAGLE-I; see last slide
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Extracting Events from OUtfge ¢
Utility Data = - 0
o o 0
S —"
Larger events are usually  — 0
caused by extreme weather — .
_ O——0
Events characterized by —= .
an overlapping accumulation n—n:o °
of outages bunching up in time 5_0 0 . ’
1 1 H | | | | | L |
-GrOUplng-OUtages .II:]tO events 00:00 06:00 12:00 18:00 00:00 .
is the basis for resilience outage bunching time
analysis driven by data and over|apping

Key point is to have algorithms to automatically extract events from data based on outage timings
The larger events can be confirmed by finding the associated weather.
This gives events of all sizes and causes.



Distribution system event performance curves tracking customers out
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Customer cost of events

e Customer hours of an event = Area under the performance curve
= Sum of [customers out x duration]* = what event would contribute to numerator of SAIDI
e Customer cost of an event « customer hours lost in event
- state of the art (but needs further advances)
- proportionality constant combines the different effects of
industrial, commercial, and residential loads
* Then get the empirical distribution of customer cost of all the events

ot :
customers =50} Area =
out i customer
i hours
-100+
f 1‘_|“L performance curve
-150, e
0 1 2 3 4 5 6
*| Dobson, Models, metrics, and their formulas ..., Tlme (hOUI'S)

IEEE Trans. Power Systems, 2023



Customer risk described by distribution of event cost

Risk is given by Exceedance function P[event customer cost > c] (Kaplan 1981)

: LOG-LOG PLOT OF EXCEEDANCE FUNCTION
Exceedance function has very heavy

power law tail with 1L

P[event cost > c] « c© :
a=0.75 is slope magnitude on log-log plot
... probability goes down very slowly

0.100:

Very heavy tail implies

- high risk of large blackout

- no typical large blackout

- mean of large blackouts is ill defined
or impractical to estimate.
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0.001

|
Lol bt aaal Ll

" 0001 0010 0100 1 10 100 1000

Normalized Customer Cost ¢ (USD 2022)

(Exceedance function = CCDF = 1-CDF = Survival function)



estimate mean with

exponential decrease works with usual statistics
in probability with cost

;

estimate mean with

power law decrease does not work for very heavy tail
in probability with cost

.

solve it with logarithms ...
logarithms convert power law to exponential




Blackout probability decreasing exponentially with cost
Probability of a blackout with cost X exceeding c = P[X>c] = e ¢
If you double the cost ¢, P[X>c] is squared: e 3¢ = (g c)2
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Blackout Size
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Samples from Exponential and estimating mean
Take 1000 samples from Exponential with o = 0.5; mean = 2; mean is typical
Strong Law of Large Numbers: If and only if the mean is finite,

sum of samples

number of samples

Samples of Exponential with a = 0.5
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Probability of exceeding ¢

Blackout probability decreasing as a power law with cost
Probability of a blackout with cost X exceeding c = P[X>c] =c%, c21
This is a Pareto distribution

Log-Log Plot of Pareto

Linear Plot of Pareto
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Blackout cost c

o is slope magnitude on log-log plot

11



Blackout probability decreasing as a power law with cost ¢
Probability of a blackout with size exceeding c = P[X>c] =c*, c21

This is a Pareto distribution with constant a
If you double the cost ¢, P[X>c]is multiplied by 2-%: (2¢)®= 2% c*
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WARNING FROM MATH about Pareto with slope magnitude a

o £ 1: Mean is infinite;
estimates of mean do not converge

(04

o>1: Mean is ——
o—1

estimates of mean do converge, but how fast?
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Blackout Size
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Samples from Pareto and trying to estimate mean

Take 1000 samples from Pareto with a = 0.5; Cannot estimate the infinite mean
Occasional samples are gigantic; there is no typical large sample

Samples of Pareto with a = 0.5
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Estimate Mean of Pareto with a = 0.5
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Number of samples



Large event customer risk

Clarge IS large event threshold = 2.4 S (costs are normalized by number of customers served)

Plarge = P[Event cost > Cjarge] = 0.1

350 events per year so Risk is given by P[event customer cost > c]
annual large event frequency

flarge = 35 per year :

Exceedance curve has very heavy tail
with P[event cost > c] o< c*

a=0.75 is slope magnitude on log-log plot
... probability goes down very slowly

0.100 -

0.010:

Heavy tail implies no typical large blackout
and mean of large blackouts and CVAR are
ill defined and/or impractical to estimate.

Probability of Exceeding ¢

0.001
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Prarge aNd o metrics describe heavy tail Normalized Customer Cost ¢ (USD 2022)
and large event risk.



Log-Log Plot of Pareto with a = 0.5

i
2% Log[Pareto] = Exponential
3 Therefore
= 0.10¢
2 Mean of Log cost data = 1/a
& 008 and estimates of mean converge!
i é 1b Sb 1(I]0 560 1600
Customer cost ¢
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ALEC = Average Log Event Cost

IDEA: Take log of the large event data before taking the mean
Taking log converts heavy tail into light tail and enables mean to be estimated.

large event normalized costs = ¢y, C,, C3, ..., Cpjarge

Nlarge
1

ALEC = log,yc; = mean of log of large event costs

Narge i—1

(In10)~1

ALEC determines estimates of slope magnitude: —
p g @ ALEC — logloclarge

Annual frequency of large blackouts f54e and ALEC (implies slope magnitude o)
determine large blackout risk even with the heavy tails



ALEC is average log cost of large events per event

ALCRI = Annual Log Cost Resilience Index is per year

f Nlarge 1 Nlarge

large

ALCRI = fiarge ALEC = E logigci = E log Ci
Nlarge i1 year

ALCRI combines frequency fi4e and log cost into a single resilience risk index
This is especially useful when optimizing resilience



Probability of Cost > ¢

Comparison of Empirical CCDF with Fitted CCDFs - Utility 1 Comparison of Empirical CCDF with Fitted CCDFs - Utility 2
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Data and Metrics for 5 USA Distribution Utilities

Utility-1  Utility-2  Utility-3  Utility-4  Utility-5
n 5716 2706 3830 7000 6485
Nyear 6 17.4 11 10 11
k 370.2 228.2 323.0 339.9 339.9
Conxobs  $5063  $1095  $3523  $1954 $88
Clarge $1.05 $0.62 $2.40 $1.10 $2.15
Nlarge 572 271 384 701 325
Plarge 0.1 0.1 0.1 0.1 0.05
Flarge 96 16 35 70 30
o 0.83 0.73 0.75 1.00 1.47
Cl, (.76,.89)  (.65,.82) (.68,.83) (.93,1.1) (1.3,1.6)
ALEC 0.55 0.38 0.96 0.48 0.63
ClarLec (.50,.59) (31,.46) (.90,1.0) (44,51) (.60,.66)
RSEapLEc 0.040 0.094 0.031 0.034 0.026
RSEpp 1.44 1.70 1.05 1.46 0.66
RSE;np 138 1.53 0.65 0.89 0.13
ALCRI 52.8 6.08 33.6 33.6 18.9

all costs in 2022 USD; fiarge in per year.
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Relation to VaR and CVaR
* We fix large cost threshold c,.,. and evaluate p,.=P[cost>C ;]

* VaR fixes pj,g and evaluates corresponding C,ge

* CVaR is mean of costs exceeding c,,,,. and for our data CVaR is impractical
to estimate with the limited number of large cost events

0.100

0.010;

Probability of Exceeding ¢

0.001-

0001 0010 0100 1 10 100 1000
Normalized Customer Cost ¢ (USD 2022)

S Poudel, A Dubey, A Bose, Risk-based probabilistic quantification of
power distribution system operational resilience, IEEE Systems Journal, 2020



Extrapolating beyond the largest observed blackout
and the question of the largest possible blackout

Assuming a maximum blackout cost
Cmax Eives a finite mean,

but requires extrapolation beyond
the largest observed blackout cost.

T

0.100:

One choice of ¢, is the cost slope magnitude a
equivalent to a one month

0.010;
blackout of the entire system g

We can extrapolate the largest
blackout cost trend to c,,,, under a
linear or other assumption, and our i |
results show that the mean is still . . ‘ T AR W N

. tical to estimat 0001 0010 04100 1 10 100 1000 y
Impractical to estimate. Normalized Customer Cost ¢ (USD 2022)

Probability of Exceeding ¢

0.001-

Decreasing py,g and decreasing ALEC (increasing o) improves the Cmax
large cost blackout trend and its linear extrapolation up to ¢, .,



Major event days (MED) ... and heavy tails

It is well known that customer hours are heavy tailed and
yearly SAIDI is erratic unless major event days are excluded.

SAIDI excluding major event days measures reliability
(that is, SAIDI usefully measures normal conditions over the year)

ALEC and ALCRI focus on and quantify the heavy tails and the large
events to measure resilience risk
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Comparing ALCRI and SAIDI

Nlarge

ALCRI — ].Og 10 C;

n
year .

If we set cost per Customer Minute Interrupted = 1 and take nye,r = 1,
normalized event costs ¢; become normalized CMI

and ALCRI becomes

event CMI

SALIDI = lo ili i
Z £10 % customers served a resilience metric

large events

whereas

SAIDI = ) event CMI a reliability metric
# customers served

events
except MED MED = Major Event Day




Conclusions

Huge variability in customer event costs - well known from major event days
- very heavy tails in cost exceedance function; slope magnitude a < 2

- no typical or representative large cost event

- mean values of event costs do not converge and impractical to estimate

- high risk of large cost events

Logarithmic metrics can describe the large event customer risk

- group outages into events and calculate customer hours and customer cost
for each event

- set a threshold so that large cost events have cost > ¢,

- take log of large event costs

- ALEC metric is the Average Log large Event Cost (per event)

- ALCRI metric is the Annual Log Cost Resilience Metric (per year)

Can plausibly quantify, monitor, optimize resilience risk with these metrics
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PUBLIC OUTAGE DATA: A Gold Mine for Resilience!

DISTRIBUTION SYSTEMS

— Electricity Northwest UK: register to get access
https://electricitynorthwest.opendatasoft.com/pages/homepage/

— Brazilian Electric Regulatory Agency ANEEL
https://dadosabertos.aneel.gov.br/dataset/interrupcoes-de-energia-eletrica-nas-redes-de-distribuicao

— Massachusetts data from Unitil, Eversource Energy, National Grid:
https://www.mass.gov/info-details/power-outagestthistoric-power-outages

— EAGLE-|I USA Data at DOE: https://eagle-i.doe.gov/login

TRANSMISSION SYSTEMS
— Bonneville Power Admin. BPA www.bpa.gov/energy-and-services/transmission/operations-information

— NYISO http://mis.nyiso.com/public/P-54Blist.htm
see NK Carrington, | Dobson, Z Wang, Transmission grid outage statistics extracted from a web page logging
outages in Northeast America, NAPS, College Station, TX USA, Nov 2021
https://iandobson.ece.iastate.edu/PAPERS/carringtonNAPS21preprint.pdf

— SPP https://transoutage.spp.org
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Pareto = efxponential . Fxnonential = In Pareto

Let Y be Exponential so that P[Y>y] =e®, y>0
Let X =e¥ and x = eV
Then P[X>x] = P[e' > e¥] = P[Y>y] = e® = x, so X is Pareto

There is a similar relation between normal and lognormal distributions:

N

If N is normal, then e is lognormal

Exceedance function and PDF slopes on log-log plot differ by one:
If P[X>x] ~ x*, then PDF[X] ~ x{e+])



Heavy tails in probability distribution of blackout size

NERC data for WECC 1984-2006
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Blackout Size
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Samples from Pareto and trying to estimate mean

Take 10000 samples from Pareto with o = 1.5; Occasional samples are large;

Can estimate the mean but with large number of samples

Samples of Pareto with a =1.5 Estimate Mean of Pareto with a =1.5
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Blackout Size

Samples from Pareto and trying to estimate mean

Take 1000 samples from Pareto with a = 3; Samples are bounded;
Can estimate the mean with hundreds of samples

Samples of Pareto with a =3
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Estimate Mean of Pareto with a =3
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Number of samples
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