Truncated Fractal Basin Boundaries in the Pendulum with Nonperiodic Forcing

I. Dobson 1 and D. F. Delchamps 2

1 Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, USA
2 School of Electrical Engineering, Cornell University, Ithaca, NY 14853, USA

Received November 12, 1991; revised version accepted August 17, 1993
Communicated by Stephen Wiggins

Summary. It is well known that oscillators such as the pendulum can have fractal basin boundaries when they are periodically forced with the consequence that the long term behavior of the system may be unpredictable. In engineering and physical applications, the forcing is often nonperiodic and eventually decays to zero, and simulation of the pendulum with decaying forcing (M. Vargashe, J. S. Thornton, Physical Review Letters, vol. 60, no. 8, pp. 665–668, Feb. 1988) exhibits truncated fractal basin boundaries which also limit the system predictability. We develop a coordinate change for the pendulum with decaying forcing that allows us to apply standard qualitative methods to study the basin boundaries. We prove that the basin boundaries cannot be fractal and show by example how the extreme stretching and folding leading to a truncated fractal basin boundary may arise.

Key words. basin boundary, fractal, pendulum, stable manifold

1. Introduction

Many important problems in engineering and physics can be modeled as dynamical systems with multiple stable equilibria. Solution trajectories of a given system are generally attracted to one of the stable equilibria, and an initial condition giving rise to such a trajectory is said to be in the basin of attraction of that equilibrium. Thus one can specify the long term system behavior by describing the various basins of attraction in state space. The basins are separated from each other by basin boundaries; describing the basin boundaries is equivalent to describing the basins and the long term behavior. For some systems, the basin boundaries are mildly deformed hyperplanes of dimension one less than the state space and divide the state space into basins in a straightforward way. For example, consider the vector field \(X \) of the unforced, damped pendulum:

\[

NOTICE: This MATERIAL MAY BE PROTECTED BY Copyright Law (Title 17 US Code)

Nonlinear Science
© 1994 Springer-Verlag New York Inc.
\((\theta, v) = X(\theta, v) = (v, -\sin \theta - dv), \quad (\theta, v) \in \mathbb{R}^2. \) \((1) \)

\(X \) has 2\(\pi \)-periodicity in the angle coordinate and stable equilibria (sinks) at \((2n\pi, 0), \) \(n \in \mathbb{Z} , \) along with saddles at \(((2n + 1)\pi, 0), \) \(n \in \mathbb{Z} . \) The basins of \((2n\pi, 0), \) \(n \in \mathbb{Z} , \) are open sets in \(\mathbb{R}^2 \) and are separated by the stable manifolds \(W^s_x \) of the saddles \(((2n + 1)\pi, 0), \) \(n \in \mathbb{Z} \) (see Figure 1). (The unstable manifold of an equilibrium is the set of initial conditions tending to that equilibrium under the flow of \(X \) as time tends to \(\infty \) \(-\infty \) (Guckenheimer and Holmes 1986). The stable manifold of a sink is the same as its basin of attraction.) \(W^s_x, \) \(n \in \mathbb{Z} , \) are the basin boundaries, and each \(W^s_x \) is a smooth curve dividing \(\mathbb{R}^2 \) into two parts.

Nonetheless, simple systems can have surprisingly complicated basin boundaries. For example, when oscillators such as the pendulum or Duffing's equation are forced periodically, the boundaries separating the basins of attraction of stable periodic orbits can be fractal. The infinitely fine fractal structure makes it impossible to determine the basin boundary with a finite precision technique such as numerical integration on a computer, and numerical prediction of long term system behavior is fundamentally limited (Grebogi et al. 1983; McDonald et al. 1985).

Basin boundaries in oscillators with periodic forcing have been studied by several authors, e.g., Gwinn and Westervelt (1985), Moon and Li (1985), Hockett and Holmes (1986), Grebogi et al. (1987), Hammel and Jones (1989), Dobson (1989b). However in many engineering applications, the forcing is intended to model either a disturbance that eventually decays to zero or some other part of the system whose effect vanishes asymptotically because of its damping. See Varghese and Thorp (1988b) for an application to large scale electric power systems. Varghese and Thorp (1988a) studied the pendulum with exponentially decaying sinusoidal forcing \(ge^{-\alpha t} \cos \omega t \) and showed numerically that the boundaries between basins of attraction were truncated fractals. That is, the basin boundaries exhibited self-similar structure for only a finite number of enlargements. (True fractals exhibit self-similar structure for any number of enlargements.) Truncated fractal basin boundaries can be seen under a sufficiently large number of enlargements to have a simple structure, but are effectively fractal for fewer

Enlargements. We expect truncated fractal basin boundaries to be more common in applications than the more idealized case of true fractals and to cause for practical purposes a similar obstruction to estimating the long term system behavior.

In this paper we consider the forced, damped pendulum suspended in time:

\[(\theta, v, t) = (v, -\sin \theta - dv + f(t), t), \quad (\theta, v, t) \in \mathbb{R}^3, \]

where the forcing function \(f \) is smooth and \(f \) and \(f' \) have norms asymptotically bounded by an exponential decay. That is, there are positive constants \(K, \alpha, S \) such that

\[|f(t)| \leq Ke^{-\alpha t} \quad \text{and} \quad |f'(t)| \leq Ke^{-\alpha t} \quad \text{for} \quad t \geq S. \]

This is a very general class of forcing functions that includes forcing of the form \(f(t) = ge^{-\alpha t} \cos \omega t \) used in Varghese and Thorp (1988a). In (2), the dots denote differentiation with respect to the independent time variable \(t \) and \(i \) denotes the third component of the state vector. We assume that the damping \(d > 0 \). Vector field (2) has no equilibria, but since the forcing eventually dies away, we generally expect the \((\theta, v)\) coordinates of solutions to approach asymptotically one of the stable equilibria \((2n\pi, 0), \) \(n \in \mathbb{Z} , \) of the unforced pendulum (1). By analogy with (1), we expect 3-dimensional basins of attraction of the "asymptotic equilibria" to be separated by smooth 2-dimensional boundaries. The purpose of this paper is to prove these assertions and to try to describe the basin boundaries qualitatively so that the way in which the forcing affects the asymptotic behavior of (2) may be better understood. In particular, we prove that the basin boundary is not fractal and show by examples how the truncated fractal structure of the basin boundary can arise. One of the examples is an impulsively forced pendulum in which extreme stretching and folding of the basin boundary can be demonstrated by elementary methods. Previous versions of this paper appeared in Dobson and Delchamps (1989) and Dobson (1989a).

Techniques such as Poincaré maps that are useful in analyzing periodically forced pendulums depend crucially on the periodicity of the forcing and seem quite useless for analyzing pendulums with decaying forcing. The pendulums with decaying forcing are simpler in that they tend to unforced pendulums as time tends to infinity and the forcing dies away. However there are no equilibria in bounded regions of state space. This paper develops a coordinate transformation for (2) that yields a \(C^1 \) vector field \(X \) whose equilibria coincide with those of the unforced pendulum and for which "time infinity" occurs in the middle of the 3-dimensional state space. The existence of the equilibria and the \(C^1 \) smoothness of \(X \) allow the analysis to proceed along conventional lines. In particular, the stable manifold theorem can be applied to construct a basin boundary rigorously. Our reformulation of (2), although obvious once stated, is central to the subsequent development.

An alternative way to construct the basin boundary sketched in Section 5 assumes that the forcing \(f \) is small and uses the hyperbolicity of the saddle type orbits to deduce the persistence of stable manifolds. This type of result for nonautonomous systems is developed much further in Lerman and Shil'nikov (1992) to study perturbations of homoclinic structures.

![Fig. 1. A small impulse.](image-url)
2. A Coordinate Change

We change the \(t \) coordinate of the state space of (2) according to the smooth transformation

\[
 r = e^{-a t/2} \quad \text{or} \quad t = -2a^{-1} \ln r.
\]

(Recall that \(a > 0 \) controls the rate of decay of \(f \) and \(f' \) according to (3)). \(\ln \) \((\theta, v, r)\) coordinates the state space becomes \(\mathbb{R}^2 \times (0, \infty) \) and (2) becomes

\[
 (\hat{\theta}, \hat{v}, \hat{r}) = (v, -\sin \theta - dv + f(-2a^{-1} \ln r), -ar/2).
\]

Define \(h : \mathbb{R} \to \mathbb{R} \) by

\[
 h(r) = \begin{cases}
 f(-2a^{-1} \ln|r|), & r \neq 0, \\
 0, & r = 0,
 \end{cases}
\]

\(h \) is a \(C^1 \) function since \(|h(r)| \leq Ke^{-a r} = K r^2 \) and \(|h'(r)| < 2a^{-1} K |r| \) for \(|r| \leq e^{-a^2/2} \).

The vector field (5) on \(\mathbb{R}^2 \times (0, \infty) \) is then "contained" in the following vector field \(\hat{X} \) on \(\mathbb{R}^2 \times \mathbb{R}^2 \):

\[
 (\hat{\theta}, \hat{v}, \hat{r}) = \hat{X}(\theta, v, r) = (v, -\sin \theta - dv + h(r), -ar/2).
\]

Since \(h \) is \(C^1 \), \(\hat{X} \) is a \(C^1 \) vector field. Note that \(\hat{X} \) need not be \(C^2 \); any function \(f(t) \) that behaves like \(e^{-a t} \cos \omega t \) for large \(t \) yields a function \(h \) and a vector field \(\hat{X} \) that are not \(C^2 \) at \(r = 0 \).

It is convenient to write \(\Sigma_{\tau=k} = \{(\theta, v, r) | r = k, (\theta, v) \in \mathbb{R}^2\} \) for the plane of constant \(r \) in the state space of (7). For \(k \neq 0 \), \(\Sigma_{\tau=k} \) corresponds to a plane of constant \(\tau \) in the state space of (2) that we write as \(\Sigma_{\tau=\tau} \). Note, for example, that \(\Sigma_{\tau=1} \) corresponds to \(\Sigma_{\tau=0} \) and that \(\Sigma_{\tau=0} \) can be thought of as corresponding to \(\Sigma_{\tau=\infty} \). \(\Sigma_{\tau=0} \) is an invariant plane of (7) containing the system equilibria and the vector field \(\hat{X} \) on \(\Sigma_{\tau=0} \) is identical to the vector field \(X \) of the unforced pendulum (1).

We study the behavior of (2) by studying \(\hat{X} \). \(\hat{X} \) has sinks at \((2n\pi, 0, 0) \) and type one hyperbolic equilibria at \((2(n + 1)\pi, 0, 0) \), \(n \in \mathbb{Z} \). Since \(\hat{X} \) is \(C^1 \) and the equilibria are hyperbolic, the stable manifold theorem (Palis and de Melo 1982) can be applied. For each \(n \), the sink at \((2n\pi, 0, 0) \) has a 3-dimensional basin of attraction and the equilibrium at \((2(n + 1)\pi, 0, 0) \) has a 2-dimensional \(C^1 \) stable manifold \(\hat{W}^s_n \). \(\hat{W}^s_n \) is an immersed submanifold of the state space. The asymptotic behavior of initial conditions of vector fields (2) and (6) correspond under the transformation (4) because \(\hat{X}(\theta, v, r, \tau) \to (v^*, v^*, \tau) \) as \(\tau \to \infty \) iff the \((\theta, v) \) coordinates of the trajectory of (2) starting at \((\theta, v, -2a^{-1} \ln r_n) \) tend to \((v^*, v^*) \) as \(\tau \to \infty \). Thus we study the asymptotic behavior of (2) by studying the structure of the basins of the stable equilibria of (7), or, equivalently, the structure of the basin boundaries \(\hat{W}^s_n \), \(n \in \mathbb{Z} \).

We summarize another approach to a particular case of (2) with exponentially decaying sinusoidal forcing. Varghese and Thorp (1988a) study basin boundaries of

\[
 (\theta, v, \tau) = (v, -\sin \theta - dv + ge^{-\omega \tau} \cos \omega \tau, 1), \quad (\theta, v, \tau) \in \mathbb{R}^3,
\]

by studying the 4-dimensional vector field

\[
 (\theta, v, x_3, x_4) = (v, -\sin \theta - dv + x_3, -\alpha x_3 + \omega x_4, -\omega x_3 - \alpha x_4).
\]

Vector field (9) has sinks at \((2n\pi, 0, 0, 0) \) and type 1 saddles at \((2(n + 1)\pi, 0, 0, 0) \), \(n \in \mathbb{Z} \). The basins of the sinks are separated by the smooth 3-dimensional stable manifolds of the saddles. Some of the trajectories of (9) correspond to trajectories of (8); in particular, initial conditions of (8) \(\Sigma_{\tau=0} \) correspond to initial conditions of (9) in the 2-dimensional slice of \(\mathbb{R}^4 \) with \(x_3(0) = g \) and \(x_4(0) = 0 \). Varghese and Thorp (1988a) numerically integrated these initial conditions to show that the basin boundaries of (8) were truncated fractals for a suitable choice of \(g \) and \(\alpha \). Varghese and Thorp (1988a) also showed that the flow induced a diffeomorphism between the truncated fractal basin boundary in the slice of (9) corresponding to \(\Sigma_{\tau=0} \) and the smaller basin boundaries in the slice of (9) corresponding to \(\Sigma_{\tau=r} \), for \(r \) large. Our coordinate change applies to (8) and yields a simpler approach than (9), albeit with some lack of smoothness.

3. Qualitative Structure of the Basin Boundary

The stable manifold theorem implies that \(\hat{W}^s_n \) is a \(C^1 \) immersed 2-dimensional submanifold of \(\mathbb{R}^3 \). An immersed stable manifold can be folded and stretched in such a way that portions of the surface accumulate on each other (e.g., McDonald et al. 1985; Dobson 1989b). That is, the intersection of an immersed stable manifold with an arbitrarily small neighborhood of \(\mathbb{R}^3 \) can be diffeomorphic to the intersection of an infinite number of planes with a ball. (Other structures in addition to the planes may also be present.) This intricacy of immersion occurs in stable manifolds with fractal structure. In contrast, a stable manifold embedded in \(\mathbb{R}^3 \) cannot accumulate on itself; the intersection of an embedded stable manifold with a sufficiently small neighborhood is diffeomorphic to the intersection of a single plane with a ball (e.g., Warner 1983, pp. 28-29). Thus an embedded stable manifold cannot be fractal.

In the Appendix we prove the following lemma.

Lemma 1. \(\hat{W}^s_n \) is a \(C^1 \) embedded submanifold of \(\mathbb{R}^3 \).

The proof of Lemma 1 constructs a neighborhood \(M \) of \(((2n + 1)\pi, 0, 0) \) such that \(\hat{W}^s_n \cap M \) is embedded in \(\hat{W}^s_n \). In particular, \(M \) consists only of the local stable manifold \(\hat{W}^s_n \cap M \) (which is always embedded) and points that tend to a sink. The points that tend to a sink cannot be in \(\hat{W}^s_n \) and hence \(\hat{W}^s_n \cap M = \hat{W}^s_n \cap M \) is embedded in \(\hat{W}^s_n \). \(\hat{W}^s_n \) is constructed by applying the backward flow to \(\hat{W}^s_n \cap M \), and \(\hat{W}^s_n \cap M \) embedded in \(M \) implies that \(\hat{W}^s_n \) is embedded in \(\mathbb{R}^3 \).

Lemma 1 implies that \(\hat{W}^s_n \) is not fractal. It also follows from Lemma 1 that \(\hat{W}^s_n \) is closed and that \(\hat{W}^s_n \) is all of the basin boundary separating the basin of \((2n\pi, 0, 0) \) from the basin of \((2(n + 1)\pi, 0, 0) \). (Fractally immersed basin boundaries are proper subsets of their closures, and the basin boundary is a closed set that must contain the closure of the stable manifold.)
We also study the intersection $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ of the basin boundary with a plane of constant r coordinate. The structure of $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is of interest for several reasons. Since $\Sigma_{r_{nk}}$ corresponds to initial conditions of (2) at a constant starting time, it is natural to study how $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is immersed in $\Sigma_{r_{nk}}$. The simulation results in Varghese and Thorp (1988a) give some indication of how $\hat{W}_1^u \cap \Sigma_{r_{nk}}$ is immersed in $\Sigma_{r_{nk}}$; they show that $\hat{W}_m^u \cap \Sigma_{r_{nk}}$ in a bounded subset of $\Sigma_{r_{nk}}$ is a truncated fractal having seemingly disconnected striations. Our mathematical description of the immersion enables us to interpret the simulation results more fully. Also, it is easier to comprehend how $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is immersed in $\Sigma_{r_{nk}}$ than it is to comprehend how \hat{W}_m^u is immersed in the state space $\mathbb{R}^2 \times \mathbb{R}$ because $\Sigma_{r_{nk}}$ has one less dimension than the state space.

In the Appendix we prove a sequence of lemmas to arrive at Lemma 4:

Lemma 4. $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is a C^1 embedding of \mathbb{R} into $\Sigma_{r_{nk}}$ for all $k \in \mathbb{R}$.

In particular, Lemma 4 implies that $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is connected, which is by no means apparent from the simulation results of Varghese and Thorp (1988a).

The arguments leading to Lemma 4 are now summarized. First we show that \hat{W}_n^u intersects $\Sigma_{r_{nk}}$ transversely (Lemma 2). This follows for nonzero ϵ because the flow \dot{X} is transverse to $\Sigma_{r_{nk}}$ and \hat{W}_n^u is invariant. Manifold intersection theory and the transversality of the intersection imply that $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is a C^1 1-dimensional embedded submanifold of $\Sigma_{r_{nk}}$. We then prove that $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is connected and apply the classification theorem for 1-dimensional manifolds to conclude that $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is an embedding of either a circle or \mathbb{R} in $\Sigma_{r_{nk}}$. After eliminating the possibility that $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is an embedding of a circle in $\Sigma_{r_{nk}}$, we conclude that $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is an embedding of \mathbb{R} in $\Sigma_{r_{nk}}$ (Lemma 4). These results rely on the r dynamics being independent of θ and v and on "straightening out" \hat{W}_n^u into a hyperplane in a neighborhood of \hat{W}_n^u with a coordinate change that preserves the r coordinate (Lemma 3).

Despite the lemmas, the basin boundary can have a complicated, truncated fractal structure. For example, consider (2) with a constant amplitude sinusoidal forcing of period T for negative time and sinusoidal forcing with exponentially decaying amplitude for positive time. For negative time the system is periodic and can be studied with a Poincaré map $P = \dot{X}$ on the Poincaré section $\Sigma_{r_{nk}}$. For small forcing amplitude and damping, P has a hyperbolic saddle fixed point γ_1 near $((\pi + 1)\pi, 0)$. We choose the amplitude of the forcing for negative time large enough relative to the damping so that P has a fractal basin boundary $W^T(\gamma_1)$ (Guckenheimer and Holmes 1986; Hockett and Holmes 1988; Dobson 1989b). We expect $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ to intersect the Poincaré map unstable manifold $W^u(\gamma_1)$ transversely and it follows from the lambda lemma (Guckenheimer and Holmes 1986) that portions of $\hat{W}_n^u \cap \Sigma_{r_{nk}} = m^{\infty}(\hat{W}_n^u \cap \Sigma_{r_{nk}})$ tend to the fractal $W^T(\gamma_1)$ as m tends to infinity. Thus $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is a truncated fractal of increasing complexity as T tends to $-\infty$. It is consistent for \hat{W}_n^u to be an embedded submanifold and to be "asymptotically fractal" as time tends to $-\infty$. (Fractal basin boundaries require an infinite time to evolve (Dobson 1989b) and $\hat{W}_n^u \cap \Sigma_{r_{nk}}$ is not fractal because it has only evolved for a finite time.)

4. Example: Impulsive Forcing at Time Zero

One instructive special case assumes forcing that is zero for negative time. The basin boundary at time $\tau < 0$ can then be determined by integrating the basin boundary at time zero backward for time $|\tau|$. Since the forcing is off during this period, the vector field integrated backward is just that of the unforced pendulum, and it is therefore easy to observe the folding and stretching of the boundary during the backward integration. In fact, the asymptotic behavior as τ tends to $-\infty$ is specified completely within a bounded region by the intersections of the basin boundary at time zero with the unstable manifolds $W^u_{m, n}$, $m \in \mathbb{Z}$, of the saddles of the unforced pendulum. Much of the possible complexity of the basin boundary is due to the fact that a single connected basin boundary at time zero can tend to several of the stable manifolds of the unforced pendulum as time tends to $-\infty$.

We present the case of a pendulum forced by a single impulse at time zero to show by elementary methods how the folding and stretching of the boundary may arise. In particular, this example can exhibit tongues and striations similar to those occurring in the more analytically difficult case studied with simulation by Varghese and Thorp (1988a). We show the effect of an impulsive forcing $f(t) = g(t)$ at time zero for various forcing strengths g to illustrate how different possible qualitative behaviors depend on the intersections of $\hat{W}_n^s \cap \Sigma_{\tau = 0}$ with $\hat{W}_{m, n}^s$, $m \in \mathbb{Z}$. (We write δ for the unit impulse.) One advantage of considering impulsive forcing is that the effect of the forcing on $\hat{W}_n^u \cap \Sigma_{\tau = 0}$ is easy to work out; the forcing simply moves $\hat{W}_n^u \cap \Sigma_{\tau = 0}$ in the v direction by a distance g. (An objection to considering impulsive forcing is that δ is not a smooth function as assumed in Section 1. However the results that follow also apply to smooth approximations to δ.)

The conventions for Figures 1–5 are as follows: The representation is qualitative. The equilibria shown are of the unforced pendulum flow X with a horizontal θ-axis and a vertical v-axis. The left hand saddle is at $(-\pi, 0)$, the spiral sink is at $(0, 0)$ and the right hand saddle is at $(\pi, 0)$. The thick solid lines show the stable manifolds $W^s_{0, 1}$ and unstable manifolds $W^u_{0, 1}$ of the saddles. The dashed lines show $\hat{W}_0^u \cap \Sigma_{\tau = 0}$, the basin boundary just before the perturbation. The thin solid lines show $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ for τ negative and large in magnitude. After the perturbation the basin boundary is identical to $W^u_{0, 1}$.

If g is small, then $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ intersects only $W^u_{0, 1}$ as shown in Figure 1 and backward integration yields $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ close to $W^u_{0, 1}$. In fact, all the points of $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ except the intersection with $W^u_{0, 1}$ tend to infinity as τ tends to $-\infty$. However, the part of $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ remaining in any given bounded set becomes C^1 close to $W^u_{0, 1}$ as τ tends to $-\infty$. (This is an application of the lambda lemma (Guckenheimer and Holmes 1986).) Thus a small impulse perturbs the basin boundaries a little but they tend back to their unperturbed positions.

If g is large enough relative to the damping d so that $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ also intersects W^u_{-1} as shown in Figure 2, then the position of $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ in Figure 2 shows how $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ tends to W^u_0 and W^u_{-1} as $\tau \to -\infty$. In addition to a segment of $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ tending to W^u_0 as in the case for small g, there is a long thin "finger" that tends to W^u_{-1}. Further backward integration of $\hat{W}_0^u \cap \Sigma_{\tau = 0}$ yields in the bounded area shown
in Figure 2 two thin solid lines close to W^s_{-1} and one thin solid line close to W^s_0, the connections between these lines having left the bounded area of the figure as they tend to infinity. Thus although $\tilde{W}^s_0 \cap \Sigma_{t=r}$ is always a connected curve, it may appear disconnected on a bounded set because the connecting portions tend to infinity (compare the simulation results of Varghese and Thorp (1988a)).

The effects of successively larger values of g are shown in Figures 3 and 4. The higher number of intersections between $\tilde{W}^u_0 \cap \Sigma_{t=0}$ and W^s_0 and W^u_{-1} causes $\tilde{W}^u_0 \cap \Sigma_{t=r}$ to "wind" around the figure several times staying close to W^s_0 and W^u_{-1}. The winding of $\tilde{W}^u_0 \cap \Sigma_{t=r}$ is caused by the basin of the spiral sink unwinding in backward time. As the number of intersections between $\tilde{W}^u_0 \cap \Sigma_{t=0}$ and W^u_0 and W^u_{-1} grows, so does the number of times $\tilde{W}^u_0 \cap \Sigma_{t=r}$ winds around.

Note that at time r there is a sizable region around the sink of the unforced pendulum at $(0,0)$ that remains in a single basin of the forced pendulum. This follows because the basin boundaries are close to W^s_0 and W^u_{-1} at time r and are bounded away from the sink. However, Figures 2 and 3 differ from Figure 4 since the region lies in the basins of different sinks of the forced pendulum. In Figures 2 and 3 trajectories starting near $(0,0)$ at a negative time are in the basin of the sink $(\theta, \upsilon, r) = (0,0, \infty)$ (this sink is more properly labeled $(\theta, \upsilon, r) = (0,0,0)$). Thus if the pendulum is operated near the sink it will not be dislodged from the basin of that sink by the impulse. On the other hand, in Figure 4 trajectories starting near $(0,0)$ at a negative time are in the basin of the sink $(\theta, \upsilon, r) = (2\pi, 0, \infty)$ since the impulse is large enough to push these trajectories into the basin of attraction of that sink.

Figure 5 shows an exceptional case that represents the transition from the situation of Figure 3 to that of Figure 4. g is adjusted so that $\tilde{W}^s_0 \cap \Sigma_{t=0}$ passes through $(\theta, \upsilon, r) = (0,0,0)$. In this case, the basin boundary winds around forever as time tends to $-\infty$ and every neighborhood of $(0,0,s), s < 0$, intersects a basin boundary.
and two basins. The effects of this particular forcing are not confined to increasingly small strips near W^s_α, $m \in \mathbb{Z}$, as time tends to $-\infty$.

We have considered the pendulum forced with an impulse by studying basin boundaries as they evolve in backward time. The phenomena can also be understood from the point of view of the basins evolving in backward time or trajectories in forward time. The approach using basins rather than basin boundaries evolving in backward time requires a slight shift in perception, but is worth describing. The effect of the backward integration in Figure 2 can be perceived as grasping a small area of the basin of $(2\pi, 0, \infty)$ at time zero and stretching it out into a long finger by time τ. (Think of the basins as made of putty.)

The basin boundary at time τ in Figure 2 can be discussed in terms of trajectories. Most trajectories starting at time τ in the basin of $(0, 0, \infty)$ for the forced pendulum are in the basin of $(0, 0, \infty)$ for the forced pendulum. Since τ is a negative time of large magnitude, most such trajectories move close enough to the sink before the impulse at time zero so that they are not perturbed into the next basin. However, since trajectories can take an arbitrarily long time to pass close to a saddle, trajectories near W^u_α and W^u_ω may take so long to pass their saddle that they arrive sufficiently far from the sink at time $0-$ for the impulse to perturb them to the next basin. This explains why the basin boundaries at time τ are usually so close to W^s_α and W^s_ω.

We remark that a pendulum forced with a periodic series of impulses of equal strength but alternating sign can be analyzed in a similar manner to the example above so that the formation of a true fractal basin boundary can be observed using elementary methods.

5. Perturbation Methods

The stable manifolds of basin boundaries may be constructed by perturbation methods if different assumptions are made on the forcing function f. The new assumptions on f are that the conditions (3) on the size and rate of decay of f are replaced by the condition that f is smooth and sufficiently C^1 small.

The vector field
\[
(\theta, v, i) = (v, -\sin \theta - dv, 1), \quad (\theta, v, i) \in \mathbb{R}^3,
\]
(10)
is the time suspension of the damped, unforced pendulum (1). Vector field (10) has uniformly hyperbolic orbits $((2n + 1)\pi, 0) \times \mathbb{R}$, $n \in \mathbb{Z}$. (Anosov 1967) and Lerman and Shil’nikov (1992) refer to the uniformly hyperbolic property as an exponential dichotomy of solutions.) The orbits $((2n + 1)\pi, 0) \times \mathbb{R}$ have the cylindrical stable manifolds $W^s_{\alpha} \times \mathbb{R}$. Then a version of the Hadamard–Perron theorem (Anosov 1967) proves that this structure is preserved when the small forcing f is included. That is, there is an orbit of the perturbed system (2) C^1 close to $((2n + 1)\pi, 0) \times \mathbb{R}$ which has a stable manifold. If the conditions (3) on the decay of f are also satisfied, then this stable manifold must correspond to the stable manifold W^s_α constructed above.

6. Conclusions

We study the qualitative properties of basin boundaries for the pendulum with nonperiodic forcing. The forcing is assumed to be smooth and has its norm and the norm of its derivative bounded asymptotically by an exponential decay, but is otherwise unrestricted. We present a time coordinate change that allows the basin boundaries to be identified with the 2-dimensional stable manifolds \tilde{W}^s_n, $n \in \mathbb{Z}$, of hyperbolic equilibria in the middle of a 3-dimensional state space. This transformation allows us to apply dynamical systems techniques to study the basin boundaries. In particular, the basin boundaries are C^1 embedded submanifolds and hence cannot be true fractals. However, the example in Section 3 and the simulation results of Varghese and Thorp (1988a) show that the basin boundaries can be truncated fractals. The complexity of these basin boundaries shows the difficulty of devising general means of calculating basin boundaries even in low dimensional examples. It is natural to study the intersection $\tilde{W}^s_n \cap \Sigma_{\text{start}}$ of the basin boundary \tilde{W}^s_n with a state space slice Σ_{start} of constant initial time τ, $\tilde{W}^s_n \cap \Sigma_{\text{start}}$, is a C^1 embedding of \mathbb{R} in Σ_{start}. In particular $\tilde{W}^s_n \cap \Sigma_{\text{start}}$, which may appear disconnected in simulations (Varghese and Thorp 1988a), is in fact connected. The intricate stretching and folding of the basin boundary for some forcings can be attributed to stretching and folding of $\tilde{W}^s_n \cap \Sigma_{\text{start}}$ within the time slice as time τ changes. The tongues and striations arising in the simulations of Varghese and Thorp (1988a) also arise in the much simpler setting of the impulsively forced pendulum, and their formation is more transparent in that context. The time coordinate transformation of the forced pendulum yields both analytic and conceptual benefits. It allows the qualitative nature of the basin boundary to be analyzed rigorously for a general class of forcing, and permits the formation of complicated basin boundaries to be understood more simply for particular types of forcing.

Appendix

Lemma 1. \tilde{W}^s_n is a C^1 embedded submanifold of \mathbb{R}^3.

Proof. We begin by using the stable manifold theorem to construct the local stable manifold $W^s_{\alpha,n}$ in a neighborhood M_1 of $((2n + 1)\pi, 0, 0)$. The construction (Palis and DeMelo 1982, Proposition 6.1 and Theorem 6.2) ensures that $W^s_{\alpha,n}$ is C^1 embedded in M_1.

Now we restrict our attention to the vector field X on Σ_{start}. X is given by $X(\theta', v) = (v, \sin \theta' - dv, 1)$, where θ' is the coordinate $\theta' = \theta - (2n + 1)\pi$. We construct a closed parallelogram A in $M_1 \cap \Sigma_{\text{start}}$ containing $((2n + 1)\pi, 0, 0)$ with edges transverse to X. The edges of A are perpendicular to the eigenvectors $(-\lambda_1, 1, 0)$ of $D\tilde{X}(0,0)\Sigma_{\text{start}}$ so that the flow of $DX_{(0,0)}$ is transverse to the edges of A. If A is sufficiently small, X is sufficiently close to $DX_{(0,0)}$ in A and is also transverse to the edges of A. The details of the construction of A follow:

The eigenvalues of $DX_{(0,0)}$ satisfy $\lambda^2 + d\lambda - 1 = 0$ and are $\lambda_1 = -d/2 + \sqrt{1 + d^2}/4$ and $\lambda_2 = -d/2 - \sqrt{1 + d^2}/4$. The edges of A, $\partial A_{\lambda_1}^-$ and $\partial A_{\lambda_2}^+$ are determined by the straight lines $-\lambda_1 \theta' + v = \pm n$ and $-\lambda_2 \theta' + v = \pm n$, respectively. X is transverse to
transversality. Backward integration of \(\dot{X} \) for \(t = k - \rho \) shows that \(\dot{X} \) is nonempty for any positive \(k \in \mathbb{R} \) and the argument for negative \(k \) is similar. \(\dot{X} \) intersects \(\Sigma_{\text{trans}} \) transversely for \(k \neq 0 \) because \(\dot{X} \) is transverse to \(\Sigma_{\text{trans}} \) for \(k \neq 0 \) and \(\dot{X} \) is invariant.

\[\Box \]

Lemma 3. There is a \(C^1 \) diffeomorphism preserving the \(r \) coordinate and making \(\dot{X}_n \) a hyperplane in a neighborhood \(B \) of \((2n + 1)\pi, 0, 0 \).

Proof. The proof uses a standard technique from Warner (1983, Proposition 1.35). \(\dot{X}_n \) is a smooth embedding \(\sigma \in \mathbb{R} \) in \(\mathbb{R}^3 \) and it is easy to check that \(\dot{X}_n : \mathbb{R} \rightarrow \mathbb{R} \) is regular. Define a new coordinate system for \(\mathbb{R}^3 \) by \((\theta', \nu', \nu') = (\theta, \nu - \nu \sin(\theta) \cos(\nu), r) \). The coordinate change is a diffeomorphism since \(d\nu' = d\nu - d\nu \sin(\theta) \cos(\nu) \) and \(d\theta \) implies that the Jacobian is invertible and since for given \(\theta, \nu \) is a monotone and hence globally invertible function on \(\nu \).

\[W_n \] is the straight line \(\nu' = r' = 0 \) in the dashed coordinates \((\nu', \theta) = \nu - \nu \sin(\theta) \cos(\nu) = 0 \). It follows that the vector \((0, 1, 0) \) (in the dashed coordinates) is everywhere transverse to \(W_n \). Since \(\dot{X}_n \) is a surface intersecting \(\Sigma_{\text{trans}} \) transversely at \(W_n \) (Lemma 2), \((0, 1, 0) \) is transverse to \(\dot{X}_n \) everywhere on \(W_n \). Thus if we write \(\phi \) for the \(C^1 \) immersion \(\mathbb{R}^3 \rightarrow \mathbb{R}^3 \) whose image is \(\dot{X}_n \) (see Palis and de Melo (1982, Section 2.6)) and \(\pi \) for the projection \((\theta', \nu', \nu') \rightarrow (\theta, \nu') \) onto \(\mathbb{R}^2 \), then \(\pi \) is regular on \(\phi^{-1}(W_n) \), Lemma 1 implies that \(\phi \) is a \(C^1 \) embedding.

There is a neighborhood \(\dot{M} \) of \(\phi^{-1}(W_n) \) in \(\mathbb{R}^2 \) such that \(\pi \) is regular on \(\dot{M} \). Since \(\phi \) is an embedding, \(\phi(M) \) is open in the induced topology on \(\dot{X}_n \) and there is a neighborhood \(B \) of \(\phi(M) \) in \(\mathbb{R}^3 \) such that \(B \cap \dot{X}_n = \phi(M) \). Change coordinates in \(B \) according to \((\theta', \nu', \nu') \rightarrow (\theta', \nu' - \nu' \sin(\theta) \cos(\nu), \nu') \). This coordinate change also has an invertible Jacobian and is a diffeomorphism if \(B \) is shrunk as required. In the dashed coordinates on \(B, W_n \cap N \) is given by the hyperplane \(\nu' = 0 \). Note that both coordinate changes are \(C^1 \) diffeomorphisms and preserve the \(r \) coordinate.

Lemma 4. \(\dot{X}_n \cap \Sigma_{\text{trans}} \) is a \(C^1 \) embedding of \(\mathbb{R} \) into \(\Sigma_{\text{trans}} \) for all \(k \in \mathbb{R} \).

Proof. Lemmas 1 and 2 imply that \(\dot{X}_n \) and \(\Sigma_{\text{trans}} \) are \(C^1 \) embedded 2-dimensional submanifolds of \(\mathbb{R}^3 \) with nonempty transversal intersection. It follows that \(\dot{X}_n \cap \Sigma_{\text{trans}} \) is a \(C^1 \) embedded 1-dimensional submanifold of \(\Sigma_{\text{trans}} \) (Warner 1983, Theorem 1.39).

Now we show that \(\dot{X}_n \cap \Sigma_{\text{trans}} \) is path connected. Choose the neighborhood \(B \) of \((2n + 1)\pi, 0, 0 \) in Lemma 3 so that it is a ball in the new coordinates of Lemma 3. Choose \(x, y \in \dot{X}_n \cap \Sigma_{\text{trans}} \). There exists \(T \in \mathbb{R} \) such that \(\dot{X}_T(x), \dot{X}_T(y) \in B \). Moreover, since the \(r \) dynamics do not depend on \(\theta \) and \(\nu \), \(\dot{X}_T(x), \dot{X}_T(y) \in B \cap \Sigma_{\text{trans}} \), where \(\rho = e^{-\nu'\tau/2} \). The coordinate change of Lemma 3 preserves \(\Sigma_{\text{trans}} \) and makes \(\dot{X}_n \cap B \) a plane and \(B \) convex. Hence there is a path in \(\dot{X}_n \cap \Sigma_{\text{trans}} \cap B \) joining \(\dot{X}_T(x) \) and \(\dot{X}_T(y) \). The image under \(\dot{X}_T \) of this path is a path in \(\dot{X}_n \cap \Sigma_{\text{trans}} \cap x, y \). Since \(\dot{X}_n \cap \Sigma_{\text{trans}} \) is a connected and \(C^1 \) embedded 1-dimensional submanifold, the classification theorem for one-manifolds (Milnor (1981)) shows that \(\dot{X}_n \cap \Sigma_{\text{trans}} \) is an embedding either of \(\mathbb{R} \) or of \(S^1 \) into \(\Sigma_{\text{trans}} \). However, if \(\dot{X}_n \cap \Sigma_{\text{trans}} \) were an embedding of \(S^1 \) into \(\Sigma_{\text{trans}} \), then it would be compact and there would exist a time \(T \in \mathbb{R} \) such that \(\dot{X}_T \) is a plane in the coordinates.

\[\Box \]
of Lemma 3 and so \(\bar{W} \cap \Sigma_{\text{exp}} \cap B \) is a line segment, implying that \(\bar{X} \) would be a diffeomorphism mapping \(S^1 \) into a line segment, which is impossible. Therefore, \(\bar{W} \cap \Sigma_{\text{exp}} \) is a \(C^1 \) embedding of \(R \) into \(\Sigma_{\text{exp}} \).

Acknowledgments

We thank M. Varghese and J. S. Thorp for useful discussions. We thank Steve Wiggins and an anonymous reviewer for suggestions and references on perturbation theory. This research was supported in part by the National Science Foundation under grants ECS-83-52211 and ECS-91-57192 and by the Army Research Office through the Mathematical Sciences Institute at Cornell University.

References

Transport in 3D Volume-Preserving Flows

R. S. MacKay
Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Received January 26, 1993; revised manuscript accepted for publication October 18, 1993 Communicated by Stephen Wiggins

Summary. The idea of surfaces of locally minimal flux is introduced as a key concept for understanding transport in steady three-dimensional, volume-preserving flows. Particular attention is paid to the role of the skeleton formed by the equilibrium points, selected hyperbolic periodic orbits and cantori and connecting orbits, to which many surfaces of locally minimal flux can be attached. Applications are given to spheromaks (spherical vortices) and eccentric Taylor–Couette Flow.

Key words. volume-preserving flows, skeleton, locally minimal flux, sneaky returns

AMS Subject Classifications. 58F11

1. Introduction

What is the fraction of the fluid originally in a region \(R_1 \), which is in region \(R_2 \) at time \(t \)? This is the basic transport question. It is non-trivial to answer even for steady flows. It is a question of considerable importance for applications where mixing is desired, or where it is to be minimised.\(^1\)

In this paper I review some standard notions for volume-preserving flows and introduce some new ideas. All the concepts are illustrated by application to two important examples.

The mathematical framework to be taken is that of a steady \(C^1 \) divergence-free vector field \(\mathbf{u}(x) \) in a 3D region \(\Omega \). The principal example is the velocity field for an incompressible fluid flow. The same mathematics also applies, however, to the mass flux \(\mathbf{J} = \rho \mathbf{u} \) for a steady compressible fluid flow \(\mathbf{u} \) with density \(\rho(x) \), or the vorticity field \(\omega = \nabla \times \mathbf{u} \) of a fluid flow \(\mathbf{u} \), a magnetic field \(\mathbf{B} \), a steady current field, \(\mathbf{j} \), the vector

\(^1\) Note, however, that mixing and transport are not synonyms. Mixing depends on small-scale stretching (Lyapunov exponents), whereas transport has to do with large-scale movement.