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Abstract Historical utility data for cascading failure and large blackouts is founda-
tional for understanding and quantifying blackouts. This chapter surveys some of the
main ideas in obtaining and exploiting the patterns in this data, beyond the useful
lessons that can be learned from each particular blackout. Historical data on black-
out size shows a heavy tailed distribution that implies that large blackouts are both
rare and will occasionally occur, and that their risk is substantial. Detailed outage
data is routinely collected by utilities and can be processed into cascading events or
weather-related events. Metrics for these events can then be readily obtained. Almost
all of the research on cascading is based on models and simulation, despite the
promising and emerging opportunities to also learn from utility outage data. Some
of these opportunities are outlined to encourage further work on real data: As well as
its obvious key use to ground models and simulations in reality, the historical outage
data can enable better contingency lists, be transformed into influence or interaction
graphs, replace simulation by sampling, and describe typical blackouts and their
restoration with Poisson processes.
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1 Analysis of particular blackouts

Aninfluential and useful approach to large blackouts considers each specific blackout,
analyzes the sequence of events and their interrelated causes in detail, and extracts
lessons learned that can be implemented to prevent that particular blackout, or a
similar blackout, from happening again. Every large blackout has such analysis
and reporting, although the public reporting often is of a summary nature with
very limited raw data available for independent analysis. Given the large variety
of phenomena involved in cascading blackouts, the details of the analysis and the
combination of causes varies considerably. Useful examples of these analyses are
[1, 2, 3, 4, 5]; and some of these blackout narratives also describe the mechanisms
involved.

Atahigher level, the evolution of large blackouts tends to have features in common
such as a long complicated chain of unusual events and interactions. Moreover,
blackout data shows that there are patterns in blackout statistics that we discuss in
the following sections.

2 Probability and risk of large blackouts estimated from data

Many countries record the size of transmission system blackouts [6, 7, 8]. For
example, the United States publicly records blackouts above a particular size. The
blackout size in MW power interrupted as well as the blackout duration and the
number of customers affected are often recorded. The blackout duration is less
useful than the other measures since blackout duration suffers from a lack of uniform
definition, depends heavily on the last few elements restored, and is inherently more
variable than the blackout size [9].

The empirical distribution of blackout size is best presented as a survival function
on a log-log scale as shown in Fig. 1. The survival function is the probability of a
blackout exceeding a given size as a function of the size. (The survival function is
is also called the complementary cumulative distribution function (CCDF) and is
one minus the cumulative distribution function (CDF).) The survival function shows
the data without the smoothing or binning needed for a probability density function,
and the log-log scale shows the large blackouts of small probability and the overall
pattern of how the blackout probability decreases as blackout size increases. It is also
more useful to consider blackout probability within a given factor (e.g. to within a
factor of two or one half) as given by an equal distance above or below the data on
the logarithmic vertical axis.

The approximately straight line behavior in the log-log plot of the distribution of
blackout size in Fig. 1 shows that the distribution of blackout size has a “heavy tail"
or power law region, which is influential on blackout probability and risk. (The power
law region is of course limited in its highest extent because every grid has a largest
possible blackout in which the entire grid blacks out.) The slope of approximately —1
in the survival function in Fig. 1 implies that doubling the blackout size only halves
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the probability that a blackout exceeds that size. The slope of —1 in the survival
function corresponds to a slope of —2 in a log-log plot of the probability density
function, which implies that a blackout of double the size has only one quarter
of the probability. This relationship shows the typical heavy tail dependence that
as blackout size increases, probability decreases, but it decreases very slowly. In
contrast, for a probability distribution with an exponential tail (such as exponential
or normal distributions), doubling the blackout size at most squares the probability,
so that large blackouts are vanishingly unlikely. A probability distribution with heavy
tails indicate that blackouts of all sizes, including large blackouts, can occur. Large
blackouts are rare, but they are expected to happen occasionally, and they are not
“perfect storms." These qualitative remarks are further supported by a more precise
description in subsection 2.1.

The approximate power law dependence of blackout size has been has been con-
firmed by observed transmission blackout size statistics in many developed countries
[6,7,8]. Cascading failure is a sequence of dependent events that successively weaken
the power system. At a given stage in the cascade, the previous events have weakened
the power system so that further events are more likely. It is this dependence that
makes the long series of cascading events that cause large blackouts likely enough
to pose a substantial risk. (If the events were independent, then the probability of a
large number of events would be the product of the small probabilities of individual
events and would be vanishingly small.)

The power law region can be explained using ideas from complex systems theory.
The main idea is that over the long term, the power grid reliability is shaped by the
engineering responses to blackouts and the slow load growth and tends to evolve
towards the power law distribution of blackout size [6, 10]. It is notable that the
power law region appears both in blackouts attributed to weather and blackouts not
associated with weather [11].

Blackout risk can be defined as the product of blackout probability and blackout
cost. One simple assumption is that blackout cost is roughly proportional to blackout
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Fig. 1 Empirical survival function of blackout size from Western interconnection in the USA from
1984 to 2006.
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size, although larger blackouts are expected to have costs (especially indirect costs)
that increase faster than linearly. In the case of the power law dependence, the larger
blackouts can become rarer at a similar rate as costs increase, and then the risk of
large blackouts is comparable to or even exceeding the risk of small blackouts [8].
Mitigation of blackout risk should consider both small and large blackouts, because
mitigating the small blackouts that are easiest to analyze may inadvertently increase
the risk of large blackouts [12].

2.1 How the blackout probability decreases as size increases

Since the way that blackout probability decreases as blackout size increases is so
important to large blackout risk [8] and justifying the study of large cascades, it is
useful to describe an idealized form of this relationship more precisely. Suppose that
the blackout size above some minimum blackout size ,,;,, MW is the Pareto random
variable X with the probability density function

Lmin
fX(x) = 22’ T 2 Tmin (l)
Then
log fX (J?) =-2 logx + log Lmin; x Z Tmin (2)

so that the plot of log fx (z) versus log x is linear with slope -2 as shown in Fig. 2.

Recall, for example, that probability density fx(500) per MW at X = 500
MW means that the probability of a blackout between 500 MW and 501 MW is
fx(500) and the probability of a blackout between 500 MW and 500+dy MW is
fx (500)dy. More generally, the probability of a blackout between a MW and b MW

is ff fx (y)dy. The survival function F' x () is the probability that the blackout size
exceeds z so that

T o o Lmin LTmin
Fx(z) = / fx(y)dy = / ) dy ===, *2Zuin A3)
And
IOg FX (I)) = - 1Og T+ 1Og Tmin; T 2 Zmin (4)

so that the plot of log F' x () versus log z is linear with slope —1.
Then doubling the blackout size from x to 2z gives one quarter of the probability
density and one half of the survival function:
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fx(22) = gnTl)I; = ifx(l”) (%)
Fy(22) = % - %Fx(x) ©)

It is straightforward to repeat this calculation more generally with a power law x~*°

of the tail of the probability density of blackout size. Then the survival function has
a power law tail z!~%. And on log-log plots the slope of the probability density is
—s and the slope of the survival function is 1 — s. Doubling the blackout size gives
27° times the probability density and 2'~* times the survival function.

In contrast, one can consider a probability distribution with an exponential tail
such as

fx(@)=ae ™ x>0 @)
Fx(z)=e"%, x>0 8

Then doubling the size from x to 2z has an effect proportional to squaring both the
probability density and the survival function:

fx(22) = ae™2*7 =

é(fx(x»? ©)
Fx(2z) = e72%% = (Fx(2))? (10)

It follows that if the tail of blackout size were exponential (which it is not), this
squaring effect would have made large blackouts vanishingly unlikely as illustrated
in Fig. 2.

3 Processing utility outage data

This section describes detailed utility outage data and how to automatically process
a series of outages into events or cascades, and further into successive generations
of outages within the cascades. The event processing is fundamental for studying
cascading and resilience with real data. This differs from the traditional processing
for reliability, which tends to study the outages and repairs in a steady state that is
averaged over the year.

It is important to note that utility outage data includes events of all sizes and all
causes. In particular, large events include those mainly caused by cascading outages
within the transmission grid as well as those mainly caused by extreme weather. The
outages caused by extreme weather can be identified by their location and timing
matching weather records or by cause codes in utility data. Most of the large blackouts
are associated with extreme weather [13] (cascading effects could also contribute to
the weather blackouts, but the extent of this contribution is not known). The blackouts
caused by extreme weather are studied in resilience whereas the routine outages
occurring singly or in small groups are dominant in the study of reliability, partly
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Fig. 2 Comparing Pareto and exponential probability density functions on a log-log plot showing
that large size events have vanishingly small probability for exponential whereas the more slowly
decreasing Pareto can have rare large events. Slope of Pareto probability density function on this
log-log plot is —2. Pareto (Eq. 1) has min = 1 and exponential (Eq. 8) has rate o« = In+/2 so that
both distributions have median 2.

because small outages are much more numerous. The study of cascading includes
large blackouts that can be considered part of resilience and can also include short
cascades with a few outages that quickly stop. There are significant overlaps and
no clear boundaries between cascading, resilience, and reliability. The important
point for data analysis is that if one considers all the automatic outages observed in
some real utility data, they encompass and exemplify aspects of cascading, resilience
and reliability, and the differences between these categories mostly depend on the
processing and interpretation of the data. Detailed utility outage data are foundational
for the study of cascading, resilience, and reliability.

While the focus here is on transmission system outages, it should be noted that
Murphy [14, 15] describes correlated generator outages with detailed utility gener-
ator outage data from the Generator Availability Data System (GADS) of the North
American Electric Reliability Corporation (NERC) in the USA. The increased gen-
erator outage rates during extremes of cold or heat and loading have a significant
impact on generation adequacy, as for example in the February 2021 blackout in
Texas. The increased generator failures are correlated by common external weather
rather than by cascading via interactions within the power system.
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3.1 Transmission utility outage data

3.1.1 Utility outage data

Transmission systems operators and regulators often systematically collect detailed
time-stamped outage data for lines, transformers, and other equipment. For example,
the North American Electric Reliability Corporation (NERC) has been collecting
North American automatic (momentary and sustained) outage data for transmission
elements operating at 200 kV and above in its Transmission Availability Data System
(TADS) since January 2008 [16]. While the collection of detailed outage data is
standard practice in North America and many other countries, there are only a
few publicly available sources for this data [17, 18]. The data typically includes
the outage start time, end time, bus name(s), rating, cause codes, and whether the
outage is automatic (forced) or planned. The processing of the data typically extracts
the automatic outages and neglects the planned outages. Some data such as TADS
includes only the automatic outages. There may also be an annual inventory of
components in the data.

3.1.2 Extracting events from detailed outage data

A key step in processing real data for cascading and resilience is automatically
extracting events. The events are often called cascades or resilience events. These
events range in size from isolated single outages to events with hundreds of outages.

One approach to defining and extracting events looks at the outage starting times
to detect when they bunch up. This approach was developed to study cascading due
to all causes in utility data [20]. Note that outages bunching up due to bad weather
is well known in reliability [21, 22]. The event definition is simple: if successive
outages start within a time threshold such as one hour, they are in the same event.
The time threshold of one hour should be adjusted to the data being processed.
Although unrelated outages can start within one hour, it is much more likely that the
outages are dependent. The processing simply moves through the outage start times
in the order of their occurrence and makes a new event when there is a gap between
successive outages of more than one hour.

The outages in a cascade event identified by the bunching can be further divided
into generations of outages. The initial outages of the cascade are the first generation;
these are followed by the second generation of outages, and so on until the cascade
ends. The generations of outages within each cascade arise from the fast time scale
of less than a minute of the protection system that implements the outages. Multiple
automatic outages occurring simultaneously or in very quick succession are grouped
together in the same generation, and in particular, successive outages that start within
one minute are in the same generation [20].

The described processing of outages into a series of events, each with one or more
generations of outages, structures the outage data for cascading analysis. The majority
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of the events have only one outage and one generation, but there is considerable
interest in examining the larger events, which are rarer but more consequential.
Another approach to defining and extracting events considers how outages overlap
in time. Two outages overlap in time if the first outage is not restored when the second
outage starts. This approach was developed primarily to study weather-related events
in utility data [23, 19, 13]. Motivations for considering overlap include the weakening
of the grid while an outage persists and considering outages of some positive duration
as more significant or impactful than momentary outages. Consider the set union of
the durations of the outages as illustrated in Fig. 3. This set union of the duration
times of the outages is composed of disjoint intervals, and each disjoint interval
defines the duration of one event. The outages can be processed into these events
using the number of unrestored outages [23], which varies with time as outages
occur and are restored. The number of unrestored outages or, more usually, the
negative of the number of unrestored outages is familiar in resilience [25, 26, 9]
and is sometimes called the resilience performance curve. Under normal conditions
the number of unrestored outages stays near zero because outages are generally
infrequent and are restored quickly. But under stressed conditions, outages are more
frequent and accumulate before they can be restored, and the number of unrestored
outages has excursions away from zero. These accumulations of outages are the
events. The events can be extracted from the data by detecting when the number of
unrestored outages passes and returns to zero. In practice, some limitation of the
outage duration before processing the data may be necessary to avoid an outage that
has an exceptionally long repair time creating an unrealistically long event.
Another approach to find weather events is to identify the time period of bad
weather in weather data and then find the outages that occur in that time period [27].
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Fig. 3 Two events formed by the union of overlapping outages. For each outage duration shown
above the axis, the open circle is the outage start time and the dot is the outage restore time.

Combinations of bunching and overlap and elaborations restricting the geographic
region and handling momentary outages may be applied in practice [19, 13, 28, 9].
For example, in [28, 9], for each interconnection, the automatic outages are grouped
together into events based on the bunching and overlaps of their starting times and
durations. We quote from [28] the algorithm used: “Every outage in an event has to
either start within five minutes of a previous outage in the event or overlap in duration
with at least one previous outage in the event that has a difference in starting time
not exceeding one hour. In applying this algorithm, repeated momentary outages of
the same element are neglected if they occur within 5 minutes of each other." Then
events that contain at least one outage with a weather-related initiating or sustained
cause code are defined as weather-related.
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3.2 Statistical patterns in number of outages and generations

The processing of outages into events enables the empirical statistics of the events
to be determined, and their statistics augments the heavy tailed behavior of blackout
size measured in load shed considered in section 2. The probability distribution of
the number of outages in events has a heavy tail and a power law character. For
example, Fig. 4 shows the distribution of the number of outages in events with more
than 20 outages in 5 years of North American transmission events [28]. Moreover,
as shown in Fig. 5, the number of generations in these cascades approximates a Zipf
distribution [29, 13], which also has a heavy tail and is a power law distribution. The
slope of the dashed line in Fig. 5 has been proposed as the SEPSI index of cascading
[29, 13], where SEPSI stands for System Event Propagation Slope Index.
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Fig. 4 Log-log plot of survival function of the number of outages in North American transmission
events with at least 20 outages. Data are from [28].
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Fig. 5 Log-log plot of probability distribution of number of generations for North American
transmission events (dots) with dashed gray line showing the slope of the fitted Zipf distribution.
Data are from [13].
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4 Probabilistic models directly driven by utility data

Except for the useful analysis of individual blackouts, almost all of the research
on cascading is based on models and simulation. Since there are many and varied
mechanisms of cascading, and blackouts typically involve complicated combinations
of these mechanisms, cascading is particularly hard to model realistically. There is
substantial progress modeling a subset of the mechanisms of cascading to produce
cascades that could plausibly occur, but many of the most studied mechanisms of
cascading are only those with tractable models, and there is much less work giving
definitive validation of the cascading models and simulations [57, 58]. And the
restoration from cascading blackouts is not often modeled.

Historical blackout data has an obvious key role to ground cascading models and
simulations in reality with calibration and validation. But there are further promising
and emerging opportunities to directly exploit historical blackout data. To encourage
this direction of research, this section shows how historical outage data can enable
better contingency lists, be transformed into influence or interaction graphs, replace
simulation by sampling, and describe typical blackouts and their restoration with
Poisson processes.

4.1 Contingency motifs for multiple outages initiating cascading

When assessing the risk of cascading outages with a simulation, it is usual to sample
multiple initial line outages with some sort of equal probability assumption, such
as independent, equal probabilities for the individual line outages that make up
each multiple outage [30, 31], or equal probabilities for all N-2 outages [24]. One
reason is that networks are designed and operated with the N-1 criterion so that
outage of only one element in an idealized simulation does not generally initiate a
cascade. Analysis of real utility data shows that these equal probability assumptions
are pragmatic but unrealistic, making the cascading simulations start from a set of
contingencies that are unlikely in practice and making the resulting cascading risk
estimates less credible.

A contingency motif [32] is a spatial pattern or small subgraph of the network
of multiple outages that occur much more frequently than corresponding multiple
outages chosen randomly with equal probability from the utility network. For ex-
ample, in real data, the N-2 contingency motif .\ of two lines with a common bus
initially outaging occurs much more frequently in initial outages than a random se-
lection of any two lines in the network. Contingency motifs are quite similar to the
motifs conventionally considered in network theory [33], except that the frequency
of contingency motifs is high compared to a corresponding random selection from
the specific power grid being analyzed, rather than high compared to a correspond-
ing random selection from a random graph with similar characteristics. Ren et al.
propose conventional network motifs as an indicator of cascading outage risk [34].
They show that phases of cascading outages as the load level increases correspond
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to the decrease of the frequency of network motifs. The frequency of motifs reflects
the connectivity of the power grid; hence, it can be a warning sign of the cascading
outage risk. Other researchers have studied conventional network motifs as an indi-
cator of power grid robustness and reliability using techniques from network science
[35, 36].

The initial outages of a cascade can be obtained from real outage data by grouping
the outages into cascades and generations within each cascade as in subsection 3.1.2.
Then the initiating outages are those in the first generation of each cascade. A utility
network on which the outages can be located can be deduced directly from the
outage data [37], so that the patterns of the initial outages on the utility network
can be detected, classified, and counted. This allows the N-k contingency motifs to
be obtained, as those that are, for example, ten times more likely to occur in the
initial outages than by random selection of k lines from the network. It turns out
for two North American publicly available historical outage data sets that the three
contingency motifs ., *[», /. account for most of the probability of multiple line
outages [32]. Preferentially including these contingency motifs in a contingency list
according to their observed frequencies gives a much more realistic sampling of
the initiating contingencies and contributes to a better cascading risk analysis via
simulation. Of course, for a complete risk analysis, it is necessary to augment the
multiple outages with the more tractable single outages, whose probability can be
more accurately determined (at least for lines of a given voltage rating or other class),
and whose sampling is straightforward.

4.2 Influence/interaction graphs driven by utility data

The way in which line outages influence or interact with each other in cascades of
outages can be described by graphs (networks) in which the transmission lines are
the nodes and the influences or interactions between outages are the links between
the nodes. These graphs are called influence graphs or interaction graphs and are
obviously different networks than the physical utility network. Influence/interaction
graphs were originally developed in [38, 39, 24] and are reviewed in [40, 41].
Influence graphs can be formed from simulated or utility data, and this section only
describes some particular issues of influence graphs driven by utility data.

The first issue with processing utility data into an influence graph is that one is
limited to the amount of recorded data. Methods to mitigate this include combining
together the data for several generations to estimate the transitions for multiple gener-
ations at once while exploiting the overall form of cascade propagation and Bayesian
methods [41], and exploiting memory of the interactions between generations of the
cascades [42].

The second issue with processing utility data into an influence graph is that
real data (usually quantized in time to one minute) has multiple outages occurring
in the same minute, which is mainly due to the fast time scale of the protection
system. (Simulations, at least so far, avoid this by idealizing single outages occurring
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in sequence.) This can be addressed either by regarding the multiple outages as
additional nodes in the influence graph [41] or by running an expectation maximizing
algorithm to allocate the influences among the multiple outages [42].

4.3 Sampling from utility data to replace simulation

Cascading failure analysis is dominated by simulations of models of a subset of
the mechanisms of cascading. However, there is another way to generate realistic
cascades by computer, which is to sample from the observed outage statistics that
characterize how outages propagate and spread on the network. This has been done
as part of models of transmission system resilience [43, 44] and to estimate how
much cascading follows the initial damage from an earthquake [45]. One can either
sample directly for the empirical distributions, or fit a distribution to the empirical
distribution and sample from the fitted distribution. The advantage of using a fitted
distribution is that it smooths the rarer data and allows some extrapolation. The
sampling based on empirical data only captures the overall statistical form of the
cascading, but it requires no modeling assumptions, and is very fast compared with
model-based approaches. The sampling approach, while necessarily an approximate
description, has some sound basis in reality, especially if the empirical data of the
network under study is used.

There are two questions to address with sampling cascade outages: How many
outages are in the cascade and where are these outages located on the network? One
way to characterize the number of line outages in a cascade uses a branching process
statistical model that is estimated from the observed data [20]. The propagation
parameter from generation k to generation k£ + 1 is the expected number of outages
in generation k41 that are produced by each outage in generation k. The propagation
parameters for all the generations can be directly calculated from observed outage
data grouped into cascades and generations. Then the distribution of the number of
line outages can be calculated from the number of initial outages and the propagation
parameters [20, 45]. Another way is to empirically estimate and sample from the
distribution of the total number of outages in cascades [43, 44]. The form of the
distribution of the total number of line outages can have the form of a Zipf distribution
for two or more line outages [44]. The sampling approach can extend to other aspects.
For example, it is also feasible [44] to sample the number of generator outages
from observed generator outage statistics [14, 15] and to sample transmission line
restoration times from observed line restoration statistics [46].

The spread of the outages on the network can be statistically described by the
empirical distribution of network distance between line outages in cascades [43, 45,
44]. To obtain these statistics it is necessary to locate the historical outages on the
utility network, and this network can be formed directly from the outage data [37].
After an initial outage or outages are selected on the network, the outages remaining
in the total number of outages in the cascade can be located on the network by
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successively sampling from the network distance distribution. Resampling is used if
there are no intact lines available at the sampled network distance.

The sampling approach to cascading is particularly effective when cascading is
only one part of the entire calculation and fast samples of cascades are needed.
For example, a network model can be used to evaluate the impact of the sampled
cascade outages. There is a problem with straightforward sampling of the cascades
that the large cascades of the most interest are rare, so that straightforward sampling
of cascades is very inefficient in calculating the high impact low frequency cascades.
This problem can be solved by stratified sampling with strata of different cascade
sizes [47, 44]. Stratified sampling allows sufficient samples at each range of cascade
sizes, the results of which are then weighted by the probability of that range of
cascade sizes, which in our case is known from the distribution of cascade sizes.

4.4 Statistical models of outage and restore processes

There are several useful ways to describe events by tracking their outages. For
each event, the outage process O(t) is the cumulative number of outages at time ¢
and the restore process R(t) is the cumulative number of restores at time ¢. Both
processes start at zero at the beginning of the event and increase to the total number
of outages n, as shown in the example with n=12 outages in Fig. 6. Resilience studies

outage process O(’t)_|_|—‘

restore process R(f)

Elements

—5:— performance curve P(t)

L L 1 L L 1 L L 1 L
00:00 12:00 00:00 12:00
Time

Fig. 6 Processes for a transmission system event with 12 outages. Image from [9] is licensed under
CC BY 4.0.

[26, 25, 48, 49] often define for each event a performance (or resilience) curve P(t),
which is the negative of the number of unrestored outages at time ¢. The performance
curve decrements for each outage and increments for each restore as shown in Fig. 6.
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Indeed, the performance curve is related to the outage and restore processes by

The performance curve can be uniquely decomposed into its outage and restore
processes, and it contains the same information as the outage and restore processes
[50].

The outage and restore processes and the performance curve, while straightfor-
ward, are fundamental to analyzing events in real outage data. Note that the event
analysis is at a systems level and is not focused on tracking individual components: it
only counts the numbers of outages and restores and it does not track which outaged
component restored when or the order in which components restore. Also, the forms
of the outage and restore processes and performance curve readily lead to resilience
metrics that describe each process; in particular, it is useful to have separate metrics
describing the outage process and the restore process and the performance curve
[28, 9]. Examples of the metrics are:

Outage process metrics: number of outages, outage duration, outage rate (can be
time dependent),

Restore process metrics: restore duration (e.g. time to 95% restore, geometric
mean of positive restore times [9]), time to first restore, restore rate (can be
time dependent)

Performance curve metrics: area, nadir (maximum components out)

The outage, restore, and performance processes can track quantities other than the
number of outages by simply changing the quantity on the vertical axis. For example,
the total MVA ratings of the outaged components can be tracked [28, 51]. The list
of metrics above assumed that the processes tracked the number of components out.
Changing the quantity tracked gives a new set of metrics, except for those metrics
quantifying duration. Calculating metrics for utility outage data gives basic and
useful information about the various types and magnitudes of outages and blackouts
[13, 28, 51, 52]

The outage and restore processes can be stochastically modeled as Poisson pro-
cesses of time varying rate [53, 54, 9, 55]. Consider an outage process of rate Ao (t)
that depends on time ¢. Then, to first order in a small time interval [¢, t 4 h], the prob-
ability of a single outage in [t,t + h] = Ao (t)h. The restore process can similarly
be modeled as a Poisson process of time varying rate Ag(¢). The rates of the outage
and restore processes can be obtained from utility data. For example, analysis of
seven years of North American transmission data shows that the most typical event
with n outages has an outage process of constant rate Ao over a short interval [0, op]
and a restore process that starts at time r, after the start of the outages with a rate
proportional to a lognormal distribution:

Ao(t) = o an

Ar(t) = m exp[—(In(t — ry) — u)2/(202)], t>r, (12)
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The parameters of these models such as Ao, 7, i1, o can be estimated from utility
data [9]. The lognormal distribution of restore rate implies that the rate of restoration
typically quickly becomes high and then slows over a long period of time, with the
last few restores very delayed. Note that the most typical North American events
are dominated by weather events, so it cannot be assumed that the typical cascading
event not related to weather is the same as the most typical event. For example, the
constant rate outage process of the typical weather event in Eq. 11 is probably not
appropriate to cascading events since cascading events show an accelerating rate of
outages [56].

One can also consider the mean of the outage and restore processes and the
resulting performance curve to obtain a typical event for the data that is processed.
We denote these mean processes by O(t), R(t), and P(t). Of course, the Poisson
processes vary about their mean value, but the mean value is a representative case.
For example, Fig. 7 shows a typical North American transmission event when all the
events over seven years are processed.

The mean processes give a nice formula [55] for the area A of the mean perfor-
mance curve P(t) tracking the number of components outages. A is also the mean
of the area A of the performance curve P(t). Moreover, A is also the area between
the mean outage and mean restore processes (see Fig. 7). Then, writing o for the
mean outage time and 7 of the mean restore time,

A =n(F—0) (13)

so that (13) can be understood as the height n of this area times its average width.
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Fig. 7 Typical North American transmission system resilience event tracked by number of outages
on the vertical scale. The shaded area A of P(t) is a useful metric and is the same as the shaded
area between O(t) and R(t). Image from [55] is licensed under CC BY 4.0.
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Another way to structure the modeling of events arose in distribution systems
[53, 54]. Instead of directly modeling the restore process from data, this approach
represents a Poisson outage process arriving at a queue that repairs the outages to
produce a restore process. In [54], the response to hurricane Ike is modeled this way
using processes that vary in both time and space.

4.5 Validating and calibrating simulations with statistical data

The statistical patterns and metrics that can be extracted from utility data are of
fundamental importance in calibrating and validating models and simulations to
ensure that they can approximate reality well enough. Overall there has been some
progress towards calibration and validation for cascading failure [57, 58, 30, 59, 60],
but much remains to be done.

Since cascading outages encounter many thresholds for discrete actions such as
tripping a line or not tripping a line, similar simulations with similar data (or even
the real power system on successive days) may behave differently under very similar
conditions. One simulation or model may trip the line and while another may not and
this can have a large effect on the way that a particular cascade evolves. Therefore
it is too stringent to require an exact match of the simulation to real blackout data.
However, one can compare the statistical patterns or the overall metrics produced
by the simulation to the observed statistical patterns and metrics. For example, the
distributions of blackout sizes or how much the cascades propagate can be compared.

4.6 Researcher access to utility data and the path forward

There are significant opportunities and much further work to be done processing and
analyzing transmission system data. Given the few sources of public detailed outage
data [17, 18], one challenge is: How can utilities and regulators be encouraged to
share detailed and comprehensive outage data with researchers? One encouraging
development is methods to anonymize data. For example, with only some loss of
usefulness, bus names can be encrypted and geographic location can be coarse
grained. Potential legal liabilities for sharing the data could likely be mitigated by
using older data, such as data more than seven years old in the United States. Further
collaborative efforts between researchers, regulators, and industry are needed to
realize the benefits from the data that has already been collected.
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