
A LOADING-DEPENDENT
MODEL OF PROBABILISTIC

CASCADING FAILURE

IAAANNN DOOOBBBSSSOOONNN
Electrical & Computer Engineering Department

University of Wisconsin–Madison
Madison, WI 53706

E-mail: dobson@engr.wisc.edu

BEEENNNJJJAAAMMMIIINNN A. CAAARRRRRREEERRRAAASSS
Oak Ridge National Laboratory

Oak Ridge, TN 37831
E-mail: carrerasba@ornl.gov

DAAAVVVIIIDDD E. NEEEWWWMMMAAANNN
Physics Department
University of Alaska

Fairbanks, AK 99775
E-mail: ffden@uaf.edu

We propose an analytically tractable model of loading-dependent cascading failure
that captures some of the salient features of large blackouts of electric power trans-
mission systems+ This leads to a new application and derivation of the quasibino-
mial distribution and its generalization to a saturating form with an extended
parameter range+ The saturating quasibinomial distribution of the number of failed
components has a power-law region at a critical loading and a significant proba-
bility of total failure at higher loadings+

1. INTRODUCTION

Cascading failure is the usual mechanism for large blackouts of electric power trans-
mission systems+ For example, long, intricate cascades of events caused the August
1996 blackout in northwestern America@25# that disconnected 30,390 MW of power
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to 7+5 million customers@23# + An even more spectacular example is the August
2003 blackout in northeastern America that disconnected 61,800 MW of power to
an area spanning 8 states and 2 provinces and containing 50 million people@33# +
The vital importance of the electrical infrastructure to society motivates the con-
struction and study of models of cascading failure+

In this article, we describe some of the salient features of cascading failure in
blackouts with an analytically tractable probabilistic model+ The features that we
abstract from the formidable complexities of large blackouts are the large but
finite number of components: components that fail when their load exceeds a thresh-
old, an initial disturbance loading the system, and the additional loading of com-
ponents by the failure of other components+ The initial overall system stress is
represented by upper and lower bounds on a range of initial component loadings+
The model neglects the length of times between events and the diversity of power
system components and interactions+ Of course, an analytically tractable model is
necessarily much too simple to represent with realism all of the aspects of cas-
cading failure in blackouts; the objective is, rather, to help understand some global
systems effects that arise in blackouts and in more detailed models of blackouts+
Although our main motivation is large blackouts, the model is sufficiently simple
and general that it could be applied to cascading failure of other large, intercon-
nected infrastructures+

We summarize our cascading failure model and indicate some of the connec-
tions to the literature that are elaborated later+ The model has many identical com-
ponents randomly loaded+ An initial disturbance adds load to each component and
causes some components to fail by exceeding their loading limit+ Failure of a com-
ponent causes a fixed load increase for other components+ As components fail, the
system becomes more loaded and cascading failure of further components becomes
likely+ The probability distribution of the number of failed components is a satu-
rating quasibinomial distribution+ The quasibinomial distribution was introduced
by Consul@11# and further studied by Burtin@3# , Islam,O’Shaughnessy, and Smith
@19# , and Jaworski@20# + The saturation in our model extends the parameter range
of the quasibinomial distribution, and the saturated distribution can represent highly
stressed systems with a high probability of all components failing+ Explicit formu-
las for the saturating quasibinomial distribution are derived using a recursion and
via the quasimultinomial distribution of the number of failures in each stage of the
cascade+ These derivations of the quasibinomial distribution and its generalization
to a saturating form appear to be novel+ The cascading failure model can also be
expressed as a queuing model, and in the nonsaturating case, the number of cus-
tomers in the first busy period is known to be quasibinomial@10,32# +

The article is organized as follows+ Section 2 describes cascading failure black-
outs and Section 3 describes the model and its normalization+ Section 4 derives
the saturating quasibinomial distribution of the number of failures and shows how
the saturation generalizes the quasibinomial distribution and extends its parameter
range+ Section 5 illustrates the use of the model in studying the effect of system
loading+
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2. THE NATURE OF CASCADING FAILURE BLACKOUTS

Bulk electrical power transmission systems are complex networks of large numbers
of components that interact in diverse ways+ For example, most of America and
Canada east of the Rocky Mountains is supplied by a single network running at a
shared supply frequency+ This network includes thousands of generators, tens of
thousands of transmission lines and network nodes, and about 100 control centers
that monitor and control the network flows+ The flow of power and some dynamical
effects propagate on a continental scale+ All of the electrical components have lim-
its on their currents and voltages+ If these limits are exceeded, automatic protection
devices or the system operators disconnect the component from the system+ We
regard the disconnected component as failed because it is not available to transmit
power ~in practice, it will be reconnected later!+ Components can also fail in the
sense of misoperation or damage due to aging, fire, weather, poor maintenance, or
incorrect design or operating settings+ In any case, the failure causes a transient and
causes the power flow in the component to be redistributed to other components
according to circuit laws and subsequently redistributed according to automatic and
manual control actions+ The transients and readjustments of the system can be local
in effect or can involve components far away, so that a component disconnection or
failure can effectively increase the loading of many other components throughout
the network+ In particular, the propagation of failures is not limited to adjacent net-
work components+ The interactions involved are diverse and include deviations in
power flows, frequency, and voltage, as well as operation or misoperation of pro-
tection devices, controls, operator procedures, and monitoring and alarm systems+
However, all of the interactions between component failures tend to be stronger
when components are highly loaded+ For example, if a more highly loaded trans-
mission line fails, it produces a larger transient, there is a larger amount of power to
redistribute to other components, and failures in nearby protection devices are more
likely+ Moreover, if the overall system is more highly loaded, components have
smaller margins so they can tolerate smaller increases in load before failure, the
system nonlinearities and dynamical couplings increase, and the system operators
have fewer options and more stress+

A typical large blackout has an initial disturbance or trigger events, followed
by a sequence of cascading events+ Each event further weakens and stresses the
system and makes subsequent events more likely+ Examples of an initial distur-
bance are short circuits of transmission lines through untrimmed trees, protection
device misoperation, and bad weather+ The blackout events and interactions are often
rare, unusual, or unanticipated because the likely and anticipated failures are already
routinely accounted for in power system design and operation+ The complexity is
such that it can take months after a large blackout to sift through the records, estab-
lish the events occurring, and reproduce with computer simulations and hindsight a
causal sequence of events+

The historically high reliability of North American power transmission sys-
tems is largely due to estimating the transmission system capability and designing
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and operating the system with margins with respect to a chosen subset of likely and
serious contingencies+ The analysis is usually either a deterministic analysis of esti-
mated worst cases or a Monte Carlo simulation of moderately detailed probabilistic
models that capture steady-state interactions@2# + Combinations of likely contin-
gencies and some dependencies between events such as common mode or common
cause are sometimes considered+ The analyses address the first few likely failures
rather than the propagation of many rare or unanticipated failures in a cascade+

We briefly review some other approaches to cascading failure in power sys-
tem blackouts+ Carreras, Lynch, Dobson, and Newman@4# represented cascading
transmission line overloads and outages in a power system model using the DC
load flow approximation and standard linear programming optimization of the
generation dispatch+ The model shows critical point behavior as load is increased
and can show power tails similar to those observed in blackout data+ Chen and
Thorp @9# modeled power system blackouts using the DC load flow approxima-
tion and standard linear programming optimization of the generation dispatch and
represented in detail hidden failures of the protection system+ The expected black-
out size is obtained using importance sampling and it shows some indications of
a critical point as loading is increased+ Rios, Kirschen, Jawayeera, Nedic, and
Allan @30# evaluated expected blackout cost using Monte Carlo simulation of a
power system model that represents the effects of cascading line overloads, hid-
den failures of the protection system, power system dynamic instabilities, and the
operator responses to these phenomena+ Ni, McCalley, Vittal, and Tayyib @26#
evaluate expected contingency severities based on real-time predictions of the power
system state to quantify the risk of operational conditions+ The computations account
for current and voltage limits, cascading line overloads, and voltage instability+
Roy, Asavathiratham, Lesieutre, and Verghese@31# constructed randomly gener-
ated tree networks that abstractly represent influences between idealized compo-
nents+ Components can be failed or operational according to a Markov model that
represents both internal component failure and repair processes and influences
between components that cause failure propagation+ The effects of the network
degree and the intercomponent influences on the failure size and duration were
studied+ Pepyne, Panayiotou, Cassandras, and Ho@29# also used a Markov model
for discrete state power system nodal components, but they propagated failures
along the transmission lines of a power systems network with a fixed probability+
They studied the effect of the propagation probability and maintenance policies
that reduce the probability of hidden failures+ The challenging problem of deter-
mining cascading failure due to dynamic transients in hybrid nonlinear differen-
tial equation models was addressed by DeMarco@15# using Lyapunov methods
applied to a smoothed model and by Parrilo, Lall, Paganini, Verghese, Lesieutre,
and Marsden@28# using Karhunen–Loeve and Galerkin model reduction+ Watts
@34# described a general model of cascading failure in which failures propagate
through the edges of a random network+ Network nodes have a random threshold
and fail when this threshold is exceeded by a sufficient fraction of failed nodes
one edge away+ Phase transitions causing large cascades can occur when the net-
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work becomes critically connected by having sufficiently average degree or when
a highly connected network has sufficiently low average degree so that the effect
of a single failure is not swamped by a high connectivity to unfailed nodes+ Lind-
ley and Singpurwalla@24# described some foundations for causal and cascading
failure in infrastructures and model cascading failure as an increase in a compo-
nent failure rate within a time interval after another component fails+ Initial ver-
sions of the cascading failure model of this article appear in Dobson, Chen, Thorp,
Carreras, and Newman@18# and Dobson, Carreras, and Newman@16# +

3. DESCRIPTION OF MODEL

The model hasn identical components with random initial loads+ For each compo-
nent, the minimum initial load isLmin and the maximum initial load isLmax+ For j 5
1,2, + + + , n, componentj has initial loadLj that is a random variable uniformly dis-
tributed in@Lmin, Lmax# + L1, L2, + + + , Ln are independent+

Components fail when their load exceedsLfail+When a component fails, a fixed
and positive amount of loadP is transferred to each of the components+

To start the cascade, an initial disturbance loads each component by an addi-
tional amountD+ Some components may then fail depending on their initial loads
Lj , and the failure of each of these components will distribute an additional loadP
that can cause further failures in a cascade+ The components become progressively
more loaded as the cascade proceeds+

In particular, the model produces failures in stagesi 5 0,1,2, + + + according to
the following algorithm, whereMi is the number of failures in stagei +

CASCADE Algorithm

0+ All n components are initially unfailed and have initial loadsL1, L2, + + + , Ln

that are independent random variables uniformly distributed in@Lmin, Lmax# +

1+ Add the initial disturbanceD to the load of each component+ Initialize the
stage counteri to zero+

2+ Test each unfailed component for failure: For j 5 1, + + + , n, if componentj is
unfailed and its load is greater thanLfail, then componentj fails+ Suppose
thatMi components fail in this step+

3+ Increment the component loads according to the number of failuresMi :Add
Mi P to the load of each component+

4+ Incrementi and go to step 2+

The CASCADE algorithm has the property that if there are no failures in stage
j so thatMj 5 0, then 05 Mj 5 Mj11 5{{{ so that there are no subsequent failures
~in step 2, Mj can be zero either because all the components have already failed or
because the loads of the unfailed components are less thanLfail !+ Since there aren
components, it follows thatMn 5 0 and that the outcome with the maximum num-
ber of stages with nonzero failures is 15 M0 5 M1 5{{{5 Mn21+ We are most
interested in the total number of failuresS5 M0 1 M1 1{{{1 Mn21+
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When the model in an application is being interpreted, the load incrementP
need not correspond only to transfer of a physical load such as the power flow
through a component+ Many ways by which a component failure makes the failure
of other components more likely can be thought of as increasing an abstract “load”
on the other components until failure occurs when a threshold is reached+

It is useful to normalize the loads and model parameters so that the initial loads
lie in @0,1# andLfail 5 1 while preserving the sequence of component failures and
M0,M1, + + + + First, note that the sequence of component failures andM0,M1, + + + are
unchanged by adding the same constant to the initial disturbanceD and the failure
load Lfail+ In particular, choosing the constant to beLmax 2 Lfail, the initial dis-
turbanceD is modified toD 1 ~Lmax 2 Lfail ! and the failure loadLfail is modified
to Lfail 1 ~Lmax 2 Lfail! 5 Lmax+ Then all of the loads are shifted and scaled to
yield normalized parameters+ The normalized initial load on componentj is ,j 5
~Lj 2 Lmin!0~Lmax 2 Lmin! so that,j is a random variable uniformly distributed on
@0,1# + The normalized minimum initial load is zero, and the normalized maximum
initial load and the normalized failure load are both one+ The normalized modified
initial disturbance and the normalized load increase when a component fails are

d 5
D 1 Lmax 2 Lfail

Lmax 2 Lmin , p 5
P

Lmax 2 Lmin + (1)

An alternative way to describe the model follows+ It is convenient to use the nor-
malized parameters in Eq+ ~1!+ Let N~t ! be the number of components with loads in
~12 t,1# + If the n initial component loadings are regarded asn points in@0,1# , R,
thenN~t ! is the number of points greater than 12 t+ Then 0# N~t ! # n, the sample
paths ofN are nondecreasing, andN~t ! 5 0 for t # 0 andN~t ! 5 n for t $ 1+

Let the number of components failed at or before stagej be Sj 5 M0 1
M1 1{{{1 Mj + Then, assumingS21 5 0, the CASCADE algorithm generates
S0,S1, + + + according to

Sj 5 N~d 1 Sj21 p!, j 5 0,1, + + + + (2)

Then 0# Sj # n, Sj is nondecreasing, andSk 5 Sk11 implies thatSj 5 Sj11 for j $ k+
The minimum suchk is the maximum stage number in which failures occur and
S21 , S0 , S1 ,{{{, Sk 5 Sk11 5{{{ and the total number of failuresS5 Sk; that
is,

N~d 1 Sp! 5 S, (3)

N~d 1 Sj p! . Sj , 21 # j , k+ (4)

Moreover, for j , k andr 5 0,1, + + + ,Mj11 2 1,

N~d 1 ~Sj 1 r !p! $ N~d 1 Sj p! 5 Sj11 5 Sj 1 Mj11 . Sj 1 r+ (5)
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Therefore,N~d1 sp! . s for s5 0,1, + + + ,S21, and this inequality and Eq+ ~3! allow
the total number of failures to be characterized as

S5 min$s6N~d 1 sp! 5 s, s [ $0,1,2, + + + %%+ (6)

If , at stagej, d 1 Sj p . 1, we say that the modelsaturates+ Saturation implies
Sj11 5 n+ Saturation never occurs ifd andp are small enough thatd 1 np , 1+

The model can be formulated as a queue with a single server+ Exactly n cus-
tomers arrive during a given hour independently and uniformly+ The server is avail-
able to serve these customers at timed after the start of the hour because of
completing some other task+ The customer service time isp+ Then, S is the num-
ber of customers that arrive during the first busy period+ The queue saturates when
the first busy period runs past the end of the hour+ Charalambides@10# and Takács
@32# analyzed this queue in the nonsaturating case described in Section 4+3+

The model can also be recast in the form of an approximate and idealized fiber
bundle model+ There aren identical, parallel fibers in the bundle+ The Lj of the
unnormalized model now indicates breaking strength: Fiber j has random breaking
strengthLfail 2 Lj that is uniformly distributed in@Lfail 2 Lmax, Lfail 2 Lmin# + Each
fiber has zero load initially+ Then, an initial force is applied to the bundle that
increases the load of each fiber toD and this starts a burst avalanche of fiber breaks
of sizeS+When a fiber breaks, it distributes a constant amount of loadP to all the
other fibers+ In contrast, and with better physical justification, idealized fiber bun-
dle models with global redistribution as described by Kloster,Hansen, and Hemmer
@22# redistribute the current fiber load equally to the remaining fibers+

4. DISTRIBUTION OF NUMBER OF FAILURES

The main result is that the distribution of the total number of component failures
S is

P@S5 r # 5 5S
n

rDf~d!~d 1 rp!r21~f~12 d 2 rp!!n2r, r 5 0,1, + + + , n 2 1

12 (
s50

n21

P~S5 s!, r 5 n,

(7)

wherep $ 0 and the saturation function is

f~x! 5 5
0, x , 0

x, 0 # x # 1

1, x . 1+

(8)

It is convenient to assume that 00 [ 1 and 000 [ 1 when these expressions arise in
any formula in this article+
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If d $ 0 andd 1 np # 1, then there is no saturation~f~x! 5 x! and Eq+ ~7!
reduces to the quasibinomial distribution

P@S5 r # 5Sn

rDd~d 1 rp!r21~12 d 2 rp!n2r+ (9)

The quasibinomial distribution was introduced by Consul@11# to model an urn prob-
lem in which a player makes strategic decisions+ Burtin @3# derived the distribution
of the number of initially uninfected nodes that become infected in an inverse epi-
demic process in a random mapping+ This distribution is quasibinomial, with d the
fraction of initially infected nodes andp the uniform random mapping probability+
Islam et al+ @19# interpretedd andp as primary and secondary infection probabili-
ties and applied the quasibinomial distribution to data on the final size of influenza
epidemics+ Jaworski@20# generalized the derivation to a random mapping with a
general fixed-point probability+

The cascading failure model gives a new application and interpretation of the
quasibinomial distribution+Moreover, the saturation in Eq+ ~7! extends the range of
parameters of the quasibinomial distribution to allowd 1 np . 1+ Section 5 shows
that this extended parameter range can describe regimes with a high probability of
all components failing+

The next two subsections derive Eq+ ~7! from the CASCADE algorithm in two
ways: by means of a recursion and by means of the quasimultinomial joint distri-
bution ofM0,M1, + + + ,Mn21+

4.1. Recursion

It is convenient to show the dependence of the distribution of number of failures on
the normalized parameters by writingP@S5 r # 5 f ~r,d, p, n!+

In the case ofn 5 0 components,

f ~0,d, p,0! 5 1+ (10)

According to the CASCADE algorithm,when the initial disturbanced# 0, no com-
ponents fail, and whend $ 1, all n components fail+ Then

f ~r,d, p, n! 5 5
12 f~d!, r 5 0

0, 0 , r , n

f~d!, r 5 n
6 ~d # 0 or d $ 1! andn . 0+

(11)

We assumen . 0 and 0, d , 1 for the rest of the subsection+
The initial disturbanced causes stage 0 failure of the components that have

initial load , in ~1 2 d,1# + Therefore, the probability of any component failing in
stage 0 isd and
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P@M0 5 k# 5Sn

kD dk~12 d!n2k+ (12)

Suppose thatM0 5 k and consider then 2 k components that did not fail in
stage 0+ Since none of then 2 k components failed in stage 0, their initial loads,
must lie in@0,1 2 d# and the distribution of their initial loads conditioned on not
failing in stage 0 is uniform in@0,12 d# + In stage 1, each of then 2 k components
has had a load increased from the initial disturbance and an additional load increase
kp from the stage 0 failure ofk components+ Therefore, the equivalent total initial
disturbance for each of then 2 k components isD 5 kp1 d+

To summarize, assumingM0 5 k, the failure of then 2 k components in stage
1 is governed by the model with initial disturbanceD 5 kp1 d, load transferP5 p,
Lmin 5 0, Lmax512 d, Lfail 51, andn2 k components+Normalizing the parameters
using Eq+ ~1! yields that the failure of then 2 k components is governed by the
model with normalized initial disturbancekp0~12 d! and normalized load transfer
p0~12 d!; that is,

P@S5 r 6M0 5 k# 5 fSr 2 k,
kp

12 d
,

p

12 d
, n 2 kD+ (13)

Combining Eqs+ ~12! and~13! yields the recursion

f ~r,d, p, n! 5 (
k50

r

P@S5 r 6M0 5 k#P@M0 5 k#

5 (
k50

r Sn

kDdk~12 d!n2kfSr 2 k,
kp

12 d
,

p

12 d
, n 2 kD,

0 # r # n, 0 , d , 1, n . 0+ (14)

Equations~10!, ~11!, and~14! definef ~r,d, p, n! 5 P@S5 r # for all n $ 0 and
p $ 0+ Equations~10! and~11! agree with Eq+ ~7!+ Moreover, it is routine to prove
in the Appendix that Eq+ ~7! satisfies recursion~14!+ Therefore, Eq+ ~7! is the dis-
tribution of S in the CASCADE algorithm+ Thus, the recursion offers a simple way
to derive the saturating quasibinomial distribution that avoids complicated algebra
or combinatorics+ It is also straightforward to use Eqs+ ~10! and~14! to confirm by
induction onn that Eq+ ~7! is a probability distribution+

4.2. A Quasimultinomial Distribution

This subsection shows that the joint distribution ofM0,M1, + + + ,Mn21 is quasimult-
inomial and hence derives Eq+ ~7!+ It is convenient throughout to assumed $ 0,
restrictm0, m1, + + + to nonnegative integers, and writesi 5 m0 1 m1 1{{{1 mi for
i 5 0,1, + + + ands21 5 0+
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Let a0 5 f~d!, b0 5 1, and, for i 5 1,2, + + + ,

ai 5 fS mi21 p

12 d 2 si22 pD, bi 5 f~12 d 2 si22 p!+ (15)

The identity

bi ~12 ai ! 5 bi11, i 5 0,1,2, + + + , (16)

can be verified using 12 f~x! 5 f~1 2 x! andd $ 0 and considering all of the
cases+

In step 2 of stage 0 in the CASCADE algorithm, the probability that the load
increment ofd causes one of the components to fail isa0 5 f~d! and the proba-
bility of m0 failures in then components is

P@M0 5 m0# 5S n

m0
Da0

m0~12 a0!n2m0+ (17)

Consider the end of step 2 of stagei $ 1 in the CASCADE algorithm+ The
failures that have occurred areM0 5 m0,M1 5 m1, + + + ,Mi 5 mi and there aren 2 si

unfailed components, but the component loads have not yet been incremented by
mi p in step 3+

Suppose thatd 1 si21p , 1+ Then, conditioned on then 2 si components not
yet having failed, the loads of then 2 si unfailed components are uniformly dis-
tributed in@d 1 si21p,1# + In step 3, the probability that the load increment ofmi p
causes one of the unfailed components to fail isai11 and the probability ofmi11

failures in then 2 si unfailed components is

P@Mi11 5 mi116Mi 5 mi , + + + ,M0 5 m0#

5 Sn 2 si

mi11
Dai11

mi11~12 ai11!n2si11, mi11 5 0,1, + + + , n 2 si + (18)

Suppose thatd1 si21p $ 1+ Then, all of the components must have failed on a
previous step andP@Mi11 5 mi116Mi 5 mi , + + + ,M0 5 m0# 5 1 for mi11 5 0 and is
zero otherwise+ In this case, ai11 5 0 and Eq+ ~18! is verified+

We claim that forsi # n,

P@Mi 5 mi , + + + ,M0 5 m0#

5
n!

m0! m1!{{{mi !~n 2 si !!
~a0 b0!m0~a1b1!m1{{{~ai bi !

mi bi11
n2si + (19)
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Equation~19! is proved by induction oni + For i 5 0, Eq+ ~19! reduces to Eq+ ~17!+
The inductive step is verified by multiplying Eqs+ ~18! and~19! and using Eq+ ~16!
to obtainP@Mi11 5 mi11, + + + ,M0 5 m0# in the form of Eq+ ~19!+

An expression equivalent to Eq+ ~19! obtained using Eq+ ~16! is

P@Mi 5 mi , + + + ,M0 5 m0#

5
n!

m0! m1!{{{mi !~n 2 si !!
~b0 2 b1!m0~b1 2 b2!m1{{{~bi 2 bi11!mi bi11

n2si +

(20)

The CASCADE algorithm has the property that if there are no failures in stage
j so thatMj 5 0, then 05 Mj 5 Mj11 5{{{ and there are no subsequent failures+ This
property is verified by Eq+ ~20! becausemj 5 0 implies bj11 5 bj12 so that the
factor ~bj11 2 bj12!mj11 5 0mj11, which vanishes unlessmj11 5 0+ Iterating this
argument gives 05 Mj 5 Mj11 5{{{ + Since the maximum number of failures isn,
the longest sequence of failures hasn stages withM0 5 M1 5{{{5 Mn21 5 1+ It
follows that 05 Mn 5 Mn11 5{{{ and that the nontrivial part of the joint distribu-
tion is determined byM0,M1, + + + + ,Mn21+ It also follows thatMn21 5 0 if there are
less thann stages with failures+

Equation~20! can now be rewritten fori 5 n21+ Let I be the largest integer not
exceedingn such that 12 d 2 sI22p . 0+ Then, Eq+ ~20! becomes, for sn21 # n,

P@Mn21 5 mn21, + + + ,M0 5 m0#

5
n!

m0! m1!{{{mn21!~n 2 sn21!!
~f~d!!m0~m0 p!m1~m1 p!m2{{{~mI22 p!mI21

3 ~f~12 d 2 sI22 p!!n2sI21A~m, I !, (21)

whereA~m, n! 51 andA~m, I ! 5 0mI11{{{0mn210n2sn21 for I , n+ It follows from the
definition ofA~m, I ! that Eq+ ~21! vanishes forI , n unless 05 MI11 5{{{5 Mn21

andS5 M0 1{{{1 MI 5 n+ ~Although Eq+ ~21! was derived assumingd $ 0, it also
holds ford , 0+ In particular, for d , 0, Eq+ ~21! implies P@Mn21 5 0, + + + ,M0 5
0# 5 1+!

Equation~21! generalizes the quasibinomial distribution and is a form of quasi-
multinomial distribution+ It is a different generalization of the quasibinomial dis-
tribution than the quasitrinomial distribution considered by Berg and Mutafchiev
@1# to describe numbers of nodes in central components of random mappings+

Suppose thatS5 M0 1{{{1 Mn21 5 r , n+ Then, Mn21 5 0 andM0 1{{{1
Mn22 5 r 2 Mn21 5 r, and Eq+ ~21! vanishes unlessI 5 n+ Summing Eq+ ~21! over
nonnegative integersm0, + + + ,mn21 that sum tor yields
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P@S5 r # 5 (
sn215r

n!

m0! m1!{{{mn21!~n 2 r !!
~f~d!!m0~m0 p!m1{{{~mn22 p!mn21

3 ~f~12 d 2 rp!!n2r

5 Sn

rD~f~12 d 2 rp!!n2rpr (
sn215r

r!

m0! m1!{{{mn21!

3 Sf~d!

p
Dm0

m0
m1{{{mn22

mn21,

which reduces to Eq+ ~7! using a lemma by Katz@21# + ~The context of Katz’s lemma
assumesf~d!0p is a positive integer, but the generalization is immediate+!

4.3. Applying a Generalized Ballot Theorem

Charalambides@10# explained how the quasibinomial distribution appears as a con-
sequence of generalized ballot theorems in the theory of fluctuations of stochastic
processes@32# +We summarize this approach and comment that it derives only the
nonsaturating cases of Eq+ ~7!+

We assume 0, d , 1+ Considerp multiplied by the number of components
N~t ! with loads in~1 2 t,1# + For 0 # t # 1, pN~t ! is a stochastic process with
interchangeable increments whose sample functions are nondecreasing step func-
tions with pN~0! 5 0+ According to Eq+ ~6!, the first passage time oft 2 pN~t !
throughd is min$t 6pN~t ! 5 t 2 d% 5 min$d 1 sp6N~d 1 sp! 5 s% 5 d 1 Sp+ Then,
according to Takács@32, Sect+ 17, Thm+ 4# ,

P@d 1 Sp# t # 5 (
d#y#t

d

y
P@ pN~ y! 5 y 2 d# (22)

for 0 , d # t # 1; that is,

(
k50

{~t2d !0p}

P@S5 k# 5 (
k50

{~t2d !0p} d

d 1 kp
P@N~d 1 kp! 5 k# + (23)

Settingt 5 d 1 rp in Eq+ ~23! for r 5 0,1, + + + ,min$n, ~1 2 d!0p% , differencing the
resulting equations, and using the binomial distribution ofN~t ! for 0 # t # 1
yields the nonsaturating cases of Eq+ ~7!+ However, the approach does not extend
to the saturating cases becausepN~t ! does not have interchangeable increments
when t . 1+

4.4. Approximate Power Tail Exponent at a Critical Case

We describe standard approximations of the quasibinomial distribution that yield a
power tail exponent at the critical case+ For parameters satisfyingnp1 d # 1 ~no
saturation!, the distribution ofS is quasibinomial and can be approximated by let-
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ting n r `, p r 0, andd r 0 in such a way thatl 5 np andu 5 nd are fixed to
give the generalized~or Lagrangian! Poisson distribution@12–14#

P@S5 r # ' u~rl 1 u!r21
exp~2rl 2 u!

r!
, (24)

which is the distribution of the number of offspring in a Galton–Watson–Bienaymé
branching process,with the first generation produced by a Poisson distribution with
parameteru and subsequent generations produced by a Poisson distribution with
parameterl+ The critical case for the branching process isnp5 l 51 and Otter@27#
proved that at criticality, the distribution of the number of offspring has a power tail
with exponent21+5+ Further implications for cascading failure of the branching
process approximation are considered in Dobson, Carreras, and Newman@17# +

5. EFFECT OF LOADING

How much can an electric power transmission system be loaded before there is
undue risk of cascading failure? This section discusses qualitative effects of load-
ing on the distribution of blackout size and then applies the model to describe the
effect of loading and illustrate its use+

5.1. Distribution of Blackout Size at Extremes of Loading

Consider cascading failure in a power transmission system in the impractically
extreme cases of very low and very high loading+ At very low loading near zero,
any failures that occur have minimal impact on other components and these other
components have large operating margins+ Multiple failures are possible, but they
are approximately independent so that the probability of multiple failures is approx-
imately the product of the probabilities of each of the failures+ Since the blackout
size is roughly proportional to the number of failures, the probability distribution of
the blackout size will have an exponential tail+ The probability distribution of the
blackout size is different if the power system were to be operated recklessly at a
very high loading in which every component was close to its loading limit+ Then,
any initial disturbance would necessarily cause a cascade of failures leading to total
or near total blackout+ It is clear that the probability distribution of the blackout size
must somehow change continuously from the exponential tail form to the certain
total blackout form as loading increases from a very low to a very high loading+We
are interested in the nature of the transition between these two extremes+

5.2. Effect of Loading in the Model

This subsection describes one way to represent a load increase in the model and
how this leads to a parameterization of the normalized model+ Then the effect of the
load increase on the distribution of the number of components failed is described+

For purposes of illustration, the system hasn 5 1000 components+ Suppose
that the system is operated so that the initial component loadings vary fromLmin to
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Lmax5 Lfail 51+ Then the average initial component loadingL 5 ~Lmin 11!02 may
be increased by increasingLmin+ The initial disturbanceD 5 0+0004 is assumed to
be the same as the load transfer amountP 5 0+0004+ These modeling choices for
component load lead, via the normalization of Eq+ ~1!, to the parameterizationp 5
d 5 0+00040~2 2 2L!, 0+5 # L , 1+ The increase in the normalized power transfer
p with increasedL can be thought of as strengthening the component interactions
that cause cascading failure+

The probability distribution of the numberSof components failed asL increases
from 0+6 is shown in Figure 1+ The distribution for the nonsaturating caseL 5 0+6
has a tail that is approximately exponential+ The tail becomes heavier asL increases,
and the distribution for the critical caseL 5 0+8, np51 has an approximate power-
law region over a range ofS+ The power-law region has an exponent of approxi-
mately21+4 and this compares to the exponent of21+5 obtained by the analytic
approximation in Section 4+4+ The distribution for the saturated caseL 5 0+9 has an
approximately exponential tail for smallr, zero probability of intermediater, and a
probability of 0+80 of all 1000 components failing+ If an intermediate number of
components fail in a saturated case, then the cascade always proceeds to all 1000
components failing+

The increase in the mean number of failuresESas the average initial compo-
nent loadingL is increased is shown in Figure 2+ The sharp change in gradient at the
critical loadingL 5 0+8 corresponds to the saturation of Eq+ ~7! and the consequent
increasing probability of all components failing+ Indeed, at L 5 0+8, the change in

Figure 1. Log-log plot of distribution of number of components failedSfor three
values of average initial loadL+ Note the power-law region for the critical loading
L 5 0+8+ L 5 0+9 has an isolated point at~1000,0+80!, indicating probability 0+80 of
all 1000 components failed+ The probability of no failures is 0+61 for L 5 0+6, 0+37
for L 5 0+8, and 0+14 for L 5 0+9+
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gradient in Figure 2 together with the power-law region in the distribution ofS in
Figure 1 suggest a type 2 phase transition in the system+ If we interpret the number
of components failed as corresponding to blackout size, the power-law region is
consistent with North American blackout data and blackout simulation results
@4,8,18# + In particular, North American blackout data suggest an empirical distri-
bution of blackout size with a power tail with exponent between21 and22 @6,7,8# +
This power tail indicates a significant risk of large blackouts that is not present
when the distribution of blackout sizes has an exponential tail@5# +

The model results show how system loading can influence the risk of cascad-
ing failure+ At low loading, there is an approximately exponential tail in the distri-
bution of number of components failed and a low risk of large cascading failure+
There is a critical loading at which there is a power-law region in the distribution of
number of components failed and a sharp increase in the gradient of the mean num-
ber of components failed+ As loading is increased past the critical loading, the dis-
tribution of number of components failed saturates, there is an increasingly significant
probability of all components failing, and there is a significant risk of large cascad-
ing failure+
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APPENDIX

Saturating Quasibinomial Formula Satisfies Recursion

We prove that the saturating quasibinomial formula~7! satisfies recursion~14! for
0 , d , 1 andn . 0+

In the cased 1 rp , 1 andr , n, since

d 1 rp , 1 m
kp

12 d
1 ~r 2 k!

p

12 d
, 1, (25)

none of the instances off in the right-hand side of Eq+ ~14! saturate so that the right-hand side
of Eq+ ~14! becomes

(
k50

r Sn

kDdk~12 d!n2kSn 2 k

r 2 kD kp

12 dS rp

12 dDr2k21S12
rp

12 dDn2r

5 Sn

rD(
k50

r Sr

kD k

r
dk~rp!r2k~12 d 2 rp!n2r 5Sn

rDd~d 1 rp!r21~12 d 2 rp!n2r+

In the cased 1 rp $ 1 andr , n, Eq+ ~25! and r 2 k , n 2 k imply that all of the
instances off in the right-hand side of Eq+ ~14! vanish+
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In the caser 5 n, substituting the expression from Eq+ ~7! for f ~n 2 k, ~kp!0~1 2 d!,
p0~12 d!, n 2 k! into the right-hand side of Eq+ ~14! leads to

12 (
t50

n21

(
k50

t Sn

kDdk~12 d!n2kfSt 2 k,
kp

12 d
,

p

12 d
, n 2 kD 5 12 (

s50

n21

f ~s,d, p, n!,

where the last step uses the result established above that Eq+ ~7! satisfies Eq+ ~14! for
r , n+
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