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How Long is a Resilience Event in a Transmission
System?: Metrics and Models Driven by Utility Data

Ian Dobson , Fellow, IEEE, and Svetlana Ekisheva , Senior Member, IEEE

Abstract—We discuss ways to measure duration in a power
transmission system resilience event by modeling outage and re-
store processes from utility data. We introduce novel Poisson pro-
cess models that describe how resilience events progress and verify
that they are typical using extensive outage data collected across
North America. Some usual duration metrics show impractically
high statistical variability, and we recommend new duration met-
rics that perform better. Moreover, the Poisson process models have
parameters that can be estimated from observed network data
under different weather conditions, and are promising new models
of typical resilience events.

Index Terms—Metrics, power transmission system, reliability,
resilience, restoration, stochastic process, utility data, weather.

I. INTRODUCTION

MUCH of the analysis of electric power system resilience
relies on describing the duration and magnitude of re-

silience events with quantitative metrics [1], [2], [3], [4], [5],
[6], [7], [8], [9]. The resilience events correspond to conditions
of unusually high stress such as extreme weather or cascading
and are either simulated [3], [4], [5] or extracted from historical
data [6], [7], [8], [9]. The metrics of duration and extent describe
the performance of the power system as it responds to the high
stress and, sometimes indirectly, the impact of the event on
our society. The metrics are broadly useful in improving the
engineering of power system resilience, as evidenced by all
the engineering references of this article. This article addresses
electric power transmission system metrics for the duration of
resilience events and the durations of the outage and restore
processes occurring within resilience events. Here “outage”
refers to a component being removed from service, and “restore”
refers to re-energizing a component to return it to service.

The duration of a resilience event would appear to be straight-
forward: The event starts with the first transmission outage at
time o1 and the event ends with the last restore at time rn, so that
the event duration metric is simply DE = rn − o1. However,
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we will show that the timing rn of the last restore is so highly
statistically variable that it is not meaningfully representative of
the power system restoration. (A metric is highly statistically
variable if it is likely that its value can be much different than its
estimated value, and we quantify this by the size of a confidence
interval containing the estimate.) Moreover, given the redun-
dancy that is designed into power transmission systems, the last
restore may have little or no impact on the power flowing to
the distribution system and then to the customers. Therefore we
analyze a variety of duration metrics to find new metrics which
are less variable and more representative.

Our main approach is to develop new Poisson process models
for the outage and restore processes. The new models are driven
by seven years of automatic outage data collected across North
America by the North American Electric Reliability Corporation
(NERC) in its Transmission Availability Data System (TADS).
These statistical models enable the variability of the metrics to be
quantified. Moreover, parameters of the new models are closely
related to some of the duration metrics.

This article addresses the durations associated with trans-
mission system resilience events in which there are substantial
outages of transmission system elements. In particular, the ar-
ticle does not address resilience events in which there are no
outages or minimal outages, such as an extended heat wave that
significantly limits transmission flows but causes no outages.
More generally, the article is driven by outage and restore data
for transmission system elements, and therefore does not address
outages of generation, distribution system elements, and loads.

A. Literature Review

Much of the previous work on statistical models of power
system resilience events addresses distribution systems. Zap-
ata [10] models distribution system reliability with outages as a
power-law Poisson process arriving at a queue that is serviced
by a power-law repair process to produce a restore process. Wei
and Ji [7] analyze distribution system resilience to particular
severe hurricanes with a Poisson outage process arriving at a
queue that repairs the outages to produce a restore process. Both
the outage process rate and the repair time distribution vary in
time as the hurricane progresses. Carrington [9] shows how to
extract outage and restore processes from standard distribution
utility data.

Both [7] and [10] statistically model the outage process and
the component repair process, and then calculate the restore
process with a first-in-first-out queue model, whereas we follow
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the insight of [9] in extracting and directly modeling the outage
and restore processes. Modeling the restore process directly
from the data avoids the complexities in queuing models of
explicitly modeling the component repair and assuming an order
of component repair. While [9] fits the mean and standard
deviation of the distribution system outage and restore processes
to give a gamma distribution of restore times, it does not give
statistical process models as we do in this article. Moreover, the
forms of the outage and restore processes are quite different:
for transmission systems the restore process dramatically slows
over time and typically extends well beyond the end of the outage
process, whereas in distribution systems the outage and restore
processes overlap during most of the event [7], [9].

Previous work also estimates individual component repair
times from distribution utility data. For example, Jaech [11]
predicts a gamma distribution of individual component outage
restoration times and customer hours lost with a neural network,
and Liu [12] fits generalized additive accelerated failure time
models to hurricane and ice storm data.

There is a continuing and very useful tradition of reliability
analysis of bulk transmission systems that directly analyzes
the average annual reliability of classes of components from
observed data [13], [14], [15], [16], [17], or applies steady state
Markov analysis to calculate the average reliability [18]. The
steady state Markov analysis has a huge literature with ingenious
formulations to encompass different types of outage dependen-
cies. The contribution of extreme weather to the average relia-
bility is modeled by having sets of Markov states corresponding
to the extreme weather [19], [20]. [21] calculates the average
steady state occurrence of compound outages from detailed
outage data. The present article is different than steady state
reliability approaches in that it analyzes transient systems-level
processes of outage and restore rather than tracking individual
components, and analyzes events of various sizes rather than
reliability averaged over a year.

Most research on transmission system resilience uses con-
ceptual frameworks and simulates physics-based models [1],
[3], [4], [8], [22], [23]. With the exception of [8], in which
the simulation samples from empirically obtained distributions,
these approaches are not directly driven by observed data as in
the present article.

Cascading outages of transmission systems, which on an
annual time scale1 are rarer transient events involving a series
of dependent outages, can be studied by extracting cascading
events from outage data. The outage dependencies are diverse
and can be caused by a common environment such as extreme
weather as well as by interactions within the transmission
system. The statistics of cascading events can be studied by
first extracting from observed outage data the events in which
outages bunch up and overlap. For example, [24], [25] extracted
events in the Northwest USA in which outages occurred in
quick succession, and modeled the propagation and number
of outages using a branching process, and how event outages

1On a longer time scale, complex system feedbacks produce a “statistical
steady state” with the observed power law distribution of blackout size [32],
[33].

spread in the network. [26] extracted events in Britain in which
outages occurred in quick succession and analyzed their sizes
and causes. [27] extracted events from North American data
with a quick succession of overlapping outages and analyzed
their sizes and causes. The present article uses the further refined
event processing developed for processing and analyzing North
American data in [28], [29] and applied in the NERC State of
reliability reports [30], [31].

B. Summary of Article Contributions

This article:
1) proposes new statistical models of outage and restore

processes in transmission systems, and shows that the new
models describe typical North American data.

2) analyzes statistical variability and interpretation of a vari-
ety of duration metrics.

3) recommends novel and more useful duration metrics.
4) reports typical values for model parameters and duration

metrics for North America transmission resilience events.
The previous conference articles and NERC reports [28], [29],

[30], [31] extract resilience events from transmission system
outage data and report the two duration metricsD≥

95% andDn for
the larger or largest events. The fruitful previous applications of
these duration metrics motivate in this article the extensive new
analysis of a range of duration metrics and the recommendations
backed by this analysis of better performing duration metrics.
The extraction of the transmission system resilience events
developed in [28], [29] is not the subject of this article, but
since it is used in the data processing of this article, we specify
in Section II the precise version of the event extraction used.
Section II also summarizes the outage data used in the article
and states and briefly comments on the definitions of the outage
and restore processes [9] since this article uses these processes.

The duration of resilience events has clear importance to the
public, engineers, regulators, and policy makers. This motivates
our consideration of the performance of a range of duration
metrics. We are not aware of another article addressing the
question of how duration metrics perform, and we approach the
question with novel methods. In particular, the stochastic models
of typical transmission system resilience processes proposed and
validated with extensive data in the article are novel, and we
expect that these new models will be useful well beyond this
article’s more immediate goal of proposing and analyzing better
duration metrics.

II. RESILIENCE EVENTS AND PROCESSES

To obtain resilience metrics from utility outage data, we first
need to automatically extract resilience events and the outage
and restore processes for each event. This section explains how
to do this based on previous work [9], [28], [29] and establishes
the notation needed for the article.

A. Utility Data and Extracting Resilience Events

NERC’s TADS collects outage and inventory data for the
following four types of transmission elements: AC circuits,
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transformers, AC/DC back-to-back converters, and DC cir-
cuits [34] which are part of the North American Bulk Power
System (i.e. operated at 100 kV or higher) [35]. The detailed
automatic outage data include the outage and restore time to the
nearest minute, the initiating cause code for each outage, and
the sustaining cause code for sustained outages. In this article
we analyze the approximately 62 000 automatic outages for all
elements reported in TADS from 2015 to 2021 for the Eastern,
Western, and ERCOT interconnections.

A key step in resilience analysis of real data is automati-
cally extracting resilience events. For each interconnection, the
automatic outages are grouped together into resilience events
based on the bunching and overlaps of their starting times
and durations. We quote from [29] the algorithm used: “Every
outage in an event has to either start within five minutes of
a previous outage in the event or overlap in duration with at
least one previous outage in the event that has a difference in
starting time not exceeding one hour. In applying this algorithm,
repeated momentary outages of the same element are neglected
if they occur within 5 minutes of each other.” We use this
algorithm to automatically group outages into resilience events
(their sizes vary from 1 to 352 outages) and then analyze all
the resilience events with 10 or more outages. An event that
contains at least one outage with a weather-related initiating
or sustained cause code is defined as a weather-related event.
The weather-related TADS cause codes are lightning, weather
excluding lightning, fire, and environmental. This procedure
identified 352 transmission events with 10 or more outages, 329
of which are weather-related. Note that events are defined so that
if an outage is included in an event, then so is its corresponding
restore. Therefore the number of outages in an event is equal to
the number of restores.

B. Outage, Restore, and Performance Processes

Suppose that the resilience event has n outages at times o1 ≤
o2 ≤ . . . ≤ on andn restores at times r1 ≤ r2 ≤ . . . ≤ rn. Note
that the outages are sorted into the order in which the outages
occur, and the restore times are sorted into the order in which
the restores occur. This sorting implies that the kth restore time
rk is not usually the restore of the kth outage ok. For each event,
the outage process O(t) is the cumulative number of outages at
time t and the restore process R(t) is the cumulative number of
restores at time t:

O(t) = number of outages oj with oj ≤ t (1)

R(t) = number of restores rk with rk ≤ t (2)

Both processes start at zero at the beginning of the event and
increase to the total number of outages n, as can be seen in the
example in Fig. 1.

Resilience studies [1], [3], [4], [5] often define for each event
a performance (or resilience) curve P (t), which is the negative
of the number of unrestored outages at time t. The performance
curve decrements for each outage and increments for each re-
store as shown in Fig. 1. Indeed, the performance curve is related
to the outage and restore processes byP (t) = R(t)−O(t). The
performance curve can be uniquely decomposed into its outage

Fig. 1. Processes for a transmission system resilience event with 12 outages.

and restore processes, and it contains the same information as
the outage and restore processes [9].

The outage and restore processes, while straightforward, are
fundamental to analyzing real outage data, and they have several
distinctive features [9]: (a) The outage and restore processes
routinely overlap in time in real data; this differs from the
customary idealized outage and restore phases of resilience that
are separated in time [1], [3], [4], [5], [8]. (b) The analysis is
at a systems level and is not focused on tracking individual
elements: it only counts the numbers of outages and restores
and it does not track which outaged element restored when or
the order in which elements restore. (c) The forms of the outage
and restore processes and performance curve readily lead to
resilience metrics that describe each process; in particular, it is
useful to have separate metrics describing the outage process
and the restore process.

III. POISSON PROCESS MODELS OF OUTAGE AND RESTORE

This section introduces new Poisson process models that
describe typical outage and restore processes in our transmission
system data. Fig. 2 shows examples. The mean values of these
Poisson processes are a useful approximation of the outage and
restore processes. Moreover, parameters of the Poisson process
models yield resilience metrics, and Section VIII uses the Pois-
son process models to quantify the variability of the metrics. We
consider two different Poisson models for the restore process,
based on lognormal and exponential rates respectively. The fit
of the Poisson models with the data is discussed in Section VII,
where it is shown that the model with a lognormal rate typically
fits the restore process better than the model with an exponential
rate.

A. Poisson Process of Outage Times With Constant Rate

The data for each event specifies that there are n outages in
the event and that the outages start at time o1 and end at time on.
Given this information, and assuming a constant rate Poisson
process, we model the outage times as occurring randomly and
at a constant rate λO in the time interval (o1, on). In particular,
given that there are n outages in (o1, on), the n− 2 outage
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Fig. 2. Examples of outage processes (dark blue) and restore processes (red) for events. Red dashed line is lognormal restore approximation, gray dashed line is
exponential restore approximation. p-value is from Anderson Darling test on lognormal fit to restore process.

Fig. 3. Horizontal axes ticks show eight outage times o1, o2, . . ., o8 produced
by a Poisson process with constant rate λO . The resulting outage processO(t) is
the dark blue stepped line. O(t) is approximated by the average outage process
O(t), which is the dashed line of slope λO .

times o2, . . ., on−1 are independent samples from a uniform
distribution on (o1, on) sorted into ascending order.2

A metric characterizing the outages is their rate λO, which is
estimated for each event as3

λO =
n− 1

on − o1
(3)

The average or expected cumulative number of outages O(t) at
time t is

O(t) = E[O(t)] = 1 + λO(t− o1), o1 ≤ t ≤ on (4)

O(t) approximates the outage process O(t) as shown in Fig. 3.
We see in Fig. 2 some typical examples in which the cumulative

2One well known property of a constant rate Poisson process is that, if there are
a given number of outages in an interval, then these outage times are uniformly
distributed in that interval [37, Th. 4 A, Ex. 4A], [38, Th. 5.2].

3Since there are n− 1 time differences between the n outages, the estimated
average time difference between successive outages is (on − o1)/(n− 1), and
then the estimated rate λO is the reciprocal of the average time difference.

number of outage increases in the linear way given by (4). The
total number of outages is O(on) = n. For each event, λO can
be estimated from (3), and then the averaged outage process (4)
approximates and describes the outage process O(t).

B. Poisson Process of Restore Times With Lognormal Rate

The data for each event specifies that there are n restores in
the event and that the restores start at time r1. We work with
the restore times relative to r1; that is, rj − r1, j = 1, 2, .., n.
The first restore time relative to r1, and any other simultaneous
restores at r1, become r1 − r1 = 0. Suppose that first restore
that occurs at a time > r1 is rz+1. Usually r2 > r1 and z = 1.

The restore times typically happen with a rate that varies,
as can be seen in the examples in Fig. 2. In particular, the
rate of restores typically slows dramatically for the final re-
stores. We model the n−z positive restore times rj−r1, j =
z + 1, z + 2, . . ., n as occurring randomly in a nonhomoge-
neous Poisson process at a rate proportional to a lognormal
distribution. In particular, given that there are n− z outages
in the time interval (r1,∞) = {t|t > r1}, the n− z restore
times rz+1−r1, . . ., rn−r1 are independent samples from a
lognormal distribution on (r1,∞) sorted into ascending order.
There are some extremely long restore times rn in the data (up
to a year is recorded), and this is reflected in the modeling of the
process as unbounded in (r1,∞).

Let the lognormal distribution have parameters μ and σ and
probability density function fμ,σ(t). Then the Poisson process
rate is proportional to the probability density function:

λR(t) = (n− z)fμ,σ(t− r1), t > r1 (5)

By definition of the lognormal distribution, since the restore
times rz+1 − r1, rz+2 − r1, . . ., rn − r1 are independent sam-
ples from a lognormal distribution, the natural logarithms of the
restore times ln(rz+1 − r1), ln(rz+2 − r1), . . ., ln(rn − r1) are
independent samples from a normal distribution. The standard
parameters characterizing the lognormal distribution are the
mean μ and standard deviation σ of the normal distribution.
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Fig. 4. Horizontal axes ticks show eight restore times r1, r2, . . ., r8 produced
by a Poisson process with lognormal rate. The resulting restore process R(t) is
the red stepped line. R(t) is approximated by the average restore process R(t),
which is the dashed curve. R(t) is proportional to the CDF of the lognormal
distribution and its slope is the Poisson process rate.

Therefore we estimate μ and σ for each event by

μ =
1

n− z

n∑
k=z+1

ln(rk − r1) (6)

σ2 =
1

n− z − 1

n∑
k=z+1

(ln(rk − r1)− μ)2 (7)

The Poisson process restore rate λR(t) is proportional to the
lognormal distribution as shown in (5). Then the average or
expected cumulative number of restores R(t) is

R(t) = E[R(t)] = z +

∫ t

r1

λR(τ)dτ

= z + (n− z)

∫ t

r1

fμ,σ(τ − r1)dτ (8)

= z + (n− z)
1

σ
√
2π

∫ ln(t−r1)

−∞
e−

(y−μ)2

2σ2 dy

= z + (n− z)Φ

[
ln(t− r1)− μ

σ

]
, t ≥ r1 (9)

where Φ is the CDF of the standard normal distribution. Eq. (8)
shows thatR(t)− z is proportional to the CDF of the lognormal
distribution, and (9) expresses R(t) in terms of the parameters
μ and σ. R(t) approximates the restore process R(t) as shown
in Fig. 4.

The lognormal model has parameters μ, σ, z, and n. For each
event, μ and σ can be estimated from (6) and (7) and then the
averaged outage process R(t) (9) approximates and describes
the restore process R(t). Examples of the approximating restore
curves are shown by red dashed lines in Fig. 2.

C. Poisson Process of Restore Times With Exponential Rate

We can substitute the exponential distribution for the log-
normal distribution of Section III-B to obtain a Poisson restore
process with exponential rate. That is, given that there are n− z
outages in (r1,∞), then− z restore times rz+1−r1, . . ., rn−r1
are independent samples from an exponential distribution on
(r1,∞) sorted into ascending order. We analyze the exponential
restore rate because it is an analytically convenient choice to try
to describe the slowing rate of restores.

Let the exponential distribution have time constant τ and prob-
ability density function τ−1 e−t/τ for t ≥ 0. Then the Poisson
process rate is

λRexp(t) = (n− z)τ−1 e−(t−r1)/τ , t > r1 (10)

and the expected cumulative number of restores is

Rexp(t) = z + (n− z)

∫ t

r1

τ−1 e−(s−r1)/τds (11)

= z + (n− z)[1− e−(t−r1)/τ ], t ≥ r1 (12)

We estimate the exponential time constant by

τ =
1

n− z

n∑
k=z+1

(rk − r1) (13)

τ is the arithmetic mean of the positive restore times relative to
r1. The exponential model has parameters τ , z, and n. For each
event, τ can be estimated from (13), and then the averaged outage
process Rexp in (12) approximates and describes the restore
process R(t). Examples of the approximating restore curves are
shown by gray dashed lines in Fig. 2.

IV. DURATION METRICS

There are many possible metrics describing durations in re-
silience events. This section defines and describes a variety of
these metrics.

A. Straightforward Duration Metrics

outage duration DO = on − o1
time to first restore Dr1 = r1 − o1
restore duration Dn = rn − r1
restore time to kth restore Dk = rk − r1
event duration DE = rn − o1
The outage process starts at the first outage o1 and ends at

on so that the outage duration DO = on − o1. The first restore
is at time r1 and the time to the first restore is Dr1 = r1 − o1.
That is, Dr1 quantifies how much the start of the restore process
is delayed. The restore process starts at r1 and ends at the last
restore rn so that the restore duration Dn = rn − r1. The event
starts at time o1 and ends at time rn. The event duration DE =
rn − o1 can be split into the time to the first restore and the
restore duration:

DE = rn − o1 = (r1 − o1) + (rn − r1) = Dr1 +Dn (14)

This section discusses restore duration, but the corresponding
metrics describing event duration are easily obtained from the
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metrics for restore duration by adding the time to first restore
Dr1 as in (14). The outage duration DO and time to first
restore Dr1 are useful metrics, but Section V explains that the
restore duration Dn and the event duration DE suffer from high
variability.

B. Restore Metrics Based on Quantiles

It is of interest to quantify the time to reach a given percentage
x of restoration, or, equivalently, the x/100 quantile of the
restore times 0, r2 − r1, r3 − r1, . . ., rn − r1. There are many
different definitions of quantiles ([36] analyzes 10 definitions
used in statistics), and correspondingly many ways to define
restore metrics based on quantiles. This subsection discusses two
metrics of restore duration based on quantiles; the first metric
quantizes to a restore time while the second metric interpolates
between restore times.

time to first restore with at least x% restoration

D≥
x% = r�nx/100� − r1 (15)

The ceiling function �u� is the smallest integer ≥ u. For exam-
ple, D≥

95% is the time between the first restore r1 and the first
restore r�0.95n� at which at least 95% of the restores are com-
pleted. It follows that D≥

95% = Dn for n < 20, D≥
95% = Dn−1

for 20 ≤ n < 40, and D≥
95% = Dn−2 for 40 ≤ n < 60. For ex-

ample, for n = 16, �0.95n� = �15.2� = 16 and D≥
95% = D16.

These quantum jumps inD≥
95% as n varies, and which also occur

as x varies, are unsatisfactory when analyzing a range of events.
This can be fixed with the following more elaborate quantile
definition.

restore time to x% of restoration

Dx% = (1− (u− �u	))r�u	 + (u− �u	)r�u� − r1

= (1− (u− �u	))D�u	 + (u− �u	)D�u� (16)

where u = min

{
1

3
+

(
n+

1

3

)
x

100
, n

}
(17)

The ceiling function �u� is the smallest integer ≥ u, the floor
function �u	 is the largest integer ≤ u, and u− �u	 is the
fractional part of u.

Eq. (16) shows thatDx% linearly interpolates between restore
times D�u	 and D�u�. Dx% uses the median-based quantile def-
inition4 recommended by [36], but also limits u to a maximum
of n in (17). When limiting applies, Dx% = Dn.

In contrast to D≥
x%, Dx% changes continuously as x varies

and with much smaller jumps as n varies. For this reason, we
strongly prefer Dx% to D≥

x%.
D50% evaluated with (16) reduces to the usual median. That

is, letting � = �n/2�,

D50% =

{
r� − r1 , n = 2�− 1 = odd
1
2 (r� + r�+1)− r1 , n = 2� = even

(18)

4implemented in R as quantile type 8, and in Mathematica by Quantile with
parameters {{1/3, 1/3}, {0, 1}}.

C. Metrics Related to Restore Process Models

These metrics work with the positive restore times relative
to r1; that is, rj − r1, j = z + 1, z + 2, .., n.5 Usually z = 1 as
explained in Section III-B.

geometric mean of positive restore times

DGM =
[∏n

k=z+1
(rk − r1)

] 1
n−z

= eμ

arithmetic mean of log restore times

μ=
1

n− z

[∑n

k=z+1
ln[rk − r1]

]
= lnDGM

standard deviation of log restore times

σ =

√
1

n− z − 1

∑n

k=z+1
(ln[rk − r1]− μ)2

restore time to x% restoration assuming lognormal
Dln

x% satisfies nx/100 = R(Dln
x% + r1) and nx/100− z =

(n− z)Φ[(lnDln
x% − μ)/σ] so that

Dln
x% = exp

[
μ+ σΦ−1

(
nx/100− z

n− z

)]
(19)

Note that Dln
(50+50z/n)% = eμ = DGM.

arithmetic mean of nonzero restore times

τ =
1

n− z

∑n

k=z+1
(rk − r1)

restore time to x% restoration assuming exponential
Dexp

x% satisfies nx/100− z = Rexp(D
exp
x% + r1) and n(1−

x/100) = (n− z) exp[−Dexp
x% /τ ] so that

Dexp
x% = τ ln

[
n− z

n(1− x/100)

]

The average restoring half life Dexp
50% = τ ln[2(n−z

n )] is the aver-
age time for the number of unrestored outages to halve averaged
over the restore process assuming exponential decay.

There are variants of Dln
x% and Dexp

x% with slightly simpler
formulas that describe the time to restoration of x% of the n−z
nonzero restore times. For these variants,Dln

x% becomes exp[μ+
σΦ−1(x/100)] and Dexp

x% becomes τ ln[1/(1− x/100)]. We
prefer the definitions of Dln

x% and Dexp
x% above because the

time to restoration of x% of all n restore times seems more
straightforward.

All the duration metrics in the article (labeled with D) are
given in hours so that the time unit tu = 1 hour. We now discuss
the units of μ and σ. A more precise version of μ = lnDGM

is μ = ln(DGM/tu) (or DGM = tue
μ). Dividing DGM in hours

by tu = 1 in hours gives the required nondimensional argument
of the logarithm [39]. Changing tu will cause a change in the
value of μ. σ does not depend on the units used and gives the
same value for any choice of tu.

5The following metric definitions require a positive outage duration (on >
o1) so that z < n. If on = o1, we define the metric to be zero.
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TABLE I
SUMMARY OF METRICS, RECOMMENDATIONS, AND TYPICAL VALUES

V. DISCUSSING RESTORE METRICS Dn, DGM, D95%, Dln
95%

All duration metrics of the restore process are subject to sub-
stantial statistical variability that can undermine their usefulness,
especially for smaller values of event size n. The variabilities of
the restore metrics are analyzed in Section VIII by calculating
the size of their confidence interval, and only the conclusions
about their variability are stated here.

The restore duration metric Dn is straightforward, but it is
typically too highly variable to be a reliable estimate. Moreover,
Dn depends strongly on the last or last few restores, prevent-
ing Dn from describing the performance throughout the entire
restore process. This dependence also makes Dn relate poorly
to transmission performance because these last restores may be
unimportant for customers, or may be excessively delayed by
factors out of the control of the utility, such as the difficulty of
repairing transmission lines in the mountains in the winter or
structural damage caused by hurricane or tornado.

The geometric mean of the positive restore times DGM is
the best estimate of restore performance in terms of having the
least variability. It is also clear that DGM depends on all the
restores throughout the restore process. We now discuss how
DGM also estimates a median of the restore process. Since the
normal distribution is symmetrical about its mean value, the
mean μ also estimates the median of the normal distribution,
and therefore DGM = eμ estimates the median of the lognormal
distribution.6 In fact, DGM is a better estimate (less variance)
of the median than applying the standard formula (18) for the
median. The detailed correspondence is that DGM estimates the
median of rj − r1, j = z + 1, z + 2, . . ., n, which is modestly
greater than7 the median of all the restore times rj − r1, j =
1, 2, .., n calculated in (18). That is, under the lognormal model,
DGM is a good estimate of the median of the positive restore

6Only the symmetry of the distribution of the logarithm of the nonzero restore
times relative to r1 is needed here.

7For z = 1, difference in the medians is (r�+1 − r�)/2, where � = �n/2�.

times relative to r1, and approximates from above the median
D50% of all restore times relative to r1.

While DGM is an informative metric with the lowest
variability, D95% and Dln

95% can be used as more representative
of the almost complete duration of the restore process, with the
compromise of higher variability than DGM. D95% is a more
smoothly varying quantile metric indicating the 95% completion
of the restore process. Dln

95% is also smoothly varying. D95% is
a bit more variable than Dln

95%, particularly for small n. Overall,
we slightly prefer D95% to Dln

95% because the quantile approach
is less model dependent, whereas Dln

95% will work best in the
typical lognormal restore case.

Table I summarizes the metrics and our recommendations.

VI. TYPICAL VALUES OF METRICS & MODEL PARAMETERS

Typical values of metrics and parameters are given for all the
data in Table I and for each interconnection in Table II; these
values are expected to be useful for modeling and assessing
interconnection-specific transmission events. Due to the heavy
tails in their distribution, some quantities in Table II such as
Dn have mean values that greatly exceed the median and large
standard deviations. In these cases, the estimated mean has
substantial statistical variation and poorly indicates a typical
value; the median is a better typical value. The large standard
deviations arise from both the metric statistical variability and
the metric variation between events.

On average, events in the Eastern interconnection are larger
than in the West and ERCOT. It can be explained by the
fact that the largest transmission events were caused by hur-
ricanes, and all of these events occurred in the East. For all
interconnections, the mean and median outage process du-
rations DO are similar, and very short compared to event
durations DE . The mean outage rate in the West is much
higher due to several events (wildfires and a lightning storm)
for which all outages started almost simultaneously. This
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TABLE II
TYPICAL VALUES OF METRICS BY INTERCONNECTION

extremely short outage duration DO results in huge outage rates
(see (3)).

The restoration usually starts very quickly after the event starts
as the time to first restore Dr1 indicates. In ERCOT the average
time to a first restore, 1 h 17 minutes, is statistically significantly
larger than in the East and in the West, where restoration typically
starts within one hour. Overall, the time to first restore is negli-
gible compared to event duration; this makes the event duration
DE and the restore process duration Dn effectively equal.
In contrast, the time between the (n− 1)th and nth restores,
Dn −Dn−1, is sizeable and often comprises a substantial share
(41% on average) ofDn. This observation again underscores the
impact of the last few restores to the event and restore durations.

The geometric mean of the positive restore times, DGM,
is a simple and stable metric. DGM is also an approximate
estimate for the time to one half of restores for the events with
log-normal restore times. The largest difference between these
metrics observed for the ERCOT events can be attributed to the
poorer log-normal fit for the ERCOT events. On average, DGM

is 12% of the entire restore process duration Dn.
It is interesting to compare in Table II the sample quantile

restore time D95% with the lognormal and exponential quantiles
Dln

95% and Dexp
95%. Dln

95% often overestimates D95% due to the
heavy tail of the lognormal distribution, whereas Dexp

95% often
underestimates D95% due to the light tail of the exponential
distribution.

The parametersμ andσ for fitted log-normal distributions and
τ for fitted exponential are consistent in each interconnection and
across interconnections. Table V shows that μ increases and σ
decreases with event size n.

Only 23 of the 352 resilience events in the dataset are
not weather-related. These 23 events vary in size from 10
to 26 outages. Except for Dr1, the medians of the duration
metrics in Table III are statistically significantly higher8 for

8confirmed with a nonparametric one-way ANOVA test for medians [40].

TABLE III
MEDIAN VALUE OF METRICS BY TYPE OF WEATHER

weather-related events than for non weather-related events. Ta-
ble III also shows for each weather type the median metrics for
the 95 weather-related events with at least 18 outages. There are
some statistically significant differences8 among the extreme
weather types: the medians of Dn and D95% for hurricanes
are greater than for other weather types, and DGM and μ for
hurricanes and tornadoes are greater than for other weather
types. The mean of the times to first restore Dr1 are similar for
all weather types except tornadoes; the mean Dr1 for tornadoes
is 1.7 hours, which is at least double the mean Dr1 for the other
weather types.

Our analysis confirms a well-known fact that a type of extreme
weather can be more typical and impactful for one intercon-
nection than another. Among the 11 named hurricanes that
caused 17 transmission outage events shown in Table III (the
largest, longest and most impactful events in the data set) all
except one hit the Eastern Interconnection; the exception was
the hurricane Harvey (ERCOT, August 2017). Wildfires causing
large transmission events usually occur in the West. These
examples demonstrate a possible reason in metric variability
across the system and, more importantly, the impractically of
using duration metrics to compare resilience of transmission
system in different interconnections. These metrics should be
used to track differences in resilience and restoration for the
same grid (changes in time, between different types of events
etc.).

VII. FIT OF POISSON PROCESS MODELS TO UTILITY DATA

This section discusses the fit of the Poisson models to the
observed utility data by a goodness of fit test, which allows for
analysis of each of the 352 events, and by probability plots for
the combined normalized data, which also show where the fit
deviates. For the goodness of fit tests, there is some arbitrariness
in the threshold amount of deviation corresponding to the sig-
nificance level, as well as some dependence on the event size n,
but they do give an indication of fit.

A. Outage Process Fit With Uniform Distribution

The Poisson process model with constant outage rate implies
that for each event the n−2 outage times ok, k = 2, 3, . . ., n−1
should be independent samples from a uniform distribution on
the interval (o1, on). We evaluated the fit of these outage times
for each event to the uniform distribution as shown in Table IV.
Satisfying the test means that the ideal model is not rejected at
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TABLE IV
PERCENT OF EVENTS SATISFYING OUTAGE AND RESTORE MODELS

Fig. 5. Fit of normalized outage data to standard uniform distribution on QQ
plot.

the significance level 0.05. Table IV shows that a majority of
events satisfy the model.

The normalized outage times (ok − o1)/(on − o1), k =
2, 3, . . ., n−1 should be independent samples from the standard
uniform distribution on the interval (0, 1). The fit of the normal-
ized outage times for all of the events to the standard uniform
distribution is shown by the QQ plot in Fig. 5. The fit in Fig. 5 is
quite close over the middle range, and the main deviations occur
at the ends of the distribution and correspond to simultaneous
multiple outages recorded at the beginning or end of the outage
process.9

The fits of this subsection indicate that the Poisson model with
uniform rate is a typical case (a majority of all events) usefully
approximating the outage process.

B. Restore Process Fit With Lognormal Distribution

As explained in Section III-B, the Poisson process model with
lognormal rate for the restores implies that for each event the
restore times rz+1 − r1, rz+2 − r1, . . ., rn − r1 should be in-
dependent samples from a lognormal distribution. We evaluated
the fit of these restore times for each event to the lognormal
distribution with parameters μ, σ estimated using (6), (7) at the
significance level 0.05 as shown in Table IV. Table IV shows that

9While it is plausible that some outage processes start or end with outages
occurring in the same minute, it is not clear that the records accurately reflect
the outage timing in all these cases.

Fig. 6. Fit of normalized log restore data to standard normal distribution.
Above compares CDFs; below is QQ plot.

a majority of all events satisfy the model, and this also holds for
the East and West interconnections.

For each event, the normalized restore times (ln(rk−r1)−
μ)/σ, k = z + 1, z + 2, . . ., n should be independent samples
from the standard normal distribution N(0, 1). The fit of
the normalized restore times for all events to the standard
normal distribution is shown by the CDF and QQ plots in
Fig. 6, which show a reasonably good fit with some modest
deviations.

The fits described in this subsection indicate that the Poisson
process model with lognormal rate is a typical case usefully
approximating the restore process. The typical lognormal case
has a heavy tail that can describe some extremely delayed final
restores.

C. Restore Process Fit With Exponential Distribution

As explained in Section III-C, the Poisson process model
with exponential rate for the restores implies that for each event
the restore times rz+1 − r1, rz+2 − r1, . . ., rn − r1 should be
independent samples from an exponential distribution with time
constant τ . We evaluate the fit of the restore times for each event
to the exponential distribution with time constants τ estimated
using (13) as shown in Table IV. Table IV shows that a minority
of events satisfy the model.

For each event, the normalized restore times τ−1(rk−r1),
k = z + 1, z + 2, . . ., n should be independent samples from the
standard exponential distribution with time constant 1. The fit
of the normalized restore times for all events to the standard
exponential distribution is shown by the survival function and
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Fig. 7. Fit of normalized restore data to standard exponential distribution.
Above compares log survival functions; below is QQ plot.

QQ plots in Fig. 7. There is clear discrepancy between the expo-
nential model and the data for the initial portion and tail of the
distribution. The tail in the data is much heavier than exponential,
and this discrepancy in the tail is particularly significant for our
purpose here of estimating restore durations.

The fits described in this subsection indicate that the Poisson
process model with exponential rate only fits a minority of the
events and is a noticeably poorer approximation of the typical
restore process than the model with lognormal rate.

VIII. STOCHASTIC VARIABILITY OF RESTORE METRICS

The restore duration metrics vary due to variation of the
restore processes between events (and this of course is what
we want to quantify) but also due to the inherent statistical
variability of the metric used (which we want to minimize by
selecting a better metric). The statistical variability makes the
metric vary between events, even if the events have the same
characteristics, because of random variations in the progress of
the restores.

We assess the inherent statistical variability of the metrics by
assuming the lognormal Poisson model for average values of μ
and σ, which vary as functions of n, and are estimated using (6)
and (7). In this section we assume that z = 1.

A. Variability of DGM , Dln
x%, τ

Since z = 1 is assumed,μ andσ are estimated withn−1 sam-
ples. The sample mean μ of n−1 samples from a normal distri-
bution with meanμ and standard deviationσ has normal distribu-
tion N(μ, σ/

√
n−1). Therefore μ has two-sided 100(1− c)%

confidence interval with end points μ± σzc/
√
n−1, where

zc = Φ−1(1− c/2) and Φ is the CDF of the standard normal
distribution. It follows that the geometric mean DGM of n−1
samples from a lognormal distribution with parameters μ and σ
has two-sided 100(1− c)% confidence interval with endpoints
exp[μ± σzc/

√
n−1 ], or{

eμ ÷ exp(σzc/
√
n−1 ), eμ × exp(σzc/

√
n−1 )

}
(20)

We measure the size of the DGM confidence interval (20) by
the multiplicative factor exp(σzc/

√
n−1 ), which we call the

“multiplicative half-width” of the confidence interval. More gen-
erally, we define the size of a confidence interval with endpoints
c1, c2 as

multiplicative half-width of {c1, c2} =
√

c2/c1 (21)

Now we obtain the size of the confidence interval forDln
x%. From

(19), taking z = 1,

lnDln
x% = μ+ φx,nσ, where φx,n = Φ−1

[
nx/100− 1

n− 1

]
(22)

The sample standard deviation σ has distribution
(σ/

√
n−2)χn−2 where χn−2 is the chi distribution with

n− 2 degrees of freedom.10

Using (22) and the independence of μ and σ, the probability
density function of lnDln

x% is the convolution

flnDln
x%

= fN(μ,σ/
√
n−1) ∗ f(φx,nσ/

√
n−2)χn−2 (23)

and the CDF of lnDln
x% is

FlnDln
x%

= fN(μ,σ/
√
n−1) ∗ F(φx,nσ/

√
n−2)χn−2 (24)

We use (24), numerically integrating to evaluate the convolu-
tion, to find the 100(1− c)% confidence interval for lnDln

x%

as {F−1
lnDln

x%

(c/2), F−1
lnDln

x%

(1− c/2)}, then use (21) to find the

multiplicative half-width of the confidence interval for Dln
x%.

Eq. (13) shows that the exponential time constant τ is also
the arithmetic mean of the nonzero restore times. In this section
these n− 1 restore times are assumed to be sampled from a
lognormal distribution. Using Cox’s approximate method [41],
the multiplicative half-width of the confidence interval of τ is

exp
(
zcσ

√
1/(n− 1) + σ2/(2n− 4)

)
(25)

B. Variability of Dk and Dx%

Since the restore times r1, r2, . . ., rn are sorted in increasing
order, Dk = rk − r1 corresponds to the kth largest restore time
and, assuming that z = 1 and k ≥ 2, Dk is the (k − 1)th order
statistic of the n− 1 lognormally distributed restore times r2 −
r1, . . ., rn − r1. We evaluate in Mathematica the inverse CDF
F−1
Dk

of the (k − 1)th order statistic of n− 1 samples of the
lognormal distribution with parametersμ andσ. Then we find the
100(1− c)% confidence interval for Dk{F−1

Dk
(c/2), F−1

Dk
(1−

c/2)} and its multiplicative half-width from (21).

10the definition of σ uses μ, so that the number of degrees of freedom is one
fewer than the number of samples n−1.
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TABLE V
MULTIPLICATIVE HALF WIDTH OF 90% CONFIDENCE INTERVAL

Fig. 8. Size of 90% confidence interval forkth order statisticDk as the fraction
k/n varies. n is number of restores. Confidence interval size is multiplicative
half-width. Lognormal restore is assumed with parametersμ andσ from Table V.

To evaluate the variability ofDx%, we approximate its inverse
CDF with the linear interpolation

F−1
Dx%

(p) = (1− (u− �u	))F−1
D�u	(p) + (u− �u	)F−1

D�u�(p)

where u is given by (17). We then obtain the 100(1− c)%
confidence interval {F−1

Dx%
(c/2), F−1

Dx%
(1− c/2)} and use (21)

to obtain its multiplicative half-width.

C. Results for Variability of Metrics

The size of the 90% confidence interval, measured by the
multiplicative half-width (21), indicates the inherent statistical
variability of the metrics. For example, a multiplicative half-
width of 2 indicates that the interval spans from half to double
of a point inside the interval. Table V shows results for metric
variability, and there are some overall trends: All the metrics
become much more variable as the event size n decreases.
Metrics estimating a larger fraction of the entire restore duration
are much more variable (consider the sequence DGM = Dln

50%,
Dln

90%, Dln
95% or D50%, D90%, D95%, D100% = Dn). The quan-

tile metrics (D50%, D90%, D95%) are always more variable
than corresponding metrics related to lognormal restore (DGM,
Dln

90%, Dln
95%), but the increase in variability is modest or small

for n ≥ 50.
Metric variability is worst and unacceptably large for Dn,

which always has a confidence interval size of more than a factor
of 2. The high variability of the last restore rn andDn is expected
due to the heavy tail of the lognormal distribution. Fig. 8 shows
that the variability of Dk is sharply reduced for k/n = 0.95,
at least for larger n, and further reduced for k/n = 0.90. This
motivates avoiding Dn and considering the use of Dln

90%, Dln
95%,

D90%,D95%, which have confidence intervals with size less than
a factor of 2 for n ≥ 50 and which perform more continuously
by interpolating theDk metrics. The arithmetic mean τ is highly
variable for smaller values of n; it has a confidence interval size
of more than a factor of 2 for n < 30.

The pervasive problem of duration metric variability is best
mitigated by DGM, which has a confidence interval size of less
than a factor of 2 for n ≥ 17.

This section assesses metric variability assuming the lognor-
mal model of restores. This is a good assumption for a majority
of cases, and can be regarded as a stringent assumption for
the remaining minority of cases due to the heavy tail of the
lognormal distribution.

IX. CONCLUSION

We use extensive North American transmission system data to
analyze the statistical variability and interpretations of a variety
of metrics for the duration of processes in resilience events.
Some metrics, such as the outage duration DO, outage rate λO,
and the time delay before the first restore Dr1, are useful. Other
duration metrics can suffer from excessive statistical variability,
in which their estimated values are contained in confidence
intervals that are so large that the estimated values of the metric
are not representative. This variability is quantified using new
Poisson models for outage and restore processes. The variability
is worse for small events.

The apparently straightforward metrics of restore process du-
ration Dn and the event duration DE are extremely statistically
variable and do not adequately describe the restore process,
so we recommend new duration metrics DGM and D95% (or
D90%) with better performance. In particular, the geometric
mean of restore times DGM has the least statistical variability,
summarizes all of the restore process, and approximates a time at
which half the restores are completed. The quantile-based metric
D95% indicates the time at which restoration is 95% complete,
but has greater variability thanDGM.D95% uses interpolation to
vary more continuously as the data changes. Table I summarizes
the metrics and their recommendations, and Tables II and III
give typical values for the metrics for three interconnections
and different weather conditions.

Since our article is driven by North American bulk electric
transmission system outage data, strictly speaking the results
describe aspects of resilience only in North American trans-
mission grids. However, since similar transmission outage data
is routinely collected worldwide, the methods of the article
are readily applicable to other transmission systems to test or
confirm the models and conclusions of the article.
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We introduce novel Poisson process models for the outage and
restore processes in resilience events. These new stochastic mod-
els describe how resilience events progress in North American
transmission systems, and are verified with extensive utility data
to be good approximations for the majority of cases. The outages
occur uniformly over a short time interval, whereas the restores
occur at a lognormal rate that slows to produce the long delays
often observed for the last few restores. The lognormal model
for the restores is a noticeably better fit than an exponential
model for the restores. We give typical values of the model
parameters for three interconnections and for different weather
conditions to make the new models more specific and useful to
other researchers.

The Poisson process models describe probabilistic outages
and restores occurring according to specified rates. Averaging
the Poisson process models produces formulas for smooth,
deterministic curves that approximate typical outage and restore
processes. These deterministic averaged models are of consid-
erable interest for future work describing how resilience events
progress in transmission systems. For example, one can derive
formulas for the area, duration, and nadir metrics of mean perfor-
mance curves in terms of the Poisson process parameters [42].
The formulas for area of the mean performance curve are simple
and intuitive, and sometimes also apply to the area of empirical
performance curves that are obtained from observed data.
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