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We compare and test statistical estimates of failure propagation in data from ver-
sions of a probabilistic mode! of loading-dependent cascading failure and a power
system blackout model of cascading transmission line overloads. The comparisons
suggest mechanisms affecting failure propagation and are an initial step toward
monitoring failure propagation from practical system data. Approximations to the
probabilistic model describe the forms of probability distribution of cascade sizes.

1. INTRODUCTION

Large blackouts of electric power transmission systems are typically caused by
cascading failure of loaded system components. For example, long, intricate cas-
cades of events caused the western North American blackout of 30,390 MW in
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August 1996 [17] and the eastern North America blackout of 61,800 MW in August
2003 [20]. The vital importance of the electrical infrastructure to society moti-
vates the analysis and monitoring of the risks of cascading failure [11]. In par-
ticular, in addition to limiting the start of outages that cascade, it is useful to be
able to monitor the tendency of cascading failures to propagate after they are
started [3,13].

CASCADE is a probabilistic model of loading-dependent cascading failure that
is simple enough to be analytically tractable [12,14,15]. CASCADE contains no
power system modeling, but does seem to approximately capture some of the salient
features of cascading failure in large blackouts. The CASCADE model has many
identical components randomly loaded. An initial disturbance adds load to each
component and causes some components to fail by exceeding their loading limit.
Failure of a component causes a fixed load increase for other components. As com-
ponents fail, the system becomes more loaded and cascading failure of further com-
ponents becomes likely.

The CASCADE model can be well approximated by a Galton—-Watson branch-
ing process in which failures occur in stages and each failure in each stage causes
further failures in the next stage according to a Poisson distribution [13]. The aver-
age number of failures in the initial disturbance is § and the subsequent stochastic
propagation of the failures is controlled by the parameter A, which is the average
number of failures caused by each failure in the previous stage.

OPA is a power system blackout model that represents probabilistic cascading
line outages and overloads [ 1]. The network is conventionally modeled using DC load
flow and linear programming (LP) dispatch of the generation. The initial disturbance
is generated by random line outages and load variations. Overloaded lines outage with
a given probability and the subsequent power flow redistribution and generator redis-
patch can overload further lines, which can then probabilistically outage in a cas-
cading fashion. There is no attempt to represent all of the diverse interactions that can
occur during a blackout. However, the modeling does represent a feasible cascading
blackout consistent with some basic network and operational constraints. OPA can
also model the slow evolution of the network as load grows and the network is
upgraded in response to blackouts [2,4], but in this paper, the network is assumed to
be fixed and these complex systems dynamics are neglected.

Other authors have constructed power system blackout models involving cas-
cading failure emphasizing different aspects of the problem. Chen and Thorp [5,6]
modeled hidden failures, computed the vulnerability of key lines using importance
sampling, and examined criticality and blackout mitigation. Ni, McCalley, Vittal,
and Tayyib [ 18] showed how to monitor the risk of a variety of system limits being
exceeded; minimizing this risk would have the effect of limiting the risk of cascad-
ing events starting. Chen, Zhu, and McCalley [7] showed how to evaluate the risk
of the first few likely cascading failures. Rios, Kirschen, Jawayeera, Nedic, and
Allan [19] used Monte Carlo simulation to estimate the cost of security, taking
account of hidden failures, cascading outages, and transient instability. For further
literature review, see [11].
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Our ultimate goal is to understand cascading failure in large blackouts from a
global systems point of view, identify the main parameters governing the cascading
process, and suggest ways to estimate these parameters from real or simulated out-
age data. These metrics will allow monitoring of the risk of cascading failure and
quantifying of the trade-offs involved in blackout mitigation. In this paper, we take
a step toward this goal by comparing the abstract cascading failure model CAS-
CADE with the power system blackout model OPA. The comparison reveals which
features of the OPA blackouts are captured by the CASCADE model. In particular,
we seek to characterize in OPA and measure from OPA results the parameter A
governing the propagation of failures after the start of the cascade. Resolving prob-
lems in measuring A from OPA results is a first step toward measuring the degree to
which failures propagate in power systems. If the overall system stress is such that
failures propagate minimally, then any failures that occur are likely to be a single
failure or a short sequences of failures that cause small blackouts or no blackout.
However, if the overall system stress is such that failures propagate readily, then
there is a substantial risk of cascading failure leading to large blackouts and it is in
the national interest to quantify this risk and examine the economics and engineer-
ing of mitigating this risk.

2. CASCADE MODEL AND BRANCHING PROCESS PARAMETERS

This section summarizes the CASCADE model of probabilistic load-dependent cas-
cading failure and its branching process approximation [13,14,15]. (Here, the nor-
malized version of CASCADE is summarized; for many purposes, the unnormalized
version is more useful and flexible [12,15].)

The CASCADE model has n identical components with random initial loads.
For each component, the minimum initial load is zero and the maximum initial load
isone. Forj=1,2,...,n, component j has an initial load ¢; that is a random variable
uniformly distributed in [0,1]. €,,4,,..., {, are independent.

Components fail when their load exceeds one. When a component fails, a fixed
amount of load p = 0 is transferred to each of k components. The k components to
which the load is transferred are chosen randomly each time a component fails [14].

To start the cascade, we assume an initial disturbance that loads each compo-
nent by an additional amount 4. Other components may then fail, depending on
their initial loads {;, and the failure of any of these components will distribute the
additional load p that can cause further failures in a cascade. The cascade proceeds
in stages with M, failures due to the initial disturbance, M, failures due to load
increments from the M, failures, M failures due 1o load increments from the M,
failures, and so on. The size of the cascading failure is measured by the total num-
ber of components failed, S.

For the case k = n in which load is transferred to all of the system components
when each failure occurs, the distribution of § is a saturating quasibinomial distri-
bution [8,15]:
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n
(}_)¢>(d)(d +rp) N p(1 —d — rp))", r=0,1,...,n—1

PS=r]= . @1
l—g‘;)P[S=s], r=n,
where the saturation function ¢ is
0, x<0
$(x)=1x, 0=x=] 2)
1, x>1.

Note that (1) uses 0° =1 and 0/0 = 1 when needed.

In the case k < n, no analytic formula such as (1) is currently available, but it
can be shown that approximation (4) remains valid [14].

Define

A=kp and 0 =nd, 3

where A may be interpreted as the total amount of load increment associated with
any failure and is a measure of how much the components interact. # may be inter-
preted as the average number of failures due to the initial disturbance.

Now, we approximate the CASCADE model [13,14]. Let n — o0, k — co and
p — 0,d — 0insuch a way that A = kp and € = nd are fixed. For 6 = 0,

,—rA=-0

O(rA +6) ! — O=r=—-0)/Ar<n
r.

P[S=r]= 0, =A< r<nrz0 @)
n—|
1-> P[s=5s], r=n.
y=0

The approximate distribution (4) is a saturating form of the generalized Poisson
distribution [9,10]. Moreover, under the same approximation, the stages of the CAS-
CADE model become stages of a Galton-Watson branching process [13,16]. In
particular, the initial failures are produced by a Poisson distribution with parameter
6. Each initial failure independently produces more failures according to a Poisson
distribution with parameter A, each of those failures independently produces more
failures according to a Poisson distribution with parameter A, and so on. This branch-
ing process leads to another interpretation of A as the average number of failures
per failure in the previous stage. A is a measure of the average propagation of the
failures [13].

The expected number of failures in stage j of the branching process is given by

EM; = oA/~ (5)
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until saturation due to the system size occurs. Formula (5) is exact for the branching
process before saturation and an approximation for the expected number of failures
in each stage of CASCADE.

Further approximation is useful. Using Stirling’s formula and a limiting expres-
sion for an exponential for r > 1, (4) becomes

o 1.8 N exp[=r(A=1-1nA)]
P[S-—r]~/\mexp[(l A)A:I < 9) ,
r+; \r
1 < r <r,=min{n/A,n}, (6)

and if /A ~ 1 so that also r > 6/A, then

]
OCxp!:(l - A) XJ

P[S=r]=~ —"—/‘\‘-2—7;—— r=(/2) exp[—r(A —1 —=1nA)],

1 < r < r; = min{n/A, n}. (7)
Let
ro=(A—=1=1nA)"" 8

In approximation (7), the term r~%/? dominates for r < ry and the exponential
term dominates for r = r,. Thus, (7) reveals that the distribution of the number of
failures has an approximate power-law region of exponent —1.5 for I < r < ry and
an exponential tail for rq =< r < ;. Approximation (7) implies that ry is only a
function of A and does not depend on 8 or the system size n.

We discuss some of the implications of the approximation for the form of the
distribution of S.

1. For A = 1, (6) becomes P[S = r] ~ (ﬁ/ﬁ)r“m, ro becomes infinite,
and the power-law region extends up to the system size.

2. ry'=A—1~—1InAisanonnegative function of A with a quadratic minimum
of zero at A = 1. Therefore, for a range of A nearone, ro=(A—1—InA)™!
is large and the power-law region extends to large r.

3. The risk of large cascades as compared with the risk of small cascades is
approximately determined by A. A small A gives a distribution with an expo-
nential tail past a small number of failures and a negligible probability of
large cascades. A near one gives a power tail with a significant probability
of large cascades and A > 1 gives a significant probability of all compo-
nents failing.

4. If A < 1, then P[S = r] increases with 4. The increase is linear for small ¢
and exponential for large #. Thus, reducing the probability of failures by
decreasing the size of the initial disturbance is most effective when A is less
than and bounded away from one and 6 is large.
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3. OPA BLACKOUT MODEL

In the OPA model [1], there is a fast timescale of the order of minutes to hours, over
which cascading overloads or outages may lead to a blackout. Cascading blackouts
are modeled by overloads and outages of lines determined in the context of LP
dispatch of a DC load flow model. To start the cascade, random line outages are
triggered with a probability p,. A cascading overload may also start if one or more
lines are overloaded in the solution of the LP optimization. In this situation, we
assume that there is a probability p; that an overloaded line will outage. When a
solution is found, the overloaded lines of the solution are tested for possible out-
ages. Outaged lines are, in effect, removed from the network and a new solution is
calculated. This process can lead to multiple iterations, and the process continues
until a solution with no more line outages is found. We regard each iteration as one
stage of the cascading blackout process. The overall effect of the process is to gen-
erate a possible cascade of line outages that is consistent with the network con-
straints and the LP dispatch optimization.

The parameters p, and p; determine the initial disturbance. The level of stress
on the system is determined by a multiplier on the loads in the power system.

4. ESTIMATING 6 AND A FROM DATA

This section proposes methods of estimating ¢ and A from the data produced by
CASCADE or OPA. Both CASCADE and OPA produce a stochastic sequence of
failures in stages with M, failures due to the initial disturbance and subsequent
numbers of failures M,, Ms, ... In the case of OPA, the failures are transmission
line outages. If at any stage (including the first stage) there are zero failures, then
the cascade of failures ends.

For d > 0, the probability of a nontrivial cascade in the CASCADE model is
casily obtained from (1) as

P[S>0]=1~P[S=0]=1—-(1—d)Y =1—(1-60/n)" )
Let the observed frequency of nontrivial cascades be

. No. of cascades with § > 0

(10)

No. of samples

Then (9) suggests the following estimator for 6:
6=n~n(l-f)n ()

Let the sample mean of the number of failures in stage j of the cascade be

1
m=— No. of failures in stage j. (12)
/" No. of samples “,,,,Epm =
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FI1GURE 1. ;\j as a function of stage number j from the CASCADE model for
A=0.0017,0.0114, 0.038, 0.106, 0.408, 0.713, 1.13, 1.47, and 1.56. There are n =
190 components and 6 = 0.095.

Then (5) suggests the following estimator for A based on the data from stage j of the
cascade:

A= (m;/6)V0, (13)

The naive estimators in (11) and (13) have been tested on data produced by
CASCADE and they appear empirically to be useful statistics. For example, for
A < 1.3, Figure | shows the estimated A as a constant with respect to the stage j, as
expected. (For A > 1.3, the cstlmdtcd )\ decreases with the stage j because at
higher A and higher j there are more LdSdeCS with all 190 components failed and
this saturation effect reduces ;\_,. Recall that (5), used to derive (13), assumes no
saturation.)

5. RESULTS

5.1. Comparing CASCADE and OPA

The OPA model on a 190-node treelike network [ 1] was used to produce line outage
data. The load multiplier parameter was varied to vary the system stress. The A
computed from the OPA results is plotted in Figure 2. We can sce that at high IOdd
/\ is a decreasing function of the stage j, whereas for low loads, /\J is an increasing
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FIGURE 2. ;\, as a function of stage number j from the OPA model for various
values of the loading multiplier.

function of the stage j. This functional form is not seen in the CASCADE model
results in Figure 1.

The probability distributions for the number of lines outaged in OPA corre-
sponding to Figure 2 are shown in Figure 3. We can attempt to match these prob-
ability distributions with CASCADE by using 6 from the OPA results as an estimate
of @ and using A, from the OPA results as an estimate of A. The resulting CAS-
CADE probability distributions are shown in Figure 4. Although there is reasonable
qualitative agreement between the probability distributions from OPA and CAS-
CADE for smaller A, the OPA probability distributions for larger A contain a peak
not present in the CASCADE probability distributions. We consider a modification
to CASCADE to explain this peak in Section 5.2.

5.2. Blackout Inhibition Modification to CASCADE

In a blackout, there is not only an effect by which line outages further load the
system and tend to cause further outages, but there is also an effect by which suf-
ficient line outages will cause load to be shed and this load shedding reduces the
load on the system. (It is also possible, but perhaps less common, for load shedding
to introduce large disturbances and imbalances that further stress portions of the
system.) Moreover, sufficient line outages will tend to island the system and this
can have the effect of limiting further outages; that is, sufficiently many line out-
ages can have an inhibitory effect on further cascading outages.
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FIGURE 3. Probability distributions of the number of line outages from the OPA
model for various values of the loading multiplier.

NED J . !
w "¢ k=156
e = 1.47
e k= 1.13
107 A=0713F
s e = 0.408
RN e A= 0.106
3 AN ~—-h=0038
107 »N .
Y —i=00114

Probability

Wt

10
i 10 100
Number of failures
FIGURE 4. Probability distributions of the number of failures from CASCADE
model using the values of A, from Figure 2 and 6 = 0.095. There are n = 190
components. Results for A > 1 show a significant probability of all 190 compo-
nents failing.
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We attribute the peak in the OPA probability distributions for larger A to this
inhibitory effect. One can argue that for small A, it is not likely that the cascade will
include enough line outages to encounter the inhibitory effect. Moreover, the inhib-
itory effect could result in the decrease in /\ as the stage j increases, as observed for
the larger A in Figure 2.

CASCADE does not model the inhibitory effect and one way to test these expla-
nations is to modify CASCADE to model the inhibitory effect. A crude modeling of
the inhibitory effect in CASCADE is to halt the cascading process after a fixed
number of components r,,, have failed; that is, when r,,,, components have failed,
the current stage of the cascade is completed, thus allowing more than r,,,, com-
ponents to fail, but the next stage of the cascade is suppressed.

The results of the modified CASCADE model with ry,, = 10 are shown in
Figures 5 and 6. The decrease in ;\_, with j for larger A is evident in Figure 5 and the
peak in the probability distribution for larger A is evident in Figure 6. These qual-
itative dependencies in the modified CASCADE results are similar to the OPA results
in Figures 3 and 4. However, Figure 5 does not show the increase in /A\V, with j for
smaller A, as observed in Figure 2, and a further modification to CASCADE to
examine this is considered in Section 5.3.

We comment further on the modified CASCADE results in Figure 5. The value
Ay in the first stage agrees with the input A; that is, the inhibition does not seem to
affect the initial propagation of the cascade. A]so, A j appears to decrease to a lim-
iting value A, for values of A > A,. For A < A, A is independent of stage j.
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FIGURE 5. /A\.,» as a function of stage j from the CASCADE model with inhibition of
line outages for various values of A.
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FIGURE 6. Probability distributions of the number of failures from the CASCADE
model with inhibition of line outages for various values of A.

5.3. Random Line Failure Modification to CASCADE

One effect present in OPA but not present in CASCADE is that overloaded lines do
not always fail, but, rather, fail with probability p,. Implementing this additional
modification in CASCADE for various values of p, gives 5\,- values as shown in
Figure 7. Some similar results for OPA are shown in Figure 8 and there is now some
qualitative similarity between OPA and the further modified version of CASCADE.

In particular, for lower values of p(, A; increases with stage j.

6. CONCLUSION

We have used the CASCADE probabilistic model of cascading failure and its approx-
imations to define an estimator Xj of the propagation of failures at stage j of the
cascade. The approximations to CASCADE also describe the extent of the region
of power-law behavior in probability distributions of cascade size. Testing the esti-
mator /A\jAon data produced by the cascading blackout model, OPA suggests that
whereas A, appears to reflect the initial propagation of line outages, A; may decrease
or increase with j. Modifications to the CASCADE model that also produce the
decrease or increase of ftj with j suggest explanations of these effects. For example,
the decrease in ;\j for larger A may be attributed to the inhibition of line outages by
load shedding after a sufficient number of lines are outaged.
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These initial results show that the interplay between the CASCADE and OPA
models is useful for understanding the propagation of failures in cascading black-
outs and, in particular, will be helpful in devising and testing statistical estimators
to quantify this propagation.
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