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ABSTRACT

We generalize an analytically solvable probabilistic model
of cascading failure in which failing components interact
with other components by increasing their load and hence
their chance of failure. In the generalized model, instead of
a failing component increasing the load of all components,
it increases the load of a random sample of the components.
The size of the sample describes the extent of component
interactions within the system. The generalized model is ap-
proximated by a saturating branching process and this leads
to a criticality condition for cascading failure propagation
that depends on the size of the sample. The criticality con-
dition shows how the extent of component interactions con-
trols the proximity to catastrophic cascading failure. Im-
plications for the complexity of power transmission system
design to avoid cascading blackouts are briefly discussed.

1. INTRODUCTION

Industrialized society depends heavily on complicated in-
frastructure systems with many interconnected components.
These infrastructures can suffer widespread failures when
stressed components fail successively, with each failure fur-
ther stressing the system and making further failures more
likely. For example, a long, intricate cascade of events caused
the August 2003 blackout of a substantial portion of the
electrical power system of Northeastern North America af-
fecting fifty million people. The vital importance of the
electrical power infrastructure to society motivates the study
of models that capture salient features of cascading failure.
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Previous work [3, 4, 5] introduced a probabilistic model
of cascading failure with a large number of identical com-
ponents called CASCADE. The components fail when their
load exceeds a threshold, and become more loaded when
any other component fails. The components initially have a
random load and the cascade is started by an initial distur-
bance increasing the loading of all components. The num-
ber of components failed is a measure of the size of the cas-
cade and it has an analytic probability distribution (a satu-
rating form of the quasibinomial distribution). The CAS-
CADE model can be approximated by a saturating Poisson
branching process [6] and the relation of these models to
cascading failure in simulated blackouts of power transmis-
sion systems is studied in [2, 3]. CASCADE is an abstract
model of cascading failure and one of its purposes is help-
ing to explain the results of power system models of cascad-
ing failure blackouts that represent the transmission network
and generation redispatch [1, 3].

The CASCADE model (and its branching process ap-
proximation) show interesting behavior as the average ini-
tial component load is increased. In one scenario, as this
loading is increased, the average number of failures sharply
increases at a critical loading. Moreover, at this critical
loading, the probability distribution of the number of fail-
ures has a power tail of exponent approximately —1.5. The
critical loading marks a phase transition and an operational
boundary with respect to cascading failure. That is, the risk
of cascading failure becomes significant at or above the crit-
ical loading. Studying this criticality and finding ways to
monitor and detect the corresponding criticality in more de-
tailed simulation models or in real infrastructure systems is
a promising new direction of research [6, 2].

One significant limitation of the CASCADE model is
the assumption that all components interact. That is, when
one component fails, the loading of all other components
is increased. In applications such as blackouts, many thou-
sands of components can interact by a variety of mecha-
nisms and the interactions can sometimes span the entire
system. However, it is more realistic to assume that when
one component fails, it interacts with only a subset of the



other components. This paper generalizes the CASCADE
model to this limited interaction case and derives the new
criticality condition from the branching process approxi-
mation to the generalized model. The result has implica-
tions for the interesting question of whether new system
technologies that improve system performance by increased
communication and coordination between system compo-
nents introduce many unlikely failure modes that could in-
crease the risk of catastrophic cascading failure [8].

2. CASCADE MODEL WITH k INTERACTIONS

This section summarizes the generalized CASCADE model.
There are n identical components with random initial loads.
For each component the minimum initial load is L™ and
the maximum initial load is L™#*. Component j has initial
load L; that is a random variable uniformly distributed in
[Lmin [max] [, Ly, ---, L, are independent.

Components fail when their load exceeds L™i!. When a
component fails, a fixed amount of load P is transferred to
k samples of the n components. The sampling is uniform
so that the probability of choosing a particular component
is 1/n and the components are sampled independently and
with replacement. Moreover, the k samples are chosen in-
dependently for each failure.

To start the cascade, an initial disturbance loads & sam-
ples of the components by an additional amount D. Other
components may then fail depending on their initial loads
L; and the failure of each of these components will dis-
tribute an additional load P > 0 that can cause further fail-
ures in a cascade.

It is useful to normalize the model so that L™ becomes
zero and both L™2* and L become one [4, 5]. The nor-
malized initial load ¢; = (L; — L™)/(L™ax — L™in) g0
that ¢; is a random variable uniformly distributed on [0, 1].
Let

P D + [max _ Lfail
p=———— d= :
Lmax _ Lmln Lmax _ Lmln

&)

Then p is the amount of load increase on any component
when one other component fails expressed as a fraction of
the load range L™** — L™"  ( is the initial disturbance
shifted by L™2* — Lfail expressed as a fraction of the load
range. (The shift ensures that the failure load is one [4, 5].)
The model produces failures in stages ¢ = 0,1,2,...
where M; is the number of failures in stage 7. It is conve-
nient to state the normalized version of the algorithm. This
can be obtained from [4] by adding the random sampling.

Algorithm for normalized CASCADE with k interactions
0. All n components are initially unfailed and have ini-

tial loads ¢1,¢s,--- , ¢, determined as independent
random variables uniformly distributed in [0, 1].

1. Uniformly sample components k times independently
with replacement and add the initial disturbance d to
the load of a component each time it is sampled. Ini-
tialize the stage counter  to zero.

2. Test each unfailed component for failure: For j =
1,...,n, if component j is unfailed and its load > 1
then component j fails. Suppose that M; components
fail in this step.

3. Independently for each of the M, failures, uniformly
sample components k times independently with re-
placement and add p to the load of a component each
time it is sampled.

4. Increment the stage counter ¢ and go to step 2.

3. BRANCHING PROCESS APPROXIMATION

In a Poisson branching process model of cascading failure,
failures are produced in stages. Each failure at a given stage
produces further next stage failures independently accord-
ing to a Poisson distribution of rate A. This section derives
the Poisson branching process approximation of the gener-
alized CASCADE model and shows that A = kp. Thus
A = kp governs the propagation of failures in the cascading
process. The implications are discussed in section 4. Those
readers interested in the details of the approximation in this
section should read the simpler case in [6] first.

Consider the end of step 2 of stage 7 > 1 in the CAS-
CADE algorithm. The failures that have occurred are My =
mo, M1 = my, ..., M; = m;, but component loads have not
yet been incremented in the following step 3. Let T; be the
number of times component j is sampled in the km; sam-
ples of step 3 of stage 7. Then the marginal distributions of
Tj;,j = 1,...,n are binomial so that

] 1 t 1 km;—t

Var[Tjj, | Mi = mi] = (km7/n)(1 — l/n) (4)
Write Zni = (TM‘,TQZ‘, ,TT,L),
M'L‘ = (MO;Mla "‘7M’L'); Iz = (InOvInlv "'717”',)7

Si = MO +M1 + ...+ Mi, Eji =1j1 +Tj2 =+ ... +Tji7
and use the corresponding lower case notation for the sym-
bols m;, s;, t,,;, t; and oj;. The complete history of the
component sampling at step 3 of stage 7 is T, = ¢;.

Define oj; and the saturation function ¢ as

0  ;component j failed before stage ¢
aj; = Pt . component j unfailed at
1—dtjo — poji-1) beginning of stage i
0;2<0
pz)=qz;0<zx<1
l;z2>1



Consider unfailed component j and suppose its total stage ¢,
step 2 additional load dt;o + poj;—1) < 1. Then, when
conditioned on T';_; = t,_;, the load of component j is
uniformly distributed in [dt;o + poj(;—1), 1]. In the follow-
ing step 3, the probability that the load increment of pt;;
causes component j to fail is ¢(ay;). Now suppose that
dtjo + poj—1) = 1. Then the probability that component
j fails is ¢(evj;) = 1.

When conditioned on T'; = ¢, the component failures
in step 2 of stage ¢ + 1 are independent and hence M, has
generating function

n

=10+ = De(e;:) )

J=1

= mj1|M,]

Ee#Mit1lL]

Since P[Mi+1

= Z P[M; 41
ti

=mi1|M;, T; = t,|P[T; = t;|M,]

= P[Miyy = min|T; = t;|P[T; = t,|M,] ,
t;
Ee#Mit11M;] ZEeZ[M’“‘T P[T; = t,|M,]
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Define in = dtjo + poji. Then in >1 <— pti; >

'“;“M '_

(2 = D)¢p(ci)) PTyi = tji| M,].

1 —dtjo — poji—1) <= ¢(aj;) = 1. Using (3) and (4),
kd + kps;
BX;: | M| = = ™
kd? + kp®s; 1
Var[X,, | M,] = T(1—5) @®)

It is convenient to renumber the components so that compo-

nents 1,2, ...,.5; are the S; components that have failed in
previous stages. Then «;; = 0 for j = 1,2, ...,.5;. More-
n
over A; = H Bj; where
j=8Si+1
=> [(1 + (2 = D) P[Tji = tji, Xy < 1|M,]

tji
+2P[Ty; = tji, Xji > 1‘Mi]}

E[T;:| X < 1,M,
1 —dtjo — poji-1)

PIXj; < 1|M;] + 2P[X;; > 1|M,] ©)

Let kp = X and kd = 6 and k/n be fixed and let n, k — oo
and p,d — 0. If E[X;] < 1,using (7), (8) and (3),

P[X;; > 1|M,;] < P[|X;; — E[Xji]| > |1 — E[X ]| [M]
Var[X i |M,] (n/k) (0% + Asi) 0
T (1= EXG M2 T (n—0 = Asi)?

and E[Tji|in < 17Mi] — E[Tji |Mz] = kmz/n
Similarly, if E[X;;] > 1, P[X;; < 1| M,] — 0.
Thus P[X]Z < 1‘M1] — I[E[X]Z] < 1] and

Bji ~ (1+ Zn;l/\mi)I[E[in] < 1] + 2I[E[X;] > 1].

Now E[Xﬂ] <1
0+ As; < n.

If s; < (n—0)/X,since (1+ 22 Am;)" = — ermi(z=1)
A; — e*i(z=1)  Moreover, since the limit of A; is inde-
pendent of t;_1, (6) implies that Ee*[Mi+11M;] _, pAmi(z—1)
If s; > (n—0)/\, A; — 2" % Therefore, similarly to [6],
we can approximate

<~ kd/n+ kpsi/n < 1 —

EeAMip1|M;=m,]

=i =i

[eAmi(Zfl)]T 4 s (1 _ [emi)\(zfl)]T (1));
8; > (n — 9)/)\.

where [p(z)]T denotes terms of p(z ) of degree <n—s; — 1.
Since emiMsTD = (eAs—1) ) , (10) is the distribu-
tion of the sum of m; independent P01sson random variables
with rate A with saturation occurring when the total number
of failures exceeds n [6]. Thus we can consider each fail-
ure as independently causing other failures in the next stage
according to a saturating Poisson Galton-Watson branching
process with rate A = kp. (This result is the same for the
original CASCADE model, except that in the original CAS-
CADE model, A = np [6].)
The failures produced by the initial disturbance when
= 0 can also be approximated by a saturating Poisson
distribution with rate 6.

n—=s;.
z )

4. CRITICALITY CONDITION & IMPLICATIONS

Galton-Watson branching processes proceed in stages to ran-
domly generate an average of ) failures from each failure in
the previous stage. It is well known [7] that the criticality
condition for branching processes is A = 1, and this conclu-
sion also applies to saturating branching processes [6] and
in particular to the saturating branching process derived in
the previous section. A governs the propagation of failures
so that for A < 1 the propagation of failures is likely to be
limited, whereas for A > 1 there is a high probability of
propagation of failures to the entire system. Thus criticality
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Fig. 1. Average number of failures versus pk as p is varied
showing change in gradient at critical point pk=1. There are
n=1000 components and the sample size £=100.

in the generalized CASCADE model occurs approximately
at

A=kp=1 1D

Simulations of the generalized CASCADE model con-
firm (11). Figure 1 shows the sharp change at kp = 1 in the
rate of increase of average number of components failed as
initial average load is increased. (According to (1), fixing
L™a* and increasing average initial load (L™&* + L™in) /2
by increasing L™ increases p.) Figure 2 shows the power
tail at criticality at kp = 1.

As explained in [6], the risk of cascading failure in these
models can be minimized by fixing a design limit A, < 1
and requiring A = kp < Apmax. Then,evenif p is very small,
large k can cause cascading failure. This suggests that nu-
merous rare interactions between many components can be
equally influential in causing cascading failure as a smaller
number of likely interactions. Indeed, one can deduce that
a design change that introduces a very large number of un-
likely failure interactions, thus greatly increasing k, could
greatly increase the risk of cascading failure, despite the
rarity of the failures (low p). It is conceivable that coupling
infrastructures together such as controlling the power trans-
mission system over an internet or certain types of global
control schemes could make the system more vulnerable to
cascading failure in this fashion. Note that many traditional
power system controls are designed to reduce interactions
by deliberate separation in distance, frequency, and time
scale. Thus the reliability concerns for the effect on cas-
cading failure risk of complicated interconnecting solutions
raised by (11) may be consistent with traditional power en-
gineering practice. Our analysis of cascading failure risk is
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Fig. 2. Probability distribution of number of failures on log-
log plot at criticality kp=1. There are n=1000 components.

indeed highly approximate and global in nature, but it starts
to quantify trade-offs of complexity versus reliability in en-
gineering large networked systems.
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