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Abstract: Several recent major power system blackouts are
characterised by a progressive decline in voltage magnitude at
the system buses. These events are termed  voltage collapses’.
The mechanisms of voltage collapse are not well defined and
the dynamics of the process are not well understood. In this
paper, we describe the loss of stability when a stable equi-
librium point disappears in a saddle node bifurcation and
present a simple model of the system dynamics after the
bifurcation. The results apply generally to any generic one
parameter dynamical system. Then we use these results to
propose a model for voltage collapse in power systems. The
model gives an explicit mechanism for the dynamics of voltage
collapse. We illustrate the model by constructing a simple
power system model and simulating a voltage collapse.

Keywords: Voltage collapse; power systems; bifurcation; saddle
node; center manifold; dynamics.

1. Introduction

Most of the major electric power system
breakdowns in recent years have been caused by
the dynamic response of the system to dis-
turbances. Moreover, economic and environmen-
tal pressures are causing power systems to be
operated ever closer to their limits of stability.
Thus dynamic security assessment of power sys-
tems is becoming increasingly important.

One type of system instability which occurs
when the system is heavily loaded is voltage col-
lapse. Two recent examples of voltage collapse
leading to system blackout occurred in France,
December 1978 and in Belgium, August 1981 [2,4].
Both events were characterised by a slow decline
in voltage magnitude at buses over a period of
minutes and hours followed by a sharp decrease in
voltage magnitude.

An international effort to clarify the mecha-
nisms of voltage collapse has yielded many ap-
proaches to the problem but no consensus On the
mechanisms involved. A major issue is whether
voltage collapse 1s a static or a dynamic event.
Reviews of these approaches may be found in
[6,14,10]. In particular, few authors have at-
tempted to describe the dynamics of voltage col-
lapse. Liu in [11] presented a dynamical descrip-
tion of voltage collapse of a nonlinear on-line
tap-changer model based on characterising the
voltage stability region in terms of the tap-changer
setting. This model is extended in [12] to include
an impedance-type load model and a decoupled
reactive load flow equation. Medanié et al. [13]
investigate the voltage stability of discrete models
of multiple tap-changers in a power network. In
[20], Thomas and Tiranuchit present a mechanism
describing voltage collapse by taking load dy-
namics into account and showing its effect on the
stability region. These mechanisms are promising
in their description of dynamics of voltage col-
lapse but the qualitative features of voltage col-
lapse are not explained.

In this paper, we suggest a dynamic mechanism
for power system voltage collapse with voltage
magnitudes decreasing slowly at first and then
decreasing rapidly. This mechanism arises from a
description [17] of a generic saddle node bifurca-
tion. The essential point is that at such a bifurca-
tion, the system state will leave the bifurcating
equilibrium point and move along a particular
trajectory. The movement along the trajectory 1S
slow at first and then more rapid. If bus voltages
decrease along this trajectory then we identify the
movement along the trajectory with voltage col-
lapse. Thus we suggest that voltage collapse be
explained as a dynamic consequence of the bifur-
cation. ‘

After briefly reviewing some essential dynami-
cal systems concepts in Section 2, we describe our
modelling assumptions and present a simple model

0167-6911,/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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of the dynamics near a generic saddle node bifur-
cation in Section 3. Section 4 supplies the precise
description and conditions needed from [17]. Sec-
tion 5 discusses the form of power system models
to which the theory naturally applies and the
relationship to previous work. Section 6 constructs
a simple example of a suitable power system model
and illustrates how the voltage collapse theory
applies to this example. Section 7 discusses the
status of the voltage collapse theory and presents
the conclusions.

2. Preliminaries

We briefly review some notions from nonlinear
dynamical systems theory which are needed in the
sequel. The details may be found in [9].

Consider a nonlinear dynamical system de-
scribed by

x=f(x) (2.1)

where f:R" - R" is assumed to satisfy the condi-
tions for existence and uniqueness of solutions. A
point x, is called an equilibrium point of (2.1) if
f(x,) = 0. We say that the equilibrium point x; is
hyperbolic if the Jacobian matrix

af
a(xo) (2.2)

has no eigenvalues with zero real part. The equi-
librium point x, is said to be simple if the de-
terminant of the Jacobian matrix (2.2) is nonzero.
The type of the hyperbolic equilibrium point x, 1s
defined to be the number of eigenvalues of (2.2)
with positive real part. For example, x, is a type
one equilibrium point if (2.2) has exactly one
eigenvalue with positive real part and x, is a type
zero equilibrium point if x, is stable.

The unstable manifold W °(x,) (stable manifold
W*(x,)) of an equilibrium point x, Is the mani-
fold in the state space from which trajectories
converge to x, as t = — oo (f = 00) and which i1s
tangent at x, to the subspace spanned by the
(generalised) eigenvectors associated with ei-
genvalues with positive (negative) real parts. (Some
authors call the manifold defined above the strong
unstable (stable) manifold when x, is not hyper-
bolic.) If x, is hyperbolic, the dimension of
WY(x,) is equal to the type of x,. For a nonhy-

perbolic equilibrium point x,, there exists another
invariant set, called the center manifold W*(x),
which is tangent to the subspace spanned by the
(generalised) eigenvectors associated with the ei-
genvalues of (2.2) on the imaginary axis. The
stable and unstable manifolds are unique, but the
center manifold may be nonunique.

3. Overview of theory

This section states our modelling assumptions
and the relevant conclusions from Sotomayor’s
theory of generic bifurcations [17]. Further mod-
elling assumptions are made in order to obtain a
simplified description of the dynamics near a
generic saddle node bifurcation. The details and

~ precise statement of Sotomayor’s theory are post-

poned to Section 4.
Suppose a system is defined by the differential
equation

x=X,(x) (3.1)

where x is an n dimensional state vector and A is
a time varying parameter. We approximate system
(3.1) by assuming:

Assumption 1. A varies quasistatically.

That is, we assume that A varies slowly enough
that system (3.1) with time varying A is well
approximated by keeping A constant while the
dynamics of system (3.1) act. For example, if
system (3.1) has a stable equilibrium point x} and
the system state x is initially near xj then the
dynamics will make x track xj as A and x)
change slowly.

We further assume:

Assumption 2. System (3.1) is in the generic set of
systems I7.

I, is a generic set of systems described by
Sotomayor; I, consists of the systems of the form
(3.1) which, for each A, have all simple equilibria
except that it is possible for one of the equilibna
to be a nondegenerate saddle node equilibrium. A
more precise definition of I is given in Section 4.
Assumption 2 is important and desirable because
it implies that systems in [, represent typical
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behaviour of physical systems (e.g., We expect the
pifurcations to be observed in applications) and
that they are robust to small modelling variations.

We now state the conclusions from Sotomayor’s
theory and describe the resulting dynamical struc-
ture near the bifurcation.

Fact 1. Suppose system (3.1) satisfies Assumption
2. Then the only way in which a stable equilibrium
point xj can disappear is by coalescing with a
type one equilibrium point x} in a saddle-node
bifurcation. Just before the bifurcation, x} is on
the stability boundary of x) and x} is the closest
unstable equilibrium point to x}.

There are two typical ways In which a stable
equilibrium point can loss stability; either it disap-
pears as stated in Fact 1 or it persists but becomes
unstable by interacung with a limit cycle in a
Hopf bifurcation. Fact 1 does not exclude Hopf
bifurcations but we note that many power system
models do not admit limit cycles and hence can-
not have Hopf bifurcations [1,5]. In any case, we
focus here on the disappearance of stable equi-
librium points and exploit Fact 1 to give the
following picture of the disappearance.

While an equilibrium point x) is stable, it lies
in the interior of its stability region. xj can only
disappear by bifurcating with an equilibrium point
x} on its stability boundary. Fact 1 states that x}
must be type one, that is, its unstable manifold
WY (x}) is one dimensional. W*(x}) may be de-
composed as

W“(xi‘) =W:iu {x{‘} U Wi

W" lies inside the stability region of x} and joins
x} to x} while W lies outside the stability region
of x} (see Figure 1).

At the bifurcation, A=A, and x} and x}
coalesce to form the equilibrium point x, = Xy =
x}*. The Jacobian at xy has a zero eigenvalue with
an eigenvector w in the direction in which x} and

x} coalesced. The other n — 1 eigenvalues of the

Jacobian of x, remain negative. Therefore x, has
a one dimensional center manifold W¢ and an
n—1 dimensional stable manifold W*(x,). W°¢

may be decomposed as
We=WU{x, ) UWS

and w is tangent to W°¢ at x,. The vector field at

—

WY

W20

Fig. 1. Just before bifurcation.

x, has one sided stability along W, x4 is stable
along W* and unstable along W< (see Figure 2).
W< is a unique system trajectory. Note that Wi
becomes W< as the bifurcation occurs.

Now we consider how to make further modell-
ing assumptions to simplify the dynamics near the
bifurcation. While the stable equilibrium point
persists, Assumption 1 implies that the system
state x tracks the stable equilibrium point x). At
the bifurcation, we again make Assumption 1 to
idealise and simplify the system behaviour. We
consider how the dynamics of system (3.1) act on
x when it is initially at x, and A is fixed at the
bifurcation value A,. The stable manifold W*(xs)
divides a neighborhood of xs into a region con-
taining W< in which trajectories converge to X
and a region containing W< in which trajectories
diverge from x,. The system state x cannot re-
main at the equilibrium point x. because Xy is
unstable; any small perturbation of x into the
region containing we< will result in x diverging
from x,. We make the following assumption about

—

WoX,)

WC

———

Fig. 2. At bifurcation.
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the perturbation to simplify and approximate the
dynamics as x diverges from x,.

Assumption 3. Suppose system (3.1) satisfies As-
sumptions 1 and 2 and has a saddle node bifurca-
tion and the system state x is at the bifurcating
equilibrium point x,. Then x leaves the unstable
equilibrium point x, by being perturbed to a
point on W very close to xy.

Thus at the bifurcation x is slightly perturbed
to lie on W< and then the system dynamics move
x along W<. The initial movement along WY is
slow since near x, the dynamics are dominated by
the zero eigenvalue of the linearised dynamics
along W< at x,. When the system state is no
longer close to x,, we expect the movement along
W< to be rapid.

We discuss why Assumption 3 is a sensible
simplification of the dynamics. Suppose the per-
turbation moves x from x, to the region contain-
ing W< on one side of the stable manifold of x,
but not necessarily on W¢. All trajectories starting
from this region approach W< exponentially fast
since the n — 1 nonzero eigenvalues of the lineari-
sation at x, are negative and the initial movement
along W< is slow. Therefore the perturbed trajec-
tories are locally well approximated by corre-
sponding trajectories on W< (this can be proved if
an additional generic assumption is made; see
Appendix). Approximating the perturbed trajecto-
ries by the corresponding trajectories on W< i
equivalent to restricting the perturbations using
Assumption 3. Another alternative would be to
consider what happens as the perturbation be-
comes infinitesimally small. The system state x
would indeed move along W, but a trajectory on
W< starting infinitesimally close to x, would take
infinite time to move a finite distance along W<.
Therefore we prefer to consider small, finite per-
turbations subject to Assumption 3. A feel for the
typical dynamics at a saddle note bifurcation may
be obtained by inspecting the dynamics in the xy
plane of x = ax?, y= —by with a and b positive
constants. In this case W< is the positive x axis.

Thus given Assumptions 1, 2 and 3, we obtain
the central result of the paper:

Fact 2. Suppose system (3.1) satisfies Assumptions
1, 2 and 3. Then at the saddle node bifurcation of
a stable equilibrium point, the center manifold is

one dimensional and the unstable part of the
center manifold W< is a unique system trajectory.
At the bifurcation the equilibrium point x, is
unstable and the system state will move along W<

4. Details of theory

Sotomayor’s paper [17] precisely describes a set
of one parameter vector fields which include sad-
dle node bifurcations and proves that this set is
generic in the space of all one parameter vector
fields. Now we extract from Sotomayor’s paper
the special case of interest to us:

Let M be a compact C* manifold ' and let @
be the set of all C” tangent vector fields on M
with the C” topology, where r > 2. Fix an interval
I=[A;, A,] on the real line and consider one
parameter families of vector fields

ISR
A= Xy

each such ¢ defines a curve of vector fields in @.
Each map £ has an associated map

£ IXM—>TM
(A, x) = X, (x).

Let I" be the set of maps & I — @ for which the
corresponding map £ is C". Give I' the topology
such that &, n are close if £ f are C” close

A saddle node equilibrium point x} of system
(3.1) has a Jacobian at x) with a single zero
eigenvalue and satisfies two transversality condi-
tions. The first transversality condition requires a
nonzero quadratic term in the ﬂow reduced to a
center manifold passing through x}. The second
transversality condition requires the curve A — X,
in @ to intersect the hypersurface of vector fields
with a saddle node near x transversally at X, .
These transversality conditions are explained in
detail in {17] and [9].

The structure at a saddle node bifurcation is as
follows: For values of A near to the bifurcation
value A, and on one side of A, say A < )\*, there
are two hyperbolic equilibrium points x), x} near

! To satisfy the compactness condition on M it is sufficient to
find a compact positively invariant subset of state space. We
expect 1o find such a subset for power system models as long
as damping terms are not neglected.
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x,. The types of xj and x} differ by one. The
stable manifold of xp, W*(x)) and the unstable
manifold of x}, W®°(x}) intersect along a one
dimensional manifold with endpoints xg and x}.
For values of A with A>A,, there are no equi-
librium points nearby.

Let I} be the set of C" maps in I such that

(A) For each A € (A, X,), X, has simple equi-
librium points except for at most one saddle node
equilibrium point satisfying the two transversality
conditions.

(B) X, and X,, have only simple equilibrium
points.

Sotomayor’s theorem is that I3 is generic in I’
in the sense that I is open and dense in I'. We
are particularly interested in the bifurcations oc-
curring in I in which xj is stable. In these
bifurcations, x) is type one and at A=A, x, has
a one dimensional center manifold

We= WU {x.}UWS.

W< is a trajectory and a unique one dimensional
C" manifold with boundary x,. W< is also a
trajectory but is not unique. Just before the bifur-
cation, W3(x)) and W*¥(x?}) intersect along we.
Hence W" is contained in W*(x2), the stability
region of xp, and x} lies on the stability boundary
of x). Fact 1 follows.

5. Application to power systems

The theory above applies naturally to the fol-
lowing class of power system models.

Let the system state x include bus angles 8, bus
angular velocities @ and bus voltage magnitudes
V. Suppose that the power system is modelled as a
system of the form (3.1) depending on a single
parameter A, where A is a slowly varying function
of time with values in the interval /= AL AL A
might typically be a reactive power demand.

It would be desirable to develop a voltage
collapse theory for the case of a vector of parame-
ters A so that saddle node bifurcations would still
arise generically when several power system
parameters are freely varying. However we note
that the single parameter theory is probably suffi-
cient to illustrate voltage collapse in particular
power system models. For example, Tamura et al.
[19] give examples of saddle node bifurcations

associated with voltage collapse due to variation
of a single reactive power injection parameter.

Now we make Assumptions 1 and 2. In particu-
lar, we assume that the power system model (3.1)
is in the generic set I’} and that variations in A are
slow enough to be modelled as quasistatic vari-
ations. We also make Assumption 3 to simplify
the dynamics near bifurcation. The consequences
are that stable equilibrium points of (3.1) can only
disappear by saddle node bifurcation with a type
one unstable equilibrium point on its stability
boundary (Fact 1) and that at such a bifurcation
the system state will move along the trajectory
W<, (Fact 2).

The dynamic consequences of the bifurcation
are determined by the position of W¢ in state
space. For example, W< might join x, to a stable
equilibrium point x)+ and voltages ¥ might be
approximately constant along W< but the angle 8
might vary significantly along WS . Then the con-
sequence of the bifurcation is pole slip until x)* is
reached. The system would subsequently track x3.

Another possibility is that W7 is positioned in
state space so that components of V decrease
along W<. We propose this movement along W<
as a model for voltage collapse:

Model 1. Suppose power system model (3.1) has a
saddle node bifurcation and W¥ is positioned in
state space so that some components of V de-
crease along W¢. Then the movement of the state
vector along W< starting near X, is a model for
voltage collapse.

The initial direction of W< is along the ei-
genvector w corresponding to the zero eigenvalue
of the Jacobian at x,. This allows the case of
voltage collapse and pole slip, or some combina-
tion of the two, to be distinguished, at least in the
initial movement along W¢. Viewing voltage col-
lapse and pole slip as different cases of the same
phenomenon is due to Kwatny et al. [10].

Model 1 predicts that the initial voltage de-
crease is slow because the initial movement along
W< is slow. We also expect the subsequent move-
ment along WS to be rapid, causing a rapid
decrease in voltage. This prediction agrees qualita-
tively with features of observed voltage collapses
[2,4].

However another mechanism may also contrib-
ute to the observed slow initial voltage decrease.
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Consider the system before a saddle node bifurca-
tion. Under Assumption 1, the system can be
modelled by the system state tracking x) as A
varies. The slow variation in A will generally cause
the corresponding movement of xj to be slow.
Thus voltage magnitudes may well decrease slowly
before bifurcation as well as at bifurcation. (We
expect voltages to decrease before a saddle node
bifurcation leading to voltage collapse according
to Model 1 because x) approaches x, along the
direction of the eigenvector w and since w is
tangent to W at x,, w must point in a direction
in which some components of ¥ decrease.)

Kwatny et al. [10] associate voltage collapse
with a bifurcation at which the load voltages are
infinitely sensitive to parameter variations. For a
similar sensitivity viewpoint see [7]. Model 1 al-
lows this association to be viewed differently. Sad-
dle node bifurcations in which the load voltage
becomes infinitely sensitive to parameter varia-
tions as the bifurcation is approaches are exactly
those which have an eigenvector w with a zero
eigenvalue and nonzero components in the voltage
direction. Thus we do expect infinite voltage sensi-
tivity at a bifurcation which is associated with a
voltage collapse but we choose to explain the
voltage collapse by the subsequent movement
along W7,.

Several issues raised in Tamura et al. [19] can
be clarified if the power systems in [19] can be
modelled as one parameter generic models of the
form (3.1). The assumption in [19] that in a bifur-
cating pair of equilibrium points, one is stable and
the other unstable is verified. Moreover, the unsta-
ble equilibrium point is type one (Fact 1). We
agree that voltage sensitivity to parameter varia-
tions can be defined for both stable and unstable

equilibrium points, but argue that such sensitivi-
ties are only meaningful at stable equilibrium
points because any solution near an unstable equi-
librium point will leave that equilibrium point.

One goal of our research is to construct con-
vincing power system models of the form (3.1),
locate a saddle node bifurcation, and study the
ensuing voltage collapses in order to test the volt-
age collapse model 1 on specific examples. The
example presented in Section 6 is simple, but an
important step towards this goal. Before present-
ing this example, we discuss the problem of con-
structing a suitable power system model.

There are few power system models of the form
(3.1) because little is known about the dynamics of
load voltage magnitudes ¥ [20]. Most power
system models with varying ¥ include algebraic
equations as well as differential equations. Typi-
cally, other state variables are specified by dif-
ferential equations and ¥ is specified by solving
algebraic equations. The algebraic equations are
presumably idealisations of some unmodelled dy-
namics which normally tend to act so that the
algebraic equations are satisfied. Thus one prob-
lem is to develop dynamics for ¥; which somehow
generalise the algebraic equations. DeMarco and
Bergen pursue this in [8] using singular perturba-
tion ideas [16]. They start with a structure preserv-
ing model [3,15] and add a term eV, to the load
reactive power balance equation to obtain dy-
namics for V. (¢ is a small positive parameter.)
This does indeed yield a power system model of
the form (3.1). However, we are unsure how to
choose a value of &. In the singular perturbation
limit ¢ —» 0 +, the speed of the dynamics in most
of the state space becomes infinite and we would
expect the slow initial movement along W to be

Yol(=6o - 3)
g I
Eq Aoﬂg C==

LOAD QB Emlm

Fig. 3. Power system example.
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destroyed. On the other hand, we do not know
how to physically justify the choice of a larger
value of «.

6. Example

This section summarises an example from [21]
to illustrate how voltage collapse model 1 applies
to the power system model shown in Figure 3.
One generator is a slack bus and the other genera-
tor has constant voltage magnitude E,, and angle
dynamics given by the swing equation

M8, = —d,w+ Pyt E VY, sin(8 — 8,,— 0,,)
+E2Y, sind,, (6.1)

where M, d,, and P, are the generator inertia,
damping and mechanical power respectively.

The load model includes a dynamic induction
motor based on a model due to Walve [22] and a
constant PQ load in parallel. The induction motor
model specifies the real and reactive power de-
mands P and Q of the motor in terms of load
voltage V and frequency §. The combined model
for the motor and the PQ load is

P=Py+ P, +K, S +K, (V+ V), (6.2a)

Q=00+ 0+ K+ KV K,V  (62b)
where P,, Q, are the constant real and reactive
powers of the motor and P, O, represent the PQ
load.

Q, is chosen as the system parameter SO that
increasing Q; corresponds to increasing the load
reactive power demand. The load also includes a
fixed capacitor C to raise the voltage up to near
1.0 per unit. Instead of including the capacitor 1n
the circuit, it is convenient to account for the
capacitor by adjusting E,, Y, and §; to give the
Thévenin equivalent of the circuit with the capaci-
tor. The adjusted values are denoted by Eg, Yo
and 6.

The real and reactive powers supplied to the
load by the network are

P(5, V)= —EgYsV sin(8+6;)
—E, Y,V sin(8 -8, +6,)

+(Yy sin g + Y, sin 0,)V?,

Q8. V)= EJYV cos(8 + 6g)
+EmYchos(8—8m+8m)
— (Y, cos 8, + Y, cos 6.)V?>.

Putting equation (6.1) in state varigble form and
rearranging equations (6.2) so that 6 and V appear
as the left hand side we obtain the system dif-
ferential equations in the form of equation (3.1).
5, =w, (6.3a)
Mo= —dw+ Ppt E, Y,V sin(8—8, — 6,,)
+EXY, sind,, (6.3b)

Kq‘_,8'= —vazVZ“ K, V+ Q(8,V)—Qo— %

(6.3¢c)
TK (o KoV = KpoK gV’
+ (KoK g — KguKpo)V
+K,.(P(8,V) =P P1)
~K,,(Q(8, V) = Q0— Q1)
(6.3d)

Thus the dynamic load model (6.2) solves the
problem of obtaining differential equations of the
form (3.1) for this power system model.

We find a compact, positively invariant subset
C of the state space S' X R X S! x R of (6.3) as
required in Section 4. Let C be the compact set

where w, and V; are chosen large enough that the
vector field (6.3) points inwards on the boundary
of C so that C is positively invariant. This is
possible since for large w the second equation of
(6.3) is dominated by o= —M 14, w and the
coefficient —M™'d,, is negative and for large vV
the fourth equation of (6.3) 1s dominated by

V= (TK juKpo)  KpoKqdV’

and the coefficient of V2 is negative. Then for
large w, and V), the vector field points inwards
on the hyperplanes w= 1, and V= +V,; and
regions of these hyperplanes form the boundary
of C.

A saddle node bifurcation was found by solving
equations (6.3) with left hand sides zero and the
determinant of the Jacobian of these equations set
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to zero for the variables 8,,, @, 8, ¥, Q,. The load
parameter values were
K,,=04, K, =03,

K, =—003, K,=-28 K;=21

T=85 P,=06, Q,=13, P,=00
and the network and generator parameter values

were

Y,=200, 6,=-50, E,=10, C=120,

Y, =80, 6j=-120, E;=25,
Y, =50, §,=-50, E,=10,
p,=10, d,=005 M=03.

All values are in per unit except for angles, which
are in degrees. The parameters were adjusted to
produce an example of saddle node bifurcation
with ¥ near 1 per unit and with small (< 20
degrees) line angles.

The bifurcating equilibrium was

x, = (8%, w*, 8%, V*)
= (0.348, 0.0, 0.138, 0.925)

and the bifurcation value of the parameter was

* =11.41. (All values are in per unit except for
angles, which are in radians.) The eigenvector with
zero eigenvalue was

w=(0.23,0.0,0.099, —0.97).

The relatively large negative component of voltage
in w shows that W< is oriented so that the voltage
will decrease at the bifurcation, at least initially.
To confirm this and to determine the character of
the collapse along W¢ in this case, equations (6.3)
were numerically integrated starting from an ini-
tial condition displaced by 0.01 from x, in the
direction of w (Assumption 3). Q, was held fixed
at QF throughout the integration (Assumption 1).
Figure 4 shows the resulting voltage profile. The
load voltage decrease is initially slow and then
rapid. Note that in the later stages of the collapse,
the low voltage would cause protection devices to
trip, thus changing the assumed power system
model.

Let I be a short closed interval containing Q.
Then the curve of systems obtained by mapping
Q, €I to equations (6.3) with ©, as a parameter
is in the generic set of systems I and satisfies
Assumption 2. (The saddle node bifurcation satis-
fies the two transversality conditions mentioned in
Section 4.) In particular, since I is open, the
saddle node bifurcation is robust to small per-
turbations of equations (6.3).

Model 1 can also be applied to the power
system models used to explain voltage collapse in
Tiranuchit, Thomas and Liu [11,20]. Their voltage
collapse models can be viewed as saddle node
bifurcations in one dimensional state spaces and
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Fig. 4. Load voltage magnitude during voltage collapse.
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are consistent with Model 1 if Assumptions 1, 2
and 3 are made. (Note that {11,20] consider dis-
crete parameter changes while we consider a slowly
varying parameter (Assumption 1).) At a saddle
node bifurcation in a one dimensional state space,
the center manifold is the entire state space and
movement along W< which is initially slow and
then more rapid will follow.

7. Discussion and conclusions

Suppose we are given a power system model of
the form (3.1) and we attempt to better represent
the system behaviour by also modelling perturba-
tions of both the state vector x and the parameter
A. When the power system model is approximately
at a bifurcation point (X, A,) the perturbations
may cause (X, M) tovaryina complicated manner
near (xs, Ay) before x moves approximately along
w<,.. The voltage collapse model 1 is an idealisa-
tion of this complicated situation; our intent is to
make sensible modelling assumptions in order to
obtain the simplest possible model which captures
an essential mechanism of voltage collapse.

This paper considers a generic power system
model tracking a slowly varying stable equilibrium
point. The power system is modelled as a set of
differential equations with a single, slowly moving
parameter. This generic model can typically lose
stability by a saddle node bifurcation and at the
bifurcation, the dynamics can be modelled by the
movement of the system state along the particular
trajectory W5. We note that this simplified model
of the dynamics after bifurcation of a stable equi-
librium point applies to any generic system of
differential equations with a single, slowly moving
parameter. We propose the movement along W<
as a model for voltage collapse. This model for
voltage collapse is static in that the parameter is
assumed to be fixed during the collapse but dy-
namic in that the system is not at an equilibrium
point during the collapse. The movement along
W< is initially slow and is nonlinear, giving a
qualitative explanation of the initially slow and
subsequently rapid voltage decrease observed in
voltage collapse. We note that since the voltage
collapse model predicts movement along a par-
ticular trajectory, the voltage collapse predicted by
any suitable power system model may be calcu-
lated by numerical integration. Although the volt-

age collapse model applies to a very general class
of power system models, the dynamics of load
voltages need to be modelled to construct these
power system models. We show by an example
that a suitable power system model can be con-
structed in this way and demonstrate numerically
a voltage collapse with an initially slow and subse-
quently rapid voltage decrease. Other mechanisms
may also cause a slow decrease in voltage before
the bifurcation. This simple example is an im-
portant step towards demonstrating the validity of
the voltage collapse model. We feel that the model
is a strong candidate for explaining voltage col-
lapse because of previous work associating voltage
collapse with bifurcation, the generic nature of the
model, and its qualitative prediction of features
observed in voltage collapses.

Appendix

Suppose system (3.1) is C® smooth and let x4
be an equilibrium point of system (3.1) whose
Jacobian has a single zero eigenvalue and n—1
eigenvalues with negative real parts. We diffeo-
morphically change coordinates to demonstrate
that trajectories in a neighborhood of x. starting
near W< approach W5 exponentially fast. If the
nonzero eigenvalues of the Jacobian satisfy a non-
resonance condition 17,18}, then there is a C!
change of coordinates reducing system (3.1) in 2
neighborhood N of xy to the form

%=ax?+o(x?), (Ala)

y=A(x)y, (A1b)

where y € R"' and A(0) has eigenvalues with
negative real parts. The nonresonance condition
on the eigenvalues of A4(0) is generically satisfied
[17,18]. In the new coordinates, x, is the origin
and W< is the positive x axis (we choose a > 0). If
necessary, reduce the size of N so that the eigen-
values of A(x) have negative real parts for all
(x, y) in N. Choose p>0 so that p< [ A(x)]
where A(x) is the eigenvalue of A(x) with the
smallest modulus. If (xo, ¥o) € N and xo > 0, then
the distance between the trajectories through
(xq> ¥o) and the corresponding trajectory through
(xq, 0) 18 | y(1)] while the trajectories remain in
N. But | y(t)| <e | y0)]. Thus trajectories in
NN {x>0} are exponentially well approximated
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by corresponding trajectories in WY<. Since the
coordinate change was C 1 the same conclusion
holds for the trajectories in the original coordi-
nates.
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