
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 2, MAY 2012 993

Voltages Across an Area of a Network
Ian Dobson, Fellow, IEEE

Abstract—We define the voltage across an area of a resistive
network by suitably combining voltages at buses (nodes) on the
border of the area. The new voltage across the area satisfies circuit
laws. The same concept works to define the voltage angle differ-
ence across an area of a DC load flow network and the complex
voltage difference across an area of an AC load flow network. We
first define the voltage across a cutset of lines, and then derive
and explain the voltages across areas, including generalizations
to several voltages across an area and multiple areas. The new
voltages across areas seem promising for both power system mon-
itoring and network reduction, and we describe their application
to monitoring area stress.

Index Terms—Circuit analysis, network theory, phasor measure-
ment units, power grids, power system modeling, smart grids.

I. INTRODUCTION

T HE difference of voltages at two buses or nodes is fun-
damental to power system engineering. For example, bus

voltages are the difference between voltage at a bus and the
voltage at a reference bus, and the voltage across a transmis-
sion line is the difference between the voltages at the buses at
each end of the line. The goal of this paper is to introduce new
concepts of voltage differences between sets of buses. First we
define the voltage difference between sets of buses separated by
a cutset of lines and then we show how to extend this definition
to voltages across an area of a power system. We also define area
conductance and the current through the area in a natural way.
The new electrical quantities for the area satisfy circuit laws and
are expected to be useful in monitoring, analyzing, and reducing
power transmission networks.

We develop the voltages across cutsets or areas starting from
the basic ingredients of electrical circuits: a network, a vari-
able “across” the transmission lines such as voltage, a variable
“through” the lines such as current, an “admittance-like” prop-
erty of the lines such as conductance, and an “Ohm’s law” re-
lating these quantities [1]. Except for notation, the development
is the same for any choice of the across, through, and admit-
tance-like quantities. Table I shows three useful choices of these
quantities for electric power engineering. Since the resistive cir-
cuit is the most basic electrical circuit, the paper develops the
cutset and area voltages using the resistive circuit notation, but
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TABLE I
CIRCUIT QUANTITIES

it is trivial to substitute the appropriate notation to obtain the
corresponding results for the DC and AC load flow networks.

The applications of area voltages in power systems include
model reduction and synchrophasor monitoring of area stress
and line trips [2]–[4]. The concept of voltage phasor angle
across a cutset of lines seems to be first introduced in [2]. The
cutset voltage angle is extended to measure voltage angles
across “cutset areas” in [3]. Cutset areas are special areas that
separate the other areas of the power system from each other.
The voltage angles across cutset areas can be monitored by
synchrophasor measurements at the border buses and used
to monitor cutset area stress and whether line trips occur in
the cutset area [3]. The conference paper [4] defines voltage
angles across more general areas and describes their application
to monitor area stress and to detect line trips. In this paper,
motivated by these applications, we completely rework and
generalize the theory of voltages across power system areas,
and describe their application to monitor area stress.

II. VOLTAGE ACROSS A CUTSET

A. Example of Cutset Voltage

Consider the example resistive network on the left-hand side
of Fig. 1. There are current injections at the buses (nodes) that
cause current flows and voltage differences in the network. The
network buses are partitioned into two sub-
sets of buses and . The buses in

are separated from the buses in by the cutset of lines
1,2,3,4,5,6 that is indicated by the dashed line. (Recall from cir-
cuit theory that a cutset of lines is a set of lines that cuts the net-
work into separate networks when that set of lines is removed
from the network.1) The objective is to define the voltage
across the cutset from the buses in to the buses in that
satisfies Ohm’s law.

Write for the voltage at bus number and for the
voltage difference across line number . The conductance of
line number is . The current flowing from to along
line of the cutset is . For this example, it is convenient to
assume that the voltage difference on line is positive for
positive current flowing on line from to . The current

1Some authors define a cutset to be a minimal set of buses or lines that separate
the network, but we do not require this here.

0885-8950/$26.00 © 2011 IEEE
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Fig. 1. Cutset voltage example: Buses 1,2,3 in � are separated from buses
4,5 in� by the cutset of lines 1,2,3,4,5,6. The cutset is indicated by the dashed
line. The five-bus network is contracted to an equivalent single line in which�
is contracted to bus � and � is contracted to bus �.

flowing through the cutset from to is the sum of the
currents flowing in each line of the cutset:

(1)

The cutset conductance is defined to be

(2)

This definition of cutset conductance is expected because the
cutset lines are in parallel. We define the voltage across the
cutset from to as

(3)

which is a linear combination of the cutset line voltage differ-
ences, weighted according to the line conductances. Then (1),
(2), and (3) imply Ohm’s law for the cutset .

Equation (3) can be rewritten in terms of the bus voltages
as

(4)

This example shows how a cutset voltage can be defined to
be consistent with Ohm’s law. Defining the voltage, current and
conductance of the cutset can be regarded as contracting the net-
work2 to a single line equivalent joining two buses as illustrated
in Fig. 1.

B. General Case of Cutset Voltage

More generally, consider a connected resistive network in
which the buses of the network are partitioned into two sub-
sets and . Let be the cutset of lines in the subnetwork

2This operation is called vertex contraction in graph theory.

that separates and . Define the lines in the cutset with the
row vector , where

line in cutset has sending end in
line in cutset has receiving end in
line not in cutset.

The line conductances are assumed to be pos-
itive. The diagonal matrix of line conductances is

Write the vector of voltages across the lines as . Then the
current flow through the cutset from to is

(5)

Define the conductance of the cutset

(6)

The cutset conductance is positive since the line conduc-
tances are positive and the connectedness of the network implies
that is not zero. One consequence of (6) is that if a line is not
in the cutset, its conductance is not included in the cutset con-
ductance.

Define the voltage across the cutset from to as

(7)

Then (5), (6), and (7) imply Ohm’s law for the cutset

(8)

Now we express the formulas for cutset voltage, conductance,
and current in terms of the bus voltages. Let be the column
vector of bus voltages. is the incidence matrix

bus is sending end of line
bus is receiving end of line
otherwise

that relates bus voltages to the line voltage differences :

(9)

The row vector defines the buses in by

bus in
otherwise.

(10)

Then the lines in the cutset are given by

(11)

and the network conductance matrix is3

(12)

3The superscript red stands for “reduced” and is included in the notation for
compatibility with Section III. The network considered in this section becomes
a Kron-reduced subnetwork of border buses � in Section III.
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The conductance matrix is symmetric and its rows add to
zero. Moreover, since the network is assumed to be connected,

is irreducible. Now, using (11), the cutset conductance
defined in (6) is re-expressed as

(13)

and the cutset voltage defined in (7) is re-expressed as

(14)

Moreover, if we write for the column vector of bus current
injections, then

(15)

is both the total current injected in buses and the current that
flows from to through the cutset .

The Ohm’s law equations for the network are

(16)

The Ohm’s law (8) for the cutset can now be derived in a direct
way by multiplying (16) by :

(17)
It is possible that some buses in do not have any inci-

dent lines in the cutset . The entries of the row vector
corresponding to these buses are zero4 and it follows that the
voltages of these buses do not appear in the formula (7) for the
cutset voltage. This also holds for buses in that do not have
any incident lines in the cutset .

The cutset voltage can also be derived as a novel choice of
coordinates in classical network theory. This is explained in
Appendix A.

III. VOLTAGE ACROSS AN AREA

We define the voltage between a set of buses and a set
of buses and across an area R of a resistive network. We also
define the current flow through area R from to and
the conductance of area R from to . The sets of buses

and are assumed to be nonempty and have no buses in
common. We write for the buses in or .
The buses in this section correspond to all of the buses of the
network considered in Section II.

The area R is a subnetwork that we assume to be connected.
The buses in R are partitioned into border buses and inte-
rior buses . The interior buses must have no incident lines
joining them to buses outside R.5 Each border bus in can have
incident lines joining it to buses outside R, but this is not re-
quired. Fig. 2 shows an example of an area R in the 39-bus New
England test system. There are usually multiple ways to divide
the border buses into the buses and . For example, in
Fig. 2, we can choose and ,

4A column � of � corresponding to buses in � with no incident lines
in the cutset � has zeros in the rows corresponding to � . Therefore, � � is
the sum of all the nonzero entries of � and � � � � since �� � �.

5This section assumes that there is at least one interior bus since Section II
treats the case of no interior buses.

or we can choose and . Each
choice of and gives different quantities , , and

. That is, the electrical properties from one side of an area to
the other side of the area depend on how the “sides” are chosen.

Recall from circuit theory that a nodal cutset of buses is a set
of buses that cuts the network into separate networks when that
set of buses is removed from the network. It is usual and useful
to choose to be a nodal cutset. If is a nodal cutset, then
the network that remains when the buses in are removed from
the network has at least two components. One or several of these
components can be chosen as the interior buses . However, to
avoid buses in being directly connected to buses outside R,
the buses in each of these components are either all included in

or all excluded from . (If is not a nodal cutset, then the
network that remains when the buses in are removed from
the network is connected and must be all of , and area R must
be the entire network. The theory works for this case, but it is
less useful.)

The next step is to write the circuit equations for area R, with
the effect of the rest of the network replaced by the currents
flowing into area R from the rest of the network. We use the
following notation for column vectors of voltages and currents:

voltages at border buses ;

injected currents at border buses ;

voltages at interior buses ;

injected currents at interior buses ;

voltages at buses outside R;

injected currents at buses outside R.

The currents into border buses along lines not in are

(18)

Here is a row or a column vector of all ones.6 Order the buses
so that all the border buses are first, all the interior buses
are second, and all the buses outside R are third. Then Ohm’s
law for the entire network is

(19)

The first two block rows of (19) may be rewritten as

(20)

(21)

The diagonal entries of are different than the submatrix
of the conductance matrix for the entire network, because

6The dimension of � varies with context and is chosen so that it can be multi-
plied by the matrix next to it in the formula. For example, given an 3� 4 matrix
� , �� � � is the column vector formed by adding the columns of
� , and �� � � is the row vector formed by adding the rows of� .
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Fig. 2. Area R in the 39-bus New England test system. Interior buses � �

��� �� �� �� �� ��� ����	� �
� are shown with thick circles. Border buses � �

�
��
	�
���� ��� are shown with thick squares.

Fig. 3. Kron reduction of area R followed by contraction to two buses.

TABLE II
EXAMPLE RESULTS FOR AREA R CONTRACTED TO TWO BUSES

angles in degrees, all other quantities in per unit; � is ground node

they do not include the conductances of the lines outside R that
are joined to buses in .

The currents entering the border buses of area R are the sum
of the currents injected directly at the buses and the currents
along the lines not in R that are joined to the buses:

(22)

Now (20) may be rewritten as

(23)

which is Ohm’s law written for area R. is the conductance
matrix for the area R considered as a stand-alone network.

The next step reduces area R to an equivalent subnetwork.
We retain the border buses and apply a standard Kron re-
duction7 to eliminate the interior buses . Eliminating from
(23) gives

and, letting

(24)

(25)

we obtain a reduced subnetwork Rred electrically equivalent to
R with the Ohm’s law

(26)

The reduced subnetwork Rred is the border buses joined by
additional equivalent transmission lines and with additional cur-
rent injections included in to account for the lines of the
network outside R that inject currents into R.

The reduced subnetwork Rred consists of the border buses
separated from the border buses by a cutset of lines

exactly as considered in Section II. We now apply to Rred the
formulas (14), (13), and (15) to define voltage across the
area from to , the area conductance , and the current

through the area from to . That is, the reduced sub-
network Rred becomes a single line equivalent in which is
contracted to a single bus and is contracted to a single
bus . The voltage across area R is the voltage between the
buses of the single line equivalent, the conductance of area R is
the conductance , and the current through area R is the cur-
rent . The process of Kron reduction followed by contraction
to the single line is illustrated in Fig. 3. Since both the Kron re-
duction and the contraction are consistent with circuit laws, the
resulting area quantities satisfy Ohm’s law (8).

An example of computational results for area R of the New
England test system for DC and AC load flows is shown in
Table II. (Parameters of the New England test system are
specified in Appendix D.) The DC and AC load flows apply
the resistive network results to different electrical quantities as
shown in Table I. The voltage across area R is computed as
the weighted combination of the voltages at the border buses
shown in Table II. The weights correspond to (14). The voltage
angle across area R is 10.1 degrees for the DC load flow and
10.9 degrees for the AC load flow. The AC load flow network
includes shunts to a ground node denoted by . Therefore,
the single line equivalent also has shunts to the ground node.
Accommodating the shunts and the ground node in the analysis
is discussed in Appendix B.

IV. GENERALIZING CUTSET VOLTAGE TO VOLTAGES

FOR SEVERAL SETS OF BUSES

In Section II, we considered a connected resistive network
in which the buses were partitioned into two subsets and

. The cutset voltage defined a voltage between two subsets

7According to [5, Theorem (5,7)] and [6, Lemma 2.1], for a real conductance
matrix� , area R connected implies that� has rank one less than the number
of buses in R,� is not singular, and the Kron reduction is valid. We thank F.
Dörfler for providing these references. Kron reduction is also known as a Ward
equivalent or a Schur reduction.
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Fig. 4. Contraction of a network to three buses.

of buses and . As illustrated in Fig. 1, the network was
contracted to two buses joined by a single line equivalent.

Now we generalize by partitioning the network into three
nonempty subsets and obtaining the voltages of
these three subsets of buses and the conductances between them.
This contracts the network to three buses joined by three equiv-
alent lines. The bus of the reduced network corresponds to
the buses of the original network, the bus corresponds to

, and the bus corresponds to as illustrated in Fig. 4. We
want to calculate the voltages of the three buses, the
conductances of the three equivalent lines, and the
equivalent currents injected at the three buses.

We write

(27)

The conductance matrix of the equivalent 3 bus network is

(28)

The matrix defines the buses in each of by

bus in and
bus in and
bus in and
otherwise.

(29)

For example, the first row of defines the buses in and
corresponds to the row vector in (10). As in Section II-B, the
bus voltages are , the bus current injections are , the net-
work conductance matrix is , and the Ohm’s law equations
for the network are

(30)

The injected currents at bus of the three-bus network
must be the sum of the currents injected at the buses in .
Similarly, is the sum of the currents injected at the buses in

and is the sum of the currents injected at the buses in .
This can be written

(31)

We obtain the conductance matrix of the three bus network as

(32)

It can be seen that (32) generalizes (13). It follows from (32)
and irreducible that is irreducible. Moreover, has
rank two.7

The voltage is defined to be a solution to

(33)

Allowing for the different position in the equation of the con-
ductance matrix , it can be seen that (33) generalizes (14). It
follows from (33) that multiplying (30) by yields

(34)

which is Ohm’s law for the three-bus network.
Now we discuss solving (33) for . Although is sin-

gular, (33) can be solved in a standard way. First note that since
and the rows of sum to zero

(35)

Then the components of the right-hand side of (33) sum to zero
and are in the range of . Moreover, since has rank two,
(33) is solvable for to within a constant added to each com-
ponent of . The constant is determined by the choice of zero
reference voltage. For example, we can require the solution
to have its third component . Then we can calculate the
first two components and by solving the equations formed
by deleting the last row of (33).

The calculation of , , and is given here for the case
in which the buses are partitioned into three subsets , ,
and , but it is clear that the corresponding calculation for two
subsets or for more than three subsets is the same except for the
dimensions of the vectors and matrices. We now calculate
in the case of two subsets and in order to make it clear
that it gives the same voltage difference that is
the cutset voltage calculated in Section II-B.

Suppose that the network buses are partitioned into two sub-
sets . The conductance matrix of the equivalent single
line and two bus network is

(36)

The rows of the matrix are the row vectors and :

(37)

First we note that

(38)

agrees with the definition of in (8). Now we consider the
other quantities. The conductance matrix of the single line
equivalent is

Since

Equation (33) becomes
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Fig. 5. Kron reduction of area R followed by contraction to three buses.

TABLE III
EXAMPLE RESULTS FOR AREA R CONTRACTED TO THREE BUSES

angles in degrees, all other quantities in per unit

and multiplying both sides by the row vector (1/2, 1/2) yields

(39)

Hence, comparing (39) with (14), .

V. GENERALIZING VOLTAGE ACROSS AN AREA

TO MULTIPLE VOLTAGES ACROSS AN AREA

Given the generalization of the cutset voltage to voltages for
several sets of buses in Section IV, it is straightforward to gen-
eralize to multiple voltages across an area. We consider the case
of three voltages. Following the pattern of Section III, choose
a connected area R with border buses . Partition the border
buses into subsets of buses . As in Section III, form
the conductance matrix of the area R and apply Kron reduc-
tion to eliminate the interior buses. The result is the equivalent
network Rred with border buses joined
by equivalent lines with bus voltages , equivalent bus cur-
rent injections , and equivalent conductance matrix .

is guaranteed to inherit the symmetric and irreducible
properties of [6, Lemma 2.1]. Now apply the calculations
of Section IV to this Kron-reduced subnetwork to obtain volt-
ages , line conductances , and current in-
jections for area R.

For example, in Fig. 5, the Kron reduction of area R is con-
tracted to three buses. A DC load flow example computation
of the voltage angles, power injections, and susceptances of the
three-bus network is shown in Table III.

VI. SIMULTANEOUS REDUCTION OF MULTIPLE AREAS

The previous sections have analyzed a single area. In model
reduction, or for monitoring multiple areas, it can be conve-
nient to obtain a reduced model of the entire network by re-
ducing multiple areas simultaneously. This section discusses the
simultaneous reduction for the three areas shown in

Fig. 6. Areas � � � �� �� , � � � �� �� , and � �

� �� �� .

Fig. 6. Write for the set of all the border
buses of all three areas and for all the
interior buses. Each border bus is either on the border of two
contiguous areas or on the border of only one area.

Order the buses so that all the border buses come first.
Then Ohm’s law for the entire network is

(40)

The next step is Kron reduction to an equivalent network that
retains only the border buses . The equivalent current injec-
tions and equivalent conductance matrix of the Kron reduced
network are

(41)

(42)

The rows of the matrix define the buses in ac-
cording to

and bus in
and bus in
and bus in

otherwise.

(43)

For the voltages and injected currents injected at ,
we write

(44)

Then, with this slightly revised notation, the formulas for
the voltages at , the conductance matrix

between , and the injected currents at
, are (33), (32), (31). Moreover, the Ohm’s law

(34) applies. Appendix C shows that this simultaneous reduc-
tion of the three areas gives the same results as considering
each area separately.

For example, as applied to DC load flow and four areas, con-
sider Fig. 7. In Fig. 7, the entire New England 39-bus system
is contracted to an equivalent network with five buses. An ex-
ample computation of the voltage angles, power injections, and
susceptances of the five-bus network is shown in Table IV.

VII. MONITORING AREA STRESS

This section shows an application of area angles to monitor
area stress from synchrophasor measurements around the border
of the area.
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Fig. 7. New England 39-bus test system contracted to five buses. Border buses
separating areas are shown with squares.

TABLE IV
EXAMPLE RESULTS FOR ENTIRE NETWORK CONTRACTED TO FIVE BUSES

angles in degrees, all other quantities in per unit

A. Background

Synchronized phasor measurements are being widely de-
ployed for power system monitoring and control [7]. Here we
assume the availability of suitable synchrophasor measure-
ments at a control center. Tate and Overbye [8] give a good
discussion of the necessary signal processing.

Previous work on monitoring power system stress with
phasor measurements has focused on the angle difference
between two buses. Simulations of the grid conditions before
the August 2003 USA/Canada blackout show increasing angle
differences between Cleveland and West Michigan, suggesting
that large angle differences could be a blackout precursor [9].
Simulations of the New England grid show that angle differ-
ences are the best phasor measurements in discriminating alert
and emergency states [10].

A large angle difference between two buses does indicate, in
a general sense, a stressed power system. However, this angle
difference is affected by changes throughout the entire grid, and
it is difficult to interpret changes in the angle difference or set
thresholds.

It is natural to measure the stress on an individual transmis-
sion line by the angle difference across the line. Since the pre-
ceding sections show how an area can be reduced to an equiva-
lent transmission line, and the angle across the area is the angle
across the equivalent transmission line, we can use the angle
across the area as a measure of the area stress.

For further motivation, consider the DC load flow of two
buses and joined by two equal lines. We measure the stress
between and by the phasor angle difference . In
this simple case, the reduction to a single line is clear:

is the sum of the line susceptances, and is the
sum of the line power flows. measures the stress better than

, because if one of the lines outages, then the power flow
(now flowing only on the line remaining in service) does

not change but doubles, correctly indicating the increased
stress.

B. Stress Across an Area

We use a DC load flow model of an area R with border buses
and . Then the area angle gives the stress across

area R from to . The Ohm’s law corre-
sponding to (8) implies that is proportional to the real power

passing through the area and inversely proportional to the
area susceptance .

By using Table I to substitute the corresponding DC load flow
circuit quantities for the resistive circuit quantities in (14), the
area angle is a weighted linear combination of the border
bus angles :

(45)

The weights in the row vector are determined from the DC
load flow model of R via (45), (12), and (13). Therefore, if we
place phasor angle measurements at all the border buses of R
and know the status of lines in R, we can easily determine the
angle .8 The availability in practice of a DC load flow model
of an area is discussed in [8].

We illustrate stress across the area R shown in Fig. 8, which
shows part of a 225-bus model of the Western North Amer-
ican power grid.9 The three border buses with assumed phasor
measurements are and

. From (45), the angle east to west
across area R combines the border buses angles as

The base case area stress is and the equiva-
lent power flow westward through the area is .
The area susceptance is per unit on a 100 MW base.

Examples of transfers and line outages are shown in Fig. 8.
Table V shows the effect of these transfers and line outages
on the angle across area R. The transfer inside area R in-
creases by increasing the effective westward power flow.
The transfer outside area R also increases the westward power
flow through the area and . The line outages also increase

. In particular, the line outage inside R decreases the area
admittance whereas the line outage outside R has the effect of
increasing the westward power transfer through the area.

C. Internal and External Stress Angles

Section VII-B shows that the area angle measures the
total east-west stress across area R, and it responds to changes
both inside and outside the area. Now we decompose the area
angle into an internal angle due to power injections inside the

8Alternatively, the AC load flow version of (45) may be obtained by substi-
tuting the complex circuit quantities according to Table I. This yields an expres-
sion for the complex voltage across the area in terms of the complex voltages
measured at the border buses.

9We thank C.-C. Liu, N. Yu, and J. Li for graciously providing this power
system model.
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Fig. 8. Area R shown as the black buses; all other buses are gray. The border
buses with phasor measurements are the labelled black triangles. A 100 MW
power transfer and a line to outage are shown both inside R (in the black buses)
and outside R (in the gray buses).

TABLE V
AREA ANGLES

angles in degrees

area and an external angle due to power flows from other areas.
The internal and external area angles offer more specific stress
information about the area.

Based on (15), (24), and (22), the power flowing from to
decomposes as

(46)

is the power flowing into area R along the external tie
lines attached to the border buses in .

is the total equivalent power injected into the
buses that corresponds to power injected in R. Moreover,
since

(47)

Equation (47) decomposes into two parts. The first part is
related to the difference of the external power flows injected at
buses and . The second part is related to the difference
of the power flows equivalent to the power injected in area R.
Dividing (47) by the susceptance and using the Ohm’s law
(8) decomposes the angle across the area as

(48)

(49)

The angle is caused by differences in the powers entering
into the area at and and measures the external stress
on area R. The angle is caused by the differences at
and of the powers equivalent to the powers generated or
consumed inside area R and measures the internal stress on R. In
particular, only depends on the generation and loads inside
R and the lines in service inside R.

The internal angle can be obtained from additional tie
line phasor measurements as follows. The tie line power flowing
into a bus can be obtained from phasor measurements if both
the currents in the tie lines and the bus voltage are measured.
If the external tie line power entering each bus in is known
from these measurements, these can be summed to obtain the
total power entering into the area R through . The total
power entering into R through can be obtained simi-
larly. Then we can obtain using (49) and then obtain
using .

Line outages can be modeled by equal and opposite power
injections at either end of the line whose magnitude is propor-
tional to the power flow on the line before it outaged [8]. Since
the angles across the area respond proportionally to the mag-
nitude of the equal and opposite power injections, the change
in the area angles when the line outages is proportional to the
power flow on the line before it outaged. Formulas quantifying
this relationship using generalized line outage distribution fac-
tors are given in [4].

In the example of area R in Fig. 8, the base case area angle
degree decomposes into the external angle

degree and the internal angle degree. It
can be seen from Table V that all the transfers and line outages
shown in Fig. 8 affect the external angle . However, the
internal angle only changes when the transfer or line outage
is inside area R.

D. Discussion

We suggest using total, internal, and external area angles to
monitor stress across a power system area. The angles can be
easily calculated from phasor measurements at all the buses
along the border of the area using a DC load flow model of the
area and knowledge of which lines in the area are in service. It is
natural to place phasor measurements at area tie lines. The stress
monitoring shows one way to gain value from placing phasor
measurements at all the tie lines to an area.

Previous approaches to measuring stress with phasor mea-
surements have used the difference of angles at two buses or
searched for patterns in angles from many buses. The area an-
gles have some advantages over these approaches. The area an-
gles give stress information specific to an area of the power
system. This corresponds with the way large power systems are
operated, and information that describes specific properties of
a specific area of a large power system is more actionable. The
area angles respond to line outages and power redispatches in
accordance with circuit laws. The internal angle only changes
when lines inside the area outage or when there is redispatch
of power within the area, and can therefore be used to detect
changes and confirm that they happened inside the area.

VIII. CONCLUSION

This paper defines and explains from first principles a new
concept of voltages across an area of a network. The new volt-
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ages are weighted combinations of voltages at the border buses
of the area. The voltages can be real voltages in a resistive net-
work, voltage angles in a DC load flow, or complex voltages in
an AC load flow. Ohm’s law is satisfied in each of these cases
as detailed in Table I. The voltages across an area are obtained
by a standard Kron reduction of the area to a network joining
the border buses, followed by a contraction of the border buses
into a network equivalent to the area that typically has two or
three buses. The contraction of the border buses relies on a new
concept of voltage across a cutset of lines.

Voltage angles across an area are a combination of individual
bus voltages at the border of the area. The area conductance
and currents through the area also combine together individual
line conductances and individual currents to describe bulk elec-
trical characteristics of the area. (Remember to substitute these
quantities appropriately for DC and AC load flow as shown in
Table I; for example, in DC load flow, the “currents” become
real powers.) Since the area voltages, conductances, and cur-
rents obey circuit laws, they are more meaningful and useful
than an arbitrary combination of circuit quantities. In particular,
they will behave in ways consistent with the intuition of power
system operators and engineers.

The applications of the new area voltages include model re-
duction, monitoring area stress, and detecting line trips from
synchrophasor measurements [2]–[4]. The explanations of area
voltages in this paper illustrate systematic AC and DC load flow
reductions for single and multiple areas. We also describe how
area angles measure the area stress and can be obtained from
synchrophasor measurements of voltages at the border buses of
an area. If the currents or powers flowing into the area at the
border buses are also measured, then an internal angle that only
responds to changes inside the area can also be monitored. We
refer to [4] for initial work applying area angles to detecting line
trips in areas.

All of these applications depend on a systematic circuit theory
foundation and formulas to compute the area voltages, conduc-
tances, and currents. This paper provides this foundation and
derives those formulas.

APPENDIX A
CUTSET VOLTAGE DERIVED FROM NETWORK THEORY

We derive the cutset voltage as an instance of classical
circuit theory using a novel and nonstandard choice of basis.
Chen in [1] explains a generalized cutset analysis of a resistive
network with voltage and current sources. We now state Chen’s
equations. Let the rows of the matrix specify a basis for the
cutset vector space of the network. (The cutset vector space of
the network is spanned by the rows of and has dimension
nbus 1 for a connected network [1], [11].) Write for the
(generalized) cutset voltages, for the (generalized) cutset cur-
rents, for the (generalized) cutset admittance matrix, and
for the branch current flows. Then

(50)

(51)

(52)

(53)

which is Chen’s equation (2.81). Another good explanation of
the cutset vector space and (50)–(53) is by Bryant in [11, section
8], where (53) appears as Bryant’s equation (56).

Now we make a special choice of the basis for the cutset
vector space of the network by choosing the first row of the
matrix to be the cutset so that

(54)

and so that the remaining rows of are basis vectors of the
cutset vector space orthogonal to in the sense that

(55)

(It is often impossible to choose all rows of to consist of
vectors with entries 1 and zero corresponding to the usual cut-
sets, but this causes no fundamental difficulty.) Then in the basis
(54), multiplying (50) on the left with gives

(56)

where , the first component of , is the generalized cutset
coordinate associated with . Comparison of (56) with (7) shows
that is the generalized cutset coordinate associated
with in the basis (54). Moreover, in the basis (54), we have
from (52) that

and the first components of (51) and (53) become, respectively,

Hence, the first component of (53) may be written as
, which is (17). Thus, we have found a nonstandard cutset

basis (54) in which the cutset voltage is the generalized
cutset coordinate associated with the basis element .

As an example, consider the network of Fig. 1 with all the
line conductances equal to 1. Then is an identity matrix and
a matrix satisfying (55) is

APPENDIX B
SHUNTS TO A GROUND NODE

Sometimes the area R has all buses joined by shunts to a
ground node that is only implicitly included in R. This ap-
pendix reviews the adjustments needed.

Ohm’s law for area R together with the ground node is

(57)

The rows of (57) sum to zero so that and
. We can choose in (57) and instead use

. Note that and is invertible. If the conduc-
tance matrix of area R neglecting shunts and the ground node is

, then .

APPENDIX C
EQUIVALENCE OF MULTIAREA AND SINGLE AREA

We show that the same voltages across area are ob-
tained by simultaneous reduction of the three areas in Section VI
and by the single area computation of Section IV.
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We order the interior buses in the order of the areas. Then in
Section VI, the network conductance matrix becomes

In Section IV, using (21)

Hence

Since

is the currents entering border buses from ,

Similarly

Hence, is equivalent to
, and both equations

give the same voltages .

APPENDIX D
PARAMETERS OF 39-BUS NEW ENGLAND TEST SYSTEM

For the DC power flow, the bus power injections and bus
angles are , 0, 3.22, 5., 0, 0, 2.338, 5.22, 0,
0, 0, 0.085, 0, 0, 3.2, 3.294, 0, 1.58, 0, 6.8, 2.74,

0, 2.475, 3.086, 2.24, 1.39, 2.81, 2.06, 2.835,
2.5, 5.6373, 6.5, 6.32, 5.08, 6.5, 5.6, 5.4, 7.81841, 0.98271
per unit and , 4.290, 1.125, 0.2740, 1.499, 2.218,

0.02249, 0.5267, 0.2148, 4.688, 3.835, 3.782, 3.940,
2.219, 1.794, 3.334, 2.188, 1.323, 8.473, 7.113, 5.923, 10.81,
10.58, 3.486, 5.418, 3.809, 1.785, 7.103, 9.934, 6.882, 10.29,
12.14, 13.61, 12.35, 16.13, 19.31, 12.60, 16.92, 0 degrees.
The start and end buses of the lines are 1–2, 1–39, 2–3, 2–25,
3–4, 3–18, 4–5, 4–14, 5–6, 5–8, 6–7, 6–11, 7–8, 8–9, 9–39,
10–11, 10–13, 13–14, 14–15, 15–16, 16–17, 16–19, 16–21,
16–24, 17–18, 17–27, 21–22, 22–23, 23–24, 25–26, 26–27,
26–28, 26–29, 28–29, 2–30, 31–6, 10–32, 12–11, 12–13,
19–20, 19–33, 20–34, 22–35, 23–36, 25–37, 29–38 and the line
reactances are , 0.025, 0.0151, 0.0086, 0.0213,
0.0133, 0.0128, 0.0129, 0.0026, 0.0112, 0.0092, 0.0082,
0.0046, 0.0363, 0.025, 0.0043, 0.0043, 0.0101, 0.0217, 0.0094,
0.0089, 0.0195, 0.0135, 0.0059, 0.0082, 0.0173, 0.014, 0.0096,
0.035, 0.0323, 0.0147, 0.0474, 0.0625, 0.0151, 0.0181, 0.025,
0.02, 0.0435, 0.0435, 0.0138, 0.0142, 0.018, 0.0143, 0.0272,
0.0232, 0.0156 per unit. For the AC power flow, see [12] and
set the transformer tap ratios to unity.
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