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How many occurrences of rare blackout events are
needed to estimate event probability?

Ian Dobson, Fellow IEEE, Benjamin A. Carreras, David E. Newman

Abstract—We give simple conditions on the number of occur-
rences needed for statistically valid conclusions about simulated
or observed rare events associated with blackouts. For example,
11 occurrences are needed to estimate the probability of a rare
event within a factor of 2 with 95% confidence.

Index Terms—power system reliability, statistics, simulation.

I. INTRODUCTION

Series of blackouts can be observed in real power systems
or simulated in power system models, and can be regarded as
samples of blackouts. In either case, the most important and
large blackouts involve rare events [1], [2], [3]. Then it is
necessary to consider how many occurrences are needed for
statistically valid estimates of the rare event probabilities.!
The required number of occurrences of rare events has a large
effect on practicality, since it governs how long real data
must be observed or how many simulation runs are needed.

Consider blackouts in WSCC reported to NERC in 1984.
There were 14 blackouts bigger than 100 MW, corresponding
to an estimated daily probability 14/364=0.04. There were 5
blackouts bigger than 1000 MW, corresponding to an esti-
mated daily probability 5/364=0.01. This letter will show that
the first probability has statistical significance, whereas the
second probability does not and requires more observations.
Another example of a rare event associated with a blackouts is
“a particular sequence of three lines trips during a blackout.”...
we would want to know how many times this event should
occur in order to reliably estimate its probability.

This letter generally raises the rather neglected issue of
statistical validity for conclusions about rare blackout events
and explains some simple criteria that are easy to apply. The
results are given in section II and then derived in section III.
We hope that these straightforward results will help to sharpen
methods and conclusions for analyzing blackout data.

II. RESULTS

Suppose there are n sample blackouts observed or simu-
lated. The rare event of interest (for example, a blackout of
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1“One swallow does not a summer make” Aristotle, 384-322 BC.

size more than 1000 MW) occurs h times in the n sample
blackouts. Then the probability p of the event is estimated as

. h
p=—.
n
We assume that the samples are statistically independent. How
many samples n are needed for the estimate p to be likely to be
a sufficiently accurate answer? Alternatively, given the number
of samples n, how small are the probabilities that are likely
to be estimated sufficiently accurately? It turns out that the
answers can be expressed in terms of the minimum number of
occurrences h. The required minimum number of occurrences
h depends on the required accuracy and the confidence level.
Our accuracy requirement chooses a constant a (such as a = 2)
and requires that p be within a factor a of p:

pla < p < ap. ¢))

The multiplicative form of (1) is appropriate for blackout
event probabilities because it induces an accuracy requirement
of similar multiplicative form in the risk of the blackout
event, since risk is probability times cost. The confidence
level is the probability that the accuracy will be satisfied.
For example, a confidence level of 95% implies that if the
estimation is performed 20 times, then one would expect by
chance variations that on average 1 of the 20 estimations would
give an inaccurate estimate p that does not satisfy (1).

TABLE I
MINIMUM NUMBER OF OCCURRENCES TO ESTIMATE EVENT PROBABILITY
AS A FUNCTION OF CONFIDENCE LEVEL ¢ AND ACCURACY FACTOR a

confidence accuracy factor a
level ¢ 1.5 2 3 4 5 10
0.90 18 7 4 3 3 3
0.95 26 11 7 5 5 4
0.98 39 17 10 8 7 6

The minimum number of occurrences to achieve accuracy
(1) at several confidence levels is given in Table 1. For exam-
ple, 11 occurrences are needed to estimate p within a factor of
2 with 95% confidence. It is easy to see how needing 11 occur-
rences affects the number n of blackout samples required. The
average number of occurrences of an event with probability p
in n samples is np. Therefore n and p must satisfy

np > 11.

That is, to accurately estimate a given p, at least 11/p samples
are needed. Or, given n samples, then the smallest probability
that can be accurately estimated is 11/n.
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Another question is distinguishing whether an event would
reliably have nonzero probability based on only a few occur-
rences of the event. If the event occurs, the best estimate of its
probability is nonzero, but one can ask whether this conclusion
would be reliably obtained from general samples. That is, one
asks how many occurrences of an event are needed in order
to conclude that the event has nonzero probability with a 95%
confidence interval? The answer is that the event needs to
occur 3 or more times.

Now consider reliably ranking the probability of 2 events
based on n samples. Suppose that event 1 with probability p;
happens h; times, and event 2 with probability p» happens ho
times. The estimates for the probabilities of events 1 and 2 are

o h

P = and Po = .
n n

If ho > hy, when can we reliably conclude that po > p;?
For a confidence level ¢ = 0.95, Figure 1 shows pairs of
integers (hi, hg) as grid intersection points. For a confidence
level ¢ = 0.95, we can conclude that p, > p; for all pairs of
integers (hy, hy) above the solid line.

20 -

Fig. 1.

Event 1 occurs h; times and event 2 independently occurs hg times.
If (h1, h2) lies above the solid line, then probability of event 2 > probability
of event 1 with confidence level 0.95. If (h1, hz) lies below the dashed line,
then probability of event 1 > probability of event 2 with confidence level 0.95.

III. DERIVING THE RESULTS

The key assumption is that the sample blackouts are in-
dependent. For example, simulated blackouts can often be
assumed independent if each blackout is generated as a func-
tion of pseudorandom numbers generated in the computer. (Of
course, having a sufficient number of samples of a rare event is
not the only requirement for sound results. It is also necessary
to include all the possibilities and to sample them uniformly so
that there is no bias toward a particular subset of outcomes.)

The number of occurrences H of a rare event of probability
p in n independent samples has distribution Binomial(n, p)
with expected number of occurrences FH = np = h and
variance varH = np(1 — p). For rare events, p << 1 and
varH ~ np. Moreover, for p small and n large, it is a very
good approximation that Binomial(n, p) ~ Normal(np, np) =

Normal(h, h), so that H is approximately distributed as
Normal(h, h).

Our accuracy and reliability requirements are that the esti-
mated probability p lies within a factor a of p with probability
at least ¢; that is, P [a™'p < p < ap| > c. Since p = H/n,
equivalent requirements are P [a~'h < H < ah] > ¢, and

Pﬂmﬂ—n¢ﬁgzg(m—n¢ﬂzc, 2)

where Z = (H — h)/v/h ~ Normal(0, 1). Given a and c, it is
straightforward to numerically solve (2) with > ¢ replaced by
= ¢ for a value of h and then round up to the nearest integer.
Hence the results in Table 1. A similar analysis is given in [4]
for the different accuracy criterion that (1—b)p < p < (1+b)p
for some constant b, and this is applied in [2].

How many occurrences h are needed to have less than 1 —c¢
chance of having had zero occurrences? Since P[H = 0] =
l1-p"=1-—¢, —p=In(l-p) = (In(l-rc))/n and
h =~ —In(1—¢). For ¢ =0.90 or ¢ = 0.95, h > 3 is needed.
For ¢ = 0.98, h > 4 is needed.

Let H; be the number of occurrences of event 1 and
H, be the number of occurrences of event 2. According
to the approximations above, H; ~ Normal(hy,hy) and
Hy ~ Normal(hs, he). The ranking ps > p; is equivalent to
ho > hy, and the ranking p, > p; is correct with probability
P[Hy — Hy > 0].

First assume that H; is independent from Hy. Then Hy —
Hy ~ Normal(hg —hy,hy + hz) and

mm—m>mzpk>_wfmq, 3)

~ Vhi+he

_ Hy — Hi — (ha — h1)
Vhi 4 he

The requirement is P[Hy — Hy > 0] > ¢. For a given confi-
dence level ¢, we use (3) to solve P[Hs — H; > 0] = c to give
ho as a function of hy as exemplified in Fig. 1 for ¢ = 0.95.

Now assume that H; and H, are jointly normal with
correlation coefficient p. Then

Hy — Hy ~ Normal(hg —hy,h1 4+ ho — 2p4/ h1h2).

Following the previous computations yields (3) with the de-
nominator /2y + ho replaced by \/hi + ha — 2pv/hiha. It
can be seen that a positive correlation p > 0 between H; and
H, increases P[Hy — Hy; > 0] and so reduces the number
of occurrences necessary for a given confidence level. Even if
the exact correlation is not known, the sensitivity to correlation
could readily be studied.

where 7 ~ Normal(0, 1).
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