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Abstract— Large blackouts typically involve the cascading
outage of transmission lines. We estimate from observed utility
data how transmission line outages propagate, and obtain
parameters of a branching process model of the propagation.
We show that the branching process model is consistent with the
utility data by using it to estimate the distribution of the total
number of lines outages and showing that this closely matches
the distribution of the total number of line outages observed in
the utility data. The branching process model and the measured
propagation can then be applied to predict the distribution of
total number of outages for a given number of initial failures.
We study how the total number of lines outages depends on the
amounts of propagation as the cascade progresses. The analysis
gives a new way to quantify the effect of cascading failure from
standard utility data about automatic line outages.

I. INTRODUCTION

Cascading failure is a series of dependent failures that
progressively weakens the system. Large electric power
transmission systems occasionally have cascading failures
that cause widespread blackouts, with up to tens of millions
of people affected [20], [21], [22]. The cascades causing
the larger blackouts have hundreds of dependent events,
which include the outages of transmission lines. The multiple
mechanisms involved these cascading outages are many and
varied, and the power grid networks are heterogeneous and
so large that methods relying on detailed enumeration of
the full range of possibilities must fail. While methods that
sample a subset of the possibilities can also be of use in
maintaining power system reliability, in this paper we seek to
capture and analyze the bulk statistical behavior of cascading
transmission line outages from standard utility data that
records the times of line outages.

The power system is carefully designed and operated so
that most transmission line outages have only one or a few
outages occurring together. Most of these short cascades
do not cause blackouts (no load is shed), but the longer
cascades can lead to blackouts. In this paper we statistically
analyze the propagation of line outages in all the cascades of
automatic line outages, regardless of whether load is shed.

II. PREVIOUS WORK

Branching processes have long been used to study cascad-
ing processes in many other subjects, including genealogy,
cosmic rays, and epidemics [15], but their application to
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cascading failure is much more recent, first appearing in [9],
[10].

Ren and Dobson [19] give a previous analysis of prop-
agation in a transmission line outage data set. The data
set of [19] is smaller and has a different source than the
data set considered in this paper. The outages are simply
grouped into stages and cascades according to their timing.
[19] estimates an average value of propagation and shows
how the distribution of the number of line outages can be
predicted from the estimated propagation and the distribution
of the initial line outages. One difference between this paper
and [19] is that this paper accounts for varying propagation
as the cascade progresses whereas [19] assumes a constant
value of propagation throughout the cascade.

Chen and McCalley describe an accelerated propagation
model for the number of transmission line failures in [8].
For parameters based on combined data for North American
transmission line failures from [1], the accelerated prop-
agation model applies to up to 7 failures. They examine
the fit of the accelerated propagation model, a generalized
Poisson distribution, and a negative binomial distribution to
the North American transmission line failure data. Both the
accelerated propagation model and the generalized Poisson
distribution are consistent with the data. The generalized
Poisson distribution is the distribution of the total number
of outages produced by a Galton-Watson branching process
with Poisson offspring distribution, whose mean number of
offspring is constant except in the first stage.

More generally, there is some initial evidence that branch-
ing process models can represent probability distributions
of blackout size Observed [6], [12] and simulated [4], [5],
[7], [18], [12] blackout statistics show qualitative features
such as probability distributions of blackout sizes with power
law regions and criticality that are also shown by branching
processes [9]. Moreover, branching processes have approxi-
mately reproduced the distribution of blackout sizes obtained
from simulations of mechanisms of cascading failure in
blackouts [14], [16]. Branching processes are used to analyze
observed blackout data in [10], [19]. Branching processes
also can approximate other high-level models of cascading
failure [9], [17].

III. OUTAGE DATA

Transmission line outages are useful diagnostics in mon-
itoring the progress and extent of blackouts. One common
feature of large blackouts is the successive failure of trans-
mission lines, and the number of transmission lines outaged



is a measure of the blackout extent. The number of trans-
mission lines outaged is not a measure directly impacting
society as is energy unserved or customers disconnected, but
it is a measure of blackout size internal to the power system
that is useful to utilities, and for which data is available. The
transmission line outages that do not lead to load shed can be
regarded as precursor data for the transmission line outages
that do lead to load shed and blackout.

Transmission owners in the USA are required to report
transmission line outage data to NERC for the Transmission
Availability Data System (TADS). The transmission line
outage data used in this paper is 8864 outages in TADS data
recorded by a North American utility over a period of ten
years [3]. The TADS data for each transmission line outage
includes the outage time (to the nearest minute) as well as
other data. All the line outages are automatic trips. More
than 99% of the outages are of lines rated 69 kV or above
and more than 96% of the outages are of lines rated 115 kV
or above. There are several types of line outages in the data
and a variety of reasons for the outages. In processing the
data, both voltage levels and all types of line outages are
regarded as the same and the reasons for the line outages are
neglected. For this initial bulk statistical analysis, neglecting
these distinctions is a useful first step as we proceed. It is best
to start new methods of analysis in the simplest way first.

IV. GROUPING OUTAGES INTO CASCADES AND STAGES

For our analysis it is necessary to group the line outages
first into different cascades, and then into different stages
within each cascade. Here we use a simple method based on
outages’ timing [19], [10]. Since operator actions are usu-
ally completed within one hour, we assume that successive
outages separated in time by more than one hour belong
to different cascades. Since fast transients or auto-recloser
actions are completed within one minute, we assume that
successive outages in a given cascade separated in time by
more than one minute are in different stages within that
cascade. The result of this grouping of the outages into
cascades and stages is that there are 5227 cascades and
the longest cascade has 110 stages. As discussed below, the
results of the paper are not sensitive to the details of the time
intervals that define the grouping of the outages into stages
and cascades.

Table I is obtained by summing over all the 5227 cascades
the number of outages in each of stages 0 to 10. That is, of
the 8864 outages, 6254 are in stage 0 of a cascade, 1143 are
in stage 1 of a cascade, and so on. The number of outages
in each of stages 11 to 109 is shown in Fig. 1.

The probability distribution of the number of initial out-
ages is shown by the circles in Fig. 2. The probability
distribution of the total number of outages is shown by the
squares in Fig. 2. Since there are 5227 cascades, an event
that occurs for only one of these cascades has an estimated
probability 1/5227=0.0002. Cascades with a specific large
number of line outages occur only once and account for the
events of probability 0.0002 shown in Fig. 2. The probability
estimates for these rarer events are not reliable because of
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Fig. 1. Sum of line outages in each of stages 11 to 109 of all cascades.

their extremely large variance and it is better to bin the data
for the larger number of outages as shown in Fig. 3. Fig. 3
shows that both distributions have a power law character up
to the range of statistical validity of the data. The exponent
of the power law distribution of the total number of failures
is roughly −2.8.

TABLE I
NUMBER OF OUTAGES IN INITIAL STAGES SUMMED OVER THE

CASCADES

stage number 0 1 2 3 4 5 6 7 8 9 10
number of outages 6254 1143 434 227 155 95 78 53 46 32 31

V. PROPAGATION IN THE CASCADES

In our branching process model of cascading, each outage
in each stage (a “parent” outage) independently produces a
random number 0,1,2,3,... of outages (“child” outages) in
the next stage according to an offspring distribution that is a
Poisson distribution. The child outages then become parents
to produce the next generation and so on. If the number of
outages in a stage becomes zero, the cascade stops. The mean
number of child outages for each parent (the average family
size) is the parameter λ. λ quantifies the average tendency
for the cascade to propagate.

There are two main ways to estimate the propagation. The
first way is to count all the outages in the cascade that are
children and divide this by all the outages that are parents.
This gives the propagation λ averaged over the number of
stages [19]. The second way is to look at how many children
are produced by each parent at each stage. This gives an
estimate λk for each stage k = 1, 2, 3, ... which is computed
by dividing the number of outages in stage k by the number
of outages in stage k − 1. For example, stage 0 has 6254
outages and these parents produced 1143 child outages in
stage 1. Therefore the average number of children in stage
1 per parent in stage 0 is λ1 = 1143/6254 = 0.18. Stage 1
has 1143 outages and these outages, considered as parents,
produced 434 child outages in stage 2. Therefore the average
number of children in stage 2 per parent in stage 1 is λ2 =
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Fig. 2. Probability distribution of initial (circles) and and total (squares)
line outages. Raw data shown with no binning.

434/1143 = 0.38. The results of computing λk for stages
k = 1, 2, 3, ..., 19 are shown in Fig. 4 and Table II. As the
cascade progresses, λk increases from 0.18 and appears to
level off at approximately 0.75. The higher stages have too
few outages to accurately estimate λk and the results for
higher stages become noisy.

TABLE II
ESTIMATED STAGE PROPAGATIONS λk

k 1 2 3 4 5 6 7 8 9 10 11 12
λk 0.18 0.38 0.52 0.68 0.61 0.82 0.68 0.87 0.70 0.97 0.61 0.79

If we compute the propagation λ averaged over the number
of stages using the method of [19] by dividing the total
number of children in all the cascades by the total number
of parents in all the cascades, we get λ = 0.29. This value
averaged over the stages is dominated by the early stages that
have the majority of the outages. It seems unsatisfactory to
be using methods that essentially assume λ to be roughly
constant when it is increasing significantly, so in this paper
we use a new method that accounts for the increase.

We have tried doubling the time intervals that were
assumed to define the stages and cascades and we found
that the stage propagation estimates are insensitive to these
assumptions. (We are unable to try decreasing the interval
of one minute that separates different stages because the line
outage timings are specified in minutes.)

VI. RESULTS OF PREDICTING TOTAL OUTAGE
DISTRIBUTION WITH A BRANCHING PROCESS

We predict the distribution of the total number of outages
using a branching process model from the distribution of
initial outages and the propagation. The new aspect different
than [19] is that we account for the change in propagation as
the cascade proceeds. In particular we assume that the stage
propagation is given by Table III, which is obtained from
the estimated propagations for the first 4 stages in Table
III, followed by an assumption of λk = 0.75 for k ≥ 5.
λk = 0.75 is a rough estimate of the asymptotic propagation
based on the noisy data in Fig. 4. The branching process is
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Fig. 3. Probability distribution of initial (circles) and and total (squares)
line outages. Data is binned to have at least 10 outages per bin.
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Fig. 4. λk estimated from the outage data at stages k = 1, 2, ..., 19.

TABLE III
STAGE PROPAGATIONS λk FOR PREDICTING TOTAL OUTAGE

DISTRIBUTION

k 1 2 3 4 ≥ 5
λk 0.18 0.38 0.52 0.68 0.75

assumed to have the initial distribution of outages given by
the data as shown by the circles in Fig. 2 and propagation
at each stage with a Poisson distribution with mean given
by the stage propagations in Table III. The general reasons
for assuming a Poisson distribution are explained in [19].
The details of this new computation are given in the next
section. The predicted distribution of total number of outages
is shown by the line in Figure 5 and it can be seen that
the match with the empirical distribution of total number of
outages is good.

VII. CALCULATION OF TOTAL OUTAGES USING
BRANCHING PROCESS

This section assumes some familiarity with branching
processes [15], [2]. Let the generating function of the off-
spring distribution producing stage k from stage k − 1 be
fk(s). Then f0(s) is the generating function of the initial
distribution of failures. f0(s) is computed from the empirical
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Fig. 5. Distribution of total number of outages from data (squares) and
estimated using branching process (line).

initial distribution of outages. For k ≥ 1,

fk(s) = eλk(s−1) (1)

is the generating function of the Poisson offspring distribu-
tion with mean λk.

Consider a single line outage that occurs in stage k and
let the total number of outages that are descendants of this
outage in any subsequent stage (children plus grandchildren
plus great grandchildren and so on) be Yk. Let the generating
function of Yk be Fk(s) = EsYk . The number of descendants
of the single line outage plus the single line outage itself is
Yk + 1 and Yk + 1 has generating function sFk(s). Then
the basic recursion for computing all the descendants of an
outage at a given stage is

Fk−1(s) = fk(sFk(s)) (2)

Since λk = λ5+ for k ≥ 5, the total number of outages
that are descendants of an outage in stage 4 plus the outage
itself is given by a Borel distribution with parameter λ5+.
We write fB(s) for the generating function of the Borel
distribution with parameter λ5+:

fB(s) =
∞∑
r=0

(rλ5+)r−1 e
−rλ5+

r!
sr (3)

We write F (s) for the generating function of the total
number of outages. We wish to compute F (s) to obtain the
distribution of the total number of outages. Then applying
the recursion (2) successively, we get

sF4(s) = fB(s)
F3(s) = f4(sF4(s)) = f4(fB(s))
F2(s) = f3(sf4(fB(s)))
F1(s) = f2(sf3(sf4(fB(s))))
F0(s) = f1(sf2(sf3(sf4(fB(s))))) (4)
F (s) = f0(sf1(sf2(sf3(sf4(fB(s)))))) (5)

Equation (5) shows that F (s) is a complicated power series
in s, but it can be evaluated by computer algebra [24] for as
many terms as needed. For example, computing 500 terms
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Fig. 6. Distribution of total number of outages predicted using branching
process up to 500 outages.

of F (s) predicts the total number of outages as shown in
Fig. 6. Note the power law character of the distribution up
to about 100 outages.

The recursive structure of formula (5) mirrors the stages
of the cascade. One way to show this for part of the formula
(5) is by writing in full the formula (4) for F0(s):

F0(s) = e−λ1+λ1se
−λ2+λ2se

−λ3+λ3se
−λ4+λ4fB(s)

VIII. PREDICTING TOTAL OUTAGES FROM INITIAL
OUTAGES

Once the branching process model with the estimated
propagation is validated as accurately enough matching the
distribution of the total number of line outages from em-
pirical data, we can use it to predict the distribution of
the total number of line outages from other assumptions
of initial line outages. A particular number or distribution
of initial line outages is assumed to specify f0 and then
(5) is applied with the stage propagation of table III to
predict the distribution F (s). For example, if there are 5
initial line outages, then f0(s) = s5 and the distribution of
total number of outages obtained by computing F (s) with
(5) is shown in Figure 7. This new capability is significant
because traditional risk analysis analytic and observational
methods can give good estimates of initial failures, and the
method presented here can, based on observed data, quantify
the number of additional failures caused by cascading. Note
that total number of failures is predicted, but there is no
information about which failures occur.

IX. SENSITIVITY TO STAGE PROPAGATION

We can compute the sensitivity of the distribution of the
total number of failures to the stage propagation λk. To
do this, it is convenient to first rewrite (5) using functional
composition notation

F = f0 ◦ S ◦ f1 ◦ S ◦ f2 ◦ S ◦ f3 ◦ S ◦ f4 ◦ fB (6)
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Fig. 7. Probability distribution of total line outages assuming 5 initial
line outages predicted by the branching process model with the estimated
propagation in Table III.

Here the function S is multiplication by s. Also note that

Dfk(s) = λkfk(s), k ≥ 1 (7)
Dλk

fk(s) = (s− 1)fk(s), k ≥ 1 (8)

Then (6) can be differentiated. For example, differentiating
(6) with respect to λ3 gives

Dλ3F = Df0(sF0)sDf1(sF1)sDf2(sF2)sDλ3f3(sF3)

= s3Df0(sF0)Df1(sF1)Df2(sF2)Dλ3f3(sF3)

= s3Df0(sF0)λ1F0λ2F1 (sF3 − 1)f3(sF3)

= s3λ1λ2Df0(sF0)F0F1F2(sF3 − 1)

The results for differentiating with respect to λk for k =
1, 2, 3, 4 are similarly obtained:

Dλ1F = sDf0(sF0)F0(sF1 − 1)

Dλ2F = s2λ1Df0(sF0)F0F1(sF2 − 1)

Dλ3F = s3λ1λ2Df0(sF0)F0F1F2(sF3 − 1)

Dλ4F = s4λ1λ2λ3Df0(sF0)F0F1F2F3(sF4 − 1)
(9)

For the data set of the paper, formulas (9) are evaluated in
Table IV. Consider DFλ3 . Increasing λ3 has no effect on the
probability of 1 or 2 lines outaged, decreases the probability
of 3 lines outaged (since it is then more likely that 3 lines
outaged increases to more lines outaged), and increases the
probability of 5 or more lines outaged. These general effects
are expected, but they are quantified in Table IV. The positive
values of DFλk

for the larger line numbers implies that
large cascades can be mitigated by reducing λk, but it can
be seen that the effectiveness of this mitigation reduces
as k increases. Thus, if measures can be taken to reduce
propagation λk at a single stage k, then it is more effective to
do this for the early stages. However, it can be expected that
measures to reduce propagation will often affect many stages
of propagation, and then the effect on the distribution of the
total number of lines outaged can be estimated by suitably
combining the DFλk

with the changes in λk. The positive
and negative signs in the entries of Table IV suggest that

mitigation measures could involve tradeoffs between shorter
and longer cascades.

The derivatives DFλk
will also be useful in estimating

how errors in estimating in λk affect the distribution of the
total number of lines outaged.

X. CONCLUSIONS

We analyze ten years of transmission line outage data
recorded by a North American utility. The key information
used in this first analysis is the timing of each outage, and
this is included in the standard Transmission Availability
Data System (TADS) data that must be reported to NERC
by American transmission owners.

For this North American utility data set we conclude that:
1) The probability distributions of the initial and total

number of line outages have an approximate power
law character, at least until the number of line outages
is large. This conclusion is consistent with the data for
the total number of line outages aggregated from North
America in [1], [8].

2) Propagation of line outages increases as the cascade
progresses and then appears to level out.

3) To mitigate long cascades it appears to be more effec-
tive to reduce the amount of propagation at the early
stages of cascading.

4) The distribution of the total number of outages pre-
dicted with a probabilistic branching process model
matches well the empirical distribution of the total
number of outages. This validates the branching pro-
cess model for predicting the distribution of the total
number of outages in the sense that it is consistent with
this data set. That is, a branching process model that
accounts for the varying propagation as the cascade
progresses can give a good prediction of the distribu-
tion of the total number of line outages from the initial
number of line outages.

The significance of the fourth conclusion is that conven-
tional risk analysis can give the distribution of the initial
number of line outages. And the propagation can be es-
timated from standard recorded data. Then the branching
process model can be used to estimate the distribution of
the total number of line outages. This is a new method to
predict the effect of cascading failure acting on known or
assumed initial line outages. This new method of cascading
failure analysis appears to be practical and the computations
are easy to implement with computer algebra. A similar
method was developed on a shorter data set that assumed
a constant amount of propagation throughout the cascade in
[19]. This paper uses a larger and different data set than
[19] and discovers and accounts for the variable propagation
throughout the cascade.

In this paper we report an initial analysis and there are
several directions for improvements:
• The statistical accuracy should be analyzed. Similarly

to [19], it is expected that much less than ten years of
data is needed for an accurate prediction of the stage



propagation and the distribution of the total number of
failures, but this has not yet been quantified.

• In this initial analysis, all the line outages are regarded
as the same, and only the timing of line outages is con-
sidered. Also we statistically analyze the propagation of
line outages in all the cascades, regardless of whether
load is shed or whether the cascade is short or long.
Analyzing the statistics of all the cascades regardless of
these distinctions is a good initial assumption because
it is simple, but the assumption that all the outages and
cascades are sufficiently similar should be examined to
the extent feasible.

• There is parallel work applying branching processes to
estimate the probability distribution of the number of
line outages or load shed from short data sets produced
by simulations of cascading failure [14], [16]. Perhaps
further developments of these methods could be adapted
from simulated data to observed data.

• More data sets should be obtained and analyzed to
find out the general characteristics of propagation of
cascading line outages.
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TABLE IV
DERIVATIVE DFλk

OF DISTRIBUTION OF TOTAL NUMBER OF FAILURES WITH RESPECT TO λk

number of lines outaged
1 2 3 4 5 6 7 8 9 10 11

DFλ1 -0.73 0.28 0.16 0.090 0.054 0.036 0.023 0.016 0.012 0.0087 0.0064
DFλ2 0 -0.091 0.0067 0.016 0.014 0.011 0.0081 0.0061 0.0046 0.0036 0.0029
DFλ3 0 0 -0.02 -0.0057 0.00027 0.0022 0.0026 0.0026 0.0023 0.0019 0.0017
DFλ4 0 0 0 -0.0054 -0.0034 -0.0015 -0.00032 0.00028 0.00058 0.00070 0.00072


