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Abstract: The loading margin to a saddle-node or fold bifurcation measures the proximity to
voltage collapse blackouts of electric power transmission systems. Sensitivities of the loading
margin can be used to select controls to avoid voltage collapse. We analytically justify the
use of static models to compute loading margins and their sensitivities and explain how the
results apply to underlying dynamic models. The relation between fold bifurcations of the
static models and saddle-node bifurcations of the underlying dynamic models is clarified.
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1. Introduction
Dynamic voltage collapse due to loss of a stable operating equilibrium in a saddle-node or fold bifur-
cation is an important mechanism for electric power transmission system instability and blackout [1–
3]. Therefore it is useful to compute the location of fold bifurcations of power system models and
their proximity to current operating conditions. The proximity to fold bifurcation can be measured
by computing the loading margin; that is, the increase in loading required to obtain fold bifurcation.
If the loading margin is dangerously small, then controls to steer the power system away from the fold
bifurcation can be selected by computing the sensitivity of the loading margin to control actions [4].
The sensitivity of the loading margin to any power system parameter is also easy to compute.

We explain and prove the following observation: Loading margins to fold bifurcations and their
sensitivities depend only on the static parts of dynamic power system models. For example, a dynamic
power system model

ẋ = f(x, λ)

may be reduced to the static equations
0 = f(x, λ)

without affecting the loading margin to a fold bifurcation. Although voltage collapse due to fold
bifurcation is dynamic and requires dynamic power system models to be properly understood, the
computation of loading margin and its sensitivities only requires knowledge of the static parts of the
dynamic models. This simplification is of great practical value because the dynamic parts of load
models are usually very poorly known, and it is laborious to obtain good data for the dynamics
of generators. We can compute loading margins and their sensitivities using the better known and
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simpler static load models, while assuming a very general form for the poorly known dynamics which
underlie the static equations. This observation generalizes more limited results in [5–7] and supports
the reductions in [8] of differential-algebraic power system equations to static models. Moreover, this
observation is a result underlying advanced industry software to monitor and avoid voltage collapse
blackouts, for example [9].

Once static power system models 0 = f(x, λ) are obtained, they can be advantageously simplified
by algebraic manipulation. Section 4 describes useful algebraic manipulations which do not affect the
loading margins and their sensitivities. Section 5 states the further assumptions needed to conclude
that the loading margin to fold bifurcation is the minimum loading margin to any instability.

We choose to measure proximity to voltage collapse with a loading margin because it is an accurate
and basic index, appreciable by all, which takes full account of system limits and nonlinearities.
Observe that every paper on voltage collapse indices not explicitly using loading margin implicitly
acknowledges loading margin by using it as the horizontal scale when the performance of the proposed
index is graphed.

There is a distinction between a fold bifurcation of static equations and the saddle-node bifurcation
of some dynamic equations that underly the static equations. Most of the literature in voltage collapse
addresses saddle-node bifurcations of dynamic equations, whereas in some practical applications it
is desirable or necessary to compute with fold bifurcations of static equations. This paper explains
these distinctions and defines the fold bifurcation and its relation to the dynamics. The mathematical
details are given in the Appendices.

This paper is a revised version of the conference paper [10], which is hard to access. Although this
paper is written in the context of avoiding fold bifurcations and the consequent voltage collapse black-
outs in electric power systems, most of the results are easily adaptable to avoiding fold bifurcations
in other applications. Other applications of margins to bifurcations, such as ensuring the stability of
satellites, chemical reactions, and mechanical devices, are reviewed in [11].

2. Fold bifurcation and geometry
This section summarizes the geometry of state space and parameter space that is useful for monitoring
and avoiding voltage collapse blackouts. The power system state vector x typically includes bus
voltages and angles as well as other system states. The parameter vector λ includes measures of
system loading such as real or reactive power demand at a bus or more general loading parameters for
loads with more elaborate load models. Suppose the power system is operating with equilibrium state
x0 and parameter λ0. In order to measure the proximity to voltage collapse, the effect of increasing
the loading parameters in λ in some given pattern1 is computed by a continuation method [12–15]
or a quasistatic simulation method [8, 16] until a fold bifurcation is encountered at (x∗, λ∗). (Recall
that continuation solves for a succession of equilibria as the loading is increased and takes account of
power system limits as they occur.) The loading margin is then the distance |λ∗ − λ0|.

We make the following assumption:

Assumption 1. Near the bifurcation at (x∗, λ∗), the system has dynamics specified by parameterized,
smooth differential equations ẋ = f(x, λ).

Assumption 1 allows the voltage collapse to be analyzed and understood and the sensitivities needed
to avoid the bifurcation to be computed. In a fold bifurcation, two equilibria coalesce and disappear.
If one of the equilibria is stable, then the dynamic consequences of the fold bifurcation are well
approximated by movement, slow then fast, along a particular dynamic trajectory called the unstable
part of the center manifold of x∗ [17].

There is also much information available from eigenvectors of the Jacobian fx|∗ about the geometry
of the fold bifurcation. The essential information about the fold bifurcation that needs to be deter-
mined is its location (x∗, λ∗), its right eigenvector v and its normal vector N. (The right eigenvector
v corresponds to the zero eigenvalue of the singular Jacobian fx|∗. The normal vector N = wfλ|∗,

1The pattern of load increase can be specified by the fraction of participation of each load in the load increase, and is
determined by a load forecast or by assuming some typical or worst case.
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where w is the left eigenvector corresponding to the zero eigenvalue of fx|∗.) These have the following
engineering uses and interpretations:

(a) The critical loading λ∗ determines the loading margin |λ∗ − λ0| which describes the proximity
of the current loading λ0 to voltage collapse.

(b) The right eigenvector v describes both the direction in state space in which the equilibrium
moves just before the bifurcation and the initial direction in state space along which the dynamic
voltage collapse occurs. In particular, v quantitatively predicts the relative amounts of voltage
decline at buses as the bifurcation is approached and as the initial part of the dynamic collapse
occurs [17, 18].

(c) N is the normal vector to the set of critical loadings in parameter space at which fold bifur-
cations occur. N determines the optimum direction to move in parameter space to avoid fold
bifurcation. In particular, it determines the combination of loads to shed to optimally move
away from bifurcation [18], and can be used to compute and avoid the bifurcation closest to the
operating parameters [19–24]. More importantly, N can be used to easily compute the first order
sensitivity of the loading margins or transfer capabilities to any power system parameters or con-
trols [4, 25]. This allows effective controls and important parameters to be selected [26, 27], and
enables quick and rough contingency screening [28, 29] and quantification of uncertainty in load
margins [30].

3. Reduction of dynamic to static equations
This section explains that loading margins to fold bifurcations and their sensitivities depend only
on the static parts of dynamic power system models. Since the location of the bifurcation (x∗, λ∗)
and the useful quantities v and N are computed from the dynamic equations ẋ = f(x, λ), one might
expect that details of the dynamics of f would affect the computations. However, we explain below
and prove in appendix A that this is not the case: (x∗, λ∗), v and N only depend on the static
equations 0 = f(x, λ). This not only simplifies the required modeling but is of great practical value
because some power system dynamic equations, particularly load power dynamics, are poorly known.
However, we retain the notion that there are some dynamics underlying the static equations so that
we can understand the voltage collapse. We need only assume a very general form for these dynamics
to compute (x∗, λ∗), v and N for these dynamic equations from the corresponding static equations.

First we explain these ideas in a simple case of a single differential equation f in one state variable
x and one parameter λ:

ẋ = f(x, λ) = −x2 − λ + 1.

The set Z is the nose curve parabola (or bifurcation diagram)

Z = {(x, λ) | 0 = −x2 − λ + 1},

and the dynamics for each fixed value of the parameter λ are indicated by the arrows in Fig. 1.
There is a generic fold bifurcation at the tip of the nose curve (x, λ) = (0, 1). The most important
of the conditions confirming this to be a fold bifurcation is that the derivative fx = −2x vanishes
at (x, λ) = (0, 1). That is, fx|(0,1) = 0. Since this condition involves f , it would seem to depend on
the dynamical equations ẋ = −x2 − λ + 1. However, an equivalent condition is that Z has a tangent
parallel to the state space (that is, vertical in Fig. 1) at the bifurcation. This shows that Z has a
fold at the bifurcation when Z is viewed along the state space (vertical) axis. Thus the location of
the bifurcation only depends on the set Z which is defined by the static equations − x2 − λ + 1 = 0.
To emphasize this, note that there are many other differential equations with different dynamics but
with the same set Z. Examples are:

ẋ = 2(−x2 − λ + 1),

ẋ = (x2 + 2)(−x2 − λ + 1),
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or, more generally,
ẋ = h(−x2 − λ + 1),

where h is any smooth function with h(0) = 0 and no other zeros and nonzero gradient at zero.

Fig. 1. The set Z plus dynamics.

Thus we can compute Z and the location of the bifurcation with any of the static equations 0 =
h(−x2 − λ + 1) and the dynamics specified by h are irrelevant to this computation. Note that the
eigenvalues or gradients fx of these equations are completely different except that they all vanish at
the bifurcation.

Now let the state vector x have n dimensions and the parameter vector λ have m dimensions. The
n dimensional state space is denoted by X and the m dimensional parameter space is denoted by Λ.
The power system is modeled as n differential equations

ẋ = f(x, λ). (1)

Consider the state and parameter values for which f has an equilibrium:

Z = {(x, λ) | f(x, λ) = 0}.

The set Z contains hypersurfaces of dimension m in the m + n dimensional combined state and
parameter space X×Λ. The essence of a continuation method is to compute a curve in Z. Appendix A
characterizes the fold bifurcation and its sensitivities in terms of the shape and position of Z. Since
the shape and position of Z does not depend on dynamics, the location of the fold bifurcation only
depends on the static equations 0 = f(x, λ) or other static equations yielding the same equilibrium set
Z. Moreover, since the vectors v and N can be computed from the geometry of the fold of Z, v and N

also do not depend on dynamics and may be computed from static equations. These observations can
be stated as follows (for lemma 1 and a more precise version and proof of lemma 2 see appendix A):

Lemma 2. Suppose 0 = f(x, λ) are static equations with underlying dynamics specified by

ẋ = f̄(x) = h (f(x, λ)) ,

where h(0) = 0 and this zero is unique and simple. Then

(a) f has a fold bifurcation at (x∗, λ∗) ⇐⇒ f̄ has a fold bifurcation at (x∗, λ∗).

(b) When suitably scaled, v = v̄ and N = N̄.

In the simplest application of lemma 2, h is chosen to be the identity map and the differential
equations ẋ = f(x, λ) are reduced to the static equations 0 = f(x, λ). If the differential equa-
tions contain nonzero time constants T1, T2, · · · , Tn so that ẋ = T−1f(x, λ), where the matrix
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T = diag{T1, T2, · · · , Tn}, then choosing h in lemma 2 to be multiplication by T−1 again yields
static equations 0 = f(x, λ). This shows that the location and sensitivities of fold bifurcations are
independent of the value of the time constants. (That this holds for the location of fold bifurcations
should be obvious upon noting that multiplying the kth row of the Jacobian fx by Tk multiplies the
determinant of fx by Tk but does not affect where the determinant vanishes. However, the nonzero
eigenvalues or singular values of fx generally depend on the time constants.) One might also want to
exploit the freedom to scale the static equations by multiplying them by various constants to improve
the conditioning of the Jacobian fx for numerical computation.

Often static equations are used because the dynamic equations are poorly known. Then lemma 2
gives a very general class of dynamic equations which can be assumed to underlie the static equations.
For example, suppose we have differential-algebraic power system equations of the form

ẋk = fk(x, λ), k = 1, · · · , ng,

0 = fk(x, λ), k = ng+1, · · · , n ,

where the algebraic equations express real or reactive power balance at the loads. Consider the load
numbered j first and suppose that fn−1 and fn represent real and reactive power balance at load j

with state variables voltage magnitude V and angle θ. Suppose that the underlying dynamics at load
j are of the form (

V̇

θ̇

)
= hj

((
fn−1(x, λ)
fn(x, λ)

))
,

where hj : U → R2 is a vector valued vector function on U , where 0 ∈ U ⊂ R2. We suppose that the
Jacobian of h is nonsingular at the origin. (This is reasonable since independent first order variations
in real and reactive power balance would be expected to give independent first order variations in V̇

and θ̇.) Then if all the loads have similar form to load number j, a function h suitable for lemma 2
can be constructed from the functions similar to hj for the loads and identity functions for the first
ng equations. Thus lemma 2 shows that for understanding the problem, we can assume general and
sensible underlying dynamics for each load, but for purposes of computing fold bifurcations, the static
model

0 = fk(x, λ), k = 1, · · · , n

can be used with no loss of accuracy. This example shows how differential-algebraic power system
models can be reduced to static (algebraic) equations for computation of loading margins and their
sensitivities. The computations are valid for a general class of dynamics underlying the static equa-
tions. For another example of the use of this reduction see [8, section 3.2].

4. Simplifying the algebraic equations

The preceding section 3 showed that dynamic equations could be reduced to static equations. This
section makes use of the fact that the static equations may be changed to equivalent static equations.
Both the number of static equations and their variables may change.

Once static equations are obtained, it is often useful to algebraically manipulate them to simplify
them or gain some computational advantage. The following lemma shows that algebraic manipulations
which preserve the set Z and the rank of the equations do not affect fold bifurcations (for a more
precise and complete version and proof see appendix A):

Lemma 4. (informal version) Let f : X×Λ → X have Z = {(x, λ) | f(x, λ) = 0}. Let f̄ : X×Λ → X

have Z̄ = {(x, λ) | f̄(x, λ) = 0}. Suppose that Z = Z̄ and that at z∗ ∈ Z, rank fz|∗ = rank f̄z|∗ where
z = (x, λ). (fz|∗ is the Jacobian of f with respect to z evaluated at z∗.)

(a) f has a fold bifurcation at z∗ ⇐⇒ f̄ has a fold bifurcation at z∗.

(b) When suitably scaled, v = v̄ and N = N̄.
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Sometimes load dynamics are specified in an implicit form and algebraic manipulation is required
to show how the dynamics can be removed using lemma 2. For example, consider the following power
system dynamic model with a single dynamic load model shown explicitly:

ẏ = f1(y, V, λ) (2)

0 = g(Ṗ d, V̇ , P d, V, λ) (3)

P d = P (y, V ). (4)

Here V is the load voltage, y are the other state variables, P d is the real power demanded by the load
and the function P evaluates the real power supplied to the load by the electrical network. Equation
(3) is a general form due to Hill; it includes as a special case his exponential recovery model [31].
Equation (4) is real power balance at the load and Eq. (2) is the other dynamic equations. Appendix B
shows that if Eqs. (2)–(4) specify a well posed differential equations in the state variables (y, V ), then
lemmas 2 and 4 can be applied to yield static equations

0 = f1(y, V, λ) (5)

0 = g(0, 0, P (y, V ), V, λ). (6)

Note that Eq. (6) is the static part of the dynamic load model Eq. (3), since it corresponds to setting
Ṗ d = V̇ = 0 in Eq. (3).

It is often useful to reduce the number of equations by solving some of the equations for some of
the variables and substituting the solved variables in the remaining equations. The inverse of this
process, in which new variables are defined and more equations are written, is also useful because it
can improve system sparsity. When changing the static equations in this way, either increasing or
decreasing the number of equations and variables, we want to be assured that the fold bifurcations
and their geometry are essentially unchanged. This is the substance of the following lemma (for a
more precise version and proof see appendix A):

Lemma 5. (informal version) Let x ∈ Rn be written as x = (a, b) where a ∈ Rn̄ and b ∈ Rn−n̄.

Write the n equations 0 = f(x, λ) as 0 =

(
f1(a, b, λ)
f2(a, b, λ)

)
where f1 consists of n̄ equations and f2

consists of n − n̄ equations. Suppose that f2
b |∗ is invertible so that the equations 0 = f2(a, b, λ) are

solvable (at least locally) for b so that b = h(a, λ). Define the n̄ equations f̄(a, λ) = f1(a, h(a, λ), λ).
Then f has a fold bifurcation at z∗ = (a∗, b∗, λ∗) ⇐⇒ f̄ has a fold bifurcation at z̄∗ = (a∗, λ∗).

Moreover, for suitable scaling of n̄ and v̄, N = N̄ and v =

(
v̄

ha|∗v̄

)
.

A simple example of the use of lemmas 2 and 5 occurs when the dynamic equations include δ̇ = ω,
where δ is the power angle of a generator. Lemma 2 reduces δ̇ = ω to the algebraic equation 0 = ω

and lemma 5 allows ω to be set to zero in all the other power system equations and omitted from the
system state.

Lemma 5 also allows Eqs. (5), (6) to be rewritten with an additional state P d as

0 = f1(y, V, λ) (7)

0 = g(0, 0, P d, V, λ) (8)

P d = P (y, V ) (9)

if desired, without affecting the fold bifurcation.
A more substantial application of lemma 5 can be seen to yield the Liapunov-Schmidt reduction

(choose a of lemma 5 to be a coordinate along v and define f1 = wf , etc.) [42].
Note that each of the lemmas which reduce dynamic equations to static equations or simplify the

static equations states the relation between v and N before and after the reduction or simplification.
Therefore, if we compute v and N with the simplified static equations, we can work back through the

268



applicable lemmas to deduce v and N for the dynamic equations. That is, the geometry of the fold of
the dynamic equations is calculable from the geometry of the fold of the simplified static equations
and vice versa. The most striking instance of this property is that the initial direction v of movement
of the dynamic voltage collapse can be determined from static equations!

Cañizares [5] proves by direct calculation that a set of differential-algebraic equations modeling an
AC/DC power system can be reduced to static equations while preserving the loading margin and
the bifurcation geometry. Lemmas 2 and 5 apply to the AC/DC power system model and provide
alternate proofs of Theorems 1 and 2 of [5] (use the versions of lemmas 2 and 5 in Appendix A to
obtain Theorem 2).

5. The context of other instabilities
So far we have only considered the computation of loading margin to a fold bifurcation of an equi-
librium. The previous assumption 1 suffices if we are only concerned with this narrow focus. There
are other possible instabilities and transient dynamics to be considered in determining the loading
margin to the first instability of the power system as the loading is slowly increased. We state some
additional assumptions necessary if we are to conclude that the fold bifurcation is this first bifurcation
and hence the applicable instability mechanism for the given loading increase. The reader should refer
to [8], especially the second scenario of section 2.2, for a previous account of some of the ideas in this
section.

Assumption 2. The system is assumed to be governed by smooth differential equations parameterized
by λ as the loading increases. However, the differential equations may undergo discrete changes when
limits or structural changes are encountered. Limits important to voltage collapse include generator
reactive power limits and tap changing transformer limits. A line tripping or a generator outage are
examples of structural changes.

Assumption 3. The initial operating condition (x0, λ0) is assumed to be asymptotically stable. This
is usually known either by assuming a zero loading λ0 at which the asymptotically stable equilibrium
x0 is known or by previous or current operating experience at a higher loading λ0. (If the power
system operates at (x0, λ0) without transients, then (x0, λ0) must be stable.)

Then there are three typical ways in which stability of the equilibrium can be lost as the loading is
increased from λ0:

(1) Fold bifurcation. The stable equilibrium disappears in a fold bifurcation. This instability occurs
generically and locating and avoiding this bifurcation is the focus of this paper. Note that a fold
bifurcation must occur eventually because all solutions disappear for sufficiently high loading.

(2) Instability due to discrete change. A stable equilibrium may disappear or become unstable when
the differential equations undergo discrete changes. For example, when a generator encounters
a reactive power limit, the system equations change in such a way that the equilibrium persists
but can possibly change stability [6]. If a line or generator is tripped, then the system equations
change in such a way that equilibrium can possibly be lost.

(3) Hopf bifurcation. The stable equilibrium persists, but becomes unstable in an oscillatory insta-
bility associated with Hopf bifurcation. This instability occurs generically. Complete dynamic
models are required to detect or analyze a Hopf bifurcation. We do not consider oscillatory
instabilities in this paper.

It is also possible in exceptional cases for combinations of instabilities (1), (2), and (3) to occur
simultaneously, but we ignore these nongeneric possibilities. It should be noted that the power system
equations do not have special symmetries that would, for example, make transcritical or pitchfork
bifurcations generic. Leaving nongeneric phenomena aside, the discussion can be usefully limited to
the generic fold and Hopf bifurcations and the structural change instability listed above.

If the discrete change or Hopf bifurcation instabilities do not occur as the loading is increased, then
the equilibrium will always lose stability in a fold bifurcation. However, an additional assumption is
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needed to ensure that the system state stays near enough to the equilibrium as the loading is increased
to guarantee that stability is not lost due to large signal transient effects:

Assumption 4. The system state tracks the system equilibrium sufficiently closely as the parameters
change. This assumption is known as the quasistatic assumption [17]. Deviation of the state from
the stable equilibrium can occur when the parameter rate of change becomes large enough or when
discrete changes to the equations occur. In either case, transients occur and these transients are
assumed to restore the state near to the stable equilibrium in such a way that the particular form
and size of the transient can be neglected.

The ideas of this section so far can be summarized as follows:
Continuation methods can be applied to compute the fold bifurcation starting from a known stable
condition at low loading. If stability is not lost due to oscillatory instabilities or limits or structural
changes as the loading is slowly increased, then the stability must eventually be lost in a fold bifurcation
and the loading at this fold bifurcation will determine the minimum system loading margin to any
instability.

As regards checking whether instability occurs due to oscillatory instabilities (Hopf bifurcations), it
is useful to analyze and avoid oscillatory instabilities separately from the fold bifurcation. Although
Hopf bifurcations and fold bifurcations can occur in the same power system models [32–37] there is
not evidence that their corresponding instability problems are closely related. For example, one might
argue that if excitation systems are well designed, Hopf bifurcation instabilities encountered at higher
loadings when studying voltage collapse models would vanish. (The parameter sensitivities for Hopf
and fold bifurcations can be studied and compared using the techniques of [35].) From a practical
modeling point of view, the Hopf bifurcation requires a complete dynamic model to be known and so is
better analyzed separately. (We note that eigenvalue, singular value and Hopf analyses of differential-
algebraic equations are only valid if the underlying dynamics enforcing the algebraic constraints are
assumed to be both stable and fast.)

Even with the assumptions above, the continuation approach to computing loading margins and
their sensitivities has significant limitations. For example, the timing and complex interaction of
discrete and continuously evolving events are not suitably represented. The quasistatic assumption
may be violated when significant transients occur. The claim is not that the assumptions capture
all voltage collapse phenomenon; rather, the claim is that the assumptions are useful in engineering
algorithms that can practically monitor and avoid voltage collapse blackouts. Other methods with
different advantages are available. In particular, a time domain simulation can represent dynamic
models in great detail and readily reproduce complex series of events. The loading margin and
sensitivity approach is complementary to time domain simulation. While the loading margin approach
must make some restrictive assumptions, it does provide useful margin and sensitivity information
and insight not available from time domain simulations.

6. Conclusions
This paper explains and justifies how static power system models can be used to compute the loading
margin to voltage collapse due to fold or saddle node bifurcation and its sensitivities to parameters
and controls. The static models are understood to have underlying dynamics which are responsible
for the dynamic voltage collapse as a consequence of the fold bifurcation. Moreover, we study how
the static equations can be advantageously changed or simplified without changing the results.

If power system dynamic equations are given, then we show that reducing the dynamic equations
to static equations by setting the derivatives of the state variables to zero does not affect the loading
margin or its sensitivities. Once the static equations are obtained, they may be algebraically simplified
in several ways, again without affecting the loading margin or its sensitivities. The simplified equations
can be fewer in number and have fewer variables and parameters, or can be larger in number and have
better numerical properties such as sparsity. Conclusions about the geometry of the fold bifurcation
of the dynamic equations are available from the simplified static equations. This is illustrated by
showing how a general class of dynamic load models due to Hill [31] can be reduced to static models.
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In voltage collapse blackouts, the pattern in which voltages and other quantities initially dynamically
decline is determined by the right eigenvector associated with the Jacobian singularity. Since we show
that this eigenvector is determined by static equations, this leads to the remarkable observation that
the initial dynamics of collapse can be determined from static models.

More commonly, the complete dynamic equations of the power system are not well known. However,
we can compute load power margins and their sensitivities with static power system equations and
the paper shows that the results are accurate for a general and sensible class of underlying dynamic
equations. This result enables commercial software used by the power industry to monitor and avoid
voltage collapse blackouts.

It is a substantial advantage for a voltage collapse index to be independent of dynamics both in
simplifying and optimizing the power system model for computations and in allowing the computation
to be done accurately despite poorly known dynamics. The paper shows that the load power margin is
independent of dynamics and we suspect that this useful property is also shared by the energy function
index. (Note that [38] gives an interpretation of an energy function index as the area enclosed by the
intersection of Z with a plane spanned by the real power and angle at a bus; this interpretation is
independent of the dynamics.) Voltage collapse indices based on eigenvalues [39] or singular values [40,
41] depend on the linearization of the system at an operating equilibrium. Therefore these indices
require for a power system model either a full set of differential equations or differential-algebraic
equations with the assumption or knowledge that the algebraic equations are enforced by underlying
dynamics that are both fast and stable. In particular, voltage collapse indices based on eigenvalues
or singular values depend on load dynamics.

In this paper, we provide justification and explicit assumptions for computations of loading margins
to saddle node bifurcations and their sensitivities with static power system models. We describe and
prove how the static equations may be advantageously changed or simplified while preserving the load-
ing margin and sensitivity information. The proofs use standard methods, but the detailed analysis of
how the equations may be advantageously changed appears to be new. We also clarify the technical
differences between the mathematical definitions and methods appropriate for fold bifurcations of
static equations and saddle-node bifurcations of dynamic equations.
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Appendix

A. Definitions and lemmas
A definition of a fold bifurcation is presented and its relation to the standard definition of a saddle
node bifurcation is discussed. The fold bifurcation of the dynamic Eq. (1) is characterized in terms
of a fold of the set

Z = {(x, λ) | f(x, λ) = 0},
which only depends on static parts of the power system model. Lemmas needed for sections 3 and 4
are stated and proved.

Let the state space X be Rn and the parameter space Λ be Rm. Dynamic equations are ẋ = f(x, λ)
where f : U → TX is a smooth set of differential equations and U is an open set of X ×Λ containing
(x∗, λ∗). (TX is the tangent space of X.) We will also define a fold bifurcation for smooth static
equations 0 = f(x, λ) where f : U → X.

We distinguish between saddle-node bifurcations and fold bifurcations as can be seen in the following
definitions:

Definition: Let f : U → X or f : U → TX be a smooth function and let the dimension of X be n.
f has a fold bifurcation at (x∗, λ∗) ∈ U if it satisfies conditions F(a)–F(d):

F(a) f(x∗, λ∗) = 0.
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F(b) fx|∗ has rank n − 1.

F(c) wfλ|∗ �= 0.

F(d) wfxx|∗(v, v) �= 0.,

where v and w are nonzero vectors satisfying fx|∗v = 0 and wfx|∗ = 0.

Condition F(a) states that (x∗, λ∗) is a root or equilibrium of f . Condition F(b) states that the
Jacobian fx is singular at the bifurcation and that the kernel < v > of fx|∗ is one dimensional. The
transversality conditions F(c) and F(d) help to ensure that the fold bifurcation is not degenerate. The
conditions F(a)–F(d) appear in static bifurcation theory (see the discussion in [42, section 6.2]) and
are equivalent to a standard definition of fold in singularity theory [43] as discussed in Appendix C.

The standard definition for a generic saddle-node bifurcation can be obtained by adding another
condition to F(a)–F(d):

Definition: f has a saddle-node bifurcation at (x∗, λ∗) if f has a fold bifurcation at (x∗, λ∗) and

F(e) fx|∗ has a simple zero eigenvalue.

There are two possibilities for f to satisfy F(b). The generic possibility is that fx|∗ has rank
n − 1 and a unique simple zero eigenvalue. In this case f satisfies the conditions for a generic saddle
node bifurcation at (x∗, λ∗) and the dynamics near (x∗, λ∗) are as described in [17]. The exceptional
possibility is that fx|∗ has rank n − 1 and a nonsimple zero eigenvalue. That is, there is a nontrivial
Jordan block with zero eigenvalues of geometric multiplicity one and algebraic multiplicity greater
than one. The consequence of the nontrivial Jordan block is that the dynamics of f near (x∗, λ∗)
are more complicated. For example, in the case of Jordan block

(0 1
0 0

)
, there are Hopf and saddle

connection bifurcations nearby (see [44, section 7.3]). This bifurcation is codimension 2 but can occur
in power system models (see point A in [45]).

However, the conditions F(a)–F(d) are sufficient to guarantee that near λ∗ there is locally a critical
hypersurface in parameter space at which two equilibria coalesce. On one side of the hypersurface
near λ∗ there are two equilibria and on the other side near λ∗ there are none. This is proved in [42,
section 6.2]. Those skeptical about this fact in the exceptional case should look at Fig. 7.3.1 of [44].

One theme of this appendix is that if we are concerned with algebraic equations and their equilibria,
then F(a)–F(d) are the right conditions for fold bifurcation. This is the context of singularity the-
ory [43] or static bifurcation theory [42]. In this context no distinction is made between the dynamics
at a generic saddle node and the dynamics at a fold bifurcation with a nonsimple eigenvalue, because
these phenomena are indistinguishable by examining the equilibria only. Indeed it can be inappro-
priate in this context to discuss eigenvalues of algebraic equations because changes to the equations
which preserve their equilibria generally alter the eigenvalues. For example, multiplying one of the
algebraic equations by two does not affect the equilibria but generally does alter the eigenvalues.

The fold bifurcation defined by F(a)–F(d) is a generic codimension 1 event in the singularity theory
context. In the dynamic vector context, we must additionally require simplicity of the zero eigenvalue
in order to obtain a generic saddle node bifurcation and exclude the exceptional codimension 2 event
of a nonsimple eigenvalue.

Now we define a fold of a set Z ⊂ U ⊂ X × Λ. The natural projection X × Λ → Λ is given by
(x, λ) 	→ λ and we write π : Z → Λ for the restriction to Z of the natural projection X × Λ → Λ.

Definition: Let Z be a subset of U and z∗ ∈ Z. Z has a fold at z∗ ∈ U if it satisfies conditions
ZF(a)–ZF(c):

ZF(a) Z is a submanifold of U of dimension m.

ZF(b) πz|∗ has rank m − 1.

ZF(c) Nπzz|∗(V , V ) �= 0, where V and N are nonzero vectors satisfying πz|∗V = 0 and Nπz|∗ = 0.
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ZF(b) is equivalent to the set Z having a tangent parallel to the state space or having a fold
when viewed along this tangent. This tangent direction is given by the right eigenvector V . The
hypersurface of critical parameters at which there is a fold bifurcation is the projection of the fold in
Z onto the parameter space Λ and the normal vector to this hypersurface is N.

Lemma 1 is the key lemma which proves that fold bifurcations of f correspond to folds of Z:

Lemma 1. Suppose Z = f−1(0). Then

(a) f has a fold bifurcation at z∗ ⇐⇒ Z has a fold at z∗ and rank fz|∗ = n.

(b) Suppose conditions F(a)–F(d) and ZF(a)–ZF(c) are satisfied. Choose the scalings of v, w, V ,
N such that |v| = |V | and |wfλ|∗| = |N|. Then V = (v, 0), N = wfλ|∗ and Nπzz|∗(V , V ) =
−wfxx|∗(v, v).

Proof (a)⇒: Since fx|∗ has rank n− 1 and wfλ|∗ �= 0, fz|∗ = (fx, fλ) |∗ has rank n. Then there is a
subset U1 
 z∗ open in X × Λ on which f has rank n. Then Z = (f |U1)

−1 (0) is a submanifold of U

of dimension m and ZF(a) is proven.
Since (fx|∗, fλ|∗)

(v
0

)
= 0 and the only x for which (fx|∗, fλ|∗)

(x
0

)
= 0 are multiples of v, TZ|∗ ∩

TX|∗ = 〈(v, 0)〉. Since the natural projection X × Λ → Λ has kernel TX, its restriction to Z, π has
ker πz = TZ ∩ TX. Hence ker πz|∗ = TZ|∗ ∩ TX|∗ = 〈(v, 0)〉 and πz|∗ has rank m − 1 and ZF(b) is
proven. Write V = (v, 0) and note that πz|∗V = 0 and V �= 0. Also write N = wfλ|∗ and note that
N �= 0.

The natural projection X × Λ → X is given by (x, λ) 	→ x. Write χ : Z → Λ for the restriction to
Z of the natural projection X × Λ → X. Note that χzV = χz(v, 0) = v. For any z = (x, λ) ∈ Z,

0 = f (χ(z), π(z)) .

Differentiate to obtain
0 = fxχz + fλπz. (A-1)

Multiply by w on the left and evaluate at z∗ to obtain

0 = wfλ|∗πz|∗ = Nπz|∗ (A-2)

Differentiate Eq. (A-1) with respect to Z to obtain

0 = fxxχzχz + fxχzz + 2fxλχzπz + fλπzz + fλλπzπz.

Multiply “on the left” by w and “on the right” by (V , V ), evaluate at z∗ and rearrange to obtain

Nπzz|∗(V , V ) = −wfxx|∗(v, v). (A-3)

Hence Nπzz|∗(V , V ) �= 0 and ZF(c) is proven.
(a)⇐: f(z∗) = 0 and F(a) follow immediately from z∗ ∈ Z = f−1(0). Since 〈V 〉 = kerπz|∗ = TZ|∗∩

TX|∗, V ∈ TX|∗ and can be written as V = (v, 0) where v �= 0. V ∈ TZ|∗ implies that (fx|∗, fλ|∗)
(v
0

)
=

fx|∗v = 0 and v ∈ ker fx|∗. Moreover, if v1 ∈ ker fx|∗, then 0 = fx|∗v1 = (fx|∗, fλ|∗)
(v1

0

)
and(v1

0

) ∈ TZ|∗ ∩ TX|∗ = ker πz|∗. Since kerπz|∗ = 〈V 〉 = 〈(v, 0)〉, v1 must be a multiple of v. Hence
ker fx|∗ = 〈v〉 and rank fx|∗ = n − 1 and F(b) is proven.

Choose w �= 0 such that wfx|∗ = 0. fz|∗ = (fx|∗, fλ|∗) rank n and fx|∗ rank n − 1 imply that
wfλ|∗ �= 0 and F(c) is proven. Obtain Eq. (A-2) as before and use the single dimension of the kernel
of πz|∗ to deduce that w can be rescaled so that N = wfλ|∗. Obtain Eq. (A-3) as before and deduce
that wfxx|∗(v, v) = −Nπzz|∗(V , V ) �= 0 and F(d) is proven.

(b): Part (b) follows from the proofs of part (a). ��
Lemma 2. Suppose 0 = f(x, λ) are static equations with underlying dynamics specified by

ẋ = f̄(x) = h (f(x, λ)) ,

where h(0) = 0 and the zero of h is unique and simple. That is, h(x) = 0 ⇐⇒ x = 0 and hx|0 is
nonsingular. Then
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(a) f has a fold bifurcation at (x∗, λ∗) ⇐⇒ f̄ has a fold bifurcation at (x∗, λ∗).

(b) Choose the scalings of v, v̄, w, w̄ such that |v| = |v̄| and |wfλ|∗| = |w̄f̄λ|∗|. Then v = v̄,
N = wfλ|∗ = w̄f̄λ|∗ = n̄ and wfxx|∗(v, v) = w̄f̄xx|∗(v̄, v̄).

Proof (a): The uniqueness of the zero of h implies that 0 = f̄(x) = h(f(x)) ⇐⇒ 0 = f(x) and Z =
f−1(0) = f̄−1(0) = Z̄. Since f̄x|∗ = hx|0fx|∗ and hx|0 is invertible, rank fz|∗ = n ⇐⇒ rank f̄z|∗ = n.
Now Lemma 1(a) yields f has a fold bifurcation ⇐⇒ Z has a fold and rank fz|∗ = n ⇐⇒ Z̄ has a
fold and rank f̄z|∗ = n ⇐⇒ f̄ has a fold bifurcation.

(b): Lemma 1(b) yields (b). ��
The essentials of a fold in π are not changed when Z is changed by a diffeomorphism affecting only

the state space only as proved in lemma 3. Note that lemma 3 applies when a new state space of
different dimension is used.

Lemma 3. Let Z be a submanifold of X × Λ of dimension m and π : Z → Λ be the restriction
to Z of the natural projection X × Λ → Λ. Suppose π has a fold at z∗ ∈ Z so that πz|∗ has rank
m − 1 and Nπzz|∗(V , V ) �= 0 where V and N are nonzero vectors satisfying πz|∗V = 0 and Nπz|∗ = 0.
Let Z̄ be a submanifold of X̄ × Λ and π̄ : Z̄ → Λ be the restriction to Z̄ of the natural projection
X̄ × Λ → Λ. Suppose that there is a diffeomorphism φ : Z → Z̄ which is onto and which preserves Λ
so that π̄φ = π. Let V̄ = φz|∗(V ) and N̄ = N and z̄∗̄ = φ(z∗). Then π̄z̄|∗̄ has rank m − 1, π̄z̄|∗̄V̄ = 0,
N̄π̄z̄|∗̄ = 0, N̄π̄z̄z̄|∗̄(V̄ , V̄ ) = Nπzz|∗(V , V ), and π̄ has a fold at z̄∗̄.

Proof : φ a diffeomorphism and π̄φ = π implies π̄ = πφ−1 and

π̄z̄ = πz(φz)−1. (A-4)

Hence range π̄z̄|φ(z1) = range πz|z1 . In particular, rank π̄z̄|∗̄ = rank πz|∗ = m − 1. Also

π̄z̄|∗̄V̄ = πz|∗(φz|∗)−1φz|∗V = πz|∗V = 0

and

N̄π̄z̄|∗̄ = Nπz|∗(φz|∗)−1 = 0.

Rearranging Eq. (A-4) and differentiating yields

π̄z̄z̄φzφz + π̄z̄φzz = πzz.

Multiplying by N = N̄ and V and evaluating at z∗ gives

N̄π̄z̄z̄|∗̄(V̄ , V̄ ) = Nπzz|∗(V , V ). (A-5)

The results obtained imply that π̄ has a fold at z̄∗. ��
Note that Eq. (A-5) only holds when the scaling of V̄ and V̄ is such that V̄ = φ(V ). However,

Eq. (A-5) is usually used to ensure that Nπzz|∗(V , V ) �= 0 ⇐⇒ N̄π̄z̄z̄|∗̄(V̄ , V̄ ) �= 0 and in this case the
scalings of V̄ and V are irrelevant.

Lemma 4. Let f : X × Λ → X be smooth and have zero set Z. Let f̄ : X × Λ → X be smooth and
have zero set Z̄. Suppose that Z = Z̄ and that at z∗ ∈ Z, rank fz|∗ = rank f̄z|∗ where z = (x, λ).
Then

(a) f has a fold bifurcation at z∗ ⇐⇒ f̄ has a fold bifurcation at z∗.

(b) Choose the scalings of v̄, w̄, N̄ such that |v| = |v̄| and |wfλ|∗| = |wf̄λ|∗|. Then v = v̄, N =
wfλ|∗ = wf̄λ|∗ = N̄ and wfxx|∗(v, v) = wf̄xx|∗(v, v).

Proof : Follows from lemmas 1 and 3 with φ as the identity map. ��
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Lemma 5. Let f(x, λ) =

(
f1(a, b, λ)
f2(a, b, λ)

)
be a smooth function with component functions f1, f2

where

f : Rn × Rm → Rn,

f1 : Rn̄ × Rn−n̄ × Rm → Rn̄,

f2 : Rn̄ × Rn−n̄ × Rm → Rn−n̄.

Suppose that rank f2
b |∗ = n − n̄ so that f2

b |∗ is invertible.

Define f̄ : Rn̄ × Rm → Rn̄,

f̄(a, λ) = f1(a, h(a, λ), λ),

where h is the unique smooth function U → Rn−n̄ satisfying f2(a, h(a, λ), λ) = 0 and h(a∗, λ∗) = b∗
for some neighborhood U of (a∗, λ∗). Write z = (x, λ) and z̄ = (a, λ). Then

(a) rank fz = n ⇐⇒ rank f̄z̄ = n̄.

(b) f has a fold bifurcation at z∗ = (a∗, b∗, λ∗) ⇐⇒ f̄ has a fold bifurcation at z̄∗ = (a∗, λ∗).

(c) For suitable scaling of N̄ and v̄,

N = N̄ and v =

(
v1

v2

)
=

(
v̄

ha|∗v̄

)
.

Proof (a): Observe that rank fz = rank fz̄,b since fz and fz̄,b differ only in the order of their columns.
Note that f̄z̄ = f1

z̄ − f1
b

(
f2

b

)−1
f2

z̄ and(
f1

z̄ f1
b

f2
z̄ f2

b

)(
In̄+m 0

− (f2
b

)−1
f2

z̄ In−n̄

)
=

(
f̄z̄ f1

b

0 f2
b

)
. (A-6)

The rank of the LHS of Eq. (A-6) = rank fz̄,b since the second matrix is invertible and the rank of
the RHS of Eq. (A-6) = rank f̄z̄ + rank f2

b = rank f̄z̄ + n − n̄. Hence rank fz = rank f̄z̄ + n − n̄ and
(a) follows.

(b): By lemma 1(a), f has a fold bifurcation at z∗ implies that its zero set Z has a fold at z∗ and
rank fz|∗ = n. In particular, Z is a submanifold of U1 ⊂ Rn ×Rm where U1 is a neighborhood of z∗.
By part (a), rank fz̄ has rank n̄ and it follows (see proof of lemma 1(a)) that the zero set Z̄ of f̄ is a
submanifold of Ū1 ⊂ Rn̄ × Rm where Ū1 is a neighborhood of z̄∗. Similarly f̄ has a fold bifurcation
at z̄∗ implies that Z̄ is a submanifold of Ū1 and Z is a submanifold of U1. Thus either f has a fold
bifurcation at z∗ or f̄ has a fold bifurcation at z̄∗ imply that both Z and Z̄ are submanifolds.

Define

ζ : U → Rn × Rm

ζ(a, λ) = (a, h(a, λ), λ),

η : Rn × Rm → Rn̄ × Rm

η(a, b, λ) = (a, λ).

We can find open sets V , V̄ with z∗ ∈ V ⊂ U1, z̄∗ ∈ V̄ ⊂ Ū1 such that

(a, λ) ∈ Z̄ ∩ V̄ ⇐⇒ f̄(a, λ) = 0

⇐⇒ f1(a, h(a, λ), λ) = 0

⇐⇒ f1(a, h(a, λ), λ) = 0 and f2(a, h(a, λ), λ) = 0

⇐⇒ f(a, h(a, λ), λ) = 0

⇐⇒ (a, h(a, λ), λ) ∈ Z ∩ V.
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Therefore ζ|Z̄∩V̄ maps Z̄∩V̄ onto Z∩V . Since Z̄∩V̄ is a submanifold of U and Z∩V is a submanifold
of Rn × Rm and ζ and η are smooth functions, ζ|Z̄∩V̄ and η|Z∩V are smooth functions. Moreover,
it is easy to verify that ζ|Z̄∩V̄ ◦ η|Z∩V and η|Z∩V ◦ ζ|Z̄∩V̄ are identity functions. Therefore ζ|Z̄∩V̄ is
diffeomorphism from Z̄∩ V̄ onto Z∩V . Now use part (a) and lemmas 1(a) and 3 to deduce result (b).

(c): From part (b) and lemmas 1(b) and 3, we obtain

N = N̄ and v = (ζ|Z̄∩V̄ )z̄

∣∣
z̄∗

(v̄) =

(
v̄

ha|∗v̄

)
. ��

B. Manipulation of a load model
The dynamic load model is specified by

ẏ = f1(y, V, λ) (B-1)

0 = g(Ṗ d, V̇ , P d, V, λ) (B-2)

P d = P (y, V ). (B-3)

We apply lemma 1 by first eliminating P d and solving g to obtain an expression for V̇ to put the
equations in state space form. Suppose that g

Ṗ dPV + gV̇ �= 0. As shown below, this condition
is sufficient for Eqs. (B-1)–(B-3) to define well posed differential equations in state variables (y, V ).
Differentiating Eq. (B-3), substituting in Eq. (B-2) and using Eq. (B-1) yields

0 = g(Pyf1(y, V, λ) + PV V̇ , V̇ , P (y, V ), V, λ). (B-4)

Let (y∗, V∗, λ∗) be an equilibrium of Eqs. (B-1)–(B-3). Then (y∗, V∗, λ∗) also satisfies Eq. (B-4). Since
g
Ṗ dPV + gV̇ �= 0, the implicit function theorem implies that there is an open set U 
 (y∗, V∗, λ∗) and

a unique smooth function f2 : U → R such that f2(y∗, V∗, λ∗) = 0 and

g(Pyf1(y, V, λ) + PV f2(y, V, λ),f2(y, V, λ), P (y, V ), V, λ) = 0. (B-5)

Now Eqs. (B-1)–(B-3) can be written in state space form in U :

ẏ = f1(y, V, λ)

V̇ = f2(y, V, λ).

Applying lemma 2 yields the static equations

0 = f1(y, V, λ) (B-6)

0 = f2(y, V, λ). (B-7)

Now we use lemma 4 to deduce that fold bifurcations of Eqs. (B-6) and (B-7) are the same for the
equations

0 = f1(y, V, λ) (B-8)

0 = g(0, 0, P (y, V ), V, λ). (B-9)

Eqs. (B-6) and (B-7) imply Eqs. (B-8) and (B-9) via Eq. (B-5). Conversely, Eqs. (B-8) and (B-5)
imply that for (y, V, λ) ∈ U ,

0 = g(PV f2(y, V, λ), f2(y, V, λ), P (y, V ), V, λ). (B-10)

But f2 is unique so we can deduce from Eqs. (B-9) and (B-10) that 0 = f2(y, V, λ). Hence Eqs. (B-6)
and (B-7) and Eqs. (B-8) and (B-9) are equivalent and have the same zero set Z.

Write z = (y, V, λ). To apply lemma 4, it remains to show that the ranks of the Jacobians with
respect to z of Eqs. (B-6) and (B-7) and Eqs. (B-8) and (B-9) are the same at a point z∗ ∈ Z.
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The Jacobian of Eqs. (B-8) and (B-9) is

(
f1

z |∗
a

)
where a = [g(0, 0, P (y, V ), V, λ)]z |∗. Differentiating

Eq. (B-5) with respect to z and evaluating at z∗ yields

0 =
(
g
Ṗ dPV + gV̇

)∣∣∣
∗
f2

z |∗ +
(
g
Ṗ dPy

)∣∣∣
∗
f1

z |∗ + a,

and since g
Ṗ dPV + gV̇ �= 0, we can deduce that rank

(
f1

z |∗
a

)
= rank

(
f1

z |∗
f2

z |∗

)
.

C. Concerning the definition of fold
This appendix shows that the definition of fold point of Z in Appendix A is standard by proving
it equivalent to the definition 4.1 of fold point in [43, chapter 3 page 87]. The proof also shows a
geometric meaning of the transversality condition Nπzz|∗(V , V ) �= 0.

It is convenient to work in a fixed chart of Z with open set U1 
 z∗ and to neglect the distinction
between objects associated with Z and their coordinates. Define the matrix function

M : U1 → Rm×m

z1 	→ πz|z1

and define Sm−1 to be the matrices in Rm×m of rank m − 1. Sm−1 is a submanifold of Rm×m (see
proof of lemma 6 below or [43, page 60]). If M intersects Sm−1 transversally at M(z∗), let U2 be a
neighborhood of z∗ on which M intersects Sm−1 transversally and define the submanifold F of U1 by
F = M−1(Sm−1) ∩ U2.

Then definition 4.1 of [43] may be rewritten and specialized to:
z∗ ∈ U1 is a fold point of π iff

(a) πz|∗ = M(z∗) ∈ Sm−1.

(b) M intersects Sm−1 transversally at πz|∗.
(c) TF |∗ + ker πz|∗ = TZ|∗.
Define γ : R → Z to be a smooth curve in Z with γ(0) = z∗ and γs|0 = V , Since ker πz|∗ = 〈V 〉,

condition (c) is equivalent to

(c′) γ intersects F transversally at z∗.

Let W1 be a neighborhood of 0 in R so that γ(W1) ⊂ U1. Define the curve of matrices A = M◦ γ:

A : W1 → Rm×m

s 	→ M(γ(s)).

Now we claim that the condition

(d) A intersects Sm−1 transversally at πz|∗.
is equivalent to conditions (b) and (c′). For (c′) implies γs|0 /∈ TF |∗ and this, together with (b) implies
Mz (γs|0) = As|0 /∈ TSm−1|M(∗) and hence (d). Conversely, (d) implies (b). Moreover, (d) implies
(c′) because γ not transverse to F at z∗ implies γs|0 ∈ TF implies As|0 = Mz (γs|0) ∈ TSm−1|M(∗)
implies that A is not transverse to Sm−1 at πz|∗.

Lemma 6 below proves that condition (d) is equivalent to

NAs|0V �= 0.

But As|0 = (M(γ(s)))s

∣∣
0

= Mz|∗γs|0 = πzz|∗V so condition (d) is equivalent to

Nπzz|∗(V , V ) �= 0,

which is the condition ZF(c). But conditions (a) and (b) are equivalent to ZF(a) and ZF(b). Therefore
the conditions ZF(a), ZF(b), ZF(c) of the fold definition in Appendix A are equivalent the definition
4.1 of [43].

It remains to state and prove the following:
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Lemma 6. Let A : R → Rm×m be a smooth function so that A(s) is an m×m matrix parameterized
by s. Suppose A(0) has rank m − 1 and let V and N be nonzero vectors such that A(0)V = 0 and
NA(0) = 0. Let Sm−1 be the submanifold of matrices in Rm×m with rank m − 1. Then

A transversal to Sm−1 at A(0) ⇐⇒ NAs|0V �= 0.

Proof : Write Bij for the cofactor of the (i, j) element of a matrix B ∈ Rm×m. Since A(0) has
rank m − 1, i and j can be chosen so that (A(0))ij �= 0. Define the smooth functions Ñ(B) =(
B1j , B2j , · · · , Bmj

)
and Ṽ (B) =

(
Bi1, Bi2, · · · , Bim

)T . Let U ⊂ Rm×m be a neighborhood of A(0)
such that B ∈ U ⇒ Bij �= 0. Define

β : U → R

B 	→ Ñ(B)B Ṽ (B).

Write ei for the column vector with 1 in the ith coordinate and 0 elsewhere. Recall that multiplying
elements of a matrix row by their corresponding cofactors and adding yields the matrix determinant
while multiplying elements of a matrix row by the cofactors corresponding to another row of the
matrix and adding yields zero. Hence

B Ṽ (B) = detB ei and Ñ(B)B = detB eT
j , (C-1)

and it follows that
β(B) = Bij detB.

Then Sm−1 ∩ U = β−1(0) because, in U , Bij �= 0 so that rank B = m − 1 iff detB = 0. β is regular
because the expansion of a determinant in terms of cofactors implies that [detB]bij

= Bij and hence

that βbij
=
(
Bij
)2 �= 0. (Here [detB]bij

and βbij
denote the gradients of detB and β with respect to

bij .) Sm−1 ∩ U = β−1(0) and β regular imply that TSm−1 = ker βB.
Let V ⊂ R be a neighborhood of 0 with A(V ) ⊂ U . Define α : V → R by α(s) = β (A(s)). Then,

since TSm−1 = kerβB and β regular, A transversal to Sm−1 at A(0) ⇐⇒ αs|0 = βB|A(0)As|0 �= 0.
It remains to prove that αs|0 = NAs|0V for suitable rescalings of N and V . Eq. (C-1) implies that

A(0)Ṽ (A(0)) = detA(0) ei = 0. Moreover, Ṽ (A(0)) �= 0 since it has a nonzero component (A(0))ij .
Since A(0) has a one dimensional kernel, a suitable rescaling of V yields V = Ṽ (A(0)). Similarly
N = Ñ (A(0)). Now

αs|0 = [Ñ (A(s))A(s)Ṽ (A(s))]s
∣∣
0

= [Ñ (A(s))]s |0A(0)V + NAs|0V + NA(0) [Ṽ (A(s))]s |0
= NAs|0V .

��
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