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We propose an analytically tractable model of loading-dependent cascading failure
that captures some of the salient features of large blackouts of electric power trans-
mission systemsThis leads to a new application and derivation of the quasibino-
mial distribution and its generalization to a saturating form with an extended
parameter rangé he saturating quasibinomial distribution of the number of failed
components has a power-law region at a critical loading and a significant proba-
bility of total failure at higher loadings

1. INTRODUCTION

Cascading failure is the usual mechanism for large blackouts of electric power trans-
mission systemd-or examplelong, intricate cascades of events caused the August
1996 blackout in northwestern Amerif2b] that disconnected 3890 MW of power
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to 7.5 million customergd23]. An even more spectacular example is the August
2003 blackout in northeastern America that disconnecte®0®1MW of power to
an area spanning 8 states and 2 provinces and containing 50 million g&8hle
The vital importance of the electrical infrastructure to society motivates the con-
struction and study of models of cascading failure

In this article we describe some of the salient features of cascading failure in
blackouts with an analytically tractable probabilistic modéie features that we
abstract from the formidable complexities of large blackouts are the large but
finite number of componentsomponents that fail when their load exceeds a thresh-
old, an initial disturbance loading the systeand the additional loading of com-
ponents by the failure of other componentfe initial overall system stress is
represented by upper and lower bounds on a range of initial component loadings
The model neglects the length of times between events and the diversity of power
system components and interactio@$ course an analytically tractable model is
necessarily much too simple to represent with realism all of the aspects of cas-
cading failure in blackoutghe objective israther to help understand some global
systems effects that arise in blackouts and in more detailed models of blackouts
Although our main motivation is large blackoutee model is sufficiently simple
and general that it could be applied to cascading failure of other,larggcon-
nected infrastructures

We summarize our cascading failure model and indicate some of the connec-
tions to the literature that are elaborated latére model has many identical com-
ponents randomly loadedn initial disturbance adds load to each component and
causes some components to fail by exceeding their loading Failure of a com-
ponent causes a fixed load increase for other compongastsomponents failthe
system becomes more loaded and cascading failure of further components becomes
likely. The probability distribution of the number of failed components is a satu-
rating quasibinomial distributiariThe quasibinomial distribution was introduced
by Consul11] and further studied by Burtif8], Islam O’Shaughnessynd Smith
[19], and Jaworskj20]. The saturation in our model extends the parameter range
of the quasibinomial distributigmnd the saturated distribution can represent highly
stressed systems with a high probability of all components failxglicit formu-
las for the saturating quasibinomial distribution are derived using a recursion and
via the quasimultinomial distribution of the number of failures in each stage of the
cascadeThese derivations of the quasibinomial distribution and its generalization
to a saturating form appear to be navehe cascading failure model can also be
expressed as a queuing maqdmhd in the nonsaturating cagbe number of cus-
tomers in the first busy period is known to be quasibinorfl@l32].

The article is organized as followSection 2 describes cascading failure black-
outs and Section 3 describes the model and its normalizaBieation 4 derives
the saturating quasibinomial distribution of the number of failures and shows how
the saturation generalizes the quasibinomial distribution and extends its parameter
range Section 5 illustrates the use of the model in studying the effect of system
loading
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2. THE NATURE OF CASCADING FAILURE BLACKOUTS

Bulk electrical power transmission systems are complex networks of large numbers
of components that interact in diverse wafer example most of America and
Canada east of the Rocky Mountains is supplied by a single network running at a
shared supply frequencyhis network includes thousands of generattess of
thousands of transmission lines and network npdad about 100 control centers
that monitor and control the network flowBhe flow of power and some dynamical
effects propagate on a continental scaAlikof the electrical components have lim-
its on their currents and voltagdsthese limits are exceededutomatic protection
devices or the system operators disconnect the component from the sygtem
regard the disconnected component as failed because it is not available to transmit
power (in practice it will be reconnected later Components can also fail in the
sense of misoperation or damage due to ading, weathey poor maintenanger
incorrect design or operating settinggs any casgthe failure causes a transient and
causes the power flow in the component to be redistributed to other components
according to circuit laws and subsequently redistributed according to automatic and
manual control actiond he transients and readjustments of the system can be local
in effect or can involve components far awag that a component disconnection or
failure can effectively increase the loading of many other components throughout
the network In particular the propagation of failures is not limited to adjacent net-
work componentsThe interactions involved are diverse and include deviations in
power flows frequencyand voltageas well as operation or misoperation of pro-
tection devicescontrols operator procedureand monitoring and alarm systems
However all of the interactions between component failures tend to be stronger
when components are highly loaddtbr exampleif a more highly loaded trans-
mission line failsit produces a larger transieiiere is a larger amount of power to
redistribute to other componengnd failures in nearby protection devices are more
likely. Moreover if the overall system is more highly loadedomponents have
smaller margins so they can tolerate smaller increases in load before fé#ilare
system nonlinearities and dynamical couplings increasd the system operators
have fewer options and more stress

A typical large blackout has an initial disturbance or trigger eveotwed
by a sequence of cascading everiach event further weakens and stresses the
system and makes subsequent events more liE{gmples of an initial distur-
bance are short circuits of transmission lines through untrimmed, {pegtection
device misoperatigrand bad weathefhe blackout events and interactions are often
rarg unusualor unanticipated because the likely and anticipated failures are already
routinely accounted for in power system design and operaliba complexity is
such that it can take months after a large blackout to sift through the reestdbs-
lish the events occurringnd reproduce with computer simulations and hindsight a
causal sequence of events

The historically high reliability of North American power transmission sys-
tems is largely due to estimating the transmission system capability and designing
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and operating the system with margins with respect to a chosen subset of likely and
serious contingencie$he analysis is usually either a deterministic analysis of esti-
mated worst cases or a Monte Carlo simulation of moderately detailed probabilistic
models that capture steady-state interacti@js Combinations of likely contin-
gencies and some dependencies between events such as common mode or common
cause are sometimes consider€de analyses address the first few likely failures
rather than the propagation of many rare or unanticipated failures in a cascade
We briefly review some other approaches to cascading failure in power sys-
tem blackoutsCarrerasLynch, Dobson and Newmari4] represented cascading
transmission line overloads and outages in a power system model using the DC
load flow approximation and standard linear programming optimization of the
generation dispatctiThe model shows critical point behavior as load is increased
and can show power tails similar to those observed in blackout @4ten and
Thorp [9] modeled power system blackouts using the DC load flow approxima-
tion and standard linear programming optimization of the generation dispatch and
represented in detail hidden failures of the protection sysitéra expected black-
out size is obtained using importance sampling and it shows some indications of
a critical point as loading is increaseRios Kirschen JawayeeraNedic and
Allan [30] evaluated expected blackout cost using Monte Carlo simulation of a
power system model that represents the effects of cascading line overthidds
den failures of the protection systepower system dynamic instabilitieand the
operator responses to these phenoméiia McCalley, Vittal, and Tayyib[26]
evaluate expected contingency severities based on real-time predictions of the power
system state to quantify the risk of operational conditidime computations account
for current and voltage limifscascading line overloadsind voltage instability
Roy, AsavathirathamLesieutre and Verghes¢31] constructed randomly gener-
ated tree networks that abstractly represent influences between idealized compo-
nents Components can be failed or operational according to a Markov model that
represents both internal component failure and repair processes and influences
between components that cause failure propagafibe effects of the network
degree and the intercomponent influences on the failure size and duration were
studied Pepyne PanayiotouCassandragsand Ho[29] also used a Markov model
for discrete state power system nodal componenis they propagated failures
along the transmission lines of a power systems network with a fixed probability
They studied the effect of the propagation probability and maintenance policies
that reduce the probability of hidden failuréghe challenging problem of deter-
mining cascading failure due to dynamic transients in hybrid nonlinear differen-
tial equation models was addressed by DeMdrts| using Lyapunov methods
applied to a smoothed model and by Patrllall, Paganini Verghese Lesieutre
and Marsder{28] using Karhunen—-Loeve and Galerkin model reductidfatts
[34] described a general model of cascading failure in which failures propagate
through the edges of a random netwoRetwork nodes have a random threshold
and fail when this threshold is exceeded by a sufficient fraction of failed nodes
one edge awayPhase transitions causing large cascades can occur when the net-
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work becomes critically connected by having sufficiently average degree or when
a highly connected network has sufficiently low average degree so that the effect
of a single failure is not swamped by a high connectivity to unfailed nddesl-

ley and Singpurwalld24] described some foundations for causal and cascading
failure in infrastructures and model cascading failure as an increase in a compo-
nent failure rate within a time interval after another component.failsial ver-

sions of the cascading failure model of this article appear in DgliSben Thorp
Carrerasand Newmar{ 18] and DobsonCarrerasand Newmar{16].

3. DESCRIPTION OF MODEL

The model has identical components with random initial load=r each compo-
nent the minimum initial load id.™" and the maximum initial load is™® Forj =
1,2,...,n, componenj has initial loadL; that is a random variable uniformly dis-
tributed in[L™", L™®]. L, L,,...,L, are independent

Components fail when their load excead¥. When a component faila fixed
and positive amount of loa# is transferred to each of the components

To start the cascadan initial disturbance loads each component by an addi-
tional amountD. Some components may then fail depending on their initial loads
L;, and the failure of each of these components will distribute an additionalRoad
that can cause further failures in a cascade components become progressively
more loaded as the cascade proceeds

In particular the model produces failures in stages 0,1,2,... according to
the following algorithmwhereM,; is the number of failures in stage

CASCADE Algorithm

0. All ncomponents are initially unfailed and have initial Io&Qst,...,Ln
that are independent random variables uniformly distributé¢d T, L™2*].

1. Add the initial disturbanc® to the load of each componenmnitialize the
stage counter to zera

2. Test each unfailed component for failuféorj = 1,..., n, if componenf is
unfailed and its load is greater thaf', then componeni fails. Suppose
thatM; components fail in this step

3. Increment the component loads according to the number of faiddresdd
M; P to the load of each component

4. Increment and go to step .2

The CASCADE algorithm has the property that if there are no failures in stage
j so thatM; = 0, then 0= M; = M;,; =--- so that there are no subsequent failures
(in step 2 M; can be zero either because all the components have already failed or
because the loads of the unfailed components are lesd ffgnSince there ara
componentsit follows thatM,, = 0 and that the outcome with the maximum num-
ber of stages with nonzero failures is=IMy = M; =---= M,_;. We are most
interested in the total number of failur&€s= Mg+ My +---+ M, _.
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When the model in an application is being interpreti load incremenP
need not correspond only to transfer of a physical load such as the power flow
through a componenMany ways by which a component failure makes the failure
of other components more likely can be thought of as increasing an abstract “load”
on the other components until failure occurs when a threshold is reached

It is useful to normalize the loads and model parameters so that the initial loads
lie in [0,1] andL™" = 1 while preserving the sequence of component failures and
Mo, M4,.... First, note that the sequence of component failuresipd\,,... are
unchanged by adding the same constant to the initial disturkdarzcel the failure
load L™, In particular choosing the constant to He"® — L™ the initial dis-
turbanceD is modified toD + (L™ — L) and the failure load.™" is modified
to Lfll + (Lma — Lfal)y = | maX Then all of the loads are shifted and scaled to
yield normalized parameter$he normalized initial load on componepis ¢; =
(Lj — L™™m)/(Lm& — L™") so that(; is a random variable uniformly distributed on
[0,1]. The normalized minimum initial load is zerand the normalized maximum
initial load and the normalized failure load are both ohlee normalized modified
initial disturbance and the normalized load increase when a component fails are

D + Lmax — Lfail P
= Lmax — Lmin ’ p = Lmax — Lmin * (1)

An alternative way to describe the model follawss convenient to use the nor-
malized parameters in E¢L). Let N(t) be the number of components with loads in
(1—t,1]. If the ninitial component loadings are regardedngsoints in[0,1] C R,
thenN(t) is the number of points greater thar-1. Then 0= N(t) < n, the sample
paths ofN are nondecreasingndN(t) = 0 fort = 0 andN(t) = nfort = 1.

Let the number of components failed at or before stpdge § = My +
M; +.--+ M;. Then assumingS_; = 0, the CASCADE algorithm generates
S, S, ... according to

§=Nd+S§.p, j=01,... 2)
Then 0= § =n, § is nondecreasin@ndS, = S, ; implies that§ = §,, forj = k.
The minimum suctk is the maximum stage number in which failures occur and

S <§H<S <---< § =81 =--- and the total number of failures= S; that
is,

N(d+Sp =S 3)
N(d+§p > 8§, -1=j<k (4)
Moreover for j < kandr =0,1,...,M;; — 1,

N(d+(§+ P =NA+SP =S =5+ M.y > +r. 5)
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ThereforeN(d + sp) > sfors=0,1,...,S— 1, and this inequality and E@3) allow
the total number of failures to be characterized as

S=min{s|N(d + sp =s, se{0,12,...}}. (6)

If, at stagg, d + §p > 1, we say that the modelaturates Saturation implies
S.+1 = n. Saturation never occurs @andp are small enough that+ np < 1.

The model can be formulated as a queue with a single sdfxectly n cus-
tomers arrive during a given hour independently and uniforirthe server is avail-
able to serve these customers at tichafter the start of the hour because of
completing some other taskhe customer service time [ Then Sis the num-
ber of customers that arrive during the first busy peritite queue saturates when
the first busy period runs past the end of the h@lraralambidef10] and Takacs
[32] analyzed this queue in the nonsaturating case described in Secdion 4

The model can also be recast in the form of an approximate and idealized fiber
bundle modelThere aren identical parallel fibers in the bundleThe L; of the
unnormalized model now indicates breaking strengtherj has random breaking
strengthL™" — L; that is uniformly distributed ifiL™! — LmaX | fall — | min] Each
fiber has zero load initiallyThen an initial force is applied to the bundle that
increases the load of each fibe@and this starts a burst avalanche of fiber breaks
of sizeS When a fiber breakst distributes a constant amount of loRdo all the
other fibers In contrast and with better physical justificatigmdealized fiber bun-
dle models with global redistribution as described by Klgst@nsenand Hemmer
[22] redistribute the current fiber load equally to the remaining fibers

4. DISTRIBUTION OF NUMBER OF FAILURES

The main result is that the distribution of the total number of component failures
Sis

<r:> od(d)(d+rp)Hp(1—d—rp)"", r=01...,n—-1
P[S=r]= -
1—;)P(S=s), r=n,
(7)
wherep = 0 and the saturation function is
0, x<0
d(x) =X, 0=x=1 (8)
1, x> 1.

It is convenient to assume that & 1 and Q0 = 1 when these expressions arise in
any formula in this article
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If d =0 andd + np = 1, then there is no saturatiq(x) = x) and Eq (7)
reduces to the quasibinomial distribution

P[S=r]= <?> did+rp)t1—d—rp)"". 9)

The quasibinomial distribution was introduced by Corj4d] to model an urn prob-
lem in which a player makes strategic decisidBgrtin [3] derived the distribution
of the number of initially uninfected nodes that become infected in an inverse epi-
demic process in a random mappifdpis distribution is quasibinomiaWith d the
fraction of initially infected nodes angthe uniform random mapping probability
Islam et al [19] interpretedd andp as primary and secondary infection probabili-
ties and applied the quasibinomial distribution to data on the final size of influenza
epidemics Jaworski[20] generalized the derivation to a random mapping with a
general fixed-point probability

The cascading failure model gives a new application and interpretation of the
qguasibinomial distributiorMoreover the saturation in E¢7) extends the range of
parameters of the quasibinomial distribution to alldw np > 1. Section 5 shows
that this extended parameter range can describe regimes with a high probability of
all components failing

The next two subsections derive E@) from the CASCADE algorithm in two
ways by means of a recursion and by means of the quasimultinomial joint distri-
bution of Mg, M4,...,M,_1.

4.1. Recursion

Itis convenient to show the dependence of the distribution of number of failures on
the normalized parameters by writiRjS=r] = f(r,d, p,n).
In the case oh = 0 components

f(0,d,p,0) = 1. (10)

According to the CASCADE algorithpwhen the initial disturbancg= 0, no com-
ponents failand whend = 1, all n components failThen

1-¢(d), r=0
f(r,d,p,n) =10, 0<r<n (d=0ord=1)andn > 0.
¢(d), r=n
(11)

We assume > 0 and 0< d < 1 for the rest of the subsection

The initial disturbancel causes stage 0 failure of the components that have
initial load € in (1 — d,1]. Therefore the probability of any component failing in
stage 0 idd and
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P[M, = k] = (E) d¥(1—d)"* (12)

Suppose thaWly = k and consider the@ — k components that did not fail in
stage 0Since none of the@ — k components failed in stage their initial loads¢
must lie in[0,1 — d] and the distribution of their initial loads conditioned on not
failing in stage 0 is uniform if0,1 — d]. In stage 1each of then — k components
has had a load increaddérom the initial disturbance and an additional load increase
kp from the stage 0 failure df componentsTherefore the equivalent total initial
disturbance for each of the— k components i® = kp + d.

To summarizeassumingMg = k, the failure of then — k components in stage
1 is governed by the model with initial disturbar@e= kp + d, load transfeP = p,
LMin =0, LM*=1—d, L™ =1, andn — k componentsNormalizing the parameters
using Eq (1) yields that the failure of the@ — k components is governed by the
model with normalized initial disturbandgy/(1 — d) and normalized load transfer
p/(1—d); that is

P[S=r|M0=k]=f<r—k,£Ln—k>. (13)
1-d’ 1-d’

Combining Egs(12) and(13) yields the recursion

f(r7d’ p’ n) = Z P[S: r.“\/IO: k]P[MOZ k]
k=0

(N kp p
= dk(1—d)"*f(r —k —,——,n—

O0=r=n 0<d<1 n>0. (14)

Equationg10), (11), and(14) definef(r,d,p,n) = P[S=r]foralln= 0 and
p = 0. Equationg10) and(11) agree with Eq(7). Moreover it is routine to prove
in the Appendix that Eq(7) satisfies recursiofil4). Therefore Eq. (7) is the dis-
tribution of Sin the CASCADE algorithmThus the recursion offers a simple way
to derive the saturating quasibinomial distribution that avoids complicated algebra
or combinatoricslt is also straightforward to use Eq4.0) and(14) to confirm by
induction onn that Eq (7) is a probability distribution

4.2. A Quasimultinomial Distribution

This subsection shows that the joint distributionMy, M4, ..., M,,_4 is quasimult-
inomial and hence derives E(). It is convenient throughout to assurde= 0,
restrictmg, my, ... to nonnegative integerand writes = myg + my +---+ m; for
i=0,1...ands_; = 0.
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Letag=¢(d), Bo=1,and fori=12,...,

= —tP Bi=¢(1l—d—s_,p (15)
i 1—d— S—zp ’ i —2M/-
The identity
Bi(l_ai):Bi+l, i=0,1,2,..., (16)

can be verified using  ¢(x) = ¢(1 — x) andd = 0 and considering all of the
cases

In step 2 of stage 0 in the CASCADE algoriththe probability that the load
increment ofd causes one of the components to faikis= ¢(d) and the proba-
bility of my failures in then components is

n
P[Mo=m,] = (m )acﬁ“"(l —ap)" ™ (17)

Consider the end of step 2 of stage= 1 in the CASCADE algorithmThe
failures that have occurred ak&, = mg, My = my,...,M; = m; and there ar@ — s
unfailed componenisut the component loads have not yet been incremented by
m;p in step 3

Suppose thatl + s_,p < 1. Then conditioned on th& — s components not
yet having failedthe loads of then — s unfailed components are uniformly dis-
tributed in[d + s_1p,1]. In step 3 the probability that the load increment wf p
causes one of the unfailed components to faikis, and the probability om;, ;
failures in then — s unfailed components is

P[Mii1=mq[Mi=m;,...,Mg=mg]
n—s
= < >ain4:iil(1 - ai+1)n_$+17 My, = 071’-”7 n—s. (18)
Mg

Suppose thad + s_,p = 1. Then all of the components must have failed on a
previous step anB[M; ;1 = My 1|M; = m;,...,My=mp] =1 form;,, =0and is
zero otherwiseln this casea;,; = 0 and Eq(18) is verified

We claim that fors = n,

P[MI = mi""7M0= mO]

n!

N me!my!---m!(n—s)! (@oBo)™ (a1 1) ™+ -+ (ai Bi) ™ BT (19)
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Equation(19) is proved by induction omn. Fori = 0, Eq. (19) reduces to Eq(17).
The inductive step is verified by multiplying Eq4.8) and(19) and using Eq(16)
to obtainP[M; 1 = mi;4,...,Mg = mg] in the form of Eq (19).

An expression equivalent to E¢L9) obtained using Eq16) is

P[MI = mi,""MO: mO]

n!

- me!my!---m!(n—s)! (Bo = B1)™(B1— B2)™-(Bi = Bi+1) "B 1

(20)

The CASCADE algorithm has the property that if there are no failures in stage
j so thatM; = 0, then 0= M; = M;,; =--- and there are no subsequent failuidss
property is verified by Eg(20) becausem; = 0 implies ;.1 = Bj+» SO that the
factor (Bj+1 — Bj+2)™+* = 0™+1, which vanishes unlessy,; = 0. lterating this

argument gives & M; = M;; =---. Since the maximum number of failuresris
the longest sequence of failures hastages withMg = M; =---= M,_; = 1. It
follows that 0= M, = M, =--- and that the nontrivial part of the joint distribu-
tion is determined bWy, M4,....,M,_4. It also follows thatM,_, = O if there are

less tham stages with failures
Equation(20) can now be rewritten far=n— 1. Let| be the largest integer not
exceedingh such that - d — 5_,p > 0. Then Eq. (20) becomesfor s,_1 = n,

P[My_1 = mMy_4,...,Mg=mg]

n!

T e @@ Mo p ™ p ™ (P

X(p(1—d—s5_,p)" 5 1A(m,I), (21)

whereA(m,n) =1 andA(m, ) = 0™M+1...0™-10""%-1 for | < n. It follows from the
definition of A(m, | ) that Eq (21) vanishes fot < nunless0=M,,; =---= M,_4
andS= Mg +---+ M, = n. (Although Eq (21) was derived assumingj= 0, it also
holds ford < 0. In particular for d < 0, Eq. (21) impliesP[M,,_; =0,...,Mg =
0]=1)

Equation(21) generalizes the quasibinomial distribution and is a form of quasi-
multinomial distribution It is a different generalization of the quasibinomial dis-
tribution than the quasitrinomial distribution considered by Berg and Mutafchiev
[1] to describe numbers of nodes in central components of random mappings

Suppose tha8= Mg +---+ M,,_; =r < n. Then M,,_; = 0 andMg +--- +
M,_»,=r—M,_1 =r,and Eq(21) vanishes unlesk= n. Summing Eq(21) over
nonnegative integensy,. .., m,_; that sum tor yields
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n!

P[S=r]= > ' '

o Me!my!eeomy_1(n—r)

()™ (mop) ™+ (m )™
X ($(1—d =)

n r!
= <r>(¢(l— d—rp)"'p" X

sog=r Mp!my!e..my_,!
(d)\me
X <¢T mgnl...mrfr‘j—zl,

which reduces to Eq7) using a lemma by Kati21]. (The context of Katz's lemma
assumesgp(d)/p is a positive integetbut the generalization is immediake

4.3. Applying a Generalized Ballot Theorem

CharalambideEgl0] explained how the quasibinomial distribution appears as a con-
sequence of generalized ballot theorems in the theory of fluctuations of stochastic
processef32]. We summarize this approach and comment that it derives only the
nonsaturating cases of E().

We assume &< d < 1. Considerp multiplied by the number of components
N(t) with loads in(1 — t,1]. For 0=t = 1, pN(t) is a stochastic process with
interchangeable increments whose sample functions are nondecreasing step func-
tions with pN(0) = 0. According to Eq (6), the first passage time df— pN(t)
throughd is min{t| pN(t) =t — d} = min{d + sp|N(d + sp = s} = d + Sp Then
according to Takacf32, Sect 17, Thm. 4],

d
Pld+Sp=t]= X )—/P[pN(y)=y—d] (22)

d=sy=t
for0<d=t=1;thatis
L(t—d)/p] L(t—d)/p]

IZ:O PLS=kI= Zo d+kp

PIN(d + kp) = k]. (23)

Settingt = d + rp in Eq. (23) forr = 0,1,...,min{n,(1 — d)/p}, differencing the
resulting equationsand using the binomial distribution df(t) for0 =t =1
yields the nonsaturating cases of.E@). However the approach does not extend
to the saturating cases becaysd(t) does not have interchangeable increments
whent > 1.

4.4. Approximate Power Tail Exponent at a Critical Case

We describe standard approximations of the quasibinomial distribution that yield a
power tail exponent at the critical cadeor parameters satisfyingp + d = 1 (no
saturation, the distribution ofSis quasibinomial and can be approximated by let-
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tingn — oo, p — 0, andd — 0 in such a way that = npand# = nd are fixed to
give the generalizetor Lagrangiah Poisson distributiof12—14

exp(—rA —0)

P[S=r]~0(rA+6)* "

, (24)
which is the distribution of the number of offspring in a Galton—-Watson—Bienaymé
branching processvith the first generation produced by a Poisson distribution with
parametel and subsequent generations produced by a Poisson distribution with
parameten. The critical case for the branching processjs= A = 1 and Ottef 27]
proved that at criticalitythe distribution of the number of offspring has a power tail
with exponent—1.5. Further implications for cascading failure of the branching
process approximation are considered in Dob&arrerasand Newman 17].

5. EFFECT OF LOADING

How much can an electric power transmission system be loaded before there is
undue risk of cascading failure? This section discusses qualitative effects of load-
ing on the distribution of blackout size and then applies the model to describe the
effect of loading and illustrate its use

5.1. Distribution of Blackout Size at Extremes of Loading

Consider cascading failure in a power transmission system in the impractically
extreme cases of very low and very high loadiAg very low loading near zero

any failures that occur have minimal impact on other components and these other
components have large operating margMsiltiple failures are possibjéut they

are approximately independent so that the probability of multiple failures is approx-
imately the product of the probabilities of each of the failu@isice the blackout

size is roughly proportional to the number of failuréee probability distribution of

the blackout size will have an exponential tdihe probability distribution of the
blackout size is different if the power system were to be operated recklessly at a
very high loading in which every component was close to its loading .liffien

any initial disturbance would necessarily cause a cascade of failures leading to total
or near total blackoutt is clear that the probability distribution of the blackout size
must somehow change continuously from the exponential tail form to the certain
total blackout form as loading increases from a very low to a very high loai¥eg

are interested in the nature of the transition between these two extremes

5.2. Effect of Loading in the Model

This subsection describes one way to represent a load increase in the model and

how this leads to a parameterization of the normalized mddhen the effect of the

load increase on the distribution of the number of components failed is described
For purposes of illustratigrthe system has = 1000 componentsSuppose

that the system is operated so that the initial component loadings vanLffrto
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LM = |fal =1 Then the average initial component loading: (L™" + 1)/2 may
be increased by increasing"™. The initial disturbancé® = 0.0004 is assumed to
be the same as the load transfer amdeist 0.0004 These modeling choices for
component load leadia the normalization of Eq1), to the parameterizatiom=
d = 0.0004/(2 — 2L), 0.5 = L < 1. The increase in the normalized power transfer
p with increased. can be thought of as strengthening the component interactions
that cause cascading failure

The probability distribution of the numb&of components failed dsincreases
from 0.6 is shown in Figure 1The distribution for the nonsaturating cdse= 0.6
has a tail that is approximately exponentiie tail becomes heavier hsncreases
and the distribution for the critical cage= 0.8, np= 1 has an approximate power-
law region over a range & The power-law region has an exponent of approxi-
mately —1.4 and this compares to the exponent-6f.5 obtained by the analytic
approximation in Section.4. The distribution for the saturated cdse- 0.9 has an
approximately exponential tail for smaillzero probability of intermediate and a
probability of Q80 of all 1000 components failindf an intermediate number of
components fail in a saturated caieen the cascade always proceeds to all 1000
components failing

The increase in the mean number of failuEESas the average initial compo-
nent loading. is increased is shown in Figurehe sharp change in gradient at the
critical loadingL = 0.8 corresponds to the saturation of.E@) and the consequent
increasing probability of all components failingndeed at L = 0.8, the change in

0.001:

0.0001¢

0.00001¢

1 5 10 50 100 5001000
FiGuRE 1. Log-log plot of distribution of number of components fail&ébr three
values of average initial load. Note the power-law region for the critical loading
L =0.8. L = 0.9 has an isolated point 860000.80), indicating probability (B0 of

all 1000 components failed’he probability of no failures is.81 forL = 0.6, 0.37
for L = 0.8, and Q14 forL = 0.9.
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FiGURE 2. Mean number of components fail&Bas a function of average initial
component loadindg;. Note the change in gradient at the critical loadlng- 0.8.
There aren = 1000 components arSbecomes 1000 at the highest loadings

gradient in Figure 2 together with the power-law region in the distributioS iof
Figure 1 suggest a type 2 phase transition in the sydfeme interpret the number
of components failed as corresponding to blackout,dize power-law region is
consistent with North American blackout data and blackout simulation results
[4,8,18]. In particular North American blackout data suggest an empirical distri-
bution of blackout size with a power tail with exponent betweeinand—2[6,7,8].
This power tail indicates a significant risk of large blackouts that is not present
when the distribution of blackout sizes has an exponentia] 5l

The model results show how system loading can influence the risk of cascad-
ing failure At low loading there is an approximately exponential tail in the distri-
bution of number of components failed and a low risk of large cascading failure
There is a critical loading at which there is a power-law region in the distribution of
number of components failed and a sharp increase in the gradient of the mean num-
ber of components failed\s loading is increased past the critical loaditige dis-
tribution of number of components failed saturathsre is an increasingly significant
probability of all components failingand there is a significant risk of large cascad-
ing failure
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APPENDIX
Saturating Quasibinomial Formula Satisfies Recursion

We prove that the saturating quasibinomial forml@ satisfies recursior(14) for
0<d<1andn>0.
In the casel + rp < 1 andr < n, since

dimp<io—2 (P-4 (25)
1-d 1-d 7

none of the instances bin the right-hand side of Eq14) saturate so that the right-hand side
of Eq. (14) becomes

r n n—k kp rp r—k—1 rp n—r
k _ n—k N —
;Z,(k)d(l d) (r—k)l—d(l—d ! 1-d

n\ r /r\ k n
= < > Z ( >— d“(rp) %@ —d—rp)" " = < >d(d +rmp) 1 —-d—-rp)" .
r/eo\k/r r

In the cased + rp = 1 andr < n, Eq. (25 andr — k < n — k imply that all of the
instances of in the right-hand side of Eq14) vanish
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In the case = n, substituting the expression from E) for f(n — k, (kp)/(1 — d),
p/(1—d),n — k) into the right-hand side of Eq14) leads to

n—1

n-1 t n kp p
1-3 2, )d“a—d)n(t—k— ,n—k|)=1-3 f(sd,p,n),
i—ok—0\ K 1- four

d1-d

where the last step uses the result established above thd7Esgatisfies Eq(14) for
r<n.



