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Estimating the propagation and extent of cascading line outages
from utility data with a branching process

Ian Dobson, Fellow IEEE

Abstract—Large blackouts typically involve the cascading out-
age of transmission lines. We estimate from observed utility
data how much transmission line outages propagate, and obtain
parameters of a probabilistic branching process model of the
cascading. The branching process model is then used to predict
the distribution of total number of outages for a given number of
initial outages. We study how the total number of lines outaged
depends on the propagation as the cascade proceeds. The analysis
gives a new way to quantify the effect of cascading failure from
standard utility line outage data.

Index Terms—Power transmission reliability, reliability mod-
eling, reliability theory, risk analysis, failure analysis

I. INTRODUCTION

Cascading failure is a series of dependent failures that
progressively weakens the system. Large electric power trans-
mission systems occasionally have cascading failures that
cause widespread blackouts, with up to tens of millions of
people affected [1], [2], [3]. The many mechanisms involved in
cascading outages are complicated and varied, but all cascades
include transmission line outages. In this paper we describe
and quantify the bulk statistical behavior of cascading trans-
mission line outages from standard utility data that records
the times of line outages. Working with observed data to
quantify cascading failure is complementary to simulation of
cascading failure and has the advantage of not requiring the
approximation of a selected subset of cascading mechanisms.

II. PREVIOUS WORK

Branching process models are bulk statistical models of
cascading failure that are analytically and computationally
tractable. Branching processes have long been used to
study cascading processes in many other subjects, including
genealogy, cosmic rays, and epidemics [4], but their
application to cascading failure is much more recent, first
appearing in [5], [6]. Evidence is accumulating that branching
process models can represent probability distributions of
blackout size. Qualitatively, observed [7], [8], [9], [10]
and simulated [8], [11], [12], [13], [14], [15] blackout
statistics show features such as probability distributions of
blackout sizes with power law regions that can be shown by
branching processes [5]. Quantitatively, branching processes
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have approximately reproduced the distribution of blackout
sizes obtained from simulations of mechanisms of cascading
failure in blackouts [16], [17]. Branching processes are used
to analyze observed blackout data in [6], [18]. Moreover,
branching processes can approximate other high-level models
of cascading failure [5], [19], [20], [21].

Ren and Dobson [18] analyze propagation in a transmission
line outage data set that is smaller and has a different source
than the data set considered in this paper. They estimate an
average value of propagation and use a branching process to
predict the distribution of the number of line outages from
the estimated propagation and the distribution of the initial
line outages. One key difference between this paper and [18]
is that this paper accounts for the varying propagation as the
cascade progresses whereas [18] assumes a constant value of
propagation throughout the cascade.

Chen and McCalley describe an accelerated propagation
model for the number of transmission line outages in [22].
For parameters based on combined data for North American
transmission line outages from [23], the accelerated propaga-
tion model applies to up to 7 outages. They examine the fit
of the accelerated propagation model, a generalized Poisson
distribution, and a negative binomial distribution to the North
American transmission line outage data. Both the accelerated
propagation model and the generalized Poisson distribution are
consistent with the data. The generalized Poisson distribution
is the distribution of the total number of outages produced
by a Galton-Watson branching process with Poisson offspring
distribution, whose mean number of offspring is constant
except in the first generation.

Simulations of cascading failure blackouts in power trans-
mission systems are reviewed in [8], [24]. These simulations
approximate some selection of cascading mechanisms and
compute some possible cascading sequences. Greig [25] rep-
resents cascading failure in more general flow networks.

There is a large literature on cascading in graphs and its
relation to graph topology [26], [27] that is largely motivated
by cascading failures in the internet. Roy [28] considers
Markov reliability models on abstract influence graphs. Work
on network vulnerability that accounts for network loading
includes Watts [29], Motter [30], Crucitti [31], and Lesieutre
[32]. Lindley [33] and Swift [34] represent cascading failure
in systems with a few components by increasing the failure
rate of remaining components when a component fails. Sun
[35] applies accelerating failure to gradual degradation of a
mechanical system.

Some initial results for this paper are in [36]. This paper
rewrites [36] and has more data and new statistical analysis.
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III. TRANSMISSION LINE OUTAGE DATA

Transmission line outages are useful diagnostics in monitor-
ing the progress and extent of blackouts. One common feature
of large blackouts is the successive outage of transmission
lines, and the number of lines outaged is a measure of the
blackout extent. The number of transmission lines outaged
is not a measure directly impacting society such as energy
unserved or customers disconnected, but it is a measure of
blackout size that is useful to utilities, and for which data is
available. The line outages that do not lead to load shed can
be regarded as precursor data for the line outages that do lead
to load shed and blackout.

Transmission owners in the USA are required to report
transmission line outage data to NERC for the Transmission
Availability Data System (TADS). The transmission line
outage data used in this paper is 10 512 outages in TADS data
recorded by a North American utility over a period of 12.4
years [37]. The TADS data for each transmission line outage
includes the outage time (to the nearest minute) as well as
other data. All the line outages are automatic trips. More than
99% of the outages are of lines rated 69 kV or above and
97% of the outages are of lines rated 115 kV or above. There
are several types of line outages in the data and a variety of
reasons for the outages. In processing the data, both voltage
levels and all types of line outages are regarded as the same
and the reasons for the line outages are neglected. For this
initial bulk statistical analysis, neglecting these distinctions
is a useful first step as we proceed. It is best to start new
methods of analysis in the simplest way first.

The power system is carefully designed and operated so
that most transmission line outages have only one or a few
outages occurring together. Most of these short cascades do
not cause blackouts (no load is shed), but the longer cascades
can lead to blackouts. In this paper we statistically analyze the
propagation of line outages in observed cascades of automatic
line outages, regardless of whether load is shed.

IV. GROUPING OUTAGES INTO CASCADES, GENERATIONS

For our analysis it is necessary to group the line outages
first into different cascades, and then into different generations
within each cascade. Here we use a simple method based on
outages’ timing [18], [6]. Since operator actions are usually
completed within one hour, we assume that successive outages
separated in time by more than one hour belong to different
cascades. Since fast transients or auto-recloser actions are
completed within one minute, we assume that successive
outages in a given cascade separated in time by more than
one minute are in different generations within that cascade.

The result of this grouping of the outages into cascades and
generations is that there are J = 6316 cascades. The data can
be tabulated as follows, where Z(j)

k is the number of outages
in generation k of cascade j:

generation number sum over
0 1 2 3 · · · generations

cascade 1 Z
(1)
0 Z

(1)
1 Z

(1)
2 Z

(1)
3 · · · Z(1)

cascade 2 Z
(2)
0 Z

(2)
1 Z

(2)
2 Z

(2)
3 · · · Z(2)

cascade 3 Z
(3)
0 Z

(3)
1 Z

(3)
2 Z

(3)
3 · · · Z(3)

. . . . . .

. . . . . .

. . . . . .

cascade J Z
(J)
0 Z

(J)
1 Z

(J)
2 Z

(J)
3 · · · Z(J)

sum over Z0 Z1 Z2 Z3 · · ·cascades

Summing over the generations gives Z(j), the total number
of outages in cascade number j. Summing over the cascades
gives Zk, the total number of outages in generation number
k. Table I shows Z0, Z1, · · · , Z10.

The probability distribution of the total number of outages
in a cascade is given by

pr = probability of r outages in a cascade, r = 1, 2, 3, · · ·

and is shown in Fig. 1 and Table III. pr is estimated by
counting the number of cascades with a given number r of
outages and dividing by the number of cascades J :

p̂r =
1

J

J∑
j=1

I
[
Z(j) = r

]
, r = 1, 2, 3, · · · (1)

(The notation I[event] is the indicator function that evaluates
to one when the event happens and evaluates to zero when the
event does not happen.) Similarly, the probability distribution
of the number of initial outages is given by

p0r = probability of r initial outages in a cascade,
r = 1, 2, 3, · · ·

and is shown in Fig. 1. p0r is estimated as

p̂0r =
1

J

J∑
j=1

I
[
Z

(j)
0 = r

]
, r = 1, 2, 3, · · · (2)

Since there are J = 6316 cascades, an event that occurs for
only one of these cascades has an estimated probability 1/6316
= 0.00016. The cascades with a large number of outages may
only occur one or a few times. The probability estimates for
these rarer events are not reliable because of their extremely
large variance and it is better to bin the data for the larger
number of outages as shown in Fig. 2.1

TABLE I
NUMBER OF LINE OUTAGES IN GENERATIONS 0 TO 10

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

7539 1328 499 266 172 107 85 59 49 34 37

The method makes no claims about the causes of the outages
or how they are related. It should be noted that there can be a

1For the total number of outages, the bins widths 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 3, 4, 31 are chosen so that each bin has at least 10 outages. The estimated
probability of the number of outages at the midpoint of the bin is then the
proportion of outages in the bin divided by the bin width. For the initial
outages the bins widths are 1, 1, 1, 1, 1, 3.
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variety of causes for the outages propagating in generations.
In addition to outages for which previous outages causing that
outage can be identified, there may be outages with no clear
antecedents other than a general weakening of the system and
independently occurring or exogenously forced outages. For
example, a moving storm front could exogenously force a
sequence of outages that would be processed in the same way
as a dependent cascade. One option is to adjust the processing
based on additional information to account for this, with the
simplest possibility being to neglect weather-related data. One
caution is that it is unknown to what extent exogenous forcing
from weather is augmented by additional dependent cascading
effects.

V. PROPAGATION IN THE CASCADES

In the branching process model of cascading, each outage in
each generation (a “parent” outage) independently produces a
random number 0,1,2,3,... of outages (“child” outages) in the
next generation according to an offspring distribution that is
a Poisson distribution. The child outages then become parents
to produce the next generation, and so on. If the number of
outages in a generation is zero, the cascade stops. The mean
number of child outages in generation k for each parent in
generation k − 1 (the average family size in generation k) is
the propagation λk. λk quantifies the average tendency for the
cascade to propagate from generation k − 1 to generation k.

The propagation λk is estimated by dividing the number of
outages in generation k by the number of outages in generation
k − 1:

λ̂k =
Zk
Zk−1

, (3)

assuming that Zk−1 6= 0. For example, from Table I, gen-
eration 0 has 7539 outages and these parents produce 1328
child outages in generation 1. Therefore the average number
of children in generation 1 per parent in generation 0 is
λ1 = 1328/7539 = 0.18. Generation 1 has 1328 outages
and these outages, as parents, produce 499 child outages in
generation 2. Therefore λ2 = 499/1328 = 0.38. Continuing
these calculations leads to Fig. 3. In Fig. 3, as the cascade
progresses, the propagation λk increases from 0.18 and then,
although the results for higher generations become noisy, the
propagation appears to level off. To quantify the noise, Fig. 4
shows error bars for λk computed using the methods explained
in Appendix B. The higher generations have too few outages to
accurately estimate λk. Therefore we estimate the propagation
λ5+ = 0.76 for generations 4 and above by dividing the total
number of children in generations 5 through 20 by the total
number of parents in generations 4 through 19:

λ̂5+ =

J∑
j=1

(
Z

(j)
5 + ...+ Z

(j)
20

)
J∑
j=1

(
Z

(j)
4 + ...+ Z

(j)
19

) (4)

(Equation (4) is the standard Harris estimator [4], [18], [16]
applied to generations 4 through 20.) In summary, the esti-
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Fig. 1. Probability distribution of initial (circles) and and total (squares) line
outages. Raw data shown with no binning.
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Fig. 2. Probability distribution of initial (circles) and and total (squares) line
outages. Data is binned to have at least 10 outages per bin.

mates for propagation in the utility data are:

λ1 = 0.18
λ2 = 0.38
λ3 = 0.53
λ4 = 0.65
λ5+ = 0.76

(5)

The increase in propagation as the cascade proceeds is a
significant feature of the data. It confirms and quantifies the
explanation and modeling in [22] for bulk statistics up to
seven outages that conditional probabilities of further outages
increase as the cascade proceeds.

Doubling the time intervals that are assumed when defining
the generations and cascades shows that the propagation
estimates (5) are not very sensitive to these assumptions.2

VI. ESTIMATING DISTRIBUTION OF NUMBER OF OUTAGES

We estimate the distribution of the total number of outages
from a distribution of initial outages and the propagation using

2If successive outages separated by more than 2 minutes are in different
generations, then λ1=0.17, λ2=0.37, λ3=0.56, λ4=0.55, λ5+=0.78.
If successive outages separated by more than 120 minutes are in different
cascades, then λ1 = 0.23, λ2 = 0.41, λ3 = 0.59, λ4 = 0.65, λ5+ = 0.79.
We are unable to decrease the interval of one minute that separates different
generations because the line outage timings are specified in minutes.
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Fig. 3. Propagation λk estimated from the outage data for generations k =
1, 2, ..., 20.
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Fig. 4. Error bars on generation propagation λk . Inner bars are one standard
deviation; outer bars are 95% confidence intervals.

a branching process model. This section shows the results;
the details of the branching process calculations are given in
appendix A.

A. Consistency with the empirical distribution of outages

We assume the initial distribution of outages p0r estimated
from the data using (2) and propagation at each generation
given by (5). Then the branching process calculations estimate
the distribution br of the total number of outages.

br = probability of r outages in a cascade, r = 1, 2, 3, · · ·

Fig. 5 compares the estimated distribution br with the em-
pirical distribution pr directly estimated from the data. The
satisfactory match between the estimated and empirical distri-
butions shows that the branching process calculation of the
distribution of the total number of outages gives a result
consistent with the data.3

3The branching process describes the cascading averaged over the time
period of the data. Note that in order to have sufficient empirical data for
comparison, we are testing the branching process model averaged over 12.4
years of data, but propose applying it to describe the cascading averaged over
one year of data.

à

à

à

à

à
à

à

à

à

à

à

à

à

1 2 3 5 7 10 15 20

10-4

0.001

0.01

0.1

number of line outages

p
ro

b
ab

il
it

y

Fig. 5. Distribution of total number of outages from data (squares) and
estimated using branching process (line joining the points of the discrete
distribution).

A reasonable objection to the comparison in Fig. 5 is that
the same data is used both to estimate the distribution br and
to obtain the empirical distribution pr. To address this objec-
tion, we estimate the distribution br from the odd numbered
cascades and compare with the empirical distribution pr for
the even numbered cascades, and vice versa. The resulting
matches, which are shown in Appendix E, are also satisfactory.

B. Predicting the distribution of outages

We can use the branching process model with the estimated
propagation to predict the distribution of the total number of
line outages from other assumptions of initial line outages.
Either a particular number or a distribution of initial line
outages is assumed and then branching process calculations
are applied with the propagation (5) to predict the distribution
br of the total number of outages.

For example, if there are 5 initial line outages, then the dis-
tribution of the total number of outages is shown in Fig. 6. This
new capability is significant because traditional risk analysis
methods can give good estimates of initial outages, and the
method presented here can, based on observed data, quantify
the number of additional outages caused by cascading. Note
that the total number of outages is predicted, but there is no
information about which outages occur.

Another application is to estimate the probabilities of ex-
treme events that are difficult to determine empirically due to
their rarity. For example, redoing the calculation of Fig. 5 up to
100 lines outaged predicts the total number of outages shown
in Fig. 7. The statistical accuracy degrades for a large number
of outages. Section VII calculates that for the full 12.4 years of
data and a confidence level of 95%, the probabilities estimated
in Fig. 7 are accurate within a factor of 2 up to 50 outages.
However, the estimation for up to 100 outages assumes that the
propagation for generations 4 to 100 remains constant at the
value λ5+ = 0.76 estimated from the data for generations 4
to 20. Thus this assumption extrapolates the propagation from
generations 4 to 20 to generations 21 to 100.
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Fig. 6. Probability distribution of total number of line outages predicted by
the branching process with estimated propagation (5) and assuming 5 initial
line outages.
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Fig. 7. Distribution of total number of line outages predicted using the
branching process up to 100 outages. This figure extends and extrapolates the
predicted line outage distribution in Fig. 5 to 100 outages.

C. Sensitivity of the distribution of outages to propagation

We consider how the predicted distributions depend on the
propagation. Formulas for the sensitivity of the distribution of
the number of outages with respect to the propagations λ1,
λ2, λ3, λ4, λ5+ are derived in appendix C. For the data set
of the paper, these formulas are evaluated in Table II.

For example, consider Dλ3
br, the derivative of br with

respect to λ3. Increasing λ3 has no effect on the probability
of 1 or 2 lines outaged, decreases the probability of 3 lines
outaged (since it is then more likely that 3 lines outaged
increases to more lines outaged), and increases the probability
of 5 or more lines outaged. These general effects are expected,
but they are quantified in Table II. The positive values of
Dλkbr for the larger line numbers implies that large cascades
can be mitigated by reducing λk, but it can be seen that the
effectiveness of this mitigation reduces as k increases. Thus,
if measures can be taken to reduce propagation λk at a single
generation k, then it is more effective to do this for the early
generations. However, it can be expected that measures to
reduce propagation will often affect propagation in multiple
generations, and then the effect on the distribution of the total
number of lines outaged can be estimated by suitably combin-

ing Dλkbr and the changes in λk for multiple k. The positive
and negative signs in the entries of Table II suggest that
mitigation measures could involve tradeoffs between shorter
and longer cascades.

VII. STATISTICAL ERROR IN THE DISTRIBUTION OF LINE
OUTAGES

We study the variability of the estimated probability b̂r
of r total line outages calculated by the branching process.
Estimating probabilities of numbers of line outages within a
factor of 2 seems reasonable, especially in the context of risk
calculations (risk = probability times cost) in which direct and
indirect blackout costs are substantially uncertain. Thus, given
a particular observation br, we seek to quantify the accuracy
of the estimate b̂r with the probability

q(b̂r) = P{br/2 ≤ b̂r ≤ 2br}. (6)

We evaluate (6) numerically as explained in Appendix D for
12.4 years of data, 10 years of data, and one year of data.

For 12.4 years of data, br is estimated up to r = 50 outages
to within a factor of two at a confidence level of 95%. In
detail, q(b̂1) = 1.00 and q(b̂r) decreases as r increases, and
q(b̂50) = 0.95 and q(b̂51) = 0.94.

For 10 years of data, br is estimated up to r = 48 outages
to within a factor of two at a confidence level of 95%.

For one year of data, the results for r = 1, 2, 3, ..., 20
outages are shown in the third column of Table III. According
to Table III, one year of data estimates br up to r = 13
outages4 to within a factor of two at a confidence level of 95%
and estimates br up to r = 17 outages to within a factor of two
at a confidence level of 90%. This illustrates the performance
of the branching process method for estimating the distribution
of total number of outages from one year of data in one utility.
The statistical accuracy can be improved by gathering data
over a wider area or for a longer time.

The empirical probability estimator p̂r of the probability of
r total line outages is estimated using (1). The distribution of
Jp̂r is Binomial(J, pr), and hence the standard deviation of
p̂r is

σ(p̂r) =

√
pr(1− pr)

J
. (7)

Moreover, knowing the binomial distribution of Jp̂r allows us
to directly evaluate

q(p̂r) = P{pr/2 ≤ p̂r ≤ 2pr} = P{Jpr/2 ≤ Jp̂r ≤ 2Jpr}.

The fifth and sixth columns of Table III show the empirical
probability pr and its standard deviation σ(p̂r)) obtained from
12.4 years of data. The last column of Table III shows the
q(p̂r) that corresponds to p̂r calculated from 10 years of data.

It can be seen in Table III that q(b̂r) for one year of data
is greater than or equal to q(p̂r) for ten years of data. This
shows an order of magnitude reduction in the amount of
data needed for a given statistical accuracy to estimate the
probability of the larger cascades with the branching process.

4 q(b̂14) is calculated to be 0.949 with standard deviation 0.0005, so it is
judged to be less than 0.95 but rounds to 0.95 in Table III.
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It is not surprising that an approach estimating the parameters
of a branching process model of cascading outperforms an
empirical approach.

The preceding calculations analyze only the statistical error
due to the cascading propagation and neglect any statistical
uncertainty in the distribution of the initial outages. This can
either be irrelevant or a significant part of the total statistical
error. The statistical uncertainty in the distribution of the
initial outages is irrelevant when the number or distribution
of initial outages is assumed. The statistical uncertainty in the
distribution of the initial outages can be a significant part of
the total statistical error if the distribution of initial outages is
also estimated from data. However, the distribution of initial
outages can be obtained by conventional risk analysis, and
there is always more data on the initial outages than on the
subsequent cascading outages.

VIII. CONCLUSIONS

We analyze 12.4 years of transmission line outage data
recorded by a North American utility. The key information
used is the timing of each outage, and this is included in
the standard Transmission Availability Data System (TADS)
data that is reported to NERC by all American transmission

owners. The outages are grouped into cascades and genera-
tions within each cascade based on the outage timings. Then
the propagation of outages at each generation is estimated.
The propagations are the parameters of a branching process
model of the cascading. Given some observed or assumed
initial outages, the branching process model can estimate the
distribution of the total number of line outages. The number
of line outages is a measure of the blackout extent. Thus
the method quantifies the effect of cascading failure on the
blackout extent based on standard utility data. The sensitivity
of the results to the propagation and the confidence intervals
of the results are computed. This new method of cascading
failure analysis is practical and the computations are easy to
implement with computer algebra.

For this utility data set we conclude that:

1) The distribution of the total number of line outages
predicted with the branching process matches well the
empirical distribution of the total number of outages.
This validates the branching process model for predict-
ing the distribution of the total number of outages in the
sense that it is consistent with this data set. That is, a
branching process model that accounts for the varying
propagation as the cascade progresses can give a good

TABLE II
DERIVATIVE Dλkbr OF THE DISTRIBUTION OF TOTAL NUMBER OF OUTAGES WITH RESPECT TO λk

number of lines outaged r
1 2 3 4 5 6 7 8 9 10 11

Dλ1
br -0.73 0.29 0.16 0.087 0.054 0.036 0.024 0.016 0.012 0.0086 0.0062

Dλ2
br 0 -0.089 0.0069 0.016 0.013 0.010 0.0079 0.0060 0.0045 0.0035 0.0028

Dλ3
br 0 0 -0.020 -0.0052 0.00048 0.0021 0.0025 0.0024 0.0021 0.0018 0.0016

Dλ4
br 0 0 0 -0.0055 -0.0034 -0.0014 -0.00029 0.00030 0.00059 0.00071 0.00072

Dλ5+
br 0 0 0 0 -0.0016 -0.0022 -0.0021 -0.0018 -0.0014 -0.0010 -0.00075

TABLE III
DISTRIBUTIONS OF LINE OUTAGES AND THEIR STANDARD DEVIATIONS AND PROBABILITIES OF ESTIMATING WITHIN A FACTOR OF TWO

PREDICTED DISTRIBUTION EMPIRICAL DISTRIBUTION

r br σ(b̂r) q(b̂r) (1 year) pr σ(p̂r) q(p̂r) (10 year)
1 0.733 0.00354 1.00 0.730 0.00559 1.00
2 0.150 0.00205 1.00 0.150 0.00449 1.00
3 0.0536 0.00101 1.00 0.051 0.00277 1.00
4 0.0251 0.000592 1.00 0.0287 0.00210 1.00
5 0.0130 0.000386 1.00 0.0114 0.00134 1.00
6 0.00722 0.000272 1.00 0.0095 0.00122 1.00
7 0.00442 0.000203 1.00 0.00538 0.000921 1.00
8 0.00296 0.000157 1.00 0.00348 0.000741 0.99
9 0.00207 0.000127 0.99 0.00190 0.000548 0.96

10 0.00152 0.000104 0.99 0.00127 0.000448 0.87
11 0.00119 0.0000858 0.98 0.00127 0.000448 0.87
12 0.000937 0.0000721 0.97 0.00095 0.000388 0.84
13 0.000744 0.0000615 0.96 0.000792 0.000354 0.74
14 0.000597 0.0000530 0.95 0.000792 0.000354 0.74
15 0.000487 0.0000461 0.93 0.000475 0.000274 0.60
16 0.000403 0.0000404 0.92 0.000633 0.000317 0.79
17 0.000339 0.0000357 0.90 0.000158 0.000158 0.36
18 0.000288 0.0000318 0.89 0.000317 0.000224 0.72
19 0.000248 0.0000285 0.88 0.000158 0.000158 0.36
20 0.000216 0.0000257 0.87 0.000158 0.000158 0.36
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prediction of the distribution of the total number of line
outages from the initial number of line outages.

2) The prediction of the distribution of total number of line
outages with the branching process requires significantly
fewer observed cascades than empirical estimation, and
useful results can be obtained from standard annual data
from a large utility. The requirement of fewer observed
cascades suggests that the monitoring of line outage
propagation and cascading failure risk is practical.

3) Propagation of line outages increases as the cascade
progresses and then appears to level out.

4) To mitigate long cascades it appears to be more effective
to reduce the amount of propagation at the early gen-
erations of cascading. (This assumes that the mitigation
only adjusts the early propagations; it is not yet known
how typical mitigation methods affect the propagation
at different generations.)

Our statistical analysis is significant in determining over
what area and what length of time line outage data must be
gathered in order to make valid conclusions about the propa-
gation and extent of cascading in that area. This is necessary to
determine whether valid assessments of cascading risk can be
made in more localized areas of the system to indicate whether
the localized areas require additional cascading risk mitigation.
The statistical analysis also enables a more rational risk-based
assessment that is better than the extremes of overreacting to
occasional large events or neglecting cascading risk when there
is a period of time with no large events.

This paper quantifies propagation and cascading extent from
data observed over a time period. This can indicate areas of
high propagation that are candidates for mitigation of cascad-
ing risk, and can confirm after implementation of a mitigation
how the propagation was changed. There remains a need to
verify the performance of a proposed mitigation method before
it is implemented, and this can be done by applying similar
methods [16], [17] to simulations of cascading processes
on power system models with and without the mitigation.
Moreover, quantifying the cascading propagation opens the
possibility of directly assessing the effect of mitigation on the
propagation, which complements the more traditional reliabil-
ity focus on mitigating the initiating outages of the cascading.

There are several directions for future work. In this paper
we analyze one publicly available data set. If access to other
data sets can be obtained, they should be analyzed to better
determine the general characteristics of propagation of cascad-
ing line outages and provide further validation and experience
with the method. In this paper, all the line outages are regarded
as the same, and only the timing of line outages is considered.
Also we statistically analyze the propagation of line outages in
all the cascades, regardless of whether load is shed or whether
the cascade is short or long. The value of making these sort
of distinctions and possibly elaborating the data processing
could be examined if larger data sets become available. It
would be valuable to extend the prediction of the number of
lines outaged due to cascading to other measures of blackout
size such as load shed [17]. We also expect the quantitative
description of cascading line propagation based on observed
data to be useful for validating cascading failure simulations.
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APPENDIX
BRANCHING PROCESS CALCULATIONS

The branching process used in this paper is a Galton-Watson
branching process with Poisson offspring distribution whose
mean varies with generation. There is an arbitrary distribution
of initial outages in generation zero. Some familiarity with
branching processes is desirable and the initial chapters of
classic references [4], [38] are recommended.

A. Calculating the distribution of the total number of outages

The offspring distribution is the probability distribution of
the number of outages in a generation assuming that there
is a single parent outage in the previous generation. Let the
generating function of the offspring distribution producing
generation k outages from generation k− 1 outages be fk(s).
Generating functions are formal power series in the variable s

and the coefficients of the powers of s are the probabilities of
the offspring distribution.

For the initial generation, f0(s) is the generating function
of the distribution of initial outages p0r.

f0(s) =

∞∑
r=1

p0rs
r (8)

In (8) the probability p0r of r initial outages is the coefficient
of sr. The distribution of initial outages can be estimated
empirically from (2). Alternatively, a particular distribution of
outages can be assumed. For example, if there are 5 initial
line outages, then p05 = 1 and f0(s) = s5.

For generation k ≥ 1,

fk(s) = eλk(s−1) =

∞∑
r=0

e−λk
λrk
r!
sr (9)

is the generating function of the Poisson offspring distribution
with mean λk. That is, assuming a single outage in gener-
ation k − 1, the probability of r outages in generation k is
e−λkλrk/(r!), the coefficient of sr in (9).

The offspring distributions determine the statistics of the
branching process via functional composition of the generating
functions. For example, if there are 5 initial outages so that
f0(s) = s5, the distribution of the number of outages in
generation 3 is given by the generating function

f3(f2(f1(s
5))) = e−λ1+λ1e

−λ2+λ2e−λ3+λ3s
5

(10)

The coefficients of the power series (10) give the probability
distribution of the number of outages in generation 3. For
example, the probability of 4 outages in generation 3 is the
coefficient of s4 in (10). Generating function (10) illustrates
the most common calculation in branching processes, but
here we are interested not in the number of outages in a
given generation, but in the total number of outages in all
generations, and we now present this calculation.

Consider a single line outage that occurs in generation
k and let the total number of outages that are descendants
of this outage in any subsequent generation (children plus
grandchildren plus great grandchildren and so on) be Yk.
Let the generating function of Yk be Fk(s) = EsYk . The
number of descendants of the single line outage plus the
single line outage itself is Yk + 1 and Yk + 1 has generating
function sFk(s). Then the basic recursion for computing all
the descendants of an outage at a given generation is

Fk−1(s) = fk(sFk(s)) (11)

Since λk = λ5+ for k ≥ 5, the total number of outages
that are descendants of an outage in generation 4 plus the
outage itself is given by a Borel distribution with parameter
λ5+. We write fB(s) for the generating function of the Borel
distribution with parameter λ5+:

fB(s) =

∞∑
r=0

(rλ5+)
r−1 e

−rλ5+

r!
sr (12)

Write F (s) for the generating function of the total number
of outages. We wish to compute F (s) to obtain the distribution
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of the total number of outages. Applying recursion (11)
successively,

sF4(s) = fB(s)

F3(s) = f4(sF4(s)) = f4(fB(s))

F2(s) = f3(sf4(fB(s)))

F1(s) = f2(sf3(sf4(fB(s))))

F0(s) = f1(sf2(sf3(sf4(fB(s)))))

F (s) = f0(sf1(sf2(sf3(sf4(fB(s)))))) (13)

Equation (13) shows that F (s) is a complicated power series
in s, but it can be evaluated by computer algebra [41] for as
many terms as needed. The recursive structure of (13) mirrors
the generations of the cascade. One way to illustrate this for
the case of one initial failure (so that f0(s) = s) is by writing
in full formula (13):

F (s) = se−λ1+λ1se
−λ2+λ2se−λ3+λ3se

−λ4+λ4fB(s)

B. Error bars for propagation

Consider the estimation of propagation λk and its confi-
dence interval. Because of the assumption of a branching pro-
cess model, Zk is the sum of Zk−1 independent Poisson(λk)
random variables and is distributed as Poisson(Zk−1λk). The
estimated mean λ̂k is then Zk/Zk−1. Since the mean and
variance of a Poisson distribution are equal, the variance of Zk
is also Zk−1λk. Therefore the variance of λ̂k is λk/Zk−1 and

σ(λ̂k) =

√
λk
Zk−1

, k = 1, 2, 3, 4. (14)

According to [39], using the correspondence between Poisson
and chi-squared random variables, if there are Zk observations
of a Poisson random variable, then (1− α) confidence limits
λL, λU on the estimate of the mean of the Poisson distribution
are solutions of

∞∑
i=Zk

e−λL
λiL
i!

= P [χ2
2Zk
≤ 2λL] = α/2 (15)

Zk∑
i=0

e−λU
λiU
i!

= 1− P [χ2
2(Zk+1) ≤ 2λU ] = α/2 (16)

Then (1 − α) confidence limits on λ̂k are
[λL/Zk−1, λU/Zk−1], except that λU/Zk−1 is calculated
differently for Zk ≥ 30.

For Zk ≥ 30, solving (16) numerically is difficult, and the
following normal approximation to the Poisson distribution is
used [40]. Let uα/2 satisfy

1

2π

∫ ∞
uα/2

e−u
2/2du = α/2. (17)

Then the upper confidence limit λU is

λU = Zk +
1
2u

2
α/2 + uα/2

√
Zk +

1
4u

2
α/2 , (18)

and the upper confidence limit of λ̂k is λU/Zk−1.

We now consider estimate (4) for λ5+ and its uncertainty.
Using the approach of [42], λ̂5+ has an asymptotically normal
distribution with approximate variance

σ2(λ̂5+) =
(1− λ5+)(1− e−λ5+)

J4(1− λ165+)
, (19)

where J4 is the number of cascades j with Z(j)
4 6= 0.

C. Sensitivity to propagation

We compute the sensitivity of the distribution of the total
number of outages to the propagation λk. It is convenient to
rewrite (13) using functional composition notation

F = f0 ◦ S ◦ f1 ◦ S ◦ f2 ◦ S ◦ f3 ◦ S ◦ f4 ◦ fB (20)

Here the function S is multiplication by s. Write D for
differentiation with respect to s and Dλk for differentiation
with respect to λk, and note that

Dfk(s) = λkfk(s), k ≥ 1

Dλkfk(s) = (s− 1)fk(s), k ≥ 1.

Then (20) can be differentiated with respect to λk for k =
1, 2, 3, 4, 5 to give

Dλ1F = sDf0(sF0)F0(sF1 − 1)

Dλ2F = s2λ1Df0(sF0)F0F1(sF2 − 1)

Dλ3
F = s3λ1λ2Df0(sF0)F0F1F2(sF3 − 1)

Dλ4
F = s4λ1λ2λ3Df0(sF0)F0F1F2F3(sF4 − 1)

Dλ5+
F = s4λ1λ2λ3λ4Df0(sF0)F0F1F2F3F4Dλ5+

fB(s)

To derive in more detail one of these cases, differentiating (20)
with respect to λ3 gives

Dλ3
F = Df0(sF0)sDf1(sF1)sDf2(sF2)sDλ3

f3(sF3)

= s3Df0(sF0)Df1(sF1)Df2(sF2)Dλ3
f3(sF3)

= s3Df0(sF0)λ1F0λ2F1 (sF3 − 1)f3(sF3)

= s3λ1λ2Df0(sF0)F0F1F2(sF3 − 1)

D. Calculating q(b̂r)

q(b̂r) is the probability that the estimated probability b̂r lies
within a factor of 2 of br. q(b̂r) depends on the amount of data
or, equivalently, the observation time, so the the first step is
to fix the amount of data used. Then q(b̂r) is calculated by
repeated simulation of a branching process with initial outages
distributed according to the empirical initial distribution p0 and
propagation given by (5).

The number of cascades simulated corresponds to the
amount of data used. For example, if one year of data is
assumed, then the amount of data is 6316/12.4=509 cascades.
Then in principle one simulates 509 cascades to compute
each sample of b̂r (in practice, for each sample of b̂r it is
equivalent and easier to simulate one cascade with initial
outages combined from 509 samples of the initial distribution
p0). To compute q(b̂r), we simulate many samples of b̂r, count
the number of samples of b̂r within a factor of 2 of br, and
then divide by the number of samples to obtain q(b̂r). Our
caculations used 200 000 or 400 000 samples of b̂r.
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An alternative approach would assume that b̂r is normally
distributed with mean br and variance approximately given by
linearizing the dependence of br on propagation:

σ2(b̂r) =

5+∑
k=1

(Dλkbr)
2σ2(λ̂k) (21)

where σ2(λ̂k) would be obtained from (14). This alternative
approach gives similar results to the simulation of b̂r, but we
could not find a convincing justification of the assumption of
normally distributed b̂r.

E. Comparing estimated and empirical distributions obtained
from separate data
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Fig. 8. Distribution of total number of outages from data in even numbered
cascades (squares) and estimated using branching process obtained from odd
numbered cascades (line joining the points of the discrete distribution).
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Fig. 9. Distribution of total number of outages from data in odd numbered
cascades (squares) and estimated using branching process obtained from even
numbered cascades (line joining the points of the discrete distribution).
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