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1 Introduction

This is the final report for the 1997-99 PSerc project on interarea electric power
system oscillations. The main project objective is to determine the feasibility of
computations to avoid or suppress large scale system oscillations. Further project
materials, including interim reports, software and test cases are available on the
Pserc web site [60].

1.1 Main accomplishments

The main accomplishments of the project are

1. Discovery and initial analysis of a new mechanism for oscillations in which a
strong resonance between two oscillatory modes is a precursor to the oscilla-
tions.

2. Assessment of the computational speed of advanced eigenvalue algorithms for
oscillations and its scaling with system size.

3. Analysis of a steady state “angle collapse” instability preceded by resonance in
a low frequency oscillatory mode and caused by increasing interarea transfer.

4. Improved eigenvalue sensitivity formulas taking account of the different time
scales of oscillations and operator actions.

5. New methods for quantifying the robustness of eigenvalues to uncertainties
such as poorly known load or generator data.

6. Nine, fourteen and thirty seven bus systems oscillation test cases.

7. Foundational work towards a new generation of dynamics software with alge-
braically assisted numerics.

8. Outline of an opportunity for the combined use of system measurements and
model based software for real time control of oscillations.

9. Identification of key barriers to developing software to assist the real time
suppression and avoidance of oscillations.

1.2 Background on oscillations

The power system may be thought of as a large, nonlinear system with many lightly
damped electromechanical modes of oscillation. If the damping of these modes
become too small or positive, then the resulting oscillations can cause equipment
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damage or malfunction. Practical definitions of power system security often require
sufficient damping of oscillatory modes [16] and power transfers on tie lines are
sometimes limited by oscillations.

Power transactions are increasing in volume and variety in restructured power
systems because of the large amounts of money to be made in exploiting geographic
differences in power prices and costs. Restructured power systems are expected to
be operated at a greater variety of operating points and closer to their operating
constraints. The onset of low frequency interarea oscillations is one operational
constraint which already limits bulk power transactions under some conditions [16,
32, 33]. Better methods of simulating and analyzing oscillations would lead to more
accurate determination of these limits and the ability to operate the power system
closer to these limits. In particular, the ability to use software to advise operators
to better avoid or suppress oscillations in real time would allow the power system
to be operated closer to oscillation limits.

For example, real time calculation of an oscillation limit would reduce the con-
servatism necessary when applying a limit derived off line to the necessarily different
on line conditions. If the uncertainty in the limit calculation could also be quanti-
fied, this would allow improved and more defensible safety margins in transfer limits.
Further, if an oscillation does occur, advice to operators about how to quickly sup-
press it would be very valuable. Past incidents such as the Rush Island incident in
1992 [37] have taken considerable time for operators to arrive at actions to suppress
the oscillations. In general, confidence in being able to quickly suppress oscillations,
particularly those oscillations which would be likely to occur if a fault occurred
would enable the power system to be more fully utilized. There are substantial
economic, social and environmental benefits to the utilities, the public and industry
in operating the power system up to but not past its limits.

Interarea oscillations are observed as oscillations of real power flow between
regions of a power system or groups of generators [33]. Voltages and current os-
cillate with the power swings. Sufficiently large oscillations trip, stress or damage
equipment and can disrupt monitoring devices. In particular, oscillations can cause
voltages to exceed limits causing protective devices to trip and forcing equipment
outages. Thus oscillations play a role in the cascading outages causing blackouts.

Interarea oscillations are a complex phenomenon with potentially many con-
tributing causes which can span the entire Eastern or Western interconnections of
North America. This spanning of corporate and institutional boundaries puts a
premium on understanding oscillations and arriving at defensible and reliable ways
to avoid or suppress them.

Two prominent types of subsynchronous power system oscillations are

• Interarea oscillations: Power system areas swing against each other at frequen-
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cies of 0.1 Hz to 1 Hz.

• Local oscillations: Typically one plant swinging against the rest of the system
or several generators swinging against each other at frequencies of 1 Hz to 2
Hz.

Some of the project methods apply to both types of oscillations, but the project
concentrates on interarea oscillations. Torsional oscillations involving interaction of
generator shaft modes with the power system are not considered in this project.

The power system without controls has many lightly damped electromechani-
cal modes. Much of the positive damping originates in the steam turbine driven
generators and the loads. Power system controls significantly affect the damping
and can contribute either positive or negative damping. Generation control and
particularly the generator voltage regulation can be significant sources of negative
damping. For weak tie lines and high power transfers, an oscillation in real power
also causes an oscillation in voltage magnitudes and interaction with the generator
voltage regulation. High gain in the generator voltage regulation can lead to poor or
negative damping of the oscillation. This problem led to the deployment of power
system stabilizers to modify the voltage regulation to damp these oscillations suffi-
ciently. Power system stabilizers are effective, but the resulting higher limits on tie
line transfers may still be associated with oscillations.

Three ways in which oscillations can arise are

• Spontaneous oscillations. Spontaneous oscillations arise when the mode damp-
ing becomes negative by a gradual change in system conditions. The oscilla-
tions grow and may reach a steady state in which the oscillations persist at
constant amplitude.

• Oscillations due to a disturbance. Outage of a line or generator under unfa-
vorable conditions can cause oscillations by suddenly reducing damping of a
mode. If the mode damping becomes negative, sustained or increasing oscilla-
tions result. If the mode becomes poorly damped, the disturbance can excite
the mode to cause a transient oscillation. These transient oscillations eventu-
ally decay, but can be of sufficient amplitude and duration to be harmful.

• Forced oscillations due to incomplete islanding or pulsating loads. Forced
oscillations are not considered in this project.

1.3 Related work by others

This section reviews some work by others closely related or relevant to the project.
Some useful references are indicated.
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1.3.1 Avoiding oscillations by controller design

There is a large amount of valuable work done to avoid oscillations by design or
redesign of system controls, including generator regulators such as power system
stabilizers, FACTS devices such as SVC, and HVDC. Analytic methods used to
help design these controls generally linearize a detailed power system dynamic model
about an operating point and then apply control theory to the linearized model. The
damping, frequency and form of the system modes can be studied with eigenanalysis.
The choice of controller input and output signals is important and relies on concepts
of modal controllability and observability. The possibilities of adverse interactions
with other controls and the robustness of the control design to different operating
conditions are considered.

The power system linearization at an operating point can vary in two ways:

1. Changing controller gains changes the formula for the linearization. System
changes such as line outages or enabling or disabling controllers can also change
the linearization formula.

2. Changing the operating point changes the linearization by changing where the
formula for the linearization is evaluated. For example, operator actions such
as changing the generator dispatch or switching capacitor banks change the
operating point. Line outages also change the operating point.

The work on control system design focuses on adding controllers (e.g. PSS) or
changing controller gains to affect the linearization formula. Changes in operating
point are only considered at a later stage when testing the design for robustness.
Note that changes in controller gains do not change the operating point.

In contrast, the work on this project focuses on how changes in the operating
point change the linearization:

One of the themes of the project is to analyze how the change in operat-
ing point affects the linearization and hence the oscillatory mode damp-
ing and furthermore to exploit this relationship to suppress or avoid the
oscillation.

The relationship between the operating point and the linearization depends on the
nonlinearity of the power system. Essentially we seek to exploit this nonlinearity to
find changes in operating point which suppress oscillations.

1.3.2 Useful references

References [67, 41] include both contemporary and classical approaches to power
system dynamic stability and machine modeling. The texts [81, 9, 42] all contain
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informative descriptions of the Automatic Generation Control (AGC) and tie line
bias control. The working group paper [34] and its many discussions provide an
accurate assessment of current AGC practices and emphasize the time scale appro-
priate for AGC. Anderson and Fouad [7] is the classic text for power system control
and stability.

In dynamical systems terminology, oscillations arise as Hopf bifurcations. The
basic mathematical analysis of the Hopf bifurcation is well covered in [27] and com-
putational methods to locate Hopf bifurcations are presented in [70]. Eigenvalue
parametric sensitivity and generalized eigenvalue computation is addressed in [26].
Previous work concerning Hopf bifurcations in power systems includes [1], [21], [47]
and [37]. [12] and [30] address saddle node bifurcation in systems of differential-
algebraic equations. Applicable work regarding small signal stability and eigensen-
sitivity includes [33], [50], [71].

Methods for computing eigenvalues and eigenvectors for power systems are pre-
sented in [50, 76, 82, 5] and for general sparse unsymmetric matrices in [25].

1.4 Summary guide to this report

Section 2 summarizes the power system test cases used in the project.

Section 3 illustrates various applications of the eigenvalue sensitivity computations that
are a major tool in the project work. Oscillation test cases are presented and
used to demonstrate the use of eigenvalue sensitivity methods to predict the
effects of various operator controls and estimate the robustness to data. Model
results are compared with PSS/E.

Section 4 discusses the modeling required to represent both the dynamics of oscillations
and operator actions. The eigenvalue sensitivity formula is derived and several
applications to optimum redispatch, quantifying eigenvalue uncertainty and
margin sensitivity are discussed.

Section 5 examines the scaling of computational speed with system size for advanced
eigenvalue algorithms. Special models with scalable size approximating re-
alistic models for computational purposes are devised and tested. A typical
result is that one can compute 5 eigenvalues of a power system with 300 sev-
enth order generator models in less than one minute using Matlab on a 233
MHz Pentium II.

Section 6 reviews the software approaches used in the project and, based on this expe-
rience, suggests concepts and development directions for large scale dynamic
software.
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Section 7 reports a new mechanism for interarea oscillations involving resonance between
closely spaced system modes. The new mechanism has been simulated on a 9
bus test system with detailed generator models. General mathematical con-
siderations suggest that the new mechanism can occur in large scale practical
power systems.

Section 8 Approximating generator models with swing equations allows oscillation modes
which are primarily electromechanical to be studied in reduced equations
which are of a modified Hamiltonian form. Using this approximation, a low
frequency mode in a 14 bus system was observed to reduce to zero frequency
and then cause a loss of steady state stability as an interarea transfer was
increased. This event can be computed using the reduced model if the pattern
of oscillation is known.

Section 9 reviews some work on real time power system measurements which comple-
ments the project work. In particular, the measurements could be used to
help identify critical eigenvalues by estimating their frequencies.

Section 10 presents promising project ideas that were not fully pursued.

Section 11 outlines the principal barriers to computations assisting operators to suppress
or avoid oscillations and discusses the prospects for overcoming these barriers.

Section 12 describes the project work statement, budgets and deliverables of the project.

1.5 Acknowledgments
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2 Test systems

2.1 Assumption of a good dynamic model

One set of methods to avoiding or suppressing oscillations may be called exact. Exact
methods assume that a dynamic power system model is available which corresponds
sufficiently well with the real power system for the purpose of studying interarea
oscillations or estimating suitable control actions. Uncertainties in satisfying this
assumption include determining dynamic load models [48], verifying data for controls
of generators and other devices, and ensuring that the model reflects the actual
system configuration and control options. While satisfying this assumption may be
challenging in practice, this assumption is made for much of the project for several
reasons:

• it allows the computational limitations for the exact methods to be assessed
by themselves, separate from modeling concerns.

• the models and analysis used for exact methods are essential for developing
and testing approximate methods.

• analysis of models that are as accurate as possible is used to study oscillations
offline in power systems and these models are improving. The project is aimed
towards operator actions, but the methods developed are also useful offline.

• the modeling accuracy needed for estimating suitable operator control actions
is not known and it is possible that the control actions could be insensitive
to some of the modeling. For example, it is possible that the model could
incorrectly predict the value of a modal damping, but correctly select a control
action increasing that damping.

2.2 Model overview

The power system models for the exact methods need to be detailed and large
enough to allow methods to be developed and assessed. The project works with
models with up to 37 buses in order to assess the potential of methods for larger
systems. However, some of the numerical experiments on computational speed have
been performed on much larger networks. All work assumes that methods must
ultimately be practical on larger systems.

The dynamic power system model represents many of the generators in detail
with up to 12 states. An example of the generator modeling is a fourth-order
synchronous machine (angle, speed, field flux, one damper winding) with an IEEE
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type I excitation system (third order), and first-order models for the turbine, boiler,
and governor.

Load modeling is done by specifying proportions of constant admittance, con-
stant current, and constant power. Avoiding pure constant power loads could be
sufficient to avoid singularity of the algebraic equations. Load modeling presents
some significant uncertainties. The dynamics of loads do affect oscillations but the
project will not represent these dynamics because of the difficulties of obtaining
suitable data. However, the project has developed an efficient method to quickly
quantify the robustness of eigenvalue calculations with respect to load data and the
project methods are consistent with future elaboration of the load models.

Many of the project models are available on the Pserc web site [60].

2.2.1 3 bus test system

1 2

∇

3

Figure 1: Three bus power system

The three bus system consists of generators at bus 1 and bus 3 and a constant
power load at bus 2 as shown in Figure 1. One of the generators is a slack bus
for load flow calculations. Both generators are modeled as round rotor generators
with six dynamic states, accounting for both the transient and the subtransient
impedances. The exciters are of IEEE type 1 with four dynamic states [31]. The
load is modeled as a constant power load. The system parameters are reported in
section A.1.

2.2.2 9 bus test system

The 9 bus test system has 3 generators and 27 dynamic states. The 9 bus test
system is essentially the WSCC system from the text of Sauer and Pai [67] with
some adjustment in loading. The generator models have been adjusted to match
generator models available in the PSS/E software and the generator data is adapted
from machines in the New York Power Pool 37 bus system. The generators are
round rotor with d and q axis transient and subtransient effects and saturation
effects represented. The exciters are IEEE type 1. Exciter saturation is represented
but hard limits are not represented.

The real power portion of the loads are modeled as 60% admittance and 40%
constant current. The reactive power portion of the loads are modeled as 50%
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impedance and 50% constant current.
The 9 bus system can be viewed as representing a three area system with one

generator per area and each area intertied to the other two areas. More details of
the 9 bus system are given in section A.2.

2.2.3 14 bus test system

The 14 bus test system is a slightly modified version of the IEEE 14 bus system.
The generators are modeled by classical swing equations with equal damping so that
the model has a modified Hamiltonian structure. More details of the 14 bus system
are given in section 8.

2.2.4 37 bus test system

The 37 bus test system has 28 generators and is based on a 37 bus equivalent of
the New York Power Pool. The data includes many different generator models and
was supplied by ESEERCO in PSS/E format. We first summarize the full model
provided by ESEERCO: There are 37 generators, of which 11 are two axis round
rotor machines with transient and subtransient effects, 3 are salient pole machines
with transient and subtransient effects on the q axis only, and the remainder are
classical swing equation models. There are 12 exciters of 6 different types and 6
stabilizers of 4 different types. One hydro unit has a governor represented. There
are two SVC devices.

The following version of the full model was implemented: All 3 generator models
are implemented without change. Two of the exciter models are implemented, in
particular, IEEE Type 1 and IEEE Type ST1; this accounts for 7 of the exciters.
Two other exciters are approximated by an IEEE Type 1. A third generic and
simple exciter model is implemented to approximately represent the remaining 3
exciters. The stabilizers, hydro governor and SVCs are not represented. Quadratic
saturation effects are represented throughout but hard limits are not represented.
More details of the 37 bus system are given in section B.
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3 Test cases showing application of sensitivities

One of the main themes of the project is computing and applying the sensitivity
of eigenvalues to system parameters. This section illustrates the use of sensitivity
calculations to suppress oscillations by suitable operator actions. The associated
theory and algorithms are described in later sections. Many of the test cases are
available on the Pserc web site [60].

3.1 Producing an unstable case for the 9 bus system

The first task is to modify the base case for the 9 bus system to produce an unstable
case that has oscillations. The base case has parameters:

pl1 ql1 pl2 ql2 pl5 ql5 pl6 ql6
1.8 0.265 0.5 0.0 0.25 0.075 0.25 0.075
pl8 ql8 v1 v2 v3 pg2 pg3
1.0 0.35 1.02 0.99 1.005 1.5 1.5

All values are in per unit. The following parameter changes were implemented
simultaneously and the eigenvalues computed at each step:

parameter initial value final value increment
pl5 0.25 2.0 0.25
pl6 0.25 2.0 0.25
pl8 1.0 2.75 0.25
pg2 1.5 3.25 0.25
pg3 1.5 2.375 0.125

Figure 2 shows how some eigenvalues change with the parameters.
At the final value, an eigenvalue λ = 0.1324 + 3.0767j is located in the right

half plane (this oscillatory mode also has a complex conjugate eigenvalue at λ =
0.1324 − 3.0767j). This unstable mode indicates oscillatory instability at 0.49 Hz.
The objective of operator action is to suppress oscillation by stabilizing this unstable
mode.

3.2 Sensitivity validation

This subsection validates eigenvalue sensitivity formula (64) which is derived and
explained in section 4. Note that this procedure is evaluating analytically derived
formulas and not simply incrementing the parameter, recomputing the eigenvalue,
subtracting, and dividing by the parameter increment.

In the unstable case produced in subsection 3.1, the critical eigenvalue is λ =
0.1324 + 3.0767j in the right half plane. We write λp = ∂λ

∂p for the sensitivity of
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Figure 2: Change in eigenvalues as the parameters are changed from their base case
values in the 9 bus system (case2).

eigenvalue λ with respect to p. To validate the formula (64) for λp, table 1 shows the
real parts of λp, λ+ and λ∗ for several parameters p. λ+ is the predicted eigenvalue

p pl2 ql2 pl8 ql8 v1 v2 v3 pg2 pg3
λp -0.8179 -0.7465 -0.8641 -0.5382 2.9667 -8.6458 -1.9151 1.8066 0.9920
λ+ 0.1316 0.1317 0.1315 0.1319 0.1354 0.1238 0.1305 0.1342 0.1334
λ∗ 0.1316 0.1317 0.1315 0.1319 0.1354 0.1238 0.1305 0.1342 0.1334

Table 1: Validation of sensitivity to parameters

assuming that the parameter changed by 0.001 per unit, where the prediction is
obtained using the computed value of λp:

λ+ = λ+ 0.001λp (1)

λ∗ is the eigenvalue recomputed assuming that the parameter changed by 0.001 per
unit. The match between the real parts of λ∗ and λ+ validates the formula used for
λp.
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3.3 Control by redispatch

This subsection illustrates the control by redispatch to suppress an oscillation and
the prediction of control effectiveness using eigenvalue sensitivities.

−0.1 −0.05 0 0.05 0.1 0.15
3
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3.6

3.7

3.8

3.9

4
Eigenvalues of 9 bus case 1 version 6/26/98; run on 02−Aug−1999 14:06:13

Figure 3: Eigenvalue variation with redispatch; +=predicted with sensitivity, *=ac-
tual

The unstable case produced in subsection 3.1 is assumed. Table 1 shows that
decreasing generation at bus 2 and/or bus 3 will move the unstable eigenvalue to
the left. The sensitivities show that decreasing generation at bus 2 is more effective.
Figure 3 shows how the critical eigenvalue changes when pg2 is changed from 3.25 pu
to 3.1 pu in steps of 0.005 pu. Points labeled + are the linear prediction of the
eigenvalue using sensitivity, while points labeled * are the actual eigenvalues.

3.4 Control by adding reactive load

This subsection illustrates the selection of reactive compensation controls to suppress
an oscillation and the prediction of control effectiveness using eigenvalue sensitivities.

The unstable case produced in subsection 3.1 is assumed. Table 1 shows that
adding reactive load at bus 2 and/or bus 8 will move the unstable eigenvalue to
the left. The sensitivities show that adding reactive load at bus 2 is more effective.
Figure 4 shows how the critical eigenvalue changes when ql2 is changed from 0.0 pu
to 0.29 pu in steps of 0.01 pu. Points labeled + are the linear prediction of the
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Figure 4: Eigenvalue variation with q2; +=predicted with sensitivity, *=actual

eigenvalue using sensitivity, while points labeled * are the actual eigenvalues.

3.5 Control by changing bus voltage

This subsection illustrates the selection of bus voltage changes to suppress an os-
cillation and the prediction of control effectiveness using eigenvalue sensitivities. In
practice, the voltage at a generator bus would be changed by changing the voltage
reference and the voltage at a load bus could be changed if a device such as an SVC
were installed.

Table 1 shows that increasing the bus voltage at generator bus 2 will move the
unstable eigenvalue to the left. Figure 5 shows how the eigenvalue changes when v2
is changed from 0.99 pu to 1.019 pu in step of 0.001 pu. Points labeled + are linear
prediction of the eigenvalue using sensitivity, while points labeled * are the actual
eigenvalues.

3.6 Control by setting an exciter to manual

One control available to operators is to manually set constant generator excitation.
This subsection gives initial results on using eigenvalue sensitivities to rank the effec-
tiveness of setting exciters to manual control in order to suppress an oscillation. The
problem of predicting the effect of setting exciters to manual is more difficult than
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Figure 5: Eigenvalue variation with v2; +=predicted with sensitivity, *=actual

the predicting the effect of parameter changes because setting exciters to manual
changes the form of the system equations instead of simply varying system parame-
ters. Nevertheless, two methods of approximating the change to manual excitation
by varying parameters are tested on the 9 bus system.

Each exciter is modeled as

TE
Efd

dt
= α [−(KE + SE(Efd))Efd + VR]

TF
dRf

dt
= α

[
−Rf +

KF

TF
Efd

]

TA
dVR

dt
= α

[
−VR +KARf − KAKF

TF
Efd +KA(Vref − V )

]
The idea is that when α = 1 the exciter is enabled and that when α = 0 the exciter
is set to manual. Sensitivity of the critical eigenvalue to α at α = 1 is used to
attempt to predict the critical eigenvalue when α = 0. Since this is a large signal
change in α, a less accurate prediction is expected.

The sensitivities of the real part of the unstable eigenvalue λ to the parameter α
in the unstable case produced in subsection 3.1 are shown in table 2. The eigenvalue
changes in table 2 predicted by the eigenvalue sensitivity to α suggest that setting
any of the exciters to manual will move the eigenvalue to the left and stabilize the
eigenvalue, but that the most effective is exciter 3 and the least effective is exciter 1.
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exciter 1 exciter 2 exciter 3
λα 0.0174 0.0531 0.0907

predicted change -0.0174 -0.0531 -0.0907
actual change -0.0436 -0.1952 -0.2819

Table 2: Using sensitivities to rank exciters to be set to manual

The actual changes computed by altering the system equations and recomputing
the eigenvalue are also shown in table 2. The numerical value of the actual changes
is not accurately predicted by the sensitivities, but the ranking of the effectiveness
is correctly predicted. These initial results giving the correct ranking suggest that
further testing of this approach is warranted.

A second, simpler approach was to effectively remove the effect of α by setting
α = 1 and instead vary 1

TE
. 1

TE
at its nominal value includes the exciter control

whereas 1
TE

= 0 removes the exciter control. The sensitivity to 1
TE

could be an
index to select which exciters to remove. However, this approach did not give a
good ranking result and we regard the first approach as more promising.

3.7 Redispatch to stabilize the 37 bus system

Figure 6 shows the eigenvalue movement when increasing the PQ load at bus 2855
from 166.0184+118.3536j to 170.49+121.08j in steps of 0.160+0.114j. The increased
load is provided equally by all generators except those modeled with swing equations.

When load at bus 2855 is 170.33+121.43i pu, there is an unstable eigenvalue
0.0101 + 2.4053j with positive real part. Sensitivities of this real part to some of
the parameters are listed in table 3.

pg51 pg136 pg3814 pg1459 pg2855 pg3645 pg5890 pg5902 pg5903
0.0100 0.0087 0.0003 0.0044 -0.0002 0.0003 0.0003 0.0003 0.0003

pg5525 pg2458 pg4895 pg6321 pg1 pg2812 pg2833 pg2834 pg2864
0.0003 0.0006 0.0003 0.0003 0.0122 -0.0004 -0.0002 -0.0002 -0.0004

Table 3: Sensitivity of real part of critical eigenvalue in 37 bus system

The sensitivities in table 3 predict that the unstable mode can be effectively
stabilized by decreasing pg1 by 2.0 pu and increasing pg2812 by 2.0 pu. In particular,
the sensitivities predict that this redispatch will change the damping to -0.0151.
Simulation shows the damping actually moves to -0.0146.
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Figure 6: 37 bus eigenvalues as dispatch varies

3.8 Robustness with respect to data in 9 bus system

In the cases we have given, we calculated the eigenvalues based on some given pa-
rameters, such as time constants, etc. In practice, these parameters are uncertain
due to a variety of sources of error. It is of engineering importance to quantify
the uncertainty in the eigenvalues due to the uncertainty in the parameters. The
parameter uncertainty is modeled by regarding the parameters as random variables
with known mean and variance. Then the eigenvalues also become random vari-
ables. If there are many parameters, as is the case in practical power systems, and
some technical conditions are satisfied, the eigenvalues are approximately Gaussian
random variables and the standard deviation of the eigenvalues can be estimated by
a simple calculation. The method is based on eigenvalue sensitivities and a central
limit theorem explained in section 4.7; this section presents the results of applying
the method.

We study the robustness of an eigenvalue in the 9 bus case with respect to
uncertainty in the generator time constants of the three generators. The generator
time constants are assumed to be random variables uniformly distributed over a
range ±5% about their nominal values. The resulting means and standard deviations
of the generator time constants are shown in table 4.

When all the generator time constants are at their mean or nominal values,
the eigenvalues of the system are known. One of these eigenvalues has real part
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p mean σ λp

T
′
do1 8.96 0.2587 -0.0005
T

′′
do1 0.31 0.0089 0.0220
T

′
qo1 0.05 0.0014 -0.6521
T

′′
qo1 0.05 0.0014 -0.2830
TE1 0.314 0.0091 -0.1257
TF1 0.35 0.0101 0.0460
TA1 0.2 0.0058 -0.1558

T
′′
do2 8.50 0.2454 0.0079
T

′′
do2 1.24 0.0358 0.0240
T

′
qo2 0.037 0.0011 -3.1369
T

′′
qo2 0.074 0.0021 -0.9045
TE2 0.314 0.0091 -0.1845
TF2 0.35 0.0101 0.1033
TA2 0.2 0.0058 -0.2514

T
′
do3 3.27 0.0944 0.1069
T

′′
do3 0.31 0.0089 -0.0315
T

′
qo3 0.032 0.0009 -5.6904
T

′′
qo3 0.079 0.0023 -1.0487
TE3 0.314 0.0091 -0.4328
TF3 0.35 0.0101 0.2290
TA3 0.2 0.0058 -0.8183

Table 4: parameters in simulation

λr = −0.8423. The sensitivities of λr with respect to the generator time constants
are computed using the eigenvalue sensitivity formula and shown in table 4. As
explained in section 4.7, λr is approximately normally distributed and the standard
deviation σλr of λr can be computed with the formula

σλr =
√∑

i

(λr
pi

)2σ2
pi

(2)

Using the data in table 4 in formula (2) yields σλr = 0.0144 and this, together with
the approximately normal distribution of λr, quantifies the uncertainty in λr due to
the uncertainty in the generator time constants.

For example, for any normally distributed random variable X of standard devi-
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ation σ,

Prob{X < mean(X) + 1.65σ} = 0.9505 (3)
Prob{X < mean(X) + 2.33σ} = 0.9901 (4)
Prob{X < mean(X) + 2.65σ} = 0.9960 (5)

and applying these results to λr, which has mean −0.8423 and estimated standard
deviation σλr = 0.0144 yields

Prob{λr < −0.8185} = 0.9505 (6)
Prob{λr < −0.8087} = 0.9901 (7)
Prob{λr < −0.8041} = 0.9960 (8)

We validated results (6), (7), (8) by running a Monte Carlo simulation with
10000 samples. The Monte Carlo results are

Prob{λr < −0.8185} = 0.9575 (9)
Prob{λr < −0.8087} = 0.9943 (10)
Prob{λr < −0.8041} = 0.9989 (11)

which are satisfactorily close to (6), (7), (8).

3.9 Robustness with respect to load modeling in 37 bus system

There is significant uncertainty in load modeling which could be an important lim-
iting factor in obtaining accurate enough stability results from a dynamic power
system model. To show how to quantify this effect, we study the robustness of an
eigenvalue in the 37 bus base case with respect to uncertainty in the load models.
The 37 bus system has 32 loads and each of these loads is modeled as:

PL = ir V + gg V 2 (12)
QL = ii V + sus V 2 (13)

αPPL0 = ir V (14)
(1 − αP )PL0 = gg V 2 (15)

αQQL0 = ii V (16)
(1− αQ)QL0 = sus V 2 (17)

The constants ir, gg, ii, sus, αP , αQ in the load model are defined in section A.2.2.
The load model is the same as used in section A.2.2 except that it is assumed that
there is no constant power portion of the load (βP = 1 − αP and βQ = 1 − αQ).
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The parameters of each load are αP , αQ, PL0 and QL0. For the 37 bus base case, the
nominal values of αP and αQ are αP = 0.4, αQ = 0.5 for all buses and the nominal
values of PL0 and QL0 are shown in Table 5.

The 37 bus base case has one eigenvalue with real part λr = −0.0500. The
sensitivities of λr with respect to the all the load parameters are computed using
the eigenvalue sensitivity formula (64) and are shown in Table 5. Obtaining this
data by brute force computations would require successively changing from nominal
each of the 128 load parameters and recomputing the eigenvalue 128 times. On the
other hand, the analytic sensitivity formula essentially requires some Jacobians and
a Hessian to be evaluated once.

It is apparent that several of the loads (e.g. buses 51,136, 3520, 3523) have pa-
rameters that have much greater effect on the eigenvalue damping. If the sensitivity
of this eigenvalue to load parameters is a limiting factor in ensuring power system
stability, then the sensitivities in Table 5 show where money should be spent in
order to more accurately determine load parameters.

Now we show how to quantify the uncertainty in the eigenvalue damping due
to the combined uncertainty in all the loads. To model the load uncertainty, we
first assume that αP , αQ, PL0 and QL0 are random variables uniformly distributed
over a range ±5% about their nominal values. As explained in section 4.7, λr is
approximately normally distributed and the standard deviation σλr of λr can be
computed with the formula

σλr =
√∑

i

(λr
pi

)2σ2
pi

(18)

Using the sensitivity data in Table 5, formula (18) yields

σλr = 0.0120 (19)

The standard deviation (19) together with the approximately normal distribution
of λr quantifies the uncertainty in λr due to the uncertainty in the load models as:

Prob{λr < 0} = 0.99998 (20)
Prob{λr < −0.04} = 0.7967 (21)

The computation (19) assumed (rather optimistically) an uncertainty in the load
parameters as a uniform distribution ±5% about nominal. It is simple to recalculate
with different assumptions about the load parameter standard deviation without
recomputing any sensitivities. For example, if the load parameters are assumed to
have a uniform distribution ±10% about nominal, then the load parameter standard
deviations are double those obtained in the ±5% case and formula (18) shows that
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the standard deviation σλr is double that obtained in (19). Thus for the ±10% case
we obtain

σλr = 0.0240 (22)

and hence

Prob{λr < 0} = 0.9812 (23)
Prob{λr < −0.04} = 0.6628 (24)

Indeed, for the general case of load parameters uniformly distributed±K% about
nominal, we obtain

σλr = 0.0024K (25)
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bus # λr
αP

λr
αQ

PL λr
PL QL λr

QL

1 -0.0020 0.0003 23.51 -0.0103 12.39 0.0000
51 -0.0052 0.0148 20.55 -0.0060 32.39 -0.0005

136 -0.0121 0.0084 52.04 -0.0052 26.30 -0.0004
1377 0.0034 0.0022 27.11 -0.0031 20.10 -0.0001
2458 0.0001 0.0000 -14.92 0.0000 17.37 0.0000
2812 -0.0005 0.0001 206.2 0.0003 47.50 0.0000
2833 -0.0001 0.0000 222.4 0.0001 49.51 0.0000
2834 -0.0001 0.0000 221.8 0.0001 49.37 0.0000
2855 0.0001 0.0001 166.0 0.0001 118.4 0.0000
2864 -0.0020 0.0003 220.8 0.0004 49.30 0.0000
3517 0.0000 0.0000 232.3 0.0000 51.89 0.0000
3520 0.0044 -0.0006 230.7 -0.0002 52.65 0.0001
3523 0.0051 -0.0007 232.0 -0.0002 55.04 0.0001
3645 0.0000 0.0000 3.265 0.0000 3.510 0.0000
3814 0.0000 0.0000 230.3 0.0000 50.35 0.0000
3864 0.0000 0.0000 1.575 0.0000 0.9613 0.0000
4305 0.0000 0.0000 7.169 0.0000 16.63 0.0000
4383 0.0000 0.0003 2.490 0.0000 3.529 0.0000
4387 0.0000 0.0007 5.876 -0.0002 8.056 0.0000
4611 0.0000 0.0000 230.0 0.0001 50.00 0.0000
4656 -0.0001 0.0000 231.4 0.0001 51.21 0.0000
4895 0.0000 0.0000 15.82 0.0000 15.01 0.0000
5506 0.0000 0.0000 19.74 0.0000 28.33 0.0000
5525 0.0000 0.0000 10.06 0.0000 15.69 0.0000
5685 0.0000 0.0000 37.20 0.0000 27.99 0.0000
5686 0.0000 0.0000 26.45 0.0000 22.58 0.0000
6188 0.0000 0.0000 15.34 0.0000 11.23 0.0000
6597 -0.0001 0.0000 233.7 0.0000 52.49 0.0000
6632 0.0000 0.0000 234.1 0.0000 55.29 0.0000
6659 0.0000 0.0000 229.5 0.0000 49.83 0.0000
6660 0.0000 0.0000 229.5 0.0000 50.17 0.0000
9484 0.0000 0.0001 2.210 0.0001 3.614 0.0002

Table 5: Sensitivities of the real part of an eigenvalue with respect to all load
parameters of the 37 bus system and the nominal values of the load parameters (the
nominal values of αP and αQ are αP = 0.4 and αQ = 0.5 for all buses).
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3.10 Validation with PSS/E

To validate the correctness of the project models, the matlab results are compared
with PSS/E results for both the 9 bus and the 37 bus test systems. Matlab codes
for both test systems give substantial, although not perfect agreement with PSS/E.
Figure 7 and Figure 8 show the comparison of the eigenvalues for the base case of
the 9 bus test system and the 37 bus test system, respectively.
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Figure 7: Eigenvalue comparison for 9 bus test system

3.11 Conclusion

This section shows the usefulness of the analytic formulas for eigenvalue sensitivity.
These formulas allow

• selection of stabilizing controls

• estimates of control damping effectiveness

• estimates of robustness to model data

• a suggested method to select AVR to be set to manual.
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Figure 8: Eigenvalue comparison for 37 bus test system
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4 Eigenvalue sensitivity

4.1 Stabilizing the equilibrium

The project takes a simple approach to suppressing or avoiding oscillations. In the
case of a stable operating point with a poorly damped oscillatory mode, the objective
is to increase the damping of that mode. That is, the power system linearization at
the operating point is modified. (Operator actions such as redispatch often modify
the operating point to do this.) The effect of this is that transients near enough
to the operating point will decay more quickly. However, the analysis does not
attempt the more difficult study of large signal transients. The existence of a stable
operating point is of course necessary for system security, but there is no guarantee
that large signal transients will result in operation at that operating point.

In case of a sustained oscillation, there is typically a power system equilibrium
nearby that is oscillatory unstable. The objective is to stabilize this equilibrium
by modifying the power system linearization at the equilibrium. Then a transient
can occur to restore the power system to the equilibrium, which is now a stable
operating point. This is a likely outcome, but other transient behaviors are possible.
The project methods seek to stabilize the equilibrium to obtain an operating point
that is sufficiently small signal stable and do not attempt to make more extensive
changes to the system dynamics.

4.2 Challenges for eigenvalue sensitivity

A previous project [66] derived formulas for eigenvalue sensitivity with respect to a
wide range of power system parameters, including parameters which can be changed
by operator actions. The formulas take full account of changes in the operating
point and are in a form suitable for sparse matrix computations. This project has
improved these formulas by more accurately modeling the time scales involved.

Suppose that the power system has a poorly damped or unstable oscillatory
mode. This mode is called a critical mode. If the critical mode and corresponding
eigenvalue and eigenvectors can be found, then the sensitivity of the modal damping
to a range of power system parameters or controls can be computed and used to
select an operator control to effectively damp the mode and hence avoid or suppress
the oscillation.

It is also desirable to be able to identify modes that are sufficiently damped,
but sensitive to parameter variations so that they could rapidly become unstable.
Eigenvalue sensitivity calculations can distinguish such modes so that control action
can be taken to prevent oscillations.

The main potential obstacles to doing this seem to be:
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• A good power system dynamic model is needed. The robustness of the se-
lected controls to modeling uncertainty needs to be quantified. Errors due to
uncertainty in the load models may be particularly important. A method for
quantifying robustness is presented in sections 3.8, 3.9, and 4.7.

• Locating the critical mode(s) among the many lightly damped modes. Sensi-
tivities can identify lightly damped modes which can become unstable when
parameters vary. The use of measurements to help detect or predict critical
modes is discussed in section 9.

• Computational speed in a large system. Computational speed is addressed in
section 5.

• Nonlinearity in the eigenvalue movement. It is possible for nearby eigenvalues
to interact in such a way that they move nonlinearly and with extreme sensi-
tivity when the modes are near a strong resonance. This project made a major
advance in describing this phenomenon and this is documented in sections 7
and 8.

• The requirement to simultaneously stabilize several critical modes. It is possi-
ble that a control action stabilizing one critical mode will destabilize another
critical mode. A specific mechanism for this was found when the modes are
near a strong resonance and this is documented in section 7.

4.3 Static and dynamic time scales

The power system can be modeled by separate equations for different time scales.
The equations that are used to detect an oscillation (transient time scale) are dif-
ferent than those for the operator actions used to suppress the oscillation (steady
state time scale). This subsection discusses these time scales and the corresponding
power system modeling.

Although this separation of the power system model into separate equations
for different time scales is not always explicitly stated, it does correspond to the
standard practice of solving a loadflow to determine an operating point (solving
steady state equations) but using a detailed dynamic model for the faster transient
time scale. In any case the distinct modeling at the two time scales is fundamental
for the project work.

The distinction between variables and parameters is important. Parameters are
set or assumed external to the equations whereas variables assume values imposed
by solution of the equations. The choice of variable and parameter is time scale
dependent.
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The transient time scale (less than one second to tens of seconds) is the time
scale for low frequency oscillations. The dynamic behavior of the power system
over transient time scale is represented by the parameterized differential-algebraic
equations

ẋ = f(x, y, p, q) (26)
0 = g(x, y, p, q) (27)

where

• x is the vector of dynamic state variables, mainly generator dynamic states
(e.g. δ, ω, E

′
q)

• y is the vector of algebraic state variables, such as the generator dq currents.

• p is a vector of algebraic state variables specifying generator bus PV and load
PQ and the slack bus (or distributed slack). p also includes constants in the
static equations for which the eigenvalue sensitivity is required. For example,
if the eigenvalue sensitivity with respect to a line admittance y12 with nominal
value 3.3 is required, then y12 becomes a component of p, and an algebraic
equation 0 = y12 − 3.3 is included in (27).

• q is the vector of set points for each generator and complex current sources
and impedances for each load.

Equations (26),(27) can also be rewritten as

Ioż = G(z, q) (28)

where

z =


xy
p


 (29)

Io =
(
Inx×nx Onx×nY

OnY ×nx OnY ×nY

)
(30)

and

G(z, q) =
(
f(x, y, p, q)
g(x, y, p, q)

)
(31)

nx is the number of dynamic states in the vector x and nY is the number of algebraic
states in the vectors y and p.

26



Equation (28) represents the transient time scale behavior of the system as the
dynamic and algebraic states fluctuate about their nominal equilibrium values. For
example, system frequency deviate from synchronous speed, bus voltages and powers
vary and the interarea flows vary around the scheduled transfers. However, the
generator set points and complex current sources and impedances for each load are
assumed to be constant in the transient time scale and therefore they are modeled
as parameters. The Jacobian matrix Gz is singular because the transient model
does not include equations that describe how the system frequency is returned to
synchronous speed 1.

The time scale for the operator actions (minutes to hours) is longer than the
transient time scale steady state and is represented by the steady state static equa-
tions

0 = H(x, y, p, q) = H(z, q) (32)

In (32), x and y are variables. However, in (32) p is a parameter and q is a vari-
able. Equation (32) considers the time scale in which generation is economically
dispatched to meet the slowly evolving component of load fluctuation and the Au-
tomatic Generation Control (AGC) acts to maintain scheduled interchanges and
restore system frequency. (32) includes equations that describe how q changes over
extended periods of time to account for economic dispatch, interarea schedules, and
AGC, and assumes that system frequency is synchronous speed.

For consistency between the models (32) and (28) it is important that solutions
of the static equations (32) are equilibria of the dynamic equations (28):

H(z0, q0) = 0 ⇒ G(z0, q0) = 0 (33)

The variables and parameters in the dynamic and static models are summarized
in Table 6.

Now we give more detail of the generator modeling at the two time scales. Load
modeling at the two time scales is presented in section A.2.2.

The electrical output of a generator is controlled by two inputs, the governor
droop and the load reference set point. The governor droop determines how the
generator responds to a change in frequency. The governor droop is a constant
parameter, not a control parameter. The load reference set point determines the
steady state power output of the generator. The load reference set point is a control

1The zero eigenvalue of the system Jacobian is not an artifact of an inaccurate model or an indi-
cator that power systems are operated close to instability. The singularity of the linearized system
is intentional and provides for the secure operation of the power system during severe disturbances.
Specifically, the indeterminate linearized model reflects an additional degree of freedom that allows
all generators to speed up over a short time duration. Over longer time durations, the system must
be reset so that frequency is restored.
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dynamic static
quantity description model G model H example components

x dynamic state variable variable δ, ω, E
′
q, ψq, Efd

y algebraic state variable variable Id, Iq, PL, QL

p algebraic state variable parameter generator PV, load PQ, Ybus

q set points parameter variable Vref , PM , load conductance

Table 6: Variables and parameters in dynamic and static models

input that can be revised according to an economic dispatch and permits control
through the AGC.

Immediately following a disturbance the transient response of each generator is
determined by its electrical proximity to the disturbance. The system frequency a
short time (a few seconds) after a disturbance, and the proportion of the disturbance
“picked-up” by each generator, is determined by each generator’s rotating inertia.
Several seconds after a disturbance the system frequency and generator response is
affected by each generator’s governor and droop. The relative outputs of the gener-
ators when the system frequency is restored to synchronous speed is determined by
each generator’s load reference set point. The load reference set point is adjusted
only every few minutes, not seconds [34]. Over transient time periods then, the load
reference is a parameter. Over longer time periods that assume steady state oper-
ation at synchronous speed, the load reference set points are variables determined
by the system conditions and dispatch policy. At steady state the load reference set
points equal the generator power outputs.

4.4 Eigenvalue sensitivity formula derivation

This subsection derives and explains the eigenvalue sensitivity formula used in this
project. Discussion of technical mathematical assumptions is postponed to the end
of the section. The derivation combines together approaches from [21], [57], [40],
[71], [66].

It is convenient to notate the combined algebraic states of (26) and (27) as

Y =
(
y
p

)
(34)

Differential equations can be obtained from the differential algebraic model (26) and
(27) by eliminating the algebraic states Y . Solving the algebraic equations (27) for
Y in terms of x yields a function

Y = h(x, q) (35)
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Substitution of h(x, q) for Y in (26) yields the differential equations

ẋ = f(x, h(x, q), q) (36)
= F (x, q) (37)

Superscripts are used to indicate the ith component of a vector. For example the
ith component of the vector x is xi and the ith equation of (37) is

ẋi = F i(x, q) (38)

Since h was derived by solving the algebraic equations (27),

0 = g(x, h(x, q), q) (39)

the Jacobian hx of h with respect to x is obtained by differentiating (39):

0 = gx + gY hx (40)
hx = −g−1

Y gx (41)

Now the system Jacobian Fx can be expressed in terms of f and g by differentiating
(37):

Fx = fx + fY hx = fx − fY g
−1
Y gx (42)

The system eigenvalues are the eigenvalues of the Jacobian matrix Fx. Let λ be
one of these eigenvalues and let v and w be the right and left eigenvectors associated
with λ. w is a row vector and v is a column vector.

Write
v̄ =

(
v
hxv

)
=
(

v
−g−1

Y gxv

)
(43)

Then, using (42)

Gz v̄ =
(
fx fY

gx gY

)(
v

−g−1
Y gxv

)
=
(

(fx − fY g
−1
Y gx)v

0

)
=
(
Fxv
0

)
= λ

(
v
0

)
= λIov̄

(44)
Similarly, write

w̄ = (w, −wfY g
−1
Y ) (45)

and obtain

w̄Gz = (w, −wfY g
−1
Y )

(
fx fY

gx gY

)
= (w(fx − fY g

−1
Y gx), 0 ) = (wFx, 0 )

= λ (w, 0 ) = λw̄Io (46)
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The vector v̄ defines the mode shape of both the differential and algebraic variables
in the same way as the eigenvector v defines the mode shape of the differential
variables. (The equation Gzv̄ = λIov̄ is called a generalized eigenvalue problem [26],
[71].)

It is convenient to group together the variables in the static equations (32) as

e =


xy
z


 (47)

The operating point or equilibrium of the static equations (32) is

E(p) =


X(p)
Y (p)
Q(p)


 (48)

and E(p) satisfies
0 = H(X(p), Y (p), p, Q(p)) (49)

The equilibrium E(p) is a function of the parameter p. The sensitivity of E(p) with
respect to p is the vector

Ep =


Xp

Yp

Qp


 =




∂X
∂p
∂Y
∂p
∂Q
∂p


 (50)

which can be evaluated by differentiating (49) and rearranging terms:

0 = HxXp +HyYp +HqQp +Hp (51)
0 = HeEp +Hp (52)

where He = [Hx|Hy|Hq]. The ith components of equation (51) can be written as

0 =
∑
j

(
∂H i

∂xj
X j

p +
∂H i

∂yj
Y j

p +
∂H i

∂qj
Qj

p

)
+
∂H i

∂p
(53)

Solving (52) gives
Ep = −(He)−1Hp (54)

For practical computation of Ep, explicit evaluation of the inverse (He)−1 is avoided
and sparse methods are used to solve (52).

In the differential-algebraic equations (28), G is a function of x, y, p and q.
Therefore the Jacobian of the differential-algebraic equationsGz(z, q) = Gz(x, y, p, q)
is also a function of x, y, p and q. When the Jacobian of the differential-algebraic
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equations is evaluated at the equilibrium E(p), it can be regarded as function J(p)
of p:

J(p) = Gz(X(p), Y (p), p, Q(p)) (55)

That is, J varies with the parameter p, not only because the entries of the Jacobian
can depend directly on p but also because the equilibrium E(p) varies with p and
the Jacobian is evaluated at E(p). Many parameters p of interest appear linearly in
(28), and in this case, the entries of the Jacobian do not depend directly on p.

Evaluating (44) and (46) at (Z(p), p) gives

Jv̄ = λIov̄ (56)
w̄J = λw̄Io (57)

and hence
0 = w̄(J − λIo)v̄ (58)

To obtain the eigenvalue sensitivity, differentiate (58) with respect to p to obtain

0 = w̄(Jp − λpIo)v̄ (59)

(The other terms involving v̄p and w̄p vanish). Rearrangement of (59) and using
w̄Iov̄ = wv gives a formula for the eigenvalue sensitivity λp = ∂λ

∂p with respect to
the parameter p:

λp =
w̄Jpv̄

wv
=

∑
i,j

w̄iJ ij
p v̄

j

∑
i

wivi
(60)

It remains to express J ij
p in terms of derivatives of G. The i, j component of equation

(55) is

J ij(p) = Gij
z (X(p), Y (p), p, Q(p)) =

∂Gi

∂zj
(X(p), Y (p), p, Q(p)) (61)

Differentiate (61) with respect to p to obtain

J ij
p =

∑
k

(
∂2Gi

∂zj∂xk
Xk

p +
∂2Gi

∂zj∂yk
Y k

p +
∂2Gi

∂zj∂qk
Qk

p

)
+

∂2Gi

∂zj∂p
(62)

=
∑
k

∂2Gi

∂zj∂ek
Ek

p +
∂2Gi

∂zj∂p
(63)

and substitute in (60) to finally obtain the eigenvalue sensitivity formula

λp =

∑
i,j,k

w̄i ∂
2Gi

∂zj∂ek
Ek

p v̄
j +

∑
i,j

w̄i ∂
2Gi

∂zj∂p
v̄j

∑
i

wivi
(64)
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The first term in (64) describes first order changes in the eigenvalue λ due to changes
in p affecting the equilibrium position at which the Jacobian is evaluated and the
second term describes first order changes in λ due to changes in p affecting the
entries of the Jacobian directly.

There are some technical assumptions required to make the derivation above
rigorous:

• f and g are assumed to be locally smooth functions. In particular, the power
system should not be at a boundary where a hard limit is encountered.

• The construction of the function h in (35) requires gY to be assumed invertible.
According to the implicit function theorem, h is well defined locally if gY is
invertible. The construction of w̄ and v̄ also requires gY to be invertible.

• The eigenvalue λ is assumed to be unique and simple (that is, the system is
not exactly at a strong or weak resonance). The simplicity of λ ensures that
wv 6= 0 so that the division by wv in (64) is valid. The uniqueness of λ ensures
that w and v are unique up to scaling by a constant.

• The computation of Ep requires that He is invertible (see (54)).

4.5 Sensitivity formula requirements

This section summarizes what needs to be computed to evaluate the eigenvalue
sensitivity formula (64) with respect to the parameter p.

• the extended left and right eigenvectors w̄ and v̄ corresponding to the eigen-
value.

• the Hessian ∂2G
∂z∂e of the dynamic equations.

• the equilibrium sensitivity Ep with respect to p.

• the Hessian ∂2G
∂z∂p of the dynamic equations (vanishes if the parameter p does

not appears explicitly in the Jacobian)

We have identified two possible mechanisms for oscillation modes becoming un-
stable:

1. A critical mode becomes unstable with little or no interaction with other modes

2. A critical mode becomes unstable as a result of an interaction with another
mode.
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The first mechanism allows a straightforward application of the sensitivity formu-
las to a single critical mode once the critical mode was identified. The second
mechanism is more complicated and precludes a straightforward application of the
sensitivity formulas because of the nonlinearity of the eigenvalue movement. The
project devised a method to predict the eigenvalue movement in this case which is
described in section 7.4.2.

4.6 Optimum redispatch to best improve critical mode damping

A formula for the best movement of the operating point to improve critical mode
damping is stated and discussed to illustrate one approach to applying eigenvalue
sensitivity methods. The formula could be used to help deduce a generator redis-
patch which effectively damps the critical mode.

Let the eigenvalue of the critical mode be λ. The critical mode damping is
described by λr, the real part of λ. It is convenient to scale the right and left
extended eigenvectors so that ∑

i

wivi = 1 (65)

Then taking the real part of the (64), the sensitivity of the critical mode damping
with respect to the operating point is given by the vector u where

uk =
∂λr

∂zk
= Real

{
∂λ

∂zk

}
= Real


∑

i,j,k

w̄i ∂2Gi

∂zj∂ek
Ek

p v̄
j


 (66)

If the operating point changes by a linearized change ∆E then the linearized
change ∆λr in the critical mode damping is

∆λr =
∑
k

uk ∆Ek (67)

If ∆E is fixed at size one so that

1 = |∆E| =
√∑

k

∆Ek ∆Ek (68)

then the direction of operating point change giving the maximum amount of modal
damping is

∆Ek =
−uk

|u| (69)

and the resulting best change in damping is

∆λr = −|u| (70)
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If the desired change in damping has magnitude |∆λr
desired|, then best change

in operating point to achieve this to first order is

∆Ek =
−uk

|u|2 |∆λr
desired| (71)

Suppose that we want to improve the critical mode damping by changing the
operating point by redispatching the generators. Then we could proceed as follows:

1. Find the critical mode.

2. Compute the extended eigenvectors w̄ and v̄ of the critical mode.

3. Compute the best operating point change ∆E to first order with (66) and
(71).

4. Compute the practical redispatch which best approximates the change in op-
erating point ∆E.

Observations:

• The computation only requires the extended eigenvectors of the critical mode.

• The computation of the best operating point change ∆E only depends on
quadratic terms of the power system equations (28). Linear terms in the power
system equations do not affect the answer. This shows that the approach
exploits the nonlinear parts of the power system equations. (Also components
of v̄ corresponding to variables which enter the power system equations linearly
do not affect the answer and components of w̄ which correspond to a linear
equation in the power system equations do not affect the answer.)

• Step 4 requires only the static power system equations.

4.7 Quantifying eigenvalue uncertainty

A crucial factor in large and detailed power system dynamic models is the effects of
various sorts of uncertainty in the model. This can be addressed by using sensitivity
calculations to identify critical parameters and investigating the robustness of the
eigenvalues to parameter uncertainty.

The eigenvalue is some function λ(p1, p2, ..., pm) of the uncertain parameters
p1, p2, ..., pm. The parameters pi are chosen to satisfy the following conditions:

1. The uncertainty in the parameters is modeled by regarding each parameter pi

as a random variable with known mean µ(pi) and known variance σ2(pi).
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2. The parameters are statistically independent.

3. There are sufficiently many parameters.

The uncertainty U of the eigenvalues due to the uncertainty in all the parameters
is:

U = λ(p1, p2, ..., pm) − λ(µ(p1), µ(p2), ..., µ(pm)) (72)

The mean value of the uncertainty is zero:

µ(U) = 0 (73)

Approximating the changes in λ linearly in (72) gives

U ≈
m∑

i=1

∂λ

∂pi
(pi − µ(pi)) (74)

∂λ
∂pi

is the sensitivity of λ to the parameter pi evaluated at the nominal values µ(p1),
µ(p2),...,µ(pm).

Since the parameters are assumed to be independent,

σ2(U) =
m∑

i=1

σ2
(
∂λ

∂pi
(pi − µ(pi))

)
(75)

=
m∑

i=1

(
∂λ

∂pi

)2

σ2(pi) (76)

and the standard deviation of U is

σ(U) =

√√√√ m∑
i=1

(
∂λ

∂pi

)2

σ2(pi) (77)

Under conditions on the parameters stated above (and further discussed at the
end of the section), the uncertainty U is approximately a normal random variable
with mean zero and standard deviation given by (77). Thus (77) quantifies the
uncertainty of λ in terms of the parameter standard deviations and the eigenvalue
sensitivities. The formula (77) is simple and quick to evaluate.

We end this section by briefly stating the mathematics underlying the calcu-
lation. Let X1, X2, ..., Xm be independent, zero mean random variables and write
s2m =

∑m
k=1 σ

2(Xk) for the variance of
∑m

k=1 Xk. The approximate normality of∑m
k=1 Xk requires a central limit theorem. (Note that the most straightforward ver-

sion of the central limit theorem does not apply because we do not assume that
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X1, X2, ..., Xm are identically distributed.) A special case of the Lindeberg theorem
[10] states that if

lim
m→∞

m∑
k=1

1
s2m

∫
|Xk|>εsm

X2
k dF = 0 (78)

holds for all positive ε then 1
sm

∑m
k=1 Xk converges in distribution to a normal ran-

dom variable of mean zero and variance unity. In our case it is reasonable to assume
that the density function of each Xk vanishes uniformly outside a compact set, then
the Lindeberg condition is easily justified. So, the uncertainty U is approximately
a normal random variable if we have sufficiently many (say > 10) random variables
of each general form of distribution.

4.8 Margin to oscillations and margin sensitivity

Suppose that the power system is operating stably and the objective is to measure
how close the system is to oscillations. The closeness of the power system to oscil-
lation can be measured by a margin which is the change in one of the parameters
required for the system to be at the onset of oscillation. There are several useful
choices of parameter to measure the margin with. For example, it might be appro-
priate to choose the margin as the change in a critical interarea flow. In this case,
the margin describes the increase in this interarea flow which would lead to the onset
of oscillations. Alternatively, system loading could be used as a margin by picking a
specific pattern of load increase and then defining margin to be the amount of load
increase in that specific pattern which would lead to the onset of oscillations.

The margin to the onset of oscillations can be measured by a continuation
method. The main idea of a continuation method is to repeatedly calculate equi-
librium solutions as the parameter varies in small steps. The parameter variation
continues until the onset of oscillations is reached. The value of the parameter at
the onset of oscillations then determines the margin.

Once the margin has been computed, it is useful to compute the sensitivity of
the margin to a wide range of power system parameters and controls. For example,
if the margin is too small, then the sensitivities to controls can be used to help select
controls which are effective in increasing the margin. Also, if there is uncertainty
about some of the model data or assumptions, then the sensitivity of the margin
with respect to that data can be used to estimate the effect on the margin of the
uncertainty.

It turns out that the computation of the margin sensitivity is an easy variant of
an eigenvalue sensitivity computation performed at the onset of the oscillations [66].
Thus the margin sensitivity computation is no more difficult than the eigenvalue
sensitivity computation once the onset of oscillations is found by continuation.
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The advantage of the margin sensitivity concept is that it yields information in a
form directly useful to the analyst or operator. For example, if the margin is chosen
to be the increase in tie line real power until the onset of oscillations, then the
sensitivity of this margin with respect to a redispatch can be used to estimate the
additional tie line power capacity available if the redispatch is done (this assumes
that the tie line power capacity is determined by oscillations).
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5 Scaling of eigenvalue computation time with system

size

Computational speed is a key limiting factor to computing operator actions to sup-
press oscillations using eigenvalue computations. This section examines the scaling
of computational speed with system size for advanced algorithms. Special models
with scalable size approximating realistic models for computational purposes are de-
vised and tested. This approach provides estimates of computation time for realistic
size models within the project resources without the enormous effort of setting up
large system models.

Eigenvalue determination has been an integral component of the analysis of
power systems for many years [20, 78]. While efficient methods for eigenvalue deter-
mination have evolved over the years, no systematic study of the growth in compu-
tation for the most important algorithms seems to have been undertaken. Results
on computational efficiency have been based on case-by-case analysis. This chapter
studies in a systematic way the growth of computational time in the determination
of eigenvalues and eigenvectors for very large power systems and attempts to predict
how computational time grows as systems increase in size and complexity.

The chapter considers both simple and multiple eigenvalue determination for a
small subset of eigenvalues near specified complex-plane locations. The solution of
the eigenvector problem follows quite readily from the eigenvalue problem, and is
not discussed here.

The chapter begins with a review of selected topics and methods for eigenvalue
computation in the context of power systems. It then considers computability is-
sues associated with multiple eigenvalues (an appendix discusses the special case of
eigenvalue determination in the presence of Jordan blocks). The chapter then per-
forms a variety of numerical experiments and illustrates the results these numerical
experiments. The experiments and examples considered include:

• A radial network of identical ideal machines, as illustrated in Figure 9. For
this case the chapter determines only one eigenvalue. Computation time as a
function of number of generators is considered.

• A more complex random-structure prescribed-density network interconnect-
ing ideal (second-order) machines. The ideal machines all have slightly dif-
ferent, random characteristics. Five distinct eigenvalues closest to prescribed
eigenvalue locations are determined in these experiments. Again, the results
illustrate computing time as a function of number of generators.

• A more complex random-structure prescribed-density network interconnecting
machines, where the machines are represented by seventh-order dynamic mod-
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Figure 9: The structure of the radial test system interconnecting ideal second-order
machines.

els. Five distinct eigenvalues are determined closest to prescribed eigenvalue
locations.

• A study of the effect of network size is undertaken. The number of generators
is kept constant as the size of the interconnecting network is varied.

• A study of the effect of network degree of interconnnectivity is undertaken.
Both the number of generators and the number of nodes is held constant, but
the density (interconnectivity) of the network is increased.

5.1 Computation of eigenvalues in electromechanical systems

We begin with an overview of the computation of eigenvalues for electromechani-
cal systems. Electromechanical systems are characterized by sets of algebraic and
differential equations of the general form:

ẋ = f(x, y, p) (79)
0 = g(x, y, p) (80)

where x is a vector of state variables. As a minimum, the x vector corresponds
to machine angles and speeds, but numerous other variables associated with field
currents, fluxes and controls are also components of this vector. The vector y cor-
responds to purely algebraic variables, usually consisting of network voltages and
angles at all network nodes. The vector y often includes other algebraic variables
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within the control loops of generators and other dynamic components. The scalar
or vector p corresponds to a parameter or set of parameters of interest (such as the
degree of loading of the system).

The equilibrium conditions (or operating point) are determined from a solution
of a set of nonlinear algebraic equations based on the above, for a given value
of p. Stability conditions associated with the steady state equilibrium point are
determined from an analysis of the eigenvalues of the above equations, linearized
around the operating point (x0, y0). The stability of the equilibrium conditions is
obtained from an analysis of:[

∆ẋ
0

]
=

[
J1 J2

J3 J4

] [
∆x
∆y

]
(81)

where J1, J2, J3 and J4 are corresponding Jacobian components evaluated around
the equilibrium point.

Early efforts for the computation of eigenvalues in power systems relied in the
reduction of the problem above:

∆ẋ = A∆x (82)

where A = J1 − J2J
−1
4 J3 is the conventional reduced system matrix. For early

efforts that rely on this computation, refer to [78]. Recent papers that do not
focus on computational issues but rather on theoretical developments (such as [49])
continue to rely on this reduced formulation.

A slightly more general formulation of the original problem considers a version
that is implicit (rather than explicit) in the state variables:[

M1∆ẋ
0

]
=

[
J1 J2

J3 J4

] [
∆x
∆y

]
(83)

or alternatively: [
M1 0
0 0

][
∆ẋ
0

]
=

[
J1 J2

J3 J4

] [
∆x
∆y

]
(84)

If this implicit formulation is used, the expression for the explicit system matrix A
in (82) becomes A = M−1

1

(
J1 − J2J

−1
4 J3

)
.

Efficient computation of eigenvalues for large scale problems requires that:

1. It be recognized that only certain modes are significant from the perspective
of stability (i.e., solving the complete eigenproblem is not necessary), and

2. Sparsity be preserved throughout the computation.
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Proper preservation of sparsity requires that the entire problem be formulated as an
augmented problem. That is, equation (84) is to be preferred over equation (82).
(This type of model is sometimes also referred to as a structure-preserving model.)

One of the first efforts in this regard was the AESOPS algorithm [11]. This
algorithm was limited to electromechanical modes of a system. This algorithms
finds the modes associated with each and every machine in turn by exciting the
machine with a torque after shifting the system state matrix A. This algorithm
works well because the electromechanical modes are generally the most important
modes as far as electromechanical stability is concerned. Other algorithms that work
on selected electromechanical modes include [55, 58].

The computationally difficult step in each and every eigenvalue algorithm men-
tioned above is the same: all methods require the solution of a shifted set of linear
equations, where the amount of the shift is the best guess of the eigenvalue or eigen-
values of interest. Some algorithms are based on the use of multiple shifts. In every
case, however, the key problem of interest consists of a sparse linear equation so-
lution. If the reduced formulation is used, the linear set of equations that must be
solved repeatedly is:

(A− qI)x = b (85)

Sparsity preservation requires the use of the augmented formulation [50]. In this
case, the equations of interest are:[

(J1 − qI) J2

J3 J4

] [
x
y

]
=

[
b
0

]
(86)

In both these cases, the “shift” q varies from iteration to iteration and according
to the method used. The shift is generally complex (and purely imaginary in many
cases), while the Jacobian matrices themselves are real. This often leads to the need
for hybrid real/complex computations [45], or, if one is wishing to simplify matters,
purely complex computation throughout.

The use of participation factors and sensitivity analysis has also been in widespread
use in the power industry for the design of power system controls [57, 51]. Sensitiv-
ity analysis of eigenvalue locations is also a well-established topic in the numerical
analysis literature and in other fields [68].

Ordinary transient stability studies consider parameters to be fixed. The impact
of parameters (such as system loading) can be, however, dramatic. In fact, it can
lead to qualitative changes in performance of the system. For example, the effect of
reactive power limits on stability can lead to immediate instability points that are
not evident at lower loading levels [22].
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5.2 Second order models and a radial network

The first study considers a radial system with up to 5000 machines. For some
eigenvalue algorithms (particularly those algorithms that rely on the construction
of the explicit system state matrixA), the growth of computational complexity made
it impossible to solve the above problem in reasonable time for anything but small
systems. For the best algorithms tested the above sizes represented no significant
problem.

In this section every machine is represented by the following model:

δ̇i = ω (87)
ω̇i = −B′

iδi −Diωi +B′
iθi (88)

The linearized version of the network equations assumes that a nodal susceptance
matrix B is available. The equations describing the network are thus given by:

Bθ = 0 (89)

where θ is a vector of nodal voltage angles. This equation presumes the use of a DC
power flow approximation. However, similar computational results are obtainable for
the general case if the Jacobian entries replace the above matrices and incremental
variables replace actual variables. For our purposes, it is sufficient to consider this
case.

Consider a system with ng generators and n nodes. The model has 2ng state
variables and n additional network variables. This leads to 2ng + n by 2ng + n

unreduced matrices J and M and a general problem structure of the form:[
M11 0

0 0

]
︸ ︷︷ ︸

M

[
ẋ
0

]
=

[
J11 J12

J21 J22

]
︸ ︷︷ ︸

J

[
x
y

]
(90)

where J is a Jacobian matrix and M is generally (but not always) a diagonal matrix
of time constants. Figure 10 illustrates the topology of the J matrix and Figure 11
illustrates the topology of M for the case where ng = 10 and n = 10.

5.3 Arbitrary topology networks

In order to experimentally test the growth in computation for large systems, we
investigate what happens to the computational algorithms as networks grow in size
and the number of machine increases. In order to perform these experiments, a
program has been developed that permits us to test the computability of eigenvalues
in ever-larger systems when the system topology is not purely radial. This program
works as follows:
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Figure 10: Topology of the J matrix for the case ng = 10 and n = 10.

• A given number of nodes are randomly interconnected to form a tree.

• A given number of links are added to convert the tree structure into a network
structure.

• Generators are added at a given number of random locations.

Figure 12 illustrates an example of the matrix topology that results from such
an structure.

5.4 Arbitrary topology networks with high order machine models

The model for the machine was also expanded to a 7-th order model, based on the
following equations:

T ′
doi

dE ′
qi

dt
= −E ′

qi − (Xdi −X ′
di)Idi + Ef

di

T ′
qoi

dE ′
di

dt
= −E ′

di + (Xqi −X ′
qi)Iqi

dδi
dt

= ωi − ωs

2Hi

ωs

dωi

dt
= TMi −E ′

diIdi − E ′
qiIqi − (X ′

qi −X ′
di)IdiIqi −Di(ωi − ωs)
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Figure 11: Topology of the M matrix for the case ng = 10 and n = 10.

TEi
dEf

di

dt
= −(KEi + SEi)E

f
di + VRi

SEi = SeKiexp(SePiE
f
di)

TFi
dRf

i

dt
= −Rf

i +
KFi

TFi
E

f
di

TAi
dVRi

dt
= −VRi +KAiR

f
i − KAiKFi

TFi
Ef

di +KAi(Vrefi − Vi)

TCHi
dTMi

dt
= −TMi + PSV i

TSV i
dPSV i

dt
= −PSV i + PCi − 1

RDi
(
ωi

ωs
− i)

The algebraic equation corresponding to saturation (SE1) is neglected in this section.
In addition to these differential equations, it is necessary to have two additional

algebraic equations that relate the machine stator variables to the network variables:

E ′
di − Visin(δi − θi)− RsiIdi +X ′

qiIqi = 0
E ′

qi − Vicos(δi − θi) − RsiIqi −X ′
diIdi = 0

The network for these experiments was also a lossless random arbitrary topology
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Figure 12: Topology of a random-structure interconnection admittance matrix for
a 50 node network.

network. The system was assumed to be at equilibrium at no-load or low-load
conditions. Within the network equations, the machine is connected to the system
by including a term on the machine equations that corresponds to the power (active
and reactive) delivered by the machine to the system (a similar term is added to
represent loads). The following are the algebraic power equations used for the
terminal nodes of the machine (for other nodes simply omit the power injection
term).

IdiVi sin(δi − θi) + IqiVi cos(δi − θi)︸ ︷︷ ︸
PGi

+PLi(Vi) −
n∑

k=1

ViVkYik cos(θi − θk − αik) = 0

IdiVi cos(δi − θi) − IqiVi sin(δi − θi)︸ ︷︷ ︸
Qgi

+QLi(Vi) −
n∑

k=1

ViVkYik sin(θi − θk − αik) = 0

The initialization of the model for nonzero initial conditions proceeds as follows:

• A power system solution is obtained. This solution gives all values of voltage
magnitudes Vi and voltage angles θi everywhere on the network.

• For each machine in turn, the solution of the following five simultaneous equa-
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tions yields the solution for three of the internal state variables (δi, E ′
di and

E ′
qi), along with two algebraic variables (Idi and Iqi):

IdiVi sin(δi − θi) + IqiVi cos(δi − θi) = Pi (91)
IdiVi cos(δi − θi) + IqiVi sin(δi − θi) = Qi (92)
E ′

di − Vi sin(δi − θi) + RiIdi +XqiIqi = 0 (93)
E ′

qi − Vi cos(δi − θi) − RiIqi +XdiIdi = 0 (94)
−E ′

di + (Xqi −X ′
qi)Iqi = 0 (95)

• The remaining variables for the machine are then determined in turn from the
appropriate equations:

Efd = E ′
qi + (Xqi +X ′

qi)Idi (96)
ωi = ωs (97)
VRi = −KEEfd (98)

etc. (99)

5.5 The eigenvalue solution methods

A number of eigenvalue computation methods were considered and tested. In the
end, we settled on the following two methods:

• A simple inverse iteration method.

• The simultaneous iteration method.

These methods require that the problem be in standard form:

ẋ = Jx (100)

or in generalized form:

Mẋ = Jx (101)

Converting the above problem to reduced form requires the use of the reduction
formula:

A = J11 − J12J−1
22 J21 (102)

Application of this formula to the above example results in the matrix topology
structure illustrated in Figure 13, which after reordering yields the structure illus-
trated in Figure 14. Observe that a dense n by n corner of the matrix is obtained.
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The use of this reduction formula makes it possible to use any ordinary method
for eigenvalue computation, since there is no longer an issue associated with a non-
full rank M matrix. However, doing this is highly discouraged as a result of the
loss of sparsity. The result of using the reduced system matrix will generally be
a quadratic (at least) growth in the computational characteristics of almost any
eigenvalue determination method.
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Figure 13: Topology of the reduced system A matrix for the case ng = 10 and
n = 10 (before reordering).

The most significant difference comes when one considers augmented methods
for the solution of the eigenvalue problem. In the augmented method, no a-priori
reduction takes place. Instead, we use a method based on the use of an augmented
formulation, where no matrix is reduced.

The following specific methods and algorithms were considered:

1. Use of the reduced formulation and the full-matrix version of the Matlab
eigensolver.

2. Use of the augmented generalized version of the full-matrix Matlab eigensolver.
This solver finds all eigenvalues. Several of the eigenvalues are at infinity,
which causes some problems with the algorithm, but successful solutions were
obtained in all cases.
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Figure 14: Topology of the reordered reduced A matrix for the case ng = 10 and
n = 10. The fact that A is now dense becomes evident.

3. Use of the sparse Matlab eigensolver on a sparse version of the reduced problem.
The matrix A to which this method is applied can becomes dense.

4. Use of the sparse generalized Matlab eigensolver on the unreduced augmented
matrix J.

5. Use the augmented inverse iteration algorithm with complex shifts on the
reduced matrix, based on Matlab’s linear solver.

6. Use the augmented inverse iteration algorithm with complex shifts on the
augmented matrix, based on Matlab’s linear solver.

7. Use of the augmented version of the simultaneous iteration method with a
complex shift. The Matlab solver is used, along with Matlab’s dense eigen-
solver to solve the reduced eigenproblem that result from the simultaneous
iteration method.

8. Use of the augmented simultaneous iteration method with a vector of complex
shifts. Multiple shift methods were not, however, tested.

The code for the simultaneous iteration method used in this work is supplied in
section 5.8.
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5.6 Numerical experiments on eigenvalue computation

We describe now the sequence of numerical experiments that were used to study how
the growth in computing time increases with network size and other parameters.

The first case considered uses second order models for all machines and a radial
network structure. It uses the inverse iteration method to obtain a single eigenvalue
closes to a specified shift point. Figure 15 illustrates the growth in computation
time and the eigenvalue as determined by the augmented inverse iteration method
for this case. In this and all other examples, the times correspond to actual times on
a 233 MHz Pentium II computer running Matlab version 5, and using the Windows
95 operating system.
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Figure 15: Growth in computation time for eigenvalue computation based on the
augmented sparse inverse iteration method for radially-connected second order ma-
chines. Variability observed is due to variations in number of iterations to conver-
gence.

The second experiment illustrates the growth in computation time for a random
structure network interconnecting a set of second order machines. Figure 16 illus-
trates the growth in computation as a result of the inverse iteration version of the
augmented eigensolver and applying it to the random structure low order model.
The network itself is constructed as indicated earlier: first a random tree is con-
structed, then a specified number of links are added to the network. The number of
links added increases as the network size increases. The size of the network (number
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Figure 16: Growth in computation time for eigenvalue computation based on the
augmented sparse inverse iteration method for network-connected second order ma-
chines. Variability observed is due to variations in number of iterations to conver-
gence.
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of network nodes) is a fixed multiple of the number of generators (in the case of these
experiments, three).

In comparing these two cases, we observe that the radial network structure
(which has a greater network “diameter”) leads to greater computational growth.

The next two experiments compare the same two cases as above, but with two
differences: first, the simultaneous iteration method is used instead of the inverse
iteration method to obtain five eigenvalues, and second, the number of iterations to
convergence has been standardized to prevent spurious variations in computation
time (all subsequent studies compare times based on a fixed number of iterations to
convergence). Figure 17 illustrates the growth in computation for the radial network
case and Figure 18 illustrates the growth in computation time based on the use of
an arbitrary non-radial network structure.
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Figure 17: Growth in computation time for eigenvalue computation based on the
augmented sparse simultaneous iterations for radially-connected second order ma-
chines. The number of iterations has been standardized.

The next set of experiments considers the use of more detailed generator mod-
els and the use of non-radial network structures. Figure 19 illustrates the matrix
topology of the model for the augmented matrix J for a three-generator random-
structure system using seventh order generator models. As networks grow larger,
the structure of the diagonal entries for the generators stays the same (although the
numbers themselves depend on the characteristics assumed for each unit). Figure 20
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Figure 18: Growth in computation time for eigenvalue computation based on the
augmented sparse simultaneous iteration method for network-connected second or-
der machines. Variability observed is due to variations in number of iterations to
convergence.

52



Figure 19: Topology for a three-generator nine-node random structure system.

illustrates the complete topology for the matrix for the 200 generator case using a
seventh order model for each of the machines.

The results of the numerical growth in computation as a function of the number
of generators for the seventh-order machine models are illustrated in Figure 21. Five
eigenvalues closest to a given shift were determined using the simultaneous iteration
algorithm.

The next experiment conducted corresponds to the study of the effect of network
size on computability of eigenvalues. In the next set of experiments, 300 generators
were represented as seventh-order models, but the number of nodes in the intercon-
nected network was allowed to increase from one node per generator to 10 nodes per
generator. Still, the five eigenvalues closest to a set of given shifts were determined
as a function of interconnecting network size. The density of the interconnecting
network measured as the number of links added to the network tree was increases
as a square-root function of the network size. The results of these experiments are
illustrated in Figure 22.

The last set of experiments corresponds to the study of the effect of network
density. A 300 generator network was considered, each generator represented as a
seventh order model. The network was assumed to consists of 900 nodes. The den-
sity of the network was allowed to increase from 50 links to 400 links. The growth
in the computational time for the eigenvalue determination using the simultaneous
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Figure 20: Topology for a 200 generator system interconnected by means of a 2000
node random structure network. The upper left portion of this matrix, which ap-
pears to be diagonal, is not. Each diagonal entry corresponds to a block with a
sparsity structure corresponding to the machine differential equation model for one
machine.
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Figure 21: Growth in computation time for eigenvalue computation based on aug-
mented sparse simultaneous iteration. A seventh order model for each of the ma-
chines was used. The background line shown illustrates a growth order of n1.3.
This growth is consistent with earlier studies on computational complexity in power
systems that suggest growth in the order of n1.0 to n1.4 [3], and much lower than
quadratic growth.
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Figure 22: Growth in computation time for eigenvalue computation based on aug-
mented sparse simultaneous iteration as a function of relative network size for a
network with 300 generators with a fixed number of links. A seventh order model
for each of the machines was used. The background line suggests linear growth in
computation time.
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Figure 23: Growth in computation time for eigenvalue computation based on aug-
mented sparse simultaneous iteration as a function of the density of the network
interconnectivity (measured as the number of tree links in the network). A net-
work with 300 generators was considered, and a seventh order model for each of the
machines was used.
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iteration method is illustrated in Figure 23. Observe that the growth in computing
time for this case was greater than linear, leading to the observation that network
density is perhaps the single most important determinant in eigenvalue computa-
tion time if proper sparsity methods are used in conjunction with the augmented
formulation.

5.7 Jordan blocks

A key feature of eigenvalue computations is the inherent difficulty that occurs in
the determination of eigenvalues associated with nontrivial Jordan blocks and non-
diagonalizable matrices. A matrix is non-diagonalizable when it is similar to a
Jordan block matrix according to the transformation:

A = XJX−1 (103)

where J is a Jordan matrix of a certain order. A Jordan matrix of order n (or ascent
n) is a matrix of the form:

J =




λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . . 0
0 0 · · · λ 1
0 0 · · · 0 λ


 (104)

Jordan forms correspond to a defective multiple eigenvalue. It is important to
indicate that not all multiple eigenvalues are defective. Only defective multiple
eigenvalues give rise to serious computational difficulties. This chapter, for exam-
ple, illustrates the computation of an eigenvalue of multiplicity about 5000 without
any computational difficulties. On the other hand, an defective eigenvalue of mul-
tiplicity as low as 5 or less can become virtually incomputable in finite arithmetic.
However, while computability of an eigenvalue location in exact arithmetic becomes
impossible for such situations, the use of spectral analysis techniques makes it pos-
sible to compute a continuous spectrum that describes the behavior of the cluster of
eigenvalues associated with the Jordan block. Thus, rather than attempting exact
computation it is preferable to attempt to find a bound for the spectra of multiple
defective eigenvalues.

5.8 The simultaneous iteration code

This section illustrates Matlab code used in the determination of multiple eigen-
values using the simultaneous iteration method. At the core of the code is the
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determination of all eigenvalues of a reduced-dimension matrix. The size of the
reduced matrix is equal to the number of desired eigenvalues. The amount of com-
putation required for this step is generally quite trivial, unless a large number of
eigenvalues are desired. Here is the code:

function lambda=simiter(A,q,m,M)
% Find m eigenvalues by sparse inverse simultaneous iteration
% Usage: lambda=simiter(A,q,m,M)
% A single shift q is used
% m is the desired number of eigenvalues (default is one)
% If M is nonzero, a generalized eigenproblem is solved
n=size(A,1);
if nargin<3, m=1; end
if nargin<4, M=speye(n); end
ng=size(M,1); % Number of state variables
z=sparse(i*rand(ng,m));
U=[z;sparse(n-ng,m)];
Vt=M*((A-speye(n)*q)\U);
Bt=(U’*U)\(U’*Vt);
[Pt,thetat]=eig(full(Bt));
oldTheta=0*diag(thetat);
for kk=1:50,

V=M*((A-speye(n)*q)\U);
B=(U’*U)\(U’*V);
[P,theta]=eig(full(B));
newTheta=diag(theta);
if norm(oldTheta-newTheta,Inf)<=1e-4, break; end
oldTheta=newTheta;
U=V*P;

end
disp([int2str(kk) ’ iterations’]);
lambda=1./newTheta+q;

5.9 Concluding remarks

The numerical aspects of large scale computing of eigenvalues seems to not represent
a significant technical challenge provided the augmented formulation is used. The
methods used in the computation of large eigenvalues using sparse matrix methods
scale close to linearly with matrix size.

No computational difficulties associated with Jordan blocks were encountered in
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these experiments, in spite of the fact that many of the machines had identical char-
acteristics. However, none of the systems considered were operating under extreme
loading conditions.

A rather important remark concerns sparsity preservation issues. As is usually
the case, sparsity preservation requires a careful consideration of the computational
implications of every step of the computational process. It is very easy to end up
with computational complexity that becomes quadratic or worse as a result of any
one of a number of possible computational errors:

• If a key vector or matrix is accidentally declared to be dense, or otherwise
becomes dense in the computational process. It is important to treat dense
vectors (such as voltages) as sparse to preserve the sparsity of the overall
computations.

• In languages such as Matlab, vectorization is quite critical to efficiency.

• Steps such as the construction of the Jacobians can, if not done carefully,
overwhelm the rest of the computation.

• Steps that involve aggregation of matrices can, in some systems, become very
slow. The use of profiling of programs is strongly recommended. For example,
in languages such as Matlab, certain practices (such as operations involving
selected rectangular portions of a sparse matrix) are to be avoided.
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6 Directions in automated software for large dynamic

models

This section describes the software which implements the eigenvalue calculations
on the test systems and the scaling calculations and the lessons learned. This
software tested several innovations in applying computer algebra to organize the
equations, automatically derive Jacobians and Hessians, and automatically produce
Matlab code. An approach to advanced, computer algebra assisted software for
large systems is outlined based on the experience gained.

6.1 Software for 9 and 37 bus test systems

The software for 9 and 37 bus test systems was chosen for research flexibility, com-
patibility and use of standard software, ability to be validated and to try out some
new approaches for power system software.

We made the following choices for the software implementing the 9 and 37 bus
test systems:

• The test systems run in Matlab and the PTI program PSS/E. Matlab is needed
for its flexibility, quick prototyping, some good numerical routines, its porta-
bility and for compatibility with other PSerc projects. The Matlab routines
were developed by the project. PSS/E results are needed to validate the Mat-
lab results and to encourage industry to believe the results. The approximate
match between PSS/E results and Matlab results is shown in section 3.10.
The Matlab routines find a succession of operating points and compute eigen-
values and eigenvalue sensitivities. PSS/E finds operating points, compute
eigenvalues, and compute dynamical trajectories to illustrate the oscillations.

• The most difficult and time consuming aspect of setting up the test systems is
specifying the same dynamic data for the machine models to both PSS/E and
Matlab and validating the Matlab models. PTI format is our base standard for
specifying the dynamics and statics of the test systems. Each machine requires
a choice of the various generator, exciter, stabilizer and governor models and
the appropriate parameters.

• The following procedure is used to pass the machine and other system data in
PTI format to Matlab: The block diagrams of the models in the PTI manuals
are used to write equations for the PTI models. These equations, together
with the more straightforward network and load equations are entered into a
Mathematica notebook. Executing the Mathematica notebook organizes the
equations and also uses symbolic differentiation to produce the Jacobian and
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Hessian of the entire system. The output of the Mathematica notebook is
Matlab functions which are executed in a Matlab environment to evaluate
the static or dynamic system equations and the system Jacobian and Hessian.
Thus Mathematica is used to automatically write Matlab functions which in-
corporate the system equations and data and are used in the usual way within
Matlab. This approach was chosen to exploit the organizational and symbolic
capabilities of Mathematica while yielding stand-alone Matlab functions. We
think that this approach is more flexible and reliable than direct coding of the
test cases into Matlab.

• The Matlab functions require static equations to compute load flows and dy-
namic equations to compute the eigenvalues. The issue arises for the project
because we are considering the effect of operating point changes on the dynam-
ics. The static and dynamic equations are explained in section 4.3. Separate
Matlab functions containing the static and dynamic equations are produced.

One purpose of the software was to explore the use of computer algebra in
generating Jacobians and Hessians for realistic power systems models.

The conventional approach to generating power system Jacobians uses numerical
differencing. To explain numerical differencing, suppose that the power system state
is z and the power system differential-algebraic equations are

Ioż = G(z) (105)

We show a numerical differencing calculation for Gz|∗, the power system Jacobian
evaluated at some operating point z∗. Let ej be a column vector with 1 in the jth
row and zeros elsewhere. The jth column of the Jacobian Gz is computed using the
approximation

Gz[·, j]|∗ ≈ (G(z∗ + ∆ej) −G(z∗))/∆ (106)

The power system equations are evaluated with one state incremented slightly, the
base case equations are subtracted, and then the result is divided by the increment.

The project represented the system equations symbolically, analytically differ-
entiated the system equations using computer algebra and automatically produced
code for evaluating the Jacobian and Hessians.

We compare the numerical differencing and computer algebra approaches:

• Accuracy. Computer algebra is more accurate. Accuracy is more significant
when Hessians are computed by applying the differentiating procedure twice.

• Simplicity. Numerical differencing is simpler to program.
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• Speed. Most current implementations of numerical differencing do not exploit
sparsity. Sparsity is essential for practicality and can be exploited in the
computer algebra approach.

• Handling of limits. The power system equations frequently change their form
when limits are met. For example, excitation systems commonly include hard
limits which constrain a dynamic variable to a constant or include continuous
saturation functions. Numerical differencing handles limits without any elabo-
ration in the code and this is a major advantage of numerical differencing. The
hard limits cause programming complexity for computer algebra to account
for the changes in the equations. The derivatives, and especially the second
derivatives of continuous saturation functions are long algebraic expressions
which can result in much unneeded computation.

• The symbolic representation of the model equations necessary for computer
algebra allows the equations used for each component to be output for check-
ing.

One important practical barrier to quick and accurate set up of power system
dynamical models is the large amount of data in a variety of formats due to the
various models used, particularly in the generator models. Checking the models
and the data is a major task. For example, when directly coding dynamic models,
it can be time consuming to get vector indices correct and to ensure that the input
data can be output in a form which makes checking for data errors easy. One of
the purposes of using the Mathematica computer algebra package was to allow the
model equations to be written in a form close to ordinary mathematical notation, to
allow more flexible assembly of the equations and vectors of quantities and to make
data checking easier.

6.2 Software for eigenvalue scaling

To perform the eigenvalue computation time scaling in section 5, the project devel-
oped and used prototype symbolically-assisted numeric solving methods that permit
the handling of arbitrary dynamic machine models. Thus many of the equations
used in section 5 were automatically generated by this code, rather than manually
entered. This approach was necessary to obtain a consistent set of equations with
sufficiently realistic properties for meaningful computational growth results.

The automatic model and equation assembly process operated as follows:

• A network structure was generated. This required the construction of a syn-
thetic network. Both fixed-structure networks and “random” structure net-
works were created. The simplest networks were simply and purely radial. The
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values of the impedances connecting the radial nodes could be a fixed value
or a variable value. This type of network model results in a tridiagonal nodal
admittance matrix. The alternative model used a random structure model.
Because truly random structure models lead to highly unrealistic statistical
properties of the underlying matrices, the method used to generate random
structures consisted of two steps: first, a random-structure tree was produced.
Subsequently, a limited number of interconnections among the tree nodes was
permitted. This resulted in a mostly networked system, with a few radial
branches.

• At a number of locations within the artificially generated grid, a number of
generators were placed. The properties (size, complexity of model, model
parameters) for each of this generators were also controlled. Both the case of
identical or similar machine models was considered, along with cases where
the variables and the structure of the model used for the machine was varied
randomly. The machines could include control systems or could be represented
with models as simple as a second order model.

• A set of initial conditions was established. Having a steady-state conditions
that is in (stable or unstable) equilibrium is essential for the analysis. Two
approaches to the establishment of appropriate initial conditions were used:
(a) Establishment of appropriate voltage/angle patterns and then computing
the corresponding power flows and initial machine angles that lead to this
result, or (b) solving in effect a power flow, based on the random specification
of machine power outputs and/or load values, and then computing the internal
machine and control system conditions.

Many alternatives to this system generation process remain to be investigated.
In particular, it would be of interest to create the random networks either (a) by
extrapolation of actual physical networks, where an automatic “expansion” proce-
dure is considered, or (b) by interconnection of sets of smaller physical networks, or
finally (c) by creating network growth by adding refinements and/or detail to exist-
ing physical models (for example, representing lower portions of the grid in greater
detail). A combination of these methods is also permissible.

All these methods for the study of the performance of algorithms on ever-larger
networks required the creation of an environment where the user had complete
freedom on the equations to be used to model the system, including the ability
to add new types of models and new types of controls to these models. Thus,
it was difficult to do these studies using the more rigid model structure imposed
by “classic” simulation environments such as those provided by PSS/E. However,
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within the limited computer algebra system restrictions used in this project, it was
also difficult to incorporate variable structure models.

Parts of the automatic and flexible assembly of power system model equations
for assessing computational speed could be adapted and developed in future work
to flexibly specify large dynamic power networks in a form suitable for applying
advanced computer algebra methods.

6.3 Lessons learned

• The project reinforced our belief in the importance of data structures and soft-
ware and model organization. Effective dynamic model software tools depend
on being able to easily and flexibly specify and check dynamic models and
their parameters.

• Validation of new software with existing software was very time consuming,
partly because of the difficulty of reproducing exactly the models used in
the commercial software. The large number of variants in machine dynamic
modeling cause difficulties in comparing results.

• The issue of variable structure and control system limits is the main barrier to
applying computer algebra methods. Better computer algebra models should,
however, resolve this difficulty.

6.4 Advanced software concepts for large dynamic models

Based on the experience with the dynamic models described above, we outline some
of the key issues for a new generation of dynamic power system models. The models
are aimed towards oscillation problems, but many of the features would be of more
general use in any dynamical investigation.

• The overall conception is a flexible set of tools to organize and assemble models
and data into equations that can then be processed by any desired algorithm
rather than a monolithic piece of software for a fixed purpose.

• Specification and checking of models and data. The model specifications
should align with any emerging standards and be as compatible as possible
with standard commercial packages to allow validation and transfer of cases.
The software must produce easily legible output defining the models and pa-
rameters input so that they can be easily checked and updated. For example,
parameter output must be labeled with the parameter names and subsets of
the equations used should be accessible to the user.
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• Hard limits and variable structure. This aspect requires a comprehensive
approach. For example, a minimal set of basic operators for specifying hard
limits and look up tables and case dependent functions could be developed.
These operators would be used to specify variable structure and limits in the
component models for input and internally in the code. The differentiation
of the basic operators would be computable so that computer algebra could
be used to automatically differentiate equations including the operators. The
modeling and equation representation need to be designed for efficiency and for
exploitation of sparsity. Alternative or similar concepts arising from automatic
differentiation of functions defined by computer code containing conditional
branching statements should be reviewed.

• Automatic assembly of equations. The software should automatically assemble
equations in a form easily accessible to algorithms with flexibility in the choices
of vectors of states and parameters.

• The use of matrix and vectorization concepts within symbolic algebra packages
for purposes of efficiency needs to be further explored.
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7 A new mechanism leading to oscillations

The power system linearization and its modes vary as power transfers, redispatch or
other power system parameters change. We suggest a new mechanism for interarea
power system oscillations in which two oscillatory modes interact near a strong res-
onance to cause one of the modes to subsequently become unstable. The two modes
are near resonance when they have nearly the same damping and frequency. The
possibility of this mechanism for oscillations is shown by theory and computational
examples. Theory suggests that passing near strong resonance could be expected in
general power system models. The mechanism for oscillations is illustrated in 3 and
9 bus examples with detailed generator models.

7.1 Introduction

This chapter considers how changes in power system parameters could cause low
frequency oscillations. One example of parameter changes is power transactions
which change the power system operating point and hence change the system modes
and possibly cause oscillations. The main contribution of the chapter is to suggest,
analyze and illustrate a mathematical mechanism for low frequency oscillations. De-
scribing mechanisms which cause oscillations is an essential step in developing sound
methods of operating the power system up to but not at the onset of oscillations.

The power system linearization and its modes vary as power system parameters
change. Damped oscillatory modes can move close together and interact in such a
way that one of the modes subsequently becomes unstable. An ideal version of this
phenomenon occurs when two damped oscillatory modes (two conjugate complex
pairs of eigenvalues) coincide exactly. This coincidence is called a resonance, or,
especially in the context of Hamiltonian systems, a 1:1 resonance. If the linearization
is not diagonalizable at the resonance, the resonance is called a strong resonance [68].
Otherwise, if the linearization is diagonalizable at the resonance, the resonance is
called a weak resonance. Here we are most interested in strong resonance. At
a strong resonance, the modes typically become extremely sensitive to parameter
variations and the direction of movement of the eigenvalues turns through a right
angle. For example, an eigenvalue that changes in frequency before the resonance
can change in damping after the resonance and become oscillatory unstable as the
damping changes through zero. The resonance is a precursor to the oscillatory
instability in the sense that the resonance causes the eigenvalues to change the size
and direction of their movement in such a way as to produce instability.

In practice the power system will not experience an exact strong resonance, but
will pass close to such a resonance and the qualitative effects will be similar: the
eigenvalues will move quickly and change direction as they interact and this can
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lead to oscillatory instability. Note that although the eigenvalues move nonlinearly
in the complex plane as power system dispatch varies, we are describing how a
linearization of the power system model changes; we are not examining nonlinearities
in the power system model at a fixed power system dispatch as in the normal form
analysis recently applied to power systems [46, 72].

Previous power systems work related to the resonance phenomenon studied
here includes analysis of the 1:1 resonance in Hamiltonian power system models
by Kwatny [43], observation of mode patterns changing by Van Ness [74], the use
of repeated poles to improve Prony analysis by Trudnowski et al. [73], and the
studies of interarea oscillations at Ontario Hydro [39] and of the WSCC system
[39, 52]. Seyranian has studied strong resonance in mechanics [68, 69]. These and
other previous works are discussed in section 7.5.

7.2 Illustration of strong eigenvalue resonance

Two pairs of complex conjugate eigenvalues are exactly in resonance when they
have exactly the same frequency and damping. Exact resonance is an unusual
occurrence, but if it does occur, then the eigenvalues can be very sensitive to system
changes and, if the resonance is strong, the eigenvalues move through a right angle
at the resonance. This section illustrates strong resonance and near resonance in
eigenvalues of parameterized matrices.

7.2.1 Example 1 (resonance of 2 real eigenvalues)

-3 -2 -1

-1

1

Figure 24: Resonance of two real eigenvalues

Before considering the strong resonance of complex eigenvalues, it is helpful
to review the strong resonance of two real eigenvalues. Consider the matrix M1
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parameterized by the real number α:

M1 =
(−2 −1
α −2

)
(107)

The eigenvalues of M1 are λ = −2 ±√−α. The movement of the eigenvalues as α
increases from −1 to 1 is shown in Figure 24. At α = −1, the eigenvalues are −3 and
−1. As α increases the eigenvalues approach each other until at α = 0 the eigenvalues
coincide at −2. As α increases through zero, the eigenvalues change direction by
a right angle and move into the complex plane. At α = 1, the eigenvalues are the
complex pair −2 ± j. The eigenvalue movement is fast near the strong resonance
at −2; indeed, exactly at −2 the eigenvalues are infinitely sensitive to parameter
variation.

This eigenvalue movement is familiar in control courses as the root locus ob-
tained by increasing feedback gain on a second order plant with two real poles. In
this context the point of strong resonance is called critical damping. The strong
resonance point is also called a node-focus point and has been studied in power
systems by Ajjarapu [2] and DeMarco [19]. Although the convergence of two system
modes changes from monotonic to oscillatory at strong resonance, strong resonance
is not generally a bifurcation (there is generally no change in topological equivalence
or stability).

7.2.2 Example 2 (resonance of 2 complex pairs)

-3 -2 -1

1

2

3

Figure 25: Exact resonance of two complex pairs
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Consider the matrix M2 parameterized by the real number α:

M2 =



−1 + 2 j 1 + j 0 0

α −1 + 2 j 0 0
0 0 −1 − 2 j 1− j

0 0 α −1 − 2 j




M2 is a complex matrix, but it is structured to be similar to a real matrix (note
that the 2× 2 submatrices are complex conjugate). That is, a coordinate change T
transforms M2 into a real matrix:

T M2 T
−1 =



−1 1 2 1
α −1 0 2
−2 −1 −1 1
0 −2 α −1




where T =




1 0 −1 0
0 1 0 −1
j 0 j 0
0 j 0 j




The eigenvalues of M2 and TM2 T
−1 are the same.

At α = −2, the eigenvalues of M2 are −1.64 ± 3.55j and −0.36 ± 0.45j. As α
varies from −2 to 2, two of the eigenvalues of M2 vary as shown in Figure 25 (these
eigenvalues are −1 + 2 j ±√

1 + j
√
α). Each eigenvalue shown in Figure 25 has a

complex conjugate which moves correspondingly below the real axis. As α increases
through zero, the eigenvalues change direction by a right angle. At α = 0 the
eigenvalues coincide at the strong resonance at −1+2j. M2 is not diagonalizable at
the resonance. The eigenvalue movement is fast near the resonance; indeed, exactly
at the resonance the eigenvalues are infinitely sensitive to parameter variation. Note
how one of the eigenvalues becomes unstable after the resonance.

7.2.3 Example 3 (near resonance)

Example 2 is not typical because an exact strong resonance is encountered. It is
more typical to come close to strong resonance as the parameter is varied. Example
3 considers a matrix M3 which is a perturbation of matrix M2:

M3 = M2 +




0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0


 (108)
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Figure 26: Near resonance of two complex pairs

The eigenvalues of M3 vary as shown in Figure 26 as α varies from −2 to 2. Note
how the eigenvalues come close together and quickly turn approximately through a
right angle. There is a marked effect of coming close to the resonance.

7.2.4 Example 4 (near resonance)

-3 -2 -1

1

2

3

Figure 27: Near resonance of two complex pairs

Example 4 shows a different way in which example 2 can be perturbed:

M4 = M2 +




0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 −1


 (109)
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The eigenvalues of M4 vary as shown in Figure 27 as α varies from −2 to 2. The
eigenvalue movements in Figures 26 and Figure 27 are both close to the eigenvalue
movement in Figure 25, but a different eigenvalue becomes unstable in Figures 26
and Figure 27.

7.3 Power system simulation results

This section shows examples of 3 bus and 9 bus power system models passing near
strong resonance as parameters are changed.

7.3.1 3 bus system

We have found an oscillatory instability caused by strong resonance in the 3 bus
system described in section 2.2.1. The 3 bus system consists of generators at bus
1 and bus 3 and a constant power load at bus 2. The generator models are tenth
order and the system parameters are reported in section A.1. As the generator
dispatch is varied to increase the power supplied by bus 3, two damped complex
eigenvalues vary as shown in Figure 28. The eigenvalues are initially at −0.4± 8.3j
and −0.9 ± 4.3j and are stable. As the power supplied by bus 3 increases, the two
eigenvalues approach one another, interact, and then one of the eigenvalues crosses
the imaginary axis and becomes unstable.

-2 -1 1

5

6

7

8
frequency
(rad/s)

damping (/s)

Figure 28: Eigenvalues as dispatch varies; Vref = 1.07

The case shown in Figure 28 is adjusted to show the eigenvalues coming close
together and has Vref = 1.07, where Vref is the voltage reference set point of the
generators at buses 1 and 3. Rerunning the case for decreased and increased Vref

is shown in Figures 29 and 30. Figures 29 and 30 show typical perturbations of the
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Figure 29: Eigenvalues as dispatch varies; Vref = 1.03

strong resonance. Observe that if one attempts to stabilize the unstable eigenvalue of
Figure 29 by raising Vref , then this eigenvalue is indeed stabilized, but that the other
eigenvalue becomes unstable as shown in Figure 30. This shows the importance of
examining both pairs of eigenvalues near strong resonance when trying to stabilize
the system.

7.3.2 9 bus system

The form of the 9 bus system is based on the WSCC system from the text of Sauer
and Pai [67]. There are 3 generators with 2 axis models and IEEE Type I exciters.
More details may be found in sections 2.2.2 and A.2. Figure 31 shows the eigenvalue
movement when real power generation at bus 2 is varied from 1.5 pu to 2.10 pu in
steps of 0.05. Real power generation at bus 3 is fixed at 1.5 pu.

The eigenvalues pass near resonance and then one of the eigenvalues becomes
oscillatory unstable. Note that the eigenvalues initially move together by a change
mostly in frequency. It is the resonance which transforms this movement into a
change in damping and hence instability. The eigenvalues move quickly near the
resonance.

7.4 Theory results

This section gives an informal account of the theoretical results. The mathematics
to support these results is presented in section 7.7.

As power system parameters vary, the Jacobian matrix M describing the lin-
earization of the power system at the operating point also varies. The system modes
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Figure 30: Eigenvalues as dispatch varies; Vref = 1.11

are described by the eigenvalues and eigenvectors of the Jacobian M . The theory
describes how two oscillatory modes of the Jacobian M vary when they are near a
resonance in which two complex eigenvalues coincide in frequency and damping.

7.4.1 Strong resonance

We now describe the situation near a strong resonance. Near strong resonance the
Jacobian M is similar to a matrix which includes a 4× 4 submatrix M ′

C describing
the modes of interest:

M ′
C =



λ 1 0 0
µ λ 0 0
0 0 λ∗ 1
0 0 µ∗ λ∗


 =

(
MC 0
0 M∗

C

)
(110)

Here λ and µ are complex numbers which are functions of the power system param-
eters. The star symbol ∗ stands for complex conjugate. The eigenvalues of M ′

C are
the same as the eigenvalues of the Jacobian M corresponding to the two oscillatory
modes of interest.

The behavior of M ′
C is governed by the submatrix

MC =
(
λ 1
µ λ

)
(111)

It is straightforward to calculate that the eigenvalues of MC are

λ1 = λ+
√
µ and λ2 = λ−√

µ (112)
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Figure 31: 9 bus eigenvalues as dispatch varies

Therefore the eigenvalues of M ′
C are

λ±√
µ and (λ±√

µ)∗

and these are the eigenvalues of the JacobianM corresponding to the modes of inter-
est. The idea is to study these modes by examining the eigenvalues and eigenvectors
of MC .

The eigenvalues of MC coincide at λ when µ = 0 and this is the condition
for resonance. MC is nondiagonalizable at resonance (alternative terms for ‘non-
diagonalizable’ are ‘nonsemisimple’ and ‘nondefective’). The sensitivity of these

eigenvalues to the real or imaginary part of µ is
±1
2
√
µ

, which tends to infinity as

µ tends to zero. As µ moves in the complex plane on a smooth curve through 0
with nonzero speed, the argument of

√
µ jumps by 90o so that the direction of the

eigenvalue movement changes by 90o.
The right and left eigenvectors of MC are(

1
±√

µ

)
and (±√

µ , 1 )

At the resonance at µ = 0, the eigenvectors are infinitely sensitive to changes in µ

and the right and left eigenvectors are orthogonal. At the resonance at µ = 0, there
is a single right eigenvector together with a generalized right eigenvector. As µ tends
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to zero and the resonance is approached, the two right eigenvectors become aligned
and tend to the right eigenvector at µ = 0. Thus the system modes approach each
other as µ tends to zero. The dependence of this approach on

√
µ shows that this

approach is initially slow and then very quick near µ = 0.

7.4.2 Predicting eigenvalue movement near strong resonance

Let λ1 be a lightly damped system eigenvalue. Formulas to compute the first or-
der eigenvalue sensitivity ∂λ1

∂p with respect to changes in any parameter p are very
useful in determining the robustness of λ1 and in detecting whether λ1 is a critical
mode that can readily become unstable as parameters change. (For the parameters
such as redispatch considered here, the effect of the equilibrium movement must be
accounted for by Hessian terms in the formulas computing these sensitivities.)

Now suppose that λ1 and λ2 are close to a strong resonance. Then the nonlinear
and rapidly changing movement of the eigenvalues near the resonance will make ∂λ1

∂p

and ∂λ2
∂p very poor estimates of the eigenvalue movements for any sizable changes in

p. This subsection shows how better estimates can be obtained.
An important general observation is that λ and µ of (111) can be calculated

from numerical eigenvalue results. Inversion of (112) yields

λ = (λ1 + λ2)/2 (113)
µ = (λ1 − λ2)2/4 (114)

λ is the average eigenvalue and µ describes the detuning from exact strong resonance.
Figure 32 shows how λ and µ computed from (114) vary for the case shown in

Figure 33. The approximately linear variation of λ and µ in Figure 33 motivates
the following method of estimating eigenvalue movement. The sensitivity of λ and
µ with respect to p can be calculated from the sensitivities of λ1 and λ2:

∂λ

∂p
=

1
2

(
∂λ1

∂p
+
∂λ2

∂p

)
(115)

∂µ

∂p
=
λ1 − λ2

2

(
∂λ1

∂p
− ∂λ2

∂p

)
(116)

First order estimates of the changes in λ and µ are made using (115) and (116) and
then estimates of the eigenvalue movements are obtained using (112). Figure 33
shows a good match between the estimated and actual eigenvalue movements.

7.4.3 Strong resonance in the frequency domain

We examine the time and frequency domain solutions at strong resonance when
µ = 0. Assume that λ = σ ± jω with σ < 0. The time domain solutions to the
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Figure 32: Variation in λ and µ near strong resonance; ∗ = λ, + = µ.

linear differential equations with matrix (110) are linear combinations of teσt cosωt,
teσt sinωt, eσt cosωt and eσt sinωt. Some perturbations mainly excite the teσt cosωt
and teσt sinωt solutions and these perturbations will cause oscillations that grow
before exponentially decaying to zero. The frequency domain description may be
shown in block diagram form:

Observe the input/output combination passing vertically down the page in Fig-
ure 34 in which the output of the first damped oscillator feeds the second damped
oscillator. This mode coupling, which is characteristic of the strong resonance, has
interesting consequences for the power system behavior.

Consider two modes which initially are local to separate areas of the power
system. The modes are initially decoupled so that disturbances in one area will
only affect the mode in that area. Now suppose that parameters change so that the
two modes interact by encountering a strong resonance. As the strong resonance is
approached, the mode eigenvectors will converge so that the modes are no longer
confined to their respective areas. Moreover, at the strong resonance, a disturbance
in one of the areas (say area 1) can excite the mode of area 2. We expect that
qualitatively similar mode coupling effects can occur for systems that pass near
strong resonance.
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Figure 33: Predicting eigenvalue movement near resonance; +=predicted eigenval-
ues, *= actual eigenvalues.

7.4.4 Genericity of strong resonance

The theory also describes how typical strong resonance is in a generic set of dif-
ferential equations such as those which might be expected when modeling a power
system with no special structure. Consider a generic set of equations with two real
parameters (this could be obtained from a power system model by letting only two
of the power system parameters vary). Each point in the parameter plane yields
an operating point and a Jacobian. The generic situation is that every point in the
parameter plane will yield a diagonalizable Jacobian except for isolated points at
which strong resonance occurs. Weak resonance does not generically occur in the
parameter plane. (The meaning of a situation being generic is that the situation
is robust to small perturbations of the equations and that any exceptional cases in
which more exotic events occur can be perturbed with a small perturbation so that
the situation obtains.) Now suppose that the two parameters vary as a function of
another parameter t; this describes a curve in the parameter plane. It should be
clear that, generically, this curve will not pass through any of the isolated resonance
points. That is, as t is varied, the system will not typically encounter an exact
strong resonance. However, it is quite possible that the curve passes near one of the
strong resonances as t is varied.

More generally, we can examine the rarity of strong resonance using the concept
of codimension. The rarity of an event can be described by the number of inde-
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Figure 34: Modes at strong resonance

pendent parameters that need to be varied to typically encounter the event; this
number is called the codimension of the event. For example, in a power system, the
event that flow on a particular line is not exactly 500 MW typically occurs without
any independent parameters varying and is codimension 0. The event that flow on a
particular line is exactly 500 MW typically requires one parameter to be varied and
is codimension 1. For example, the dispatch of a single generator could be changed
so that the flow on a particular line is exactly 500 MW. The event that flow on a
particular line is exactly 500 MW and the voltage angle at bus 27 is exactly 30o

typically requires two parameters to be varied and is codimension 2. The dispatch
of two generators could be changed so that flow on a particular line is exactly 500
MW and the voltage angle at bus 27 is exactly 30o.

Events of higher codimension are successively rarer. A codimension 0 event can
typically happen at any time in a power system. As the power system is operated
during the day, it is parameterized by the single parameter time, so that codimen-
sion 1 events can typically happen during one day of operation. For example, the
flow on a particular line being exactly 500 MW could be a typical occurrence at
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some time during the morning load pick up. Note that a codimension 1 event need
not necessarily happen every day, but that it is in some sense typical when it does
happen. Oscillatory modes becoming unstable and voltage collapse are other ex-
amples of codimension 1 events: either instability can typically occur as a single
loading parameter is increased.

The coincidence of two pairs of complex eigenvalues of a matrix at λ = σ ± jω
typically happens with Jordan canonical form


λ 1 0 0
0 λ 0 0
0 0 λ∗ 1
0 0 0 λ∗


 (117)

A strong resonance of the form (117) without regard to the value of λ occurs in the
matrix (110) when the complex parameter µ = 0. Since this requires both the real
and imaginary part of µ to be zero, this is a codimension 2 event. (On the other
hand, the occurrence of a strong resonance of the form (117) for a particular value
of λ = λ0 requires both λ = λ0 and µ = 0 and is a codimension 4 event.)

A strong resonance with two oscillatory modes exactly coinciding is a codimen-
sion 2 event. Thus it can be typically encountered when varying two parameters.
Strong resonance will not be typically encountered when varying one parameter,
but it is still possible to pass near to strong resonance and in this case the nearness
would have a significant effect on the system behavior. In particular, if the system
is near strong resonance, then the following is typical:

• The eigenvalues and eigenvectors are very sensitive to parameter variations

• A general parameter variation causes the direction of eigenvalue movement in
the complex plane to turn quickly through approximately a right angle.

• The right and left eigenvectors are nearly orthogonal.

• The right eigenvectors of the two modes are nearly aligned. This implies that
the pattern of oscillation of the two modes is similar.

7.4.5 Weak resonance

There is a further possibility when two complex eigenvalues coincide that the Jaco-
bian is diagonalizable. That is, at resonance the Jacobian M is similar to a matrix
which includes a 4× 4 submatrix


λ 0 0 0
0 λ 0 0
0 0 λ∗ 0
0 0 0 λ∗


 (118)
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This type of eigenvalue resonance is called weak resonance and is not generic in two
parameter equations. (Indeed it is a codimension 6 event.) Thus we do not expect
weak resonance to occur in a generic set of equations such as those that might be
expected when modeling a power system with no special structure. However, weak
resonance can occur with some special structure: For example, consider two power
systems which are not connected together by any tie lines. The eigenvalues of the
entire system belong to either one power system or the other. If parameters vary
so that an eigenvalue of one power system coincides with an eigenvalue of the other
power system, then these two eigenvalues will not interact as parameters vary and
this is weak resonance. Another example of special structure which can yield weak
resonance is when a power system study is done with a bilaterally symmetric power
system model.

At weak resonance, there is ambiguity in associating eigenvectors with one of
the modes that is resonating because any nontrivial combination of the eigenvectors
is also an eigenvector. Moreover, the eigenvectors and eigenvalues are ill condi-
tioned in that some parameter changes cause sudden changes in the eigenvectors
and eigenvalues. In particular, there are strong resonances arbitrarily close to a
weak resonance.

We examine the time and frequency domain solutions at diagonalizable reso-
nance. Assume that λ = σ ± jω with σ < 0. The time domain solutions to the
linear differential equation with matrix (118) are linear combinations of eσt cosωt
and eσt sinωt. The frequency domain description may be shown in block diagram
form:

input along right eigenvectors

∨ ∨
1

s2− 2σs+ σ2 + ω2

1
s2− 2σs+ σ2 + ω2

∨ ∨
output along right eigenvectors

Figure 35: Modes at diagonalizable resonance

Observe that one mode does not feed the other mode as in Figure 34.
Suppose that two modes which are local to separate areas of the power system

and thus decoupled encounter a weak resonance. Then the modes remain decoupled
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at the weak resonance. For example, a disturbance confined to one area will only
excite the local mode of that area. (This follows from the invariance of any linear
subspace of the eigenspace corresponding to the coincident eigenvalues.)

7.4.6 Typical resonance in power system models

Suppose that a power system model is a generic set of parameterized differential
equations such as those that might be expected when the power system has no spe-
cial structure. Then the theory of the previous subsections shows that the resonance
that is most typically encountered is the strong resonance. If a single parameter of
the power system model were varied, the system would not be expected to encounter
exact strong resonance, but it could well pass near strong resonance. If two param-
eters of the power system model were varied, then a strong resonance could be
typically encountered.

This analysis raises the question of the extent to which practical power system
models are generic or have ‘special structure’. It seems clear that special structure
such as bilateral symmetry or perfect decoupling due to the power system areas
being completely disconnected is not expected in practical power systems models.
Moreover, a sensible initial working assumption is that practical power system mod-
els are generic. However, it is a possibility that in some cases there could be sufficient
decoupling between power system areas to make the areas approximately decoupled.
In these cases the power system could pass near to a weak resonance. This would
also imply passing near a strong resonance, since there are strong resonances ar-
bitrarily close to a weak resonance. However, not all perturbations of the weak
resonance involve the strong resonance and, moreover, it is possible that the strong
resonance could be observed only in a detailed analysis whereas the weak resonance
would determine the approximate overall behavior. More work is needed to clarify
whether a weak resonance is likely to occur in a practical power system model and
what would be expected to be observed near a weak resonance.

Another consideration is the genericity of the parameter changes being consid-
ered. Parameter changes such as power redispatch strongly affect the operating
point and are expected to generically change the power system linearization. It is
not clear whether changing a control system gain corresponds to a generic parame-
ter change. Control systems are designed to affect particular modes and changes in
control gains often have little or no effect on the operating point.

7.5 Previous Work

This section describes previous work and its relation to the resonance phenomenon.
Kwatny [43, 44] studies the flutter instability in power system models with
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Hamiltonian structure. A stable equilibrium of a Hamiltonian power system model
necessarily has all eigenvalues on the imaginary axis. One generic way for stabil-
ity to be lost as a parameter varies is the flutter instability, or Hamiltonian Hopf
bifurcation. In the flutter instability, two modes move along the imaginary axis,
coalesce in an exact strong resonance, and split at right angles to move into the
right and left halves of the complex plane. The Hamiltonian power system model
in [43] represents electromechanical mode phenomena with simple swing models for
the generators. Kwatny [43] gives a 3 bus example of the flutter instability and
emphasizes that the flutter instability is generic in one parameter Hamiltonian sys-
tems. It is also possible to add uniform damping to the conservative model in order
to shift the Hamiltonian eigenvalue locus a fixed amount leftwards in the complex
plane [44]. Then two eigenvalues (necessarily of the same damping) approach other
in frequency, coalesce in an exact strong resonance and then split apart in damping.
One of these eigenvalues can then cross the imaginary axis in a Hopf bifurcation to
cause an oscillation. This is clearly a special case of strong resonance causing an
oscillation. The Hamiltonian plus uniform damping model structure constrains the
eigenvalues to move either vertically along the line of constant damping or horizon-
tally and causes the resonance to be exact.

Van Ness [74] analyzes a 1976 incident of 1 Hz oscillations at Powerton station
with a 60 machine model of the Midwestern American power system with 9 machines
represented in detail. The paper seems successful in reproducing the essential fea-
tures of the incident by eigenanalysis of the model. Figure 7 of [74] examines the
effect of a variation of power and excitation at Powerton unit 6. The eigenvector
associated with a dominant eigenvalue shows significant changes near the instability
that are attributed to a resonant interaction with another nearby mode. Movement
in the real part of close eigenvalues when the excitation is lowered ‘seems to be due
to a coupling effect which has been observed in the model’. Unfortunately the data
is sparse; only one change in each of the power or excitation is presented and firm
conclusions about the nature of the resonant interaction cannot be made. However,
the features shared between the account of the eigenanalysis of [74] and the strong
resonance are suggestive.

Klein and Rogers et al. at Ontario Hydro [39] analyze local modes and an inter-
area mode in a symmetric power system model with 2 areas and 4 machines. The
symmetry is bilateral: each of the 2 areas has the same machines and transmission
lines. However, the base case is a stressed case with area 1 exporting power to
area 2 over a single weak tie line. The two local modes have eigenvalues that are
practically equal, and each of the computed local modes has substantial compo-
nents across the entire system. A small decrease in the machine inertias in area 2
causes the local modes to change substantially to have significant components only
in their respective areas. Klein and Rogers attribute these results to the nonunique-
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ness of eigenvectors associated with a weak resonance. Although similar eigenvector
changes could be found near a strong resonance, one can argue that a weak reso-
nance is expected here because of the high degree of system symmetry. We do not
expect bilateral symmetry in a practical power system. The assumption of a perfect
bilateral symmetry would cause a weak resonance and exclude strong resonance.

Hamdan [28] studies the conditioning of the eigenvalue and eigenvectors of a
system very similar to that of [39]. The eigenvectors become ill conditioned near
resonance and singular value measurements of the proximity to a weak resonance
(‘sep’ function) suggest that the system does pass near a weak resonance.

Klein and Rogers et al. [39] also discuss the modes near 0.7 Hz of the Western
North American power system. The Kemano generating unit in British Columbia
can have high participation not only in a local mode of 0.77 Hz but also in modes
involving the Southwest United States of 0.74 and 0.76 Hz. Klein and Rogers regard
this modal interaction as unusual, distinguish it from the phenomenon observed in
their symmetric power system model and conclude that ‘Oscillations in one part of
the system can excite units in another part of the system due to resonance’. Mansour
[52] shows large oscillations at Kemano due to disturbances in the the Southwest
United States. It would be interesting to determine if this modal interaction can be
explained by a nearby strong resonance.

Trudnowski, Johnson, and Hauer [73] use a strong resonance assumption to
improve Prony analysis identification of transfer functions from noisy ringdown data.
Closely spaced poles with large residues of nearly opposite sign are replaced by two
poles in an exact strong resonance at the average of the previous pole positions.
Trudnowski et al. show that this improves the estimates of the pole positions in a
27 bus, 17 generator example which captures some features of the WSCC system.
This result is supportive of the occurrence of strong resonance in power systems.

DeMarco [19] describes how increased loading of tie lines can cause a low fre-
quency mode to decrease in frequency until the complex conjugate eigenvalues coa-
lesce at the real axis and then split along the real axis so that one eigenvalue passes
through the origin and steady state stability is lost in a collapse. In this situation,
the coalescing of the complex conjugate eigenvalues is a strong resonance of two
real eigenvalues (see section 7.2.1) which is a precursor to the steady state loss of
stability. DeMarco demonstrates the phenomenon in a 14 bus system. Ajjarapu
[2] also describes this phenomena, calling the real strong resonance a ‘node-focus
bifurcation’ and demonstrates the phenomenon in a 3 bus system. We observe that
this phenomenon follows the same pattern of resonance as a precursor to instability
as the strong resonance in the complex plane causing oscillatory loss of stability.

There is a large amount of very useful previous work addressing the tuning of
control system gains to avoid oscillations which we do not attempt to review here.

The strong resonance and its implications for stability is known in mechanics.
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Seyranian [68] gives a perturbation analysis of eigenvalue movement caused by pa-
rameter changes near both strong and weak resonance. Of particular interest is the
analysis showing how passage through a diagonalizable resonance can be perturbed
to obtain nondiagonalizable resonances. Seyranian [69] considers strong resonance
of a parameterized linear oscillatory system. The eigenvalue movements near res-
onance are shown to be hyperbolas to first order and a procedure for calculating
the hyperbolas from the eigenstructure is given. The role of the resonance as a
precursor to instability and in altering which mode goes unstable is described and
two applications in mechanics are presented.

7.6 Discussion and Conclusion

This chapter demonstrates strong resonance as a precursor to oscillatory instability
in 3 and 9 bus power systems as power dispatch is varied. Mathematical analysis
confirms the observed qualitative features of the eigenvalue and eigenvector move-
ment near strong resonance. Near strong resonance, eigenvalues move quickly and
turn through approximately 90o. Thus if the eigenvalues are initially approach-
ing each other in frequency, then they will quickly separate in damping after the
resonance. One of these eigenvalues can cross the imaginary axis and cause an
oscillation. This new mechanism for power system oscillations can be seen as a
generalization of Kwatny’s flutter instability of Hamiltonian power system models
[43, 44] to a general power system model.

The new mechanism for power system oscillations requires some change of per-
spective: instead of only examining the damping of a single complex conjugate pair
of eigenvalues, one must also consider the possibility that two pairs of eigenvalues
interact near a strong resonance to cause the oscillations. If two pairs do interact
in this way, then attempting to explain and predict the eigenvalue movement or
attempting to damp the oscillation by only examining the complex pair that crosses
the imaginary axis can easily fail (see section 7.3.1). The new mechanism does not
preclude the possibility of a single isolated complex conjugate pair of eigenvalues
changing in damping as a cause of oscillations; rather, the new mechanism points
out an alternative way in which the interaction of two pairs of eigenvalues causes
one of the pairs of eigenvalues to reduce its damping and become unstable.

With the notable exceptions of the Hamiltonian work of Kwatny [43, 44] and
the transfer function identification work by Trudnowski et al. [73], the possibility of
strong resonance seems to have been neglected in power systems analysis. However,
theory suggests that a typical power system model can pass close to strong resonance
as a parameter is varied and that encountering strong resonance is more likely
than encountering a weak resonance. More work is needed to determine whether
practical power systems have any special structure that could make approximate
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weak resonance more likely. Nevertheless, we do suggest that effects due to nearby
strong resonance do occur in practical power systems. Artificially symmetric power
system models may fail to give resonance results representative of practical power
systems.

As two eigenvalues approach strong resonance, the corresponding eigenvectors
also converge. This is one way to explain how power system modes which are ini-
tially associated with different power system areas become coupled. Moreover, near
strong resonance one expects that disturbances in one mode can excite oscillations
in another mode. It will be interesting to try to verify these explanations in power
system examples such as the 0.7 Hz WSCC system modes in which some sort of
resonance has long been suspected of causing ‘anomalous’ results.

Recent simulation work by Jones has shown strong resonance near 0.7 Hz of
two well damped electromechanical modes of a 19 machine dynamic model of the
WSCC system [36]. These results also illustrate the approximate coincidence of
mode shapes (eigenvectors) near the strong resonance.

Is modal resonance a precursor to power systems oscillations? The initial work
in this chapter strongly suggests that a strong resonance can be a precursor to
oscillations and that nearby strong resonance is a possible explanation whenever
power systems have closely spaced modes interacting.

7.7 Appendix: Generic structure near resonance

This appendix describes the generic structure of two modes of a general power system
model near resonance using the matrix deformation theory explained in Wiggins [80]
and Arnold [6].

We begin with a general dynamic power system model and obtain a parame-
terized real matrix M̂(α) whose eigenvalues determine the small signal stability of
the power system. Assume that the power system is modeled by parameterized
differential-algebraic equations which are analytic in the state and the parameters
α ∈ Rp. Further suppose that the derivative of the algebraic equations with respect
to the algebraic variables is nonsingular at the operating point. Then we can locally
solve the algebraic equations for the algebraic variables via the implicit function
theorem and obtain analytic differential equations in a neighborhood of the operat-
ing point. Suppose that the Jacobian of the differential equations at the operating
point is nonsingular. Then the equilibrium is an analytic function of the parameters
and evaluating the Jacobian at the equilibrium yields a real parameterized matrix
M̂(α). M̂(α) is an analytic function of the parameters α ∈ Rp in some open set U .

Suppose that at α = α0 ∈ U , exactly two complex eigenvalues coincide at
λ0 = σ0 + jω0, where ω0 6= 0. It follows that the complex conjugates of these
eigenvalues also coincide at λ∗0 = σ0 − jω0. We are interested in the eigenstructure
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of M̂(α) for α near to α0. Since the eigenvalues of M̂(α) are continuous functions of
α, by shrinking the neighborhood U as necessary, the eigenvalues can be expressed
as functions λ1(α), λ2(α), λ∗1(α), λ∗2(α) for α ∈ U with λ1(α0) = λ2(α0) = λ0. Here
U is shrunk so that λ1(α), λ2(α) lie inside a disk centered on λ0 for α ∈ U and
that there are, counting algebraic multiplicity, exactly two eigenvalues in the disk
for α ∈ U .

Now we reduce the matrix M̂ to a 4 × 4 matrix M which has the eigenstruc-
ture corresponding to the four eigenvalues of interest. The projection P (α) onto
the four dimensional right eigenspace spanned by the generalized right eigenvectors
corresponding to λ1(α), λ2(α), λ∗1(α), λ∗2(α) is an analytic function of α [15]. Also
the projection Q(α) onto the corresponding four dimensional left eigenspace is an
analytic function of α. Define M = QT M̂P . M(α) is an analytic 4×4 matrix valued
function of the parameters α for α ∈ U ⊂ Rp. M(α) has exactly the eigenstructure
corresponding to the four eigenvalues of M̂(α) of interest. In particular, M(α0) has
two complex eigenvalues coinciding at λ0 = σ0 + jω0.

There are now two cases depending on whether M(α0) is diagonalizable or not.
In the diagonalizable, weak resonance case M(α0) is similar to the matrix


λ0 0 0 0
0 λ0 0 0
0 0 λ∗0 0
0 0 0 λ∗0




in Jordan canonical form. Arnold [6], section 6.30E shows that weak resonance is
codimension 6 in real parameter space. However, strong resonance is codimension 2
in real parameter space. Therefore we regard weak resonance as less likely to occur
than strong resonance in Jacobians of a generic set of parameterized differential
equations and we proceed to analyze the strong resonance.

7.7.1 Strong eigenvalue resonance.

In the strong case M(α0) is similar to the matrixMR0 in real Jordan canonical form

MR0 =



σ0 −ω0 1 0
ω0 σ0 0 1
0 0 σ0 −ω0

0 0 ω0 σ0




A miniversal deformation of MR0 is MR : R4 → R16 given by

MR(σ, ω, µr, µi) =



σ −ω 1 0
ω σ 0 1
µr −µi σ −ω
µi µr ω σ


 (119)
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This key result can be deduced from [80, 6]. The consequence of the miniversal
deformation is that there exist real analytic functions written, with some abuse of
notation, as σ(α), ω(α), µr(α), µi(α) and a 4 × 4 real matrix valued coordinate
transformation TR(α) analytic in α such that

M(α) = TR(α)MR(σ(α), ω(α), µr(α), µi(α)) (TR(α))−1

for α in some neighborhood U1 ⊂ U of α0. Also σ(α0) = σ0, ω(α0) = ω0, µr(α0) = 0,
and µi(α0) = 0. That is, a matrix similar to M(α) can be analytically parameterized
via the four parameters σ, ω, µr , and µi. The “mini” in “miniversal” implies that
four is the minimum number of parameters generally required.

The eigenvalues of MR(σ, ω, µr, µi) are σ + jω ±√
µr + jµi. It is convenient to

shrink U1 if necessary to ensure that the eigenvalues ofMR(σ(α), ω(α), µr(α), µi(α))
for α ∈ U1 are never real. Then it follows, for α ∈ U1, that the eigenvalues of
MR(σ(α), ω(α), µr(α), µi(α)) coincide iff µr(α) = µi(α)) = 0.

It is convenient to also express this result in terms of a 2 × 2 complex matrix
describing the two eigenvalues with positive frequency. Permuting the second and
third basis elements yields a matrix M ′

R similar to MR:

M ′
R(σ, ω, µr, µi) =



σ 1 −ω 0
µr σ −µi −ω
ω 0 σ 1
µi ω µr σ


 =

(
Ar −Ai

Ai Ar

)

Applying a complex coordinate change to M ′
R gives a 4 × 4 complex matrix

M ′
C =

(
I2 jI2
I2 −jI2

)
M ′

R

(
I2 jI2
I2 −jI2

)−1

=
(
MC 0
0 M∗

C

)

where
MC(λ, µ) =

(
λ 1
µ λ

)
and

λ = σ + jω

µ = µr + jµi

The 2×2 complex matrix MC = Ar + jAi is called the complexification of M ′
R. The

two eigenvalues of MC are the two eigenvalues of MR with positive frequency. Note
that, setting µ = 0, MC(λ, 0) is in Jordan canonical form and that for µ = 0 and
λ = λ0, M ′

C is the Jordan canonical form of M(α0).
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In terms ofMC(λ, µ), the consequence of the miniversal deformation is that there
exist complex analytic functions written, with some abuse of notation, as λ(α), µ(α),
and a 4 × 4 complex matrix valued coordinate transformation TC(α) analytic in α

such that

M(α) =

TC(α)
(
MC(λ(α), µ(α)) 0

0 M∗
C(λ(α), µ(α))

)
(TC(α))−1

for α in some neighborhood U1 ⊂ U of α0. Also λ(α0) = λ0 and µ(α0) = 0.
Thus the study of the eigenstructure of M(α) reduces to the study of the eigen-

structure of MC(λ(α), µ(α)). In particular, the eigenvalues of MC(λ(α), µ(α)) are
the eigenvalues of M(α) with positive frequency and the real and imaginary parts
of the generalized eigenvectors of MC(λ(α), µ(α)) are generalized eigenvectors of
M ′

R(σ(α), ω(α), µr(α), µi(α)), which is similar to M(α).

7.7.2 Structure of matrices near M(α0).

The miniversal deformation result above can be applied to determine the structure of
all real 4×4 matrices near M(α0) by a choice of the parameterization α. Let α ∈ R16

be the entries of a real 4 × 4 matrix. That is, we parameterize 4 × 4 matrices by
their own entries. Then µ(α) = (µr(α), µi(α)) may be regarded as an analytic map
µ : U1 → R2 where U1 ⊂ R16. Since µ can be computed from the matrix eigenvalues
(see (114)) and the eigenvalues of MR(σ0, ω0, µr, µi) are σ0 + jω0 ±

√
µr + jµi ,

µ(TR(M(α0))−1MR(σ0, ω0, µr, µi)TR(M(α0))) = (µr, µi)

Hence µ is regular near M(α0). Therefore Γ = µ−1((0, 0)) is an analytic codimension
2 submanifold of the real 4×4 matrices near M(α0). Γ is the set of real 4×4 matrices
near M(α0) which are similar to MR(σ, ω, 0, 0) for some values of σ and ω.

Every matrixN in U1 is similar to MR(σ(N ), ω(N), µr(N ), µi(N )) and the eigen-
values ofN andMR(σ(N ), ω(N), µr(N ), µi(N )) are σ(N )+jω(N )±√µr(N ) + jµi(N ).
Since U1 is assumed to be shrunk so that these eigenvalues are never real, N has
coincident eigenvalues iff µr(N ) = µi(N ) = 0. Hence Γ is the set of matrices in U1

which have a coincident complex conjugate pair eigenvalues away from the real axis.
Moreover, each matrix in Γ is not diagonalizable.

A generic two parameter system of differential equations will have Jacobians
which are diagonalizable except at isolated points at which strong resonance occurs
(see the first corollary in Arnold [6] chapter 6, section 30E).
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8 Oscillatory precursors to angle/voltage collapse and

the Hamiltonian approximation

This section describes how a low frequency electromechanical swing mode can re-
duce in frequency, pass through a strong resonance, and then cause instability by the
operating point vanishing. (The detail of the eigenvalue movement is that a complex
pair first coalesces on the negative real axis (strong resonance), splits, and then a
single real eigenvalue crosses into the right half plane.) The dynamic consequences
of this instability would be a dynamic voltage collapse, or rather, an “angle collapse”
since the electromechanical origins of the instability suggest that the angles typically
collapse faster than the voltages. The analysis uses a modified Hamiltonian formu-
lation of swing dynamics to approximate the power system dynamics and exploits
the structure of this model to gain insight and computational simplification. The
phenomenon is illustrated on a version of the IEEE 14 bus system. The analysis
and example clarifies a way in which increasing a power system transfer can make
a low frequency oscillation evolve to cause a system collapse. The algorithm for
computing the critical point is shown to be quite simple to implement.

This instability mechanism could be practically important in the evolving com-
petitive utility environment, in which large active power transfers across transmis-
sion corridors will be increasingly common and variable. Should this prove true, we
believe that this type of instability will warrant further study, as it will impose an
important constraint on available transmission capability.

This section complements section 7 nicely: in both instabilities an oscillatory
mode or modes pass near or through a strong resonance, and their interactions causes
instability. In section 7, two oscillatory modes interact near a strong resonance as a
precursor to an oscillatory instability whereas in this section, one oscillatory mode
pass though a strong resonance or node-focus on the negative real axis as a precursor
to a monotonic collapse instability as a single eigenvalue crosses into the right half
plane through zero. The two types of strong resonance are explained by examples
in section 7.2.

This section also clarifies a relationship between voltage collapse and electrome-
chanical oscillatory modes. However, most recent voltage collapse research has fo-
cussed on collapses with a relatively large involvement of voltage magnitudes in the
collapse and the associated right eigenvector and the electromechanical instability
studied here seems to have a relatively large involvement of angles in the collapse
and the associated right eigenvector. 2

2The question of identifying “most significant” components of an eigenvector when the states
have different physical units and normalization schemes can sometimes be difficult [75]. However,
for the simple dynamic model to be employed here, a naive interpretation of ”significance” based
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8.1 Structural features of linearized models for electromechanical
dynamics

Strong structural features that arise in linearized dynamics of power systems relate
to the fact that power system models consist roughly of second order oscillators
coupled through the non-linear power flow of the network. When linearized, the
important effects of the coupling show up in a matrix structure closely related to
that of a nodal admittance matrix. A number of authors (for example, [65] [13])
have summarized these features in various ways. With this “admittance-like” matrix
describing the coupling, one manner in which a zero eigenvalue can be introduced is
for a cutset of branches to have zero coefficients (in the graph associated with the
admittance matrix). This simple idea is the foundation of the instability mechanism
to be studied in this paper. For completeness, and development of notation, we shall
review some results on model structure [18].

Consider an augmented power system network of n buses, with those numbered
1 through m representing the internal voltage of synchronous generators, and the
remainder representing generator terminals and loads. The network is augmented
in the sense that generator internal bus voltages are explicitly represented, with
an appropriate series reactance (transient reactance of the synchronous machine)
connecting the internal bus to terminal bus; a simple classical representation of con-
stant internal bus voltage magnitude is assumed. The equilibrium system frequency
is equal to a known value of ω0.

It will prove convenient to impose assumptions that yield a symmetric power flow
Jacobian (provided reactive equations are normalized by voltage magnitude), as is
done in stability studies that require existence of a path independent system energy
function [56]. We initially neglect rotational damping/governor action, but will re-
introduce this effect in our example. With these assumptions, the dynamic equations
for the system will possess a modified Hamiltonian form, which yields a simple
closed form relationship between real eigenvalues of a reduced dimension, symmetric
problem, and eigenvalues of the full dimension, linearized dynamic equations.

To describe this model, let:
V ∈ Rn, V = vector of bus voltage magnitudes;
δ ∈ Rn, δ = vector of bus voltage phase angles relative to an arbitrary synchronous
reference frame of frequency ω0 (no reference angle is deleted);
ω ∈ Rm, ω = vector of generator frequency deviations, relative to synchronous fre-
quency ω0;
M ∈ Rm×m, M = diagonal matrix of normalized generator inertias;
P I ∈ Rn, P I = vector of net active power injection at each bus; assumed constant;
QI : Rn−m → Rn−m, QI(V ) = vector valued function of net reactive power injec-

on relative magnitude of components of the right eigenvector is judged adequate.
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tion at load buses, normalized by voltage magnitude;
L1 = rows 1 through m of an n× n identity matrix;
L2 = rows m+ 1 through n of an n× n identity matrix;
PN (δ, V ) = vector-valued function of active power absorbed by network at each bus;
QN (δ, V ) = vector-valued function of reactive power absorbed by network at load
buses, normalized by voltage magnitude.

Note that because we have chosen to maintain all voltage angles as states, the
model that results is not a minimal realization. The linearization will have a fixed
eigenvalue at zero associated with uniform translational motion of angles (see [56]
for discussion of minimum versus non-minimum state models).

With the above notation, the resulting nonlinear model for the rotational dy-
namics of machines coupled through power exchange in the network may be written
as follows:

Mω̇ = L1(P I − PN (δ, V ))
L1δ̇ = ω

0 = L2(P I − PN (δ, V ))
0 = QI(V ) −QN(δ, V )

A linearization of these equation about an equilibrium (0, δe, V e) is then given in
the “singular system” form as

Ẽ∆ẋ = R̃∆x

with

Ẽ =


Mm×m 0 0

0 Im×m 0
0 0 02(n−m)×2(n−m)




R̃ =


 0 −Im×m 0
Im×m 0 0

0 0 I2(n−m)×2(n−m)




S =


 Im×m 0 0

0 J11 J12

0 J21 J22




J : Rn ×Rn−m → R(2n−m)×(2n−m),

J =


 ∂PN

∂δ
∂PN

∂VL
∂QN

∂δ
∂{QN−QI}

∂VL
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Next, let us consider a relationship between the generalized eigenvalue problem
of interest, and a reduced dimension, symmetric generalized eigenvalue problem in
which the power flow Jacobian enters in a direct way. In particular, consider the
reduced generalized eigenvalue problem defined by (E, J), where

E =

[
M 0
0 02(n−m)×2(n−m)

]

Proposition: Assume (E,R) has a finite generalized eigenvalue λ, with right eigen-

vector v ∈ R2n−m, v =
[
vT
1 , v

T
2

]
; i.e. λEv = Rv. Then there exists a w ∈ C2n such

that (γ, w) satisfies γẼw = R̃w, with γ = j
√
λ.

Proof: Minor variation on that of Proposition 2 in [18].

Observation: The result of Proposition 2 indicates that if we wish to examine the
behavior of eigenvalues with respect to operating point (e.g., bifurcation behavior)
in the non-symmetric generalized eigenvalue problem of (Ẽ, R̃), we may do so in the
context of the reduced dimension, symmetric generalized eigenvalue problem (E, J).

Consequences:

1. Suppose that (E, J) at an operating point of interest has all its finite general-
ized eigenvalues non-negative. All finite generalized eigenvalues of (Ẽ, R̃) must
appear on the jω axis. It is a straightforward exercise to show that if linear
rotational damping is added in every generator component (which provides a
very rough approximation to governor action), all finite eigenvalues save one
are shifted to the left, and one finite eigenvalue remains fixed at zero.

2. Consider now a possible route to loss of stability, starting from a stable oper-
ating point with the properties assumed in 1. One could hypothesize a gradual
change in operating point that would bring one of the positive, finite eigenval-
ues of (E, J) to the origin. In the full problem, (Ẽ, R̃), with small damping,
one would have a complex pair of eigenvalues moving parallel to the jω axis.
Very near to the parameter values for which the eigenvalue of (E, J) reaches
zero, a critical complex pair of (Ẽ, R̃) coalesces to a double real eigenvalue on
the negative real axis. Precisely at the parameter values for which (E, J) has
a new zero eigenvalue, (Ẽ, R̃) must also have an additional zero eigenvalue. As
we will illustrate in the example to follow, this new zero eigenvalue in (Ẽ, R̃)
comes about as the pair which coalesced on the real axis splits, sending one
of the pair through the origin. Also note that if parameters move further,
beyond the values which yield this singularity, the equilibrium at which the
linearization was being evaluated typically ceases to exist.
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3. Finally, note that the motion of this eigenpair will not be differentiable with
respect to the parameters at the critical parameter value for which the complex
pair coalesce to a repeated real root. Indeed, as we approach this point, the
derivative of the eigenvalue motion with respect to parameters approaches
infinity. This, of course, is typical in bifurcation problems, but it practical
impact is important. The example to follow will illustrate.

The key insight into network structure that is used in our algorithm is quite
simple, and may be summarized as follows. The critical complex pair of eigenvalues
represents a low frequency swing mode. Our interest is in low frequency modes
associated with large transfers of active power through a transmission corridor.
Under these circumstances, the low frequency swing mode will be an inter-area
mode, describing generators on one side of the transmission corridor ”swinging”
coherently relative to generators on the other side of the transmission corridor,
which are also assumed to swing as a coherent group. In this scenario, the associated
generalized right eigenvector of the full dynamic model, (Ẽ, R̃), has a special form.
The components of the eigenvector associated with generator angles will show values
180 degrees out of phase on either side of the cutset formed by the transmission
corridor. We assume that this structure of eigenvector persists to the point of
bifurcation, were the complex pair has split, and one of the resulting real eigenvalues
is zero. In other words, we will formulate a system of equations to solve that forces
the system (Ẽ, R̃) to have an “extra” zero eigenvalue, with the generator angle
components of the associated eigenvector having the special form described here.

8.2 Computational formulation and example

To formulate our problem precisely, we need additional piece of notation; to this
end, let PM ∈ Rm be the active power injections at generator buses. These are a
subset of the P I ∈ Rn vector introduced earlier, and will be the only components
of P I to be viewed as unknowns. For compactness, it is also useful to define the
overall power mismatch function

f(δ, V, PM) :=
[
((P I − PN (δ, V ))T , (QI(V )−QN(δ, V ))T

]T
Finally, we shall assume that we are seeking a right eigenvector of J, associated
with a zero eigenvalue, that has generator angle components with values given by
[1T ,−γ1T ]T , with γ a positive real scalar. This enforces the assumption of an inter-
area swing mode, as described above. Note also that once we restrict our attention to
solving for a zero eigenvalue, it does not matter whether we consider the generalized
eigenvalue problem of (E, J), or simply enforce singularity in J itself. Given the
dimensions of our partitioning scheme, specifying the generator angle components
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of the eigenvector leaves 2n− 2m components of the eigenvector as unknowns. Let
us denote these remaining eigenvector components as w. Then our problem may be
succinctly stated as follows. Given load demand components of P I , QI , solve for
(δ, V, PM , w) satisfying:

0 = f(δ, V, PM)
0 = J((δ, V )[1T ,−γ1T , wT ]T

While this formulation is technically correct, the assumption of a lossless network
implies linear dependence between equations. In particular, the sum of all active
power equations components must be identically zero for any operating point. Given
this dependence, we may discard one row of f(δ, V, PM), and one row of J((δ, V ).
Moreover, the unknowns of the generation dispatch vector, PM , appear linearly
in the associated components of the f(δ, V, PM) = 0 constraint, and may be com-
puted as “outputs” after the desired (δ, V ) is identified. Hence, all m rows of the
f(δ, V, PM) = 0 corresponding internal generators buses may be deleted. Denote the
resulting reduced dimension quantities respectively as f̃ and J̃. Finally, while it was
convenient in Section 8.1 to develop the dynamic equations keeping all phase angles
as variables, this is not convenient when formulating a Newton-Raphson algorithm
to solve the equation set above. Rather, we follow the standard practice of selecting
generator angle #1 as reference, and delete that angle from variables for which we
solve; denote the reduced vector as δ̃. In the reduced Jacobian, J̃ , the eigenvector
associated with the remaining zero eigenvalue can now take the form [0, 1T , w̃T ]T ,
rather than it original form of [1T ,−γ1T , wT ]T . In this process, we eliminate the
scalar γ as an unknown. With these modifications, we are left with the constraint
equations:

0 = f̃ (δ̃, V )
0 = J̃((δ̃, V )[0, 1T , w̃T ]T (120)

We now have a dimensionally consistent set of equations in the unknowns (δ̃, V, w).
While we will not attempt to offer a proof of that the associated Jacobian is gener-
ically nonsingular, numerical experience to date suggests that a Newton-Raphson
iteration for (120) is typically well-conditioned. Studies to date have employed a
heuristic mix of human judgment in selecting an initial operating point, coupled
with the Newton-Raphson algorithm to solve (120). An operating point is selected
that produces a heavily loaded corridor in the system. A cutset is selected whose
branches include all lines the transmission corridor, and which separates two subsets
of generators, one on either side of the cutset. This identifies which components of
generator angles are assigned values 0 or 1 in the eigenvector (0’s for those gener-
ators on the same side of the cutset as the reference bus, 1’s for those generators
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Original op. point Critical op. point
Bus # voltage/phase(degs.) voltage/phase(degs.)

1 1.0600 0 1.0600 0
2 1.0450 -4.7545 1.0450 -3.3284
3 1.0800 -2.8056 1.0800 -6.4522
4 0.9196 -25.1819 0.8351 -28.9282
5 0.9476 -23.6900 0.8733 -26.8531
6 1.0200 -70.0082 1.0200 -84.2610
7 0.9514 -62.1503 0.8663 -79.5870
8 1.0400 -58.2712 1.0400 -79.4164
9 0.9407 -76.0226 0.8562 -94.5890
10 0.9426 -83.9820 0.8702 -103.0148
11 0.9852 -87.8051 0.9412 -105.1052
12 0.9478 -90.6433 0.9385 -105.5251
13 1.0056 -82.1261 0.9884 -97-3412
14 0.9960 -89.9647 0.9410 -108.4568

Table 7: Original & critical operating points

on the opposite side). An inverse power method is used to identify the smallest
magnitude eigenvalue of J̃(δ̃, V ), and its associated eigenvector. Those components
of the eigenvector not associated with generator phase angles determine the initial
guess for w.
To illustrate this process, consider a network that is a slightly modified version of the
IEEE 14 bus system, illustrated below in Figure 36 (the synchronous condensers of
that test case are here replaced with standard generators). Table 7 identifies the ini-
tial operating point selected, as well as the operating point obtained as the solution
of (120).

To provide further insight into the dynamic interpretation of these results, we
performed the following computations. A sequence of operating points were com-
puted, corresponding to a linear interpolation between the generation dispatch for
the two operating points identified in Table 1 (loads are unchanged between the two
operating points). In a linearized swing dynamic model of the form described in
section 8.1, with small rotational damping added at each machine, the finite eigen-
values were calculated for this sequence of operating points. The resulting locus of
finite eigenvalues of the dynamic model is illustrated in Figure 37, with an expanded
view of the critical eigenvalues in Figure 38. Note that, as predicted, the critical
operating point is associated with a complex conjugate pair of eigenvalues coalescing
on the negative real axis, splitting, with one of the resulting real eigenvalues moving
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to the origin. As a final piece of information, the generalized eigenvectors associated
with selected eigenvalues of interest are shown in Table 8, with a one shown for the
original operating point, and several for the critical operating point.
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Figure 37: Scatter Plot of Eigenvalues
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99



Original Critical Critical Critical Critical
Eigenvector op. point op. point op. point op. point op. point
component Eigenvalue Eigenvalue Eigenvalue Eigenvalue Eigenvalue

-0.0189 + 3.6342i -0.3957 -0.2294 0 (original) 0 (new)
Freq@bus 1 -0.4033-0.0048i -0.0181 -0.0000 0.0000 -0.0000
Freq@bus 2 -0.3917-0.0047i -0.0181 -0.0000 0.0000 -0.0000
Freq@bus 3 -0.4287-0.0051i -0.0181 -0.0000 0.0000 -0.0000
Freq@bus 6 0.3068+0.0026i 0.0000 -0.0103 0.0000 0.0000
Freq@bus 8 0.4964+0.0054i 0.0000 -0.0103 0.0000 0.0000

Angle@bus 1 -0.0007+0.1110i 0.4384 0.0000 0.2675 -0.2019
Angle@bus 2 -0.0007+0.1078i 0.4384 0.0000 0.2675 -0.2019
Angle@bus 3 -0.0008+0.1180i 0.4384 0.0000 0.2675 -0.2019
Angle@bus 6 0.0003-0.0844i -0.0000 0.2924 0.2672 0.2359
Angle@bus 8 0.0008-0.1366i -0.0000 0.2924 0.2672 0.2359
Angle@bus 4 -0.0005+0.0625i 0.3689 0.0463 0.2674 -0.1326
Angle@bus 5 -0.0005+0.0639i 0.3659 0.0484 0.2674 -0.1295
Angle@bus 7 0.0004-0.0868i -0.0005 0.2928 0.2672 0.2364
Angle@bus 9 0.0005-0.1030i -0.0799 0.3457 0.2671 0.3156
Angle@bus 10 0.0005-0.1130i -0.1091 0.3652 0.2671 0.3448
Angle@bus 11 0.0004-0.1060i -0.0745 0.3421 0.2671 0.3103
Angle@bus 12 0.0003-0.0895i -0.0159 0.3030 0.2672 0.2517
Angle@bus 13 0.0003-0.0912i -0.0218 0.3069 0.2672 0.2576
Angle@bus 14 0.0005-0.1136i -0.1031 0.3612 0.2671 0.3388

Volt@bus 4 0.0003-0.0569i -0.1401 0.0935 -0.0001 0.1399
Volt@bus 5 0.0003-0.0502i -0.1251 0.0834 -0.0001 0.1249
Volt@bus 7 0.0003-0.0548i -0.1492 0.0995 -0.0001 0.1490
Volt@bus 9 0.0003-0.0564i -0.1549 0.1033 -0.0001 0.1546
Volt@bus 10 0.0003-0.0483i -0.1341 0.0894 -0.0001 0.1339
Volt@bus 11 0.0002-0.0272i -0.0793 0.0529 -0.0001 0.0791
Volt@bus 12 0.0000-0.0052i -0.0159 0.0106 -0.0000 0.0159
Volt@bus 13 0.0001-0.0101i -0.0302 0.0202 -0.0000 0.0302
Volt@bus 14 0.0002-0.0364i -0.1021 0.0681 -0.0001 0.1020

Table 8: Selected generalized (right) eigenvectors of the full dynamic model; Angles
are in radian and voltage magnitudes are in per unit.
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9 Use of measurements

Instead of relying solely on real time computations with a dynamic power system
model, some of the needed information could be measured from the power system as
in WAMS [29, 59, 77, 73]. Indeed the combined use of power system measurements
and model based software offers many opportunities for real time system control.

9.1 Modal information such as frequency

One promising suggestion is measuring the frequency of the critical oscillatory mode
which is unstable or poorly damped. Some knowledge of the mode frequency would
simplify the task of computing the critical mode in the power system model. In
particular an estimate of the modal frequency, together with a assumption of small
or zero damping, would supply a complex shift for the eigenvalue computational
methods of section 5.

It might also be possible to measure the pattern or relative phases of the os-
cillation. This information would help in approximating the eigenstructure (more
precisely, the right eigenvector) of the oscillation as discussed in section 8. (The
eigenvalue and margin sensitivity formulas require the eigenstructure of the oscilla-
tory mode.) Note that the new phasor measurement units would be able to estimate
relative phases.

There are two cases to consider:

1. The sustained or transient oscillation is occurring and the objective is to sup-
press it. In this case it should be feasible to measure or estimate the oscillation
frequency. It might also be feasible to obtain some information about the pat-
tern of oscillation.

2. The system is close to oscillation but not actually oscillating and the objective
is to avoid oscillations. This case is the more difficult task of obtaining mea-
surements of the critical frequencies which reflect system weakness or potential
weakness as regards oscillations. The spectral monitor described below might
yield measurements indicating the modal frequency when the system is close
to oscillations.

9.2 Measuring closeness to oscillation by peaks in the ambient noise

Suppose that the power system is at equilibrium but there is a poorly damped
oscillatory mode. The problem is to detect the closeness to this condition by power
system measurements, and estimate the frequency of the oscillatory mode

The motivation is that a poorly damped mode would cause a sizable poorly
damped oscillation if there is a sizable disturbance. There is also a risk that the
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mode could become unstable by gradual or sudden changes, leading to sustained
oscillations. Knowing the closeness to this condition would allow remedial action
to be taken. The mode frequency could be very helpful in selecting the remedial
action.

The concept is that there is broadband ambient noise present on the power
system from a variety of sources. A power system bus is chosen to observe the
noise and the power spectral density of the noise at this bus can be estimated from
real time measurements. The power spectral density of the observed noise should
contain a peak at a frequency corresponding to a poorly damped mode. The size
of the peak will increase as the modal damping decreases and can be used to give a
relative measure of the closeness to oscillation.

Measurement of power spectral density of power system signals has been done
by John Hauer and others for the purpose of estimating transfer functions for con-
trol design. The spectral monitoring application is easier than estimating transfer
functions. We briefly review some work in this direction:

John Hauer et al. [29] briefly summarizes some results on the Western North
American Power system showing spectral peaks obtained from real measurements.
They suggest that ’changes in the spectral signature can be used to give warnings
of system changes to system operators’. It seems clear that the method would give
an estimate of the frequency of the mode which is becoming unstable.

Pierre and others [59] have analyzed measured power system ambient noise data
and computed modal dampings and frequencies by constructing a whitening filter
which reflects the poles of the power system transfer function. The whitening filter
is found by solving Wiener-Hopf equations for linear prediction. The results agree
with the modes found by Prony analysis of a ring down test. Wies and Pierre
[77] test a Least Mean Square adaptive version of the whitening filter on simulated
data to show that the method could be used to track changing modes in real time.
Scottish utilities have experience in using online oscillations monitors [16].

We conclude that experts in power system measurements are already developing
real time monitoring of oscillatory modes. These methods can be expected to provide
valuable inputs to real time control, especially when combined with the model based
controls suggested in this project.
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10 Other ideas

This section records various ideas which were produced but not fully developed
during the project.

10.1 Zero frequency approximation

The main idea is to suppress a low frequency oscillation by deriving controls which
suppress an associated “zero frequency oscillation”. That is, the low oscillation
frequency is approximated as zero for the purpose of deriving controls. As explained
below, a zero frequency oscillation has special properties which allow a suppressing
control to be more easily obtained. It is clear that this approximation becomes better
as the oscillation frequency decreases and that determining the range of usefulness
of the approximation would be important.

First, what is a “zero frequency oscillation”? In general, the onset of an oscil-
lation is characterized by the system linearization having a pair of eigenvalues on
the imaginary axis at ±jω, where ω is the oscillation frequency. A zero frequency
oscillation occurs as a limiting case in which the system linearization has two zero
eigenvalues. The presence of a zero eigenvalue causes the zero frequency oscillation
to have characteristics of a voltage collapse (saddle node bifurcation) as well as being
a limiting case of oscillations.

The zero frequency oscillation case is well studied in bifurcation theory and
numerical analysis, where it is sometimes called a combined saddle node–Hopf bi-
furcation. It also has been studied in some simple power system models by Venkata-
subramanian [35], but not in the context of exploiting its features to avoid real time
oscillations. (There is some intricacy in its analysis since the Jordan block corre-
sponding to the two zero eigenvalues is nontrivial and complicated dynamics can
appear nearby.)

The following result suggests how a zero frequency oscillation is simpler than
the low frequency oscillation it approximates:
Result: The following are equivalent conditions at the onset of oscillation:

1. Oscillation frequency is zero

2. Eigenvectors corresponding to the oscillation can be chosen to be real

3. All states in the linearized oscillation are either exactly in phase (phase dif-
ference = 0o) or exactly in antiphase (phase difference = 180o).

Thus a zero frequency oscillation approximates an oscillation in which the power
system approximately splits into two areas swinging against each other in antiphase
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with each area approximately in phase with itself. Given such an oscillation oc-
curring in real time, the two areas (or their interface) could be identified from
monitoring equipment. This would give information about the structure of the cor-
responding zero frequency oscillation which might then be exploited to try to devise
a control to suppress the oscillation.

10.2 Heuristics

The network structure of the power flow ties in closely with the electromechanical
dynamics of the system. It is frequently possible to develop efficient heuristics
that approximately characterize both certain modes of the system (e.g., the zero
frequency approximation above) and the relationship between operating point and
lightly damped modes. A simple conjecture based on this type of reasoning may be
briefly stated:

Conjecture: If a low frequency interarea power oscillation is occurring
so that the power system approximately splits into two areas swinging
against each other with each area approximately in phase with itself,
then decreasing the power transferred between the two areas will tend
to suppress the oscillation.

Part of the work in establishing or disproving such a conjecture is defining its range of
applicability: How low is low frequency? Does it also work for local area oscillations?
How approximate can the split into two areas be? If the rule does not work can it
be modified so that it does work? How close is this rule to the optimum control
action determined by sensitivity methods using a detailed model?

10.3 Frequency domain approach to resonant complex eigenvalues

This subsection is an initial attempt to get insight into the resonance from a fre-
quency domain point of view.

10.3.1 Transfer functions related to a mode

First think about a linear system ẋ = Ax with an eigenvalue λ and corresponding
left and right eigenvectors w and v respectively. w is a row vector and v is a column
vector. We can choose an input u(t) which only excites the mode v and an output
y(t) which measures the response of the mode:

ẋ = Ax+ vu
y = wx (121)
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That is, the input is v scaled by some time function and the output is the state x
projected along the mode by w. The transfer function of this single input, single
output system is

w(sI − A)−1v =
wv

s− λ
(122)

(This can be derived from v = (sI − A)−1(sI − A)v = (sI −A)−1(s− λ)v.)
In the case of complex λ which we are interested in, v is arbitrary up to mul-

tiplication by a complex constant; in particular, v can be rotated by an angle α
in the eigenspace < <e{v},=m{v} > by multiplying by ejα. There is similar arbi-
trariness in the choice of w. These different choices will, however, lead to different
input-output systems.

In the case of complex λ, v and w and the input-output system (121) and the
transfer function (122) are complex. Let v = vr +jvi and w = wr +jwi and consider
the input along vr and the output obtained with wr. This real input-output system
is

ẋ = Ax+ vru
y = wrx (123)

The transfer function of (123) is

wr(sI −A)−1vr =
1
4

[
(w+ w∗)(sI −A)−1(v + v∗)

]
=

1
4

[
wv

s− λ
+

w∗v∗

s− λ∗

]
(124)

using (122) since wv∗ = w∗v = 0.

10.3.2 Transfer functions related to a nonsemisimple mode

Consider a nonsemisimple mode with left and right eigenvectors w and v and left
and right generalized eigenvectors w′ and v′. The formulas derived above still apply
for the input-output system defined by the eigenvectors. Consider the complex
input-output system with input along v′ and the output obtained with w′:

ẋ = Ax+ v′u
y = w′x (125)

The complex transfer function is

w′(sI − A)−1v′ =
w′v′

s− λ
+

w′v
(s− λ)2

(126)
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(This can be derived from Av′ = λv′ + v and
v′ = (sI −A)−1(sI −A)v′ = (sI − A)−1((s− λ)v′ − v).)

Consider the real input-output system with input along v′r and the output ob-
tained with w′

r:

ẋ = Ax+ v′ru
y = w′

rx (127)

The transfer function can be derived similarly to (124) to be

w′
r(sI − A)−1v′r =

1
4

[
w′

rv
′
r

s− λ
+

w′
rvr

(s− λ)2
+ c.c.

]
(128)

where c.c. stands for complex conjugate (The derivation uses w′∗v=0, which is ob-
tained by considering w′∗Av, and w∗v′ = 0, which is obtained by considering w∗Av′)

10.3.3 Transfer function as resonance is approached

Suppose we choose a single input and single output for the power system and obtain
the transfer function g(s). How does this transfer function change as the resonant
nonsemisimple case is approached? Suppose

g(s) = h(s)
[

1
(s− λ1)(s− λ2)

+ c.c.

]
(129)

where λ1 and λ2 are nearby complex poles which are not near poles of h(s). Partial
fraction expansion gives

g(s) = other fractions +
1

λ1 − λ2

[
h(λ1)

(s− λ1)
− h(λ2)

(s− λ2)
+ c.c.

]
(130)

Neglecting the ‘other fractions’, we get

1
λ1 − λ2

[
(s− λ2)h(λ1) − (s− λ1)h(λ2)

(s− λ1)(s− λ2)
+ c.c.

]

=
1

(s− λ1)(s− λ2)

[
h(λ1)− h(λ2)

λ1 − λ2

(
s− λ1 + λ2

2

)
+
h(λ1) + h(λ2)

λ1 − λ2

(
λ1 − λ2

2

)
+ c.c.

]

→ Dh|λ
(s− λ)

+
h(λ)

(s− λ)2
+ c.c.

as λ1 and λ2 tend to a common limit λ.
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11 Prospects for real time control of oscillations

Key barriers to real time control of oscillations are

1. Understanding mechanisms of oscillations

2. Identifying critical modes.

3. Selecting operator actions

4. Robustness to model data

5. Computational speed

6. Hybrid system/variable structure aspects

We first discuss each of these barriers and assess the prospects for overcoming each
one. Then a staged approach to developing real time control for oscillations is
discussed.

11.1 Understanding mechanisms of oscillations

One conception is that oscillations arise when the damping of a single oscillatory
mode becomes insufficient due to a combination of factors in the power system as
sketched in the last paragraph of section 1.2. This is perhaps the prevailing view
of oscillations and there is little doubt that some oscillations can be understood
in this general way. While much is known about tuning control gains to achieve
stability at a given operating point, much less is known about predicting the sta-
bilizing or destabilizing effects of operator actions such as redispatch or switching
exciters to manual. The project has developed sensitivity methods of predicting the
effects of these operator actions and these methods can provide results and formu-
las to improve the understanding of these effects. The project has also made some
progress on heuristic or approximate methods to understand oscillations and the
effects of operator actions. Experience shows that good physical insight or good
approximations capturing the essential features of a phenomenon are often the basis
of practical methods of controlling the phenomenon.

The project has demonstrated also demonstrated a new mechanism for interarea
oscillations involving a strong resonance between two system modes. The existence
of a plausible new mechanism suggests that interarea oscillations are not thoroughly
understood. Special methods would be needed to avoid the strong resonance induced
type of oscillation.

Overall it seems clear that further insights into interarea oscillations are needed
in order to devise effective ways of suppressing and avoiding them.
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11.2 Identifying critical modes

It is clearly impractical to blindly compute all the power system eigenvalues in a
power system of realistic size. It is also necessary to distinguish the eigenvalues
that are lightly damped and unlikely to move from those critical, lightly damped
eigenvalues which can become unstable as conditions evolve.

Integration of real time power system measurements [29, 59, 77, 73] into control
action computations can help solve these problems. In particular, measurements
of the frequency of threatening oscillations could be made available from ambient
spectral measurements before the oscillation occurs or by directly measuring the
oscillation frequency once the oscillation occurs. An estimate of the oscillation fre-
quency obtained from measurements can be used as a “complex shift” in eigenvalue
computations which find eigenvalues closest to the complex shift. There are also
possibilities of using information about the machines involved in the oscillation to
estimate right eigenvectors of the critical mode to initialize eigenvalue computations
as described in Section 8.

Once the approximate frequencies of concern have been identified from measure-
ments (or by previous experience), the sensitivities of the lightly damped eigenval-
ues can be computed by evaluating the sensitivity formulas of section 4 to establish
which eigenvalues are critical.

It might also be sufficient to track a set of critical modes found to be sensitive
and troublesome in off line studies.

11.3 Selecting operator actions

There are two approaches to advising operators which actions will be effective in
suppressing or avoiding oscillations. The first approach uses sensitivity computa-
tions on a dynamic power system model integrated with power system measurements
as described in section 11.2. The second approach derives heuristic or approximate
controls based on the understanding of the oscillations pursued in section 11.1. The
controls can be derived by approximations to the model or sensitivity formulas or
from physical insight gained. A combination of these approaches, singly and in com-
bination, would increase the chances of devising a successful method. This aspect
of the problem seems soluble, especially if progress can be made in understanding
oscillations better.

11.4 Robustness to model data

Approaches that rely on detailed dynamic power system models are subject to prob-
lems of unknown or bad data. Dynamic generator data can be available if money is
spent to determine it. However, deregulation and increased competition will tend
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to limit access to the data of competitors. On the other hand, repeated blackouts
involving dynamics and/or the threat of legislation could conceivably make some
data public. A more fundamental problem occurs with dynamic load data, which is
usually poorly known and could vary significantly with operating conditions. Over-
all, dynamic data can be expected to be to some extent uncertain, unreliable, or
unknown.

The sensitivity formulas of section 4 can be used to quantify the importance
of particular data to eigenvalue position as demonstrated in sections 3.8 and 3.9.
Moreover, treating parameters as random variables, and exploiting the large num-
ber of power system parameters and a version of the central limit theorem yields
estimates of the overall eigenvalue uncertainty in terms of the uncertainties in the
data. Even better, if the oscillation is caused by increasing a bulk power transfer,
then the uncertainty in the transfer limit can be quantified. Since the transfer limit
represents money lost when a transaction is curtailed or not made available, this
analysis quantifies the link between data uncertainty and money. (A larger uncer-
tainty in transfer margin requires a larger TRM (transmission reliability margin)
and hence a lower available transfer capability.) This quantification of eigenvalue
uncertainty is an essential first step to finding out how much of a limiting factor
data uncertainty is, which parameters are important, and how much knowing any
parameter better is worth.

The issue of robustness to data also motivates the approximate or heuristic ap-
proaches to selecting controls discussed in section 11.3, since approximate or heuris-
tic approaches require less data and are more robust.

An alternative to probabilistic handling of uncertainty is the use of interval meth-
ods for handling uncertainty [63, 64]. These methods, when properly applied, have
as an objective to provide tight bounds to solution results in the face of uncertainty
of parameters or even problem structure. However, careless application of inter-
val methods can lead to gross overestimates of uncertainty intervals of solutions,
proper methods can give tight enclosures for many types of problems. The complete
interval enclosure problem for a most general class of problems has been recently
shown to be NP-complete in terms of the number of independent variables (but only
polynomial in terms of the order or complexity of the equations themselves) [17].
However, practical methods do exist for many important problems. Interval meth-
ods work best when combined with symbolic algebra solutions for many portions
of the problem. See, for example, [79, 4, 54]. For a review of another approach to
symbolic computation, refer also to [8].

Overall, there is some degree of reasonable doubt that an exact approach to
the problem will be able to overcome the problem of availability and reliability
of dynamic data. The project has devised means to assess the problem and has
also begun work on approximate or heuristic approaches which would substantially
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reduce the data robustness problems.

11.5 Computational speed

Computational speed could be a factor in obtaining real time controls, but advances
in both hardware and algorithms are expected to solve these problems to a large
extent in the time scale that this research is to be applied. Section 5 indicates
the state of the art. In particular, one can typically compute 5 eigenvalues of
a power system with 300 seventh order generator models in less than one minute
using Matlab on a 233 MHz Pentium II. We view this result as encouraging progress
towards using computed eigenvalues in real time control. Additional concepts that
will help improve computational speed include the notion of continuously tracking
eigenvalues, and the idea of distributed or parallel computation of eigenvalues.

11.6 Hybrid system/variable structure aspects

There are two aspects of the hybrid system/variable structure problem.
In the first aspect this variable structure (as, for example, in excitation system

limits and look up tables) is a key feature of the power system data and needs to
be systematically represented in data structures and algorithms, especially when
computer algebra is applied. This aspect will yield good results from research and
development effort.

In the second aspect, some of the controls or events associated with oscillations
are variable structure as in the selection of exciters to be set to manual to suppress
an oscillation and the prediction of oscillations if a transmission line trips. Both
of these problems involve discrete changes in the equations modeling the system
and are difficult to solve without the use of brute force computation exhaustively
computing all the possibilities. Basic research to attempt to solve this aspect is
indicated.

11.7 Staged approach to real time control of oscillations

A natural way to approach real time control of oscillations is to solve problems of
increasing difficulty in stages. The suggested stages are

1. Off-line analysis tools

2. Real time suppression of ongoing oscillations

3. Real time avoidance of oscillations
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Off line analysis is included since development of real time tools must pass
through this stage for development and testing purposes and it allows value to
be gained from partially developed real time methods. For example, the sensitivity
methods developed in this project have many useful applications in off line studies.

Suppression of ongoing oscillations by operator actions is much easier than avoid-
ance of oscillations because the system topology (fault condition) can be assumed
to be known and the approximate oscillation frequency can be obtained from real
time measurements. An approach to suppressing oscillations stressing both model
based and heuristic or approximate methods and exploiting real time measurements
is more likely to overcome the critical robustness to data problem discussed in sec-
tion 11.4.

Real time avoidance of oscillations requires tackling the problem of predicting
the effect of faults, a hybrid systems problem. This would require greater reliance
on the dynamic model data and also more difficulty in estimating the frequency
of potentially dangerous modes. Continuation and margin sensitivity techniques
(section 4.8) could be applied to address such problems as transfer capability limited
by oscillations.

All approaches would benefit from further advances in understanding oscillations
and flexibly specifying and processing large dynamic power system models.
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12 Project Management

This section presents the original project plan and its relation to the work done.
Management problems solved during the project are also discussed.

12.1 Work statement/plan

This section reproduces the original project work statement annotated by references
within square brackets [ ] to the section of this document which addresses that part
of the plan.

12.1.1 Summary

Two complementary approaches will be pursued: The first approach exploits the
eigenvalue and margin sensitivity formulas to select effective controls. The main
challenges are identifying and controlling a set of critical modes in a large and non-
linear dynamic model, robustness to modeling errors, and computational efficiency.
The second approach develops and tests approximate methods obtained by approx-
imating the exact sensitivity computations or from heuristics. The main challenges
are understanding the oscillations well enough to devise approximate methods and
demonstrating that the approximate methods are effective. Basic to both approaches
is devising scenarios of system oscillations to develop and test the proposed meth-
ods. Methods which can only work on small systems will not be pursued. Methods
will be tested on the scenarios in order to assess whether the methods can be de-
veloped into tools of practical value in suppressing or avoiding oscillations in a real
power system. Some of the methods may require supplementary observations or
measurements (for example observing the oscillation frequency).

12.1.2 Tasks

1. Create test systems and test scenarios for power system oscillations on systems
up to 37 buses [2.2,A]. The objective for the test systems is to develop suffi-
ciently large and detailed power system dynamic models so that methods of
avoiding and suppressing oscillations can be developed and their potential as
a practical tool on much larger systems can be estimated. We plan to use sys-
tems of up to 37 buses to develop and assess methods. Issues to be addressed
include detail of generator modeling (up to a dozen states per generator), as-
sumptions about load modeling and possible ill conditioning due to algebraic
equation singularity. The test scenarios will illustrate several ways in which
an oscillation can arise [3]. For example, the oscillation could arise due to a
increase in an interarea transfer or could be initiated by a line tripping. The
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test scenarios should also include a case of multiple nearly critical oscillatory
modes [7]. The planned software packages are Mathematica (very fast and
flexible development of concepts), Matlab (good numerics and flexibility and
compatibility with other PSerc projects) and PTI software (validation) [6.1].

2. Estimate feasibility of avoiding or suppressing oscillations by identifying and
controlling critical oscillation modes using sensitivity formulas [11]. Demon-
strate and evaluate methods on test scenarios [3,5]. Applying and efficiently
computing the sensitivity formulas are important issues. Applying the formu-
las requires the critical modes to be identified and requires experiment with
the range over which first order sensitivity formulas give useful estimates. A
method to deal with multiple nearly critical oscillatory modes will be devel-
oped and assessed [7, 7.4.2]. Any problems in applying and computing the
formulas will be identified and solved or assessed. Efficient computation will
investigate and assess the use of state of the art algorithms exploiting sparsity.
A key issue is computational time and its scaling with model size [5]. The use
of measurements to supplement the computations will be investigated [9]. The
robustness to model data will be assessed [3.8,3.9,4.7].

3. Develop approximate or heuristic methods to suppress oscillations [8,10]. Test
and evaluate these methods on test scenarios [8]. The oscillations scenarios
will be studied to improve understanding of the oscillations and their anal-
yses with the objective of developing candidate methods of suppressing the
oscillations. The effectiveness, justification and range of applicability of the
candidate methods will be investigated. For example, approximations to exact
calculations will be examined and analytical justification for heuristic methods
will be attempted. The methods may use system measurements. The methods
will be critically evaluated and tested on the oscillation scenarios to estimate
their practical potential.

4. Write 6 month progress report outlining test scenarios and methods for sup-
pressing or avoiding oscillations. [This item was addressed in part by writing
a detailed progress report in November 1997 and providing regular summaries
and presentations to the IAB as detailed in section 12.6.]

5. Write final report describing methods to suppress or avoid large scale power
system oscillations, testing of the methods on oscillation scenarios and assess-
ment of their potential to be developed into a practical tool [this report].
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12.2 Deliverable

Final report describing methods to suppress or avoid large scale power system os-
cillations, testing of the methods on oscillation scenarios and assessment of their
potential to be developed into a practical tool.

12.3 Budget and cash flow

Table 9: Project budget

Dobson 40,000
Alvarado 10,000
DeMarco 5,000
Sauer 5,000
Total $ 60,000

The project was approved by the PSerc IAB in December 1996. The project
work started in Fall 1997 with support from Dobson’s NSF Presidential Young
Investigator grant. PSerc funds were phased in as they became available and $55,000
of the project funding has been received to date as shown in Table 10.

Table 10: Project cash flow

Amount Date received by UW/UIUC
25,000 August 1998
20,000 February 1999
20,000 July 1999
5,000 Not yet paid to UIUC

The project was originally planned to last one year, January - December 1997,
but was extended in time with no extra cost. (The first portion of project funding
was received in August 1998.) Partial support of the work in section 8 was also
provided by the Western Area Power Administration.

The project work plan was ambitious in that it required both detailed modeling
work based on industry data and the initial development of entirely new theoretical
and software approaches. (Much project effort was spent preparing the 37 bus model
equations and software in a form compatible with PSS/E and also on developing an
initial understanding of new mechanisms for oscillations.)

In hindsight, the project was underfunded relative to the work done and the
funding delays slowed progress and required inexperienced students to be trained.
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These problems were solved by partial funding from other sources, mainly Dobson’s
NSF grant, and by considerable faculty overtime and by extending the period of
performance. Thus the project goals were successfully achieved by the use of extra
effort and resources.

12.4 Students

Graduate student Jianfeng Zhang is the principal student working on the project.
Jianfeng Zhang started as a Masters student with a strong background in controls
and developed his power systems expertise working on the project. Jianfeng Zhang
is now working on his PhD at University of Wisconsin.

An experienced graduate student Scott Greene phased out of the project in Fall
1997 to work part time in industry and write up his PhD and graduated in 1998.
Some of Scott’s valuable expertise was transferred to others in the project team.

Undergraduate Henrik Engdahl assisted with setting up models and running
PSS/E. Henrik was funded from Sweden and worked on the project from September
1997 to January 1998.

The turnover of students and the time spent training them on the project is a
natural and expected consequence of the educational function of the university but
has greatly slowed progress on the project. The available experienced PhD students
used to estimate the project effort were largely unavailable by the time the project
was approved and then funded.

12.5 Infrastructure

The project infrastructure included the use of two Power Macintoshes 7600 running
at 132 MHz with 150 MB RAM and one external Jaz drive and a MMX Pentium PC
running at 200 MHz with 48 MB RAM and an internal Jaz drive. The Macintosh
software includes Mathematica and Matlab. The PC software includes Matlab and
Pacdyn and the latest version of PSS/E software from PTI. The Power Macintoshes
and PC purchase specifications were tailored to the project requirement to run the
37 bus system. (All these computers are now outdated). The project hardware and
software was mainly funded by NSF.

12.6 Project reports and presentations

All reports and presentations, including this final report are available on the PSerc
web site [60].

The reports and presentations to PSerc are

• brief work statement and slide presentation to PSerc IAB December 1996
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• comprehensive project plan report June 1997

• slide presentation to PSerc IAB, Ithaca June 1997

• project plan and initial work report November 1997

• progress summary and slide presentation to PSerc IAB, IREQ June 1998

• progress summary and slide presentation to PSerc IAB, Vancouver December
1998

• progress summary and slide presentation to PSerc IAB, Madison June 1999

• progress summary for PSerc IAB, Tennessee October 1999

• this final report November 1999

The conference papers and talks to which the project contributed are

• I. Dobson, J. Zhang, S. Greene, H. Engdahl, P.W. Sauer, Is modal resonance
a precursor to power system oscillations?, International symposium on Bulk
power System Dynamics and Control-IV Restructuring, Santorini, Greece, Au-
gust 1998, pp. 659-673.

• C.L. DeMarco, Identifying swing mode bifurcations and associated limits on
available transfer capability, Proceedings of the 1998 American Control Con-
ference, Philadelphia PA, June 1998, pp. 2980-2985.

• C.L. DeMarco, Network structure in swing mode bifurcations, PSerc internet
seminar, 1998.
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A Detail of 3 bus and 9 bus models and test cases

A.1 3 bus test system

The dynamic model for both generators consists of a fourth-order synchronous ma-
chine (angle, speed, field flux, one damper winding) with an IEEE type I excitation
system (third order), and a first-order model each for the turbines, boilers, and gov-
ernors. The machine equations are (6.110–6.116), (4.98), (4.99), (6.118) and (6.121)
in [67]. The limits on exciter voltage VR and the steam valve PSV are neglected.

All data is in per unit except that time constants are in seconds.

Three bus power system data
Generator Exciter Gov/Turbine
T ′

do = 5.33 KA = 50 TRH = 10.0
T ′

qo = 0.593 TA = 0.02 KHP = 0.26
H = 2.832 KE = 1 TCH = 0.5

TFW = 0 TE = 0.78 TSV = 0.2
Xd = 2.442 KF = 0.01 Rd = 0.05
Xq = 2.421 TF = 1.2 ωs = 120π rad/s

X ′
d = 0.830 SE(Efd) = 0.397 e0.09Efd

X ′
q = 1.007

Rs = 0.003

Load Line 1-2 Line 2-3
PL = 1.0 R = 0.042 R = 0.031
QL = 0.3 X = 0.168 X = 0.126

B = 2 × 0.01 B = 2× 0.008

The generator dispatch is controlled by a parameter α which specifies the pro-
portion of power specified at the governors at buses 1 and 3:

Pc1 = αPctotal

Pc3 = (1− α)Pctotal

(Pctotal is determined when the equilibrium equations are solved.) The base case
has α = 0.5 and the results are produced by decreasing α to 0.1 in steps of −0.1.

A.2 9 bus test system

The overall form of the 9 bus model is that of the WSCC system shown in Figure
7.4 of [67], except that PQ loads are added at buses one and two. The generators
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are round rotor with IEEE Type 1 exciters. The generator dynamic equations are
consistent with (6.173) to (6.181) of [67]. (Note that for (6.178), we omit TFW and
substitute TM with (wsPm−D(w−ws))/ws, but this does not matter because D=0!)
The generator algebraic equations are consistent with (6.186), (6.187) and (6.188)
of [67]. The saturation function relations (131,132) in section A.2.1 are consistent
with (6.189) to (6.193) of [67] and all the modeling in section A.2.1 is consistent
with PSS/E.

The network data is given in Table 7.2 of [67]; other parameters are as follows.
All data is in per unit except that time constants are in seconds.

Machine Data
Parameter bus1 bus2 bus3

T ′
do 8.96 8.5 3.27
T ′

qo 0.31 1.24 0.31
T ′′

do 0.05 0.037 0.032
T ′′

qo 0.05 0.074 0.079
H 22.64 6.47 5.047
TFW 0 0 0
Xd 0.146 1.75 2.201
Xq 0.0969 1.72 2.112
X

′
d 0.0608 0.427 0.556

X
′
q 0.0608 0.65 0.773

X
′′
d = X

′′
q 0.05 0.275 0.327

Xl 0.026 0.22 0.246
SGA 0.898 0.911 0.825
SGB 9.610 8.248 2.847

Exciter Data
Parameter bus1,2,3

TR 0
KA 20
TA 0.2
KE 1.0
TE 0.314
KF 0.063
TF 0.35
SEA 2.5484
SEB 0.5884
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Load Data
Parameters bus1 bus2 bus5 bus6 bus8

PL 1.80 0.50 0.25 0.25 1.0
QL 0.265 0 0.075 0.075 0.35

Bus 1 has a constant power load. The loads on buses 2,5,6,8 have real power loading
of 40% constant current and 60% constant admittance and reactive power loads
of 50% constant current and 50% constant admittance. Base MVA is 100 and the
system frequency is 60 Hz. Bus voltage settings are v1 = 1.02, v2 = 0.99, v3 = 1.005.

The sources for the data are as follows: Exciter parameters are given in Ta-
ble 7.3 of [67]. Data for bus 1 comes from [67]. Data for bus 2 comes from 37 bus
system generator 5525; data for bus 3 comes from 37 bus system generator 3814.
The following modifications were made: The values of X

′′
d1 and Xl1 for bus 1 were

suggested by Graham Rogers. H1 and H3 were adjusted to obtain a case showing
strong resonance.

A.2.1 Saturation

Sfd =
ψ

′′
d

|ψ′′|Ssm(|ψ′′|)

S1q =
ψ

′′
q (Xq −Xl)

|ψ′′|(Xd −Xl)
Ssm(|ψ′′|)

|ψ′′| =
√
ψ

′′2
d + ψ′′2

q

ψ
′′
d =

(X
′′
d −Xl)

(X ′
d −Xl)

E
′
q +

(X
′
d −X

′′
d )

(X ′
d −Xl)

ψd

ψ
′′
q =

(X
′′
q −Xl)

(X ′
q −Xl)

E
′
d +

(X
′
q −X

′′
q )

(X ′
q −Xl)

ψq

Ssmi(|ψ′′|) =

{
0 if |ψ′′| ≤ SGA

SGB(|ψ′′| − SGA)2 if |ψ′′| > SGA
(131)

SE(Efd) =

{
0 if Efd ≤ SEA

SEB(Efd − SEA)2/Efd if Efd > SEA
(132)

A.2.2 Loads

The load equations are

PL = (1 − αP − βP )PL0 + irV + ggV 2 (133)
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QL = (1 − αQ − βQ)QL0 + iiV + susV 2 (134)
αPPL0 = irV (135)
βPPL0 = ggV 2 (136)
αQQL0 = iiV (137)
βQQL0 = susV 2 (138)

and the quantities used are presented in table 11.

dynamic static component
quantity description model G model H of

V voltage magnitude algebraic variable variable y

PL total real power algebraic variable variable y
QL total reactive power algebraic variable variable y

PL0 load flow real power parameter parameter p
QL0 load flow reactive power parameter parameter p

ir const. current coeff.(P) parameter variable q

gg conductance parameter variable q
ii const. current coeff.(Q) parameter variable q

sus susceptance parameter variable q

αP fraction const. current(P ) constant constant
βP fraction impedance(P ) constant constant
αQ fraction const. current(Q) constant constant
βQ fraction impedance(Q) constant constant

Table 11: Load model quantities

On the transient timescale, V , PL, QL are variables and ir, gg, ii, sus are
parameters. On the steady state time scale, V , PL, QL ir, gg, ii, sus are variables.
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B Detail of 37 bus model and base case

The 37 bus system model is modified from a PSS/E format raw data of New York
Power Pool as shown in Table 12. The 37 bus system model has 29 generators of
3 types(11 round rotor, 3 salient pole, 15 swing dynamics), 1 hydro governor, 12
exciters of 6 types, 6 stabilizers of 4 types, and 4 SVC of 2 types. In the project,
only generators and exciters are modeled. Generator models GENROU, GENSAL,
GENCLS and exciter model IEEET1, SEXS remain unchanged; other models are
modified to these models. NYPP EXST1 model data effectively removed these
exciters so that omission of these exciters from the project model is not an ap-
proximation. The equations of each model are in B.1. Exponential saturation is
represented as in section A.2.1 but no hard limits are included. The load models
are the same as in section A.2.2. The project model has 135 dynamic states, 289
algebraic states, and 120 parameters.

B.1 Model equations

GENROU

round rotor generator

T
′
doĖ

′
q = −E′

q − (Xd −X
′
d)(Id − (X

′
d −X

′′
d )(ψd + (X

′
d −Xl)Id − E

′
q)

(X′
d −Xl)2

) − Sfd + Efd

T
′′
doψ̇d = −ψd + E

′
q − (X

′
d −Xl)Id

T
′
qoĖ

′
d = −E′

d − (Xq −X
′
q)(Iq −

(X
′
q −X

′′
q )(ψq + (X

′
q −Xl)Iq + E

′
d)

(X′
q −Xl)2

) + S1q

T
′′
qoψ̇q = −ψq + E

′
d + (X

′
q −Xl)Iq

δ̇ = ωsn

2Hṅ =
1

1 + n
(PM −Dn) − X

′′
d −Xl

X
′
d −Xl

E
′
qIq −

X
′
d −X

′′
d

X
′
d −Xl

ψdIq −
X

′′
q −Xl

X′
q −Xl

E
′
dId −

X
′
q −X

′′
q

X′
q −Xl

ψqId − (X
′′
q −X

′′
d )IdIq

GENSAL

salient pole generator

T
′
doĖ

′
q = −E′

q − (Xd −X
′
d)(Id − (X

′
d −X

′′
d )(ψd + (X

′
d −Xl)Id −E

′
q)

(X′
d −Xl)2

) − Ssm(E
′
q) + Efd

T
′′
doψ̇d = −ψd +E

′
q − (X

′
d −Xl)Id
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PTI name PTI ref bus numbers project modeling
GENERATORS

GENROU V-29 51,136,1459,2855,3645,3814, modeled
4305,5525,5890,5902,5903

GENSAL V-33 2458,4895,6321 modeled
GENCLS V-23 1,2812,2833,2834,2864,3517, modeled

3520,3523,3814,4611,4656,
6597,6632,6659,6660

GOVERNORS
HYGOV VI-91 4895 omitted

EXCITERS
EXAC3 VI-33 1459,3645 SEXS substituted
EXST1 VI-41 5890,5902,5903 omitted (see text)
EXST3 VI-47 2855 SEXS substituted
IEEET1 VI-49 51,136,3814,4895 modeled
IEEET5 VI-57 2458 approximated by IEEET1
IEEEX1 VI-59 6321 approximated by IEEET1

STABILIZERS
IEEEST V-47 5890,5902,5903 omitted
PTIST1 V-51 4305 omitted
OEX12 VIII-117 5525 omitted

OSTAB5 VIII-125 5525 omitted
SVC

CHASVC ??? 2473,2474 omitted
CSVGN1 V-11 4383, 9484 omitted

Table 12: NYPP 37 bus system models and their representation in project 37 bus
system
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T
′′
qoψ̇q = −ψq + (Xq −X

′′
q )Iq

δ̇ = ωsn

2Hṅ =
1

1 + n
(PM −Dn) − X

′′
d −Xl

X
′
d −Xl

E
′
qIq −

X
′
d −X

′′
d

X
′
d −Xl

ψdIq − Xq −X
′′
d

Xq −Xl
ψqId

GENCLS

swing equation generator

δ̇ = ωsn

2Hṅ =
1

1 + n
(PM −Dn) − EfdV sin(δ − θ)

Xs

IEEET1

IEEE type 1 exciter

TE
˙Efd = −(KE + SE(Efd))Efd + VR

TF Ṙf = −Rf +KFEfd

TAV̇R = −VR +
KA

TF
(Rf −KFEfd)KA(Vref − VT )

SEXS

generic exciter

TE
˙Efd = −Efd +K(

TA

TB
(Vref − VT ) + LL

TBL̇L = −LL + (1 − TA

TB
)(Vref − VT )

B.2 Base Case
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bus number Generator Exciter Pg Load Bus Voltage
1 GENCLS 30.8034 23.5072+12.3943i 0.9878
51 GENROU IEEET1 33.42 20.5448+32.3948i 33.42
136 GENROU IEEET1 31.13 52.0397+26.2982i 1.038
1377 27.1083+20.1042i
1459 GENROU SEXS 35.84 0.9834
2458 GENSAL IEEET1 12.88 -14.9222+17.3697i 1.076
2812 GENCLS 235.0420 206.1759+47.5065i 1.0389
2833 GENCLS 234.6597 222.3754+49.5134i 1.0143
2834 GENCLS 235.0773 221.8341+49.3747i 1.0134
2855 GENROU SEXS 74.35 166.0184+118.3536i 1.013
2864 GENCLS 235.7961 220.8136+49.3009i 0.9696
3517 GENCLS 231.7168 232.2607+51.8871i 1.0609
3520 GENCLS 233.8769 230.7088+52.6512i 0.9568
3523 GENCLS 229.0716 231.9886+55.0370i 1.0082
3645 GENROU SEXS 6.417 3.2652+3.5105i 1.043
3814 GENROU IEEET1 0.7641 230.3129+50.3509i 1.026
3814 GENCLS 230.4431
3864 1.5749+0.9613i
4305 GENROU slack 7.1687+16.6267i 1.013
4383 2.4897+3.5288i
4387 5.8764+8.0557i
4611 GENCLS 223.0368 230+50i 1.0148
4656 GENCLS 223.6187 231.3877+51.2139i 1.0155
4895 GENSAL IEEET1 23.57 15.8173+15.0123i 1.040
5506 19.7403+28.3319i
5525 GENROU 61.71 10.0594+15.6871i 1.066
5685 37.1967+27.9934i
5686 26.4481+22.5839i
5890 GENROU 35.22 1.021
5902 GENROU 20.61 1.008
5903 GENROU 20.61 1.032
6188 15.3363+11.2270i
6321 GENSAL IEEET1 10.73 1.011
6597 GENCLS 227.4630 233.6991+52.4896i 0.9909
6632 GENCLS 227.1556 234.1364+55.2911i 1.0954
6659 GENCLS 230.9616 229.4764+49.8269i 1.0298
6660 GENCLS 230.9871 229.4807+50.1727i 1.0298
9484 2.2096+3.6136i

Table 13: 37bus basecase

124



References

[1] E.H. Abed, P.P. Varaiya, Nonlinear oscillations in power systems, International Journal
of Electric Energy and Power Systems, vol. 6, no. 1, Jan. 1984, pp. 37-43.

[2] V. Ajjarapu, B. Lee, A general approach to study both static and dynamic aspects of
voltage stability, Proceedings of the 31st Conference on Decision and Control, Tucson,
AZ, December 1992, pp. 2916-2919.

[3] F. L. Alvarado. Computational complexity in power systems. IEEE Transactions on
Power Apparatus and Systems, 95(4), July/August 1976, pp.1028–1037.

[4] F.L. Alvarado, Z. Wang, Direct sparse interval hull computations for thin non-M ma-
trices, Interval Computations, March 1993, pp. 5-28.

[5] G. Angelidis, A. Semlyen, Improved methodologies for the calculation of critical eigen-
values in small signal stability analysis, IEEE Trans. Power Systems, vol. 11, no. 3,
Aug 1996, pp. 1209-1217.

[6] V.I. Arnold, Geometrical methods in the theory of ordinary differential equations,
Springer-Verlag, NY, 1983.

[7] P.M. Anderson,A.A. Fouad, Power System Control and Stability, Iowa State University
Press, Ames Iowa, 1977.

[8] R. Bacher: Automatic code differentiation applied to OPF code: An example of using
a “symbolic” tool (ADIFOR) for advanced software development. Presentation at the
IEEE/PES Winter Power Meeting, New York, February 1999.

[9] A.R. Bergen, Power Systems Analysis, Prentice-Hall, Englewood Cliffs NJ, 1986.

[10] P. Billingsley, Probability and measure, second edition, Wiley 1986, theorem 27.2, page
369.

[11] R. T. Byerly, R. J. Bennon, and D. E. Sherman. Eigenvalue analysis of synchronizing
power flow. In Power Industry Computer Applications Conference, pages 134–142,
1981.
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