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SCIENCE

P
Representation and simulation of AC/DC convertor
systems using fixed and varying electrical axes

|. Dobson, MA
NOTICE: This MATERIAL MAY
RE PROTECTED BY N
Car enbtLan (Title 47 US Coas
Indexing terms. AMarhematical techniques. Simulation. Convertors. Power electronics

Abstract: An electrical axes formulation of Kron's
tensor analysis is presented and applied to the
representation and digital simulation of AC/DC
bridge convertor systems. The electrical, trans-
former. and switching connections of a general
convertor system are represented as fixed and
varying electrical axes so that the system equa-
tions may be automatically formed and solved.
The resulting general switching circuit simulation
is capable of analysing transients in 12-pulse con-
vertor systems with nonideal loads. The circuit
theory used in deriving the simulation is sugges-
tive of useful methods of describing and visual-
ising convertor system phenomena.

List of principal symbols and conventions

Vectors and tensors

] = currents

voltages (total)

voltages across voltage sources

voltages across nonconducting

devices

resistance tensor

inductance tensor

= connection matrix (the example shown relates
the U and W axes)

AL
[

Il

switching

oRul-
(!

x €

Axes systems

= primitive axes system (distinguished from a

connection matrix by the lack of indices)

= basis for circuit currents

= varying basis for circuit currents

= basis for switched circuit currents

= axes used to calculate voltages across noncon-
ducting switching devices

Ul, U2 = axes systems intermediate between C and W

N switching constraint axes; a subset of the C

axes

Dual axes systems are indicated by dashes: M is the axes

system dual to M

A vector expressed relative to the M axes is indicated by

superscript m

A vector expressed relative to the M’ axes is indicated by

subscript m
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|
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For example:

™ = column vector containing the M-co-ordinates of { ‘
e, = row vector containing the M'-co-ordinates of e
Individual components of vectors are indicated with
round brackets:

™(2) = second component of i"

A summation convention applies if the same index
appears twice in a product, first as a subscript and then
further to the right as a superscript

For example:

e, im =Y e, (i)

a

Other symbols

t = time

p = differentiation with respect to time
y = switched circuit state vector

I = unit matrix

g = number of circuit coils

1 Introduction

Detailed calculations of the performance of AC/DC
bridge convertor systems by standard techniques is made
difficult by the frequent switching of the bridge diodes or
thyristors. For example, consider calculating the transient
response of a 12-pulse convertor system with a varying
load current; it is supposed that the AC phases and indi-
vidual switching devices are explicitly represented but
that nonlinear transformer effects and detailed semicon-
ductor effects are neglected. Hand calculations for 12-
pulse systems at this level of detail are limited to idealised
steady-state conditions and are impractical for the precise
determination of transients. Computer simulation is pos-
sible, but care must be taken to represent the circuit
switching so that the system differential equations may be
obtained and solved effectively. The number of active
switching elements, the great variety of possible conduc-
tion patterns and output processing problems generally
make the use of conventional circuit analysis packages
difficult; simulation taking special account of the switch-
ing processes is indicated.

Previous authors have successfully simulated 6-pulse
representations of convertor systems at this level of detail
[1, 2] using Kron’s tensor analysis [3, 4]. However, these
simulations are specific to particular 6-pulse circuit con-
figurations and do not represent the phase shift trans-
former connections necessary for 12-pulse systems. This
paper approaches the simulation of 12-pulse bridge con-
vertor systems by considering the more general problem
of simulation of a switching circuit with any arrangement
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of impedances, voltage sources, transformers, and switch-
ing devices such as thyristors and diodes. Tensor analysis
techniques due to Kron are formulated in terms of clec-
trical axes and generally applied to represent bridge con-
vertor systems and derive the simulation equations. The
general approach requires a careful treatment of the fun-
damentals of applying tensors to elementary circuit
theory so that, for example, engineering concepts such as
system constraints or degrees of freedom may be dis-
cussed with reference to a general switching circuit. The
main advantage of the general approach is that the
resulting simulation is potentially useful for the analysis
of a wide range of switching circuits, including the
various 6-pulse and 12-pulse configurations of AC/DC
convertor systems. Moreover, the circuit theory used in
deriving the simulation is a coherent framework for
analysis of AC/DC convertor systems and is suggestive of
useful methods of describing and visualising convertor
system phenomena.

After reviewing the required tensor theory with an
emphasis on the underlying axes systems, the representa-
tion of the electrical and transformer connections of a
convertor system is described with reference to a basic
convertor circuit which includes a 6-pulse diode bridge
and a phase shift transformer. The circuit connections, or,
equivalently, the constraints or degrees of freedom of
circuit currents, may be directly represented and manipu-
lated in terms of electrical axes. The varying axes concept
is first introduced by analysing steady state currents in
6-pulse and 12-pulse examples of convertor systems.
These examples show how varying electrical axes are a
natural choice for describing convertor system currents
and how varying electrical axes may be visualised using
the geometric methods of Reference 5.

Simulation of a general switching circuit is then con-
sidered. The fixed circuit connections are represented by
a fixed choice of electrical axes and the subsequent choice
of varying axes represents the varying circuit connections
due to circuit switchings. Simulation equations for a
general switching circuit may be written conveniently
with respect to the varying axes. The general techniques
developed are illustrated by applying them to a 12-pulse
bridge convertor system with a resistive and inductive
load in parallel with a freewheel diode and a filtering
capacitor. The simulation specification, limitations and
implementation are summarised and the switching power
supply systems which have been analysed with the simu-
lation are indicated.

2 Electrical axes systems

The elementary circuit theory of Kron’s tensor analysis
[3, 4] is presented in terms of the axes system, vector, and
duality concepts of standard linear algebra. Current and
voltage vectors are explained with due attention to the
underlying axes systems and the representation of circuit
constraints and degrees of freedom with suitably chosen
axes is demonstrated. Duality of currents and voltages 1s
used in the mathematical treatment of circuit theory in
Hirsch and Smale [6]. Nering [7] emphasises the advan-
tages of a careful treatment of duality in linear algebra
applications.

2.1 Circuit coils

The circuit to be analysed is considered by Kron to be
composed of interconnected coils, where a coil is a
general circuit element which may contain a resistance,
inductance, voltage source or switching device connected
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in series. Each coil has an orientation so that a positive
direction of current through the coil may be distin-
guished. The number of coils in the circuit is denoted by
q.

2.2 Circuit paths as axes for currents

The basic elements of axes systems for currents are
directed paths through the circuit coils. A directed path
may be specified by a column vector m in which m(2) is
the number of times (positive, negative or zero) the path
passes through coil 2. A set of paths M = (m', m*, ..,
m®} may be specified by placing the column vectors cor-
responding to the M-paths ina g x ¢ connection matrix
C¢ so that

C:(av, B) = number of times path B passes through
coil

Paths may be added to each other or multiplied by a
constant by performing the corresponding operations on
their column vectors. It is useful to choose the set of
M-paths to be independent; that is, so that no M-path is
expressible as a linear combination of the other M-paths.

Consider the special case of paths C = {c', ¢, ..., €%}
in which ¢* passes exactly once through coil a« and
through no other coils. The C-paths are used as a primi-
tive set of paths from which other sets of paths may be
defined. For example, the columns of C, express the
M-paths as linear combinations of C-paths:

q
m =Y Cix, By B=12,....49 (n

2=1
A current of x amperes in path m is written as the pro-
duct xm and is equivalent to currents of xm(x) amperes
in coil % for x = 1, 2, ..., q. The coefficient x specifies the
magnitude of the current and the path m specifies the
distribution of the current in the circuit coils. (Paths may
be used in this way because they behave like dimension-
less unit currents.) For the special case of the C-paths,
xc®, or x amperes in C-path x, specifies a current of x
amperes in coil « and zero current in the other coils. Any
circuit currents may be specified by a suitable linear com-
bination of the C-paths. If the coefficient of ¢* is written

as (), the linear combination is

[ =

x

“(x)c*
1

=

{ta)

where i denotes the circuit currents. More generally, a
linear combination of M-paths may be used to specify
circuit currents. The coefficient of m” is written /(f) and

i= Y r(pmt (1b)
=1

The coefficients (1), M(2), ...

column vector

(1)
o | T

, i"(q) may be listed in the

im(q)
For a given choice of M-paths, a range of circuit currents
may be specified by varying the coefficients /. That s,
the M-paths are an axes system and circuit currents may
be described by the coordinates /" The superscript m
indicates that the vector is expressed relative to the M
axes. In this notation, a distinction is made between the
circuit currents, which are denoted by ¢, and their repre-
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sentation as a list of co-ordinates relative to an axes
system such as M. which is denoted by i 'y

The C-co-ordinates of the current vector form a list of
the currents in the circuit coils and are related to the M-
co-ordinates of the current vector by

q
Floy = Y Cola pimp)y a=1H 2.4
51

which may also be written
i‘=C,i" (2)

using the repeated index to imply the summation. Eqn. 2
may be derived by equating the right-hand sides of eqns.
la and 1b, substituting for m# using eqn. 1, and equating
the C axes coefficients. Eqn. 2 shows how the co-
ordinates of currents may be transformed between two
axes systems by the connection matrix relating the axes
systems.

2.3 Dual paths and constraints on currents

A dual path may be specified by a row vector m’ in which
m'(2) is the number of times the dual path acts on coil a.
A dual path acts on paths to give numerical results; it is
a linear function of paths. The action of dual path m’ on
any path m is given by the matrix product

m(1)

[m'(m'(2), ..., m(q)]
m(q)

A set of dual paths M' = {m), m,, ..., m_} may be speci-

fied by placing the row vectors corresponding to the M’

dual paths in a g x g matrix C7. If a set of axes

M ={m' m? ..., m%} has already been chosen, the M’
axes are chosen to satisfy

. 1 ifa=p
Y. my)mi(y) = .
i1 0 fx#p
Thus m is the function of paths which evaluates to zero
at each of the mf, B = 1. 2, ..., g except for m*, where it
evaluates to unity. Condition 2a may also be written

CcrCs =1 (3)

and the M and M’ axes related in this reciprocal way are
said to be dual to each other. The axes system dual to the
C axes is the set of dual paths C' = {c}, €3, ..., c,} in
which ¢, acts exactly once on coil 2 and does not act on
other coils. The rows of C™ express the M’ dual paths as
linear combinations of the C’ dual paths:

(20)

q
my = 2 ¢, CMB, 1)
a=1
Dual paths may be used as linear constraints on cur-
rents. For example, if coils 1, 2 and 4 are joined in a star
connection, and the positive direction of each coil points
towards the node of the star, Kirchhoff’s current law con-
straint at the node is k = ¢} + ¢ + ¢, or, if expressed as
a vector relative to the " axes, k., =(1 1010... 0). The
application of the constraint to circuit currents i may be
written

k.ic=0 (3a)

Note that a multiple or the negative of k. also describes
the same constraint. The constraint may also be
expressed relative to the M’ axes as k,,, which is related
to k. by

k. =k, C"
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This equation may be multiplied by €y, to give
kC=kn (4)

as a consequence of the duality of M and M’ (eqn. 3).
Eqn. 4 is a plausible formula for computing k,, because

ki = k(C5i™) = (k, Co)i™ = ki

for all possible currents i.

2.4 Dual axes systems for voltages

The expression of voltages relative to dual path axes 1s
similar to the expression of currents relative to path axes.
A voltage of x volts in dual path m’ is written as the
product xm’ and is equivalent to voltages of xm'(a) volts

across coil a for a = 1, 2, ..., g. Circuit voltages e may be
specified by a linear combination of the M’ dual paths as
9
e= ) e (pm; (%)
B=1

The coefficients of the M’ dual paths may be listed in a
row vector as

em = (en(1), €n(2), ..., €x(q))

The M’ dual paths are an axes system and circuit volt-
ages may be described by the coordinates e,,. The sub-
script m indicates that the vector is expressed relative to
the M’ axes. Circuit voltages e expressed relative to the
C' axes are written as e ; e, is a list of the voltages across
the circuit coils.

Voltage co-ordinates transform between the M' and C’
axes according to

e, =e,Cl (5a)

This voltage co-ordinate transformation may be derived
similarly to the current co-ordinate transformation of
eqn. 2. Multiplication by C, and application of the
duality condition 3 gives

eCC:;! = em

(54"

Thus the connection matrix C, transforms voltage co-
ordinates from the C’ to the M’ axes and current co-
ordinates from the M to the C axes (eqn. 2). Derivations
of transformation 5a' in which the proper distinction
between axes and dual axes is not made are confusing
because current and voltage co-ordinates seem, incorrect-
ly, to be referred to a single axes system. The reason for
current and voltage co-ordinates being transformed in
‘opposite directions’ by Cj, is then necessarily unclear.
The approach adopted here allows eqn. 5@’ to be derived
from the standard formula for transforming vector co-
ordinates (eqn. Sa) and the dual relationship between the
two axes systems.

Eqn. 5 expresses the circuit voltages e as a linear com-
bination of the dual paths m'(1), m'(2), ..., m'(q). As dual
paths may be evaluated on paths, e may also be regarded
as a function to be evaluated on paths. Evaluating e at a
path is equivalent to finding the voltage across or around
the path. In particular, the result of evaluating e at path
m® is

q

= ( ) emw)m’n)m" = Y e (Plmym®) = epfa)  (6)
] 1

=1

Eqn. 6 shows that e,(x) may be interpreted as the voltage
across or around the path m®. Given path axes M, circuit
voltages may be specified by the co-ordinates e,,, which
are the voltages around the M-paths as well as the coeffi-
cients of the M'-paths implicitly chosen dual to the M
axes.
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25 Axes, constraints and degrees of freedom

The choosing of axes systems representing circuit con-
straints and degrees of freedom is now considered. An
axes system W with fewer than g axes may be chosen in
which the expressible currents are exactly those satisfying
linear constraints on currents such as Kirchhoff's current
law (KCL).

Suppose, for example, that a circuit has s + 1 nodes so
that s independent KCL constraints may be chosen.
Then any KCL constraint may be expressed as a linear
combination of the s independent constraints. The last s
M’ axes are chosen to be the s independent constraints
and then M axes are chosen to satisfy the duality condi-
tion (eqn. 3) with respect to the last s M’ axes. That is, the
last s rows of C™ are set to the C'-co-ordinates of the s
constraints and then C¢, is required to satisfy

(last s rows of C7) C;, = last s rows of I (6a)

It is convenient to define the W axes to be the first
r = q — s M axes. The following reasoning shows that the
duality condition forces the W axes to be closed paths, or
meshes.

The KCL constraint k at a particular circuit node may
be expressed as a linear combination of the last s M’
axes:

k=Y k@,

a=r+1
The duality condition 6a implies that
kw! =kmfP =0 =12 ...,r

This is the condition that the path w® enters the node the
same number of times as it leaves it. If this argument is
applied to each circuit node, it may be concluded that
each of the W-paths is a mesh. The duality between the
W axes and the last s M’ axes, or the constraints on cur-
rents, requires the W axes to satisfy the constraints, or,
equivalently, to be meshes.

The KCL constraints expressed relative to the M™ axes
are the last s rows of the identity matrix:

0 - 010 0
0 - 001 0
0 - 000 - 1

Therefore the currents satisfying KCL have the last s M-
co-ordinates zero. Moreover, any choice for the W-co-
ordinates (i.e. the first r M-co-ordinates) specifies currents
satisfying the constraints. Each W -co-ordinate specifies
an amount of current and the corresponding W axis
specifies how that current is distributed in the circuit
coils. As the W axes are meshes, the current is distributed
in the circuit coils so that KCL is satisfied. That is, circuit
currents expressible as i satisfy KCL because they may
be written as a linear combination of the W axes, which
themselves satisfy KCL. Each W axis describes a degree
of freedom of circuit currents satisfying KCL.

The W axes not only satisfy KCL: they are indepen-
dent (as the M axes are independent) and equal in
number to the number of degrees of freedom of circuit
currents. Therefore not only do circuit currents express-
ible as ™ satisfy KCL; all currents satisfying KCL may
be expressed as i*. Thus i* is a state vector capable of
completely describing the possible circuit currents with
the minimum number of co-ordinates. An axes system
such as W. with independent axes satisfying the circuit
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constraints and exactly as many axes as there are degrees
of freedom of circuit currents, is called a basis for cur-
rents in the circuit. A basis is a complete and minimal
description of the degrees of freedom of circuit currents
satisfying the circuit constraints; each axis in a basis
describes one of the degrees of freedom. KCL constraints
may be applied by restricting currents to those express-
ible relative to a basis for circuit currents. The method is
not limited to KCL constraints; it may be applied to any
linear constraints on circuit currents.

The W axes are specified relative to the C axes by the
g x r matrix Cf,, which is the first r columns of C,. The
last s M-co-ordinates of currents satisfying KCL, which
are always zero, may be suppressed from the right hand
side of eqn. 2 to give the transformation formula

= CLi

One consequence of the W axes being meshes is that
Kirchhoff's voltage law (K VL), which requires the voltage
around any mesh to be zero, may be expressed by
requiring the circuit voltages e to evaluate to zero on
each W axis:

ew'=0 a=12...,r )

Applying eqn. 6 and noting that the first r M’ axes are
the W' axes allows KVL to be written as

e.=0

Eqn. 7 may also be considered from a point of view in
which the W-meshes are constraints on voltages and act
on the voltages e satisfying KVL to give zero (see also
eqn. 3a in the case of constraints on currents).

The W axes may also be used to represent the voltages
across specific types of circuit components around the
W-meshes; these partial voltages are generally nonzero.
For example, the voltage source voltages ¢> around a
mesh may be nonzero. Eqn. 54’ is also valid for partial
voltages such as ¢’ and the first r columns of eqn. 5a’ give
the transformation law

Sy L8
eC =¢,

A significant symmetry is apparent when axes and dual
axes are chosen to represent circuit constraints and
degrees of freedom. Suppose there are r degrees of
freedom for circuit currents. Then r of the M axes may be
chosen to be independent meshes, which are degrees of
freedom for currents as well as constraints on voltages,
and q — r of the M’ axes may be chosen to be constraints
on currents, which are also degrees of freedom for volt-
ages. The duality condition then determines the choice of
the remaining M and M’ axes.

To summarise, circuit currents and voltages may be
expressed as vectors relative to electrical axes systems.
The axes and dual axes systems may be chosen to
describe precisely the circuit connections, or, equiva-
lently. the constraints and degrees of freedom of the cur-
rents and voltages satisfying Kirchhoff’s laws in the
circuit. The approach is particuiarly suitable for the
analysis of circuits with varying connections due to
switchings. A nonconducting switching device provides a
constraint on the switching device current and a degree
of freedom for the switching device voltage whereas a
conducting switching device provides a degree of freedom
for circuit currents and a constraint on the switching
device voltage. This suggests that the varying circuit con-
nections of a switching circuit may be described by a cor-
respondingly varying axes system.

’r JEE PROCEEDINGS, Vol. 134, Pt A No. L, JANUARY 1987



2.6 Impedance tensors :
Circuit resistance R and inductance L are 2-dimefsional
tensors expressible relative to 2 circuit axes. Circuit
resistance R may be specified relative to the ¢ and C
axes by the diagonal matrix R, in which the diagonal is
a list of the coil resistances. More generally, R, is the
matrix which determines the resistive voltage drops rela-
tive to the U axes due to currents expressed relative to
the W axes to be R, i Both dimensions of the resist-
ance tensor transform like voltages. For example

R,.=R. C,C,
Similar remarks apply to inductance L, except that the

L., matrix may contain off-diagonal elements which are
mutual inductances between coils.

2.7 Example
The simple circuit of Fig. 1 has two independent KCL
A
—
— - — " - -7
w! Ll o1y2 |

AT

BL_____I

Fig.1  Simple example circuit

constraints; these may be chosen as the constraints corre-
sponding to the circuit nodes A and C:

1 1 1 00
1 0 01 1

These two constraints may be chosen to be the last two
M’ axes. As there are five coil currents subject to two
independent constraints, circuit currents have 5 — 2=3
degrees of freedom and three independent W axes may be
chosen dual to and satisfying the constraints. That is, Cy,
has three independent columns satisfying

111 00
C.=0
[oot il

By inspection, a suitable choice for the W axes is

10 0
1 1 0
cc=1 0 -1 0
10 ~1

0 0 1

Meshes are intuitively represented by superimposing
them on the circuit diagram: the W axes are the meshes
shown in Fig. 1.

The choice of the W axes and the last two M’ axes is
sufficient to determine the remaining M and M’ axes by

3.1 Electrical and magnetic connections

The clectrical and magnetic connections are modelled as integer linear constraints on t

duality. (For example, the independence of the M axes
and duality with the last two M' axes determines the last
two M axes.) Hence

[ 1 0 0 % £ ]
—1 10§ -3
c,=1 0 -1 0 3§ -3
-1 0o -1 -4 3

[ 0 O (I S

B R
I B B
cr=l-3 b 1 -t
1 1 1 0 0

| 1 0 0 1 1}

Possible circuit currents and voltages are given by

e.=2 1 1 1 1) e,=020011

¢, =(0 0 0
1 1
0 1 1
= 1-1 m=]-1 ™= 1
0 0 -1
-1 0

The three W axes completely define the circuit connec-
tions in terms of the degrees of freedom of currents (or
constraints on voltages) and the last two M’ axes com-
pletely define the circuit connections in terms of the
degrees of freedom of voltages (or constraints on
currents). Most circuit calculations do not require explicit
calculation of ail the M and M’ axes.

3 Representation of a basic convertor circuit

The representation of the connections and components of
a convertor system is considered in the case of the basic
circuit shown in Fig. 2. The approach presented for this

Fig. 2

Basic convertor circuit

circuit generalises readily to 12-pulse convertor circuits.
The circuit consists of a 3-phase AC supply and phase
shift transformer feeding a 6-pulse diode bridge and a
simple load. The transformer has a 4-limb iron core and
a turns ratio approximating /3 :1. Coils are chosen for
the circuit as shown in Fig. 3.

Dy Dz AD3
ACGE1N 1 PRIM 1 PRIM 3
ACGEN 2
' z 5 Ze
ACGEN 3 PRIM2
Fig.3  Choice of coils for basic convertor circuit

he coil currents. The electrical

connections are given by KCL and may be completely described by an independent set of eight constraints:

IEE PROCEEDINGS, Vol. 134, Pt. A. No. 1, JANUARY 1987
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{ 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16
Irt 0 0 —1 1 1
2lo 1 0 1 -1 0

3lo o 1 0o 1 -1

4 i 0o 0 -1 0 0 1 0 0 0
5 o 1 0 0 -1 0 0 1 0 0
6 o o 1 0 0 -1 0 O0 1 0
7 o 0 0 0 0 0 -1 -1 -1 1
g L {1 1 0 ©o0 0 0 0 0 0.

The coil numbers are shown above the corresponding matrix columns and the constraint numbers are shown next to
the corresponding rows.

The transformer turns ratio is taken to be 26: 15, which approximates \/(3): 1 to within 0.1%. For a 4-limb iron
core transformer, there is for each phase a closed flux path in the iron passing through the primary and secondary
windings of that phase only. By applying the Maxwell-Ampere law around the closed iron path,

. 1
26 (primary current) + 15 (secondary current) = JH dl = - JB dl (10)
I

The idealisation of perfect iron may be obtained by letting the magnetic permeability x tend to infinity. The magnetic
field B remains finite and therefore the right-hand side of eqn. 10 becomes zero. Applying this argument separately to
the three transformer phases yields the transformer magnetic constraints:

1 2 3 4 5 6 7 g 9 10 11 12 13 14 15 16
910 0 26 0 0 15 0 0 0 0 0 0 0 0 0

0
1010 0 0 0 26 0 0 15 0 0 0 0 0 0 0 0
11 1o 0 0 0 0 26 0 0 15 0 0 0 0 0 0 0

The magnetic connections of a general iron cored transformer may be similarly represented by a set of integer linear
constraints in which each constraint corresponds to an independent magnetic circuit mesh.

3.2 Calculation of W axes

The 11 electrical and magnetic constraints completely describe the circuit connections. However, the simulation
requires the connection information in the form of degrees of freedom of currents rather than in the form of constraints
on currents. In terms of axes systems, it is required to calculate C§ defining W axes which are a basis for circuit
currents. As there are 16 coil currents subject to 11 independent constraints, the number of degrees of freedom of the
circuit currents is 16 — 11 = 5. The W axes may be chosen to be any independent set of 5 meshes satisfying the 11
constraints.

In a circuit with electrical constraints only, the W axes may usually be chosen by inspection. However, the axes
choice for a convertor system with complex transformer connections is simplified if a systematic approach is adopted in
which the constraints are successively applied in stages. At each stage, an intermediate axes system satisfying the
constraints applied up to that stage is calculated.

The circuit constraints are grouped as follows:

(a) electrical constraints (constraints 1-7)

(b) magnetic constraints (constraints 9-11)

(c) star connection of transformer windings (constraint 8)

Independent paths satisfying the first seven electrical constraints may be chosen by inspection to form the Ul axes:

1 2 3 4 5 6 7 8 9
1 ACGENI 1 0 -1 "
2 ACGEN2 | —1 1 0
3 ACGEN3 0 -t 1
4 PRIMI 1 0 0
5 PRIM2 0 1 0
6 PRIM3 0 0 1
7 SECI 1 0 0 0 0 0
Ce, = 8 SEC2 0 1 0 0 0 0
: 9 SEC3 0 0 ! 0 0 0
10 D1 1 0 0 1 0 0
1t D2 0 1 0 -1 1 0
12 D3 0 0 1 0 -1 1
13 D4 0 0 0 1 0 0
14 D5 0 0 0 -1 1 0
15 D6 0 0 0 0 -1 1
16 LOAD L 0 0 0 0 0 1]
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The remaining constraints are projected onto the U, axes by transformation with C;;:

y 2 3 4 5 6 71 8 Ao 10 - 16
§fo 0 o0 0 0 0 1 1 {1 0 - 0
9lo o o 26 0 0 15 0 0 O 0]
wlo o o o 26 0 0 15 0 0 ol
mlo o o o o 26 0 0 15 0 0

P2 3 4 5 6 1 8 9
0 0 0 1 1 i 0 0 0
e o o 15 o 0o o 0 0
“lo 26 o 0o 15 0 0 0 O

0 0 26 0 0 15 0 0 0

The axis numbers are shown above the corresponding matrix columns. (Note that applying the first set of constraints
and then applying the projections of the remaining constraints always has the same effect as applying all the constraints
at once.) Choosing the U1 axes so that exactly one axis passes through each transformer winding and postponing the
application of the star constraint ensure that the projected constraints have a simple form.

The magnetic constraints are applied by choosing U2 axes. The calculation is performed relative to the Ul axes to
ensure that the previously applied constraints remain satisfied. An appropriate choice of U2 axes satisfying the mag-
netic constraints is given by

1 2 3 4 5 6
1[-15 0 0 i
2 0 -15 0
3 0 0 -—15
41 26 0 0
Cciy =5 0 26 0
6 0 0 26
7 1 0 0
8 0 1 0
9 L 0 0 )
The remaining star constraint is projected onto the U2 axes:
0 001 1100 0C;=026 2 2 0 0 0

W axes which are a basis for circuit currents may be chosen relative to the U2 axes by choosing meshes satisfying the

star constraint:

1 2
i 1 0
2 0 !
3-1 -1
c =
Y4
5

6

The W axes may be expressed relative to the C axes by calculating

Co=CLCH ey =

00 ~1 O\ b B W=

\O

10
11
12
13
14
15
16

3 4
1 0
0 1
0 0

ACGENI
ACGEN2
ACGEN3
PRIMI
PRIM2
PRIM3
SEC1
SEC2
SEC3
DI

D2

D3

D4

DS

D6
LOAD

5

oS O

1

1

[ —30
15
15
—15
0

15
26

0
—26
26

0
—26
0

0

0

| 0

2
—15
—15

30

0

- 15
15
0
26

—26
0
26

—26

0

0

0

0
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Note that axes w! and w? are meshes which are com-
posed of multiple disjoint loops. Mentally superimposing
w' and w? on the circuit diagram is one way to under-
stand the operation of the phase shift transformer con-
nection.

3.3 Circuit components
The coil resistances and inductances may be specified in
the R, and L, matrices and transformed to the W axes:

RW“‘ = RCC C:\' Cf\'
L,.=L.C.C,

Coils 1, 2 and 3 contain ideal sinusoidal voltage sources;
their voltages are known functions of time.

Each bridge diode is represented by a coil containing
an impedance in series with an ideal diode. (If required,
the forward voltage drop of the diode may be represented
by including a constant voltage source in the coil) The
ideal diode is an on/off switch controlied by its current
and voltage; it switches off (stops conducting) when its
current becomes negative and switches on {conducts)
when its voltage becomes positive. The ideal diode part
of the coil has zero impedance when the diode is on. Fol-
lowing Williams and Smith [1], the off diode is assumed
to have a very large impedance so that the circuit
branches containing off diodes are effectively deleted
from the circuit. The circuit resulting from the deletions 1s
conveniently referred to as the switched circuit.

The idealisation of the diode switching allows the
circuit state to be divided into a discrete and a contin-
uous part; the discrete part, or switching state, describes
the switched circuit by specifying which diodes are off
and the continuous part describes the switched circuit
currents. One of the main tasks of the simulation is to
form and solve the differential equations for each of the
switched circuits arising during the run.

4 Switching axes examples and visualisation

4.1 Varying axes for an ideal 6-pulse convertor
Consider the 6-pulse convertor shown in Fig. 4 operating
in mode 1. The circuit is first supposed to be commutat-
ing with switching state defined by 557, Where 0 indicates
that the diode in the corresponding position is off and 1
indicates that it is on. X axes describing the degrees of
freedom of currents in the switched circuit may be chosen
by

1
[
—

ACGENI1
ACGEN2
ACGEN3
D1
D2
D3
D4
D5
D6
LOAD |

|

—_—— O O O NN N N

l

Q

il
N . NV NV
oo — —- O = =

<
[e)

The x! axis describes the circuit degree of freedom by
which the load current is supplied; it is scaled by a factor
of 4 so that i(1) is equal to the load current. The x? axis
describes the degree of freedom by which the circuit com-
mutates. Moreover, if the AC line impedances are
assumed to be balanced, the X axes describe decoupled
degrees of freedom for currents and remain a convenient
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choice of axes even under transient conditions. This may
be demonstrated by observing that x* is orthogonal to x?

D,X Dz%k D3

ACGEN1
ACGEN 2
LOAD
ACGEN 3
4 EYARNYY
Fig.4  Coils of a 6-pulse AC DC convertor

(their vector dot product is zero) and that balanced AC
line impedances means that the 3 x 3 submatrices of R,
and L. corresponding to the AC line coils are pro-
portional to the identity matrix. As x! and x? intersect
only in the AC line coils, it follows that L. =L, CC;
and R, = R, C,C; are both diagonal. It follows that
(1) and i*(2) are decoupled when the circuit differential
equations are written with respect to the X axes:

L pi+ R, i"+e =0

Thus the progress of the commutating current is decou-
pled from fluctuations in the DC current. (Note, however,
that the start and finish time of the commutation may
depend on all the circuit currents.)

The X axes defined above are convenient for describ-
ing system currents during the commutation in switching
state 319. When the commutation finishes, the switching
state becomes 949, the system reduces to one degree of
freedom and it is convenient to change the X axes to one
axis describing that degree of freedom:

ACGENI 0]
ACGEN?2

ACGEN3
Dl

1
2
3
4
s D2
6
7
8
9

—

D3
D4
DS
D6

10 LOAD L

When the next commutation starts, the switching state
becomes 939 and the degrees of freedom of currents may
be described by two axes:

ACGENI
ACGEN?2
ACGEN3
D1

D2

D3

D4

D5

9 D6

10 LOAD |

_0 —- 0 OO - O -

ed

[ "SR I NS
—_ e O N D — O N

o0 ~1 O

!

o

Similar choices of X axes describing the degrees of
freedom of circuit currents may be made at each switch-
ing in the full cycle of operation. Note how the problem
of specifying circuit currents is conveniently split into first
specifying the X axes. which take account of and describe
the varying circuit connections. and then specifying the
amounts of current tlowing in the axes, or i*. The X axes
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chosen for this 6-pulse example also describe decoupled
degrees of freedom for currents and are therefore Keipful
in imagining the operation of the circuit. Intuition of rec-
tifier phenomena by means of current loops is a natural
procedure: electrical axes methods of circuit analysis cor-
respond exactly to this intuition and may be used to
strengthen the intuition and notate it precisely.

The varying X axes and the circuit currents may be
visualised by projecting them onto the AC hne coils or,
equivalently, projecting them onto the first three C axes.
As interactions in the AC lines account for much of the
circuit behaviour. this projection preserves much of the
information about the circuit dynamics. The star connec-
tion of the AC lines has co-ordinates (11100000 00)
and becomes (1 1 1) when projected onto the AC coils. If
the projected vectors are regarded as points in 3-space.
the star connection constrains the X axes and the AC
line currents to lie in the plane normal to (1 1 1). If a
constant load current is assumed, the trajectory of the
AC line currents in this plane is a regular hexagon
centred on the origin as shown in Fig. 5. (A detailed

C

Fig.5  Trajectory of 6-pulse AC line currents

explanation of this representation 1s given in Reference 5.)
When the bridge is not commutating, the AC line cur-
rents are constant and the trajectory is stationary at one
of the hexagon vertices. During commutation, the con-
stant load current constrains the current vector to tra-
verse a hexagon edge. In the second mode of operation,
in which the start of commutation is delayed until the
previous commutation is finished, the trajectory is similar
except that it does not pause at the hexagon vertices. Fig.
5 also shows the projected X axes when the switching
state is 319. During commutation the AC line currents
traverse hexagon edge AB; it is evident from Fig. 5 that
this motion is conveniently described relative to the X
axes by #*(1) being held fixed at the load current and *(2)
varying from —3% to 4 as the commutation proceeds.
When the switching state becomes gg7, the AC line cur-
rents pauses at hexagon vertex B and the new X axis is
chosen; its projection lies along the line OB. When the
switching state becomes {4}, the AC line currents traverse
hexagon edge BC and the two new X axes have projec-
tions rotated 60° anticlockwise from the axes shown in
Fig. 5. Plotting the projected quantities in the plane of
Fig. 5 shows how the varying choice of X axes simplifies
the dynamics of the circuit currents. Moreover, as the
two X axes used during commutation only intersect in
the AC line coils, orthogonality of the projections of x!
and x? in the plane of Fig. 5 implies the orthogonality of
x! and x? and the consequent decoupling of the system
cquations.

4.2 Varying axes for an ideal 12-pulse convertor
The above analysis extends usefully to 12-pulse conver-
tors [5]. This subsection describes the projected axes and
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AC line currents for the 12-pulse convertor shown in Fig.
6. The decoupling of current degrees of freedom is readily
observable from a diagram of the projected axes despite
the additional complexity of the 12-pulse case.

bridge 2

Fig. 6

12-pulse convertor system

If constant bridge output currents and 12-pulse mode
| or 2 operation is assumed, the currents in the AC lines
individual to each bridge traverse hexagons as shown
in Fig. 7. Hexagon A, B,C, ... is rotatated 30° relative to
hexagon A,B,C, ... by the phase shift of the transformer.
The common AC line currents are the sum of the individ-
ual AC line currents and traverse the regular dodecagon
PQR ... shown in Fig. 7. In mode 1 operation the bridges

-

Fig. 7  Trajectories of 12-pulse AC line currents

commutate alternately and the trajectory pauses at the
dodecagon vertices between commutations. In mode 2
operation, the bridges interact via the common AC line
impedances so that commutations in one bridge are
delayed until commutation in the other bridge has fin-
ished. The dodecagon is then traversed without pauses at
the vertices.

Convenient varying axes describing degrees of freedom
of currents may be chosen for the 12-pulse case similarly
to the 6-pulse case. For example, when bridge 1 is com-
mutating so that the common AC line currents traverse
dodecagon edge PQ, there are three degrees of freedom
and a convenient choice of X axes has x* and x? describ-
ing the supply of load current and commutation in bridge
1 and x* describing the supply of load current through
bridge 2. (Co-ordinates of x? and x* with respect to the C
axes are given by the second and third columns of the C
matrix at the end of Section 8.2. For convenience, Fig. 7
shows the projection of x* at a reduced scale.) The pro-
jections of x' and x? lie along OA, and the projection of
x2 lies along OC,. If balanced AC line impedances are
assumed, the orthogonality of the projections of x? and
x? in Fig. 7 and their nonintersection in coils outside the
AC line show that x2 and x> represent decoupled degrees
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of freedom for circuit currents. In other words, the com-
mutation in bridge 1 is decoupled from the supply of
current to the load in the bridge 2. Similar decoupling
occurs during the commutation in mode 2, but the timing
of the start of commutation is determined by the end of
the commutation in the other bridge. This decoupling is
useful when deriving simple equivalent circuits which

approximate the transient behaviour of convertor
systems [8].
5 Internal structure of a switching circuit

simulation

For simplicity, the circuit is supposed to consist of resist-
ances, inductances, diodes and time dependent voltage
sources. (The circuit representation is extended to include
thyristors, capacitors and more general voltage sources in
Section 7.)

The purpose of the simulation is to solve the set of
piecewise differential equations

py =f, 1) (12)

starting from a specified initial state. y is a state vector
for currents in the switched circuit, f is the set of switched
circuit differential equations for y, and p is differentiation
with respect to time t. All currents and voltages in the
switched circuit are calculable from y, py, t (inductor
voltages are calculable from py and voltage source volt-
ages are calculable from ¢) and y, py, t define the contin-
uous part of the circuit state. y is a minimal state vector
for the switched circuit; each component of y corre-
sponds to a degree of freedom of the switched circuit cur-
rents. Both y and f vary with the switching state.
Moreover, the nature and timing of the switchings, or
transitions between the switching states, depend on the
evolution of y and py.

The simulation has an integration module to update y,
py, t and a switching module to update the switching
state. The integration and switching modules are interde-
pendent; the integration module advances the solution of
eqn. 12 assuming a particular switching state and the
switching module detects and accurately locates any
switching in a given time interval assuming the variation
of y, py is known over that interval. The simulation pro-
ceeds from an initial state at time ¢, by using the integra-
tion module to calculate values of y, py in the time
interval [t,, t,], assuming that the switching state does
not change in [t,, t;]. The variation of y, py in [tg, t,] 18
then used by the switching module to determine whether
there was any switching in [¢o, t;]. If there were none,
the switching state did in fact remain at its initial value
throughout the interval and the process may be repeated
starting from ¢, with the updated circuit state. If there
were switchings in the interval, and the first switching
occurred at time ¢, , the state vector y is interpolated at
t,, and the simulation proceeds from t,,, with the updated
circuit state. If the values of y, py. t are output as they are
calculated, the output will contain ‘overshoots’ corre-
sponding to the solution past a switching point with a
previous, incorrect switching state. These overshoots are
artifacts of the solution method and may be removed
easily by an output processing program.

The switching module contains switching rules to
determine the switchings occurring during the switching
test interval [1,, t,]. Off diodes with voltages increasing
through zero and on diodes with currents decreasing
through zero are detected and the switching time is
located precisely using standard root finding procedures.
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The switching rules may be written in a general way so
that no account is taken of the particular configuration
of switches in the circuit or the operational mode of the
circuit. The switching rules are described in Reference 9;
for the purposes of this paper it is sufficient to note that
the switching rules require the currents through on
diodes and the voltages across off diodes to be calculable
at any given time ¢ in the switching test interval.

The integration module calculates values of y at spe-
cific time points in the switching test interval. If the
switching module requires diode currents and voltages at
the general time t, it must interpolate to calculate y(t) and
use eqn. 12 to calculate py from y and t. Calculation of
the required diode currents and voltages from y, py, t and
the switching state is considered in the following Section.

6 Switching axes

6.1 Requirements and brief description

It is assumed that the switching module has just located
a switching and determined the new switching state. The
switched circuit differential equations f must be formed
and the initial condition of the new state vector y must
be calculated. When the switching module tests for the
next switching, it will require the on diode currents and
the off diode voltages to be readily calculable from y, py
and .

These requirements may be met by constructing
switching axes Z which are closely related to the switch-
ing state. Calculations are referred to the Z axes while the
switching state persists. At each circuit switching, the Z
axes are recalculated relative to the W axes from the
switched circuit constraints on currents. The Z axes
consist of two systems of subaxes, X and V; the X axes
are a basis for currents in the switched circuit and the V
axes are used to calculate the voltages across off diodes.

6.2 Calculation of Z axes from the switching
constraints

For convenience of notation, let the N axes be the C axes
paths which correspond to off diodes. The number of off
diodes is denoted by s. Then the switching constraints on
currents may be written relative to the C" axes by select-
ing the corresponding rows from the identity matrix C{
to form the matrix C”. The switching constraints may be
projected onto the W’ axes:

Cr =CrCs,

The discussion now assumes that the projected switching
constraints are independent; the exceptional case of
dependent constraints is treated in Appendix 13. The last
s Z' axes are chosen to be the switching constraints, ofr,
equivalently, the N" axes. Thus C? is the last s rows of the
identity matrix

0 01 00 0
| 0010 120
0 - 0000 I

The form of C" requires the Z axes to pass through
exactly one off diode or through none: the former are the
V axes and the latter are the X axes. Thus the Z axes
divide naturally into two systems of subaxes, X and V,
and eqn. 12a may be rewritten as

C =0
cr=1

(12b)
(12¢)
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Independent Z axes are calculated relative to the W.axes
by finding an invertible transformation € satisfying’

ccr=C! (13)

Eqn. 13 requires the Z axes to be dual to the last s 7'
axes (N’ axes): rewriting the left-hand side of eqn. 13 as

CrCY = CrCrCE = CIC

exhibits eqn. 13 in the form of duality condition 3. Cis a
square invertible matrix because the Z axes are indepen-
dent and equal in number to the W axes. Hence the Z
and W axes are equivalent choices of axes describing the
fixed circuit connections. Eqn. 12a shows that the Z axes
are chosen so that the Z-co-ordinates of the switching
constraints assume a particular and convenient form.

6.3 X axes and the switched circuit differential
equations

The X axes satisfy the fixed circuit constraints because
they are calculated relative to the W axes and satisfy the
switching constraints because they satisfy eqn. 12b. In
particular, the X axes are meshes because they satisfy the
fixed electrical constraints. Moreover, as the X axes are
independent and equal in number to the number of
degrees of freedom of the switched circuit currents, they
are a basis for switched circuit currents. Therefore the
state vector y may be set to i*. As the X axes are meshes,
the switched circuit differential equations may be derived
relative to the X axes by applying KVL around the X
axes:

O=e =L, p¥+ R, i"+e +e (13a)

where ¢ is the vector of voltages across ofl diodes. e
vanishes because the X axes do not pass through any off
diodes. L and R may be calculated relative to the X axes
by transformation from the W axes:

LXX = LM'“‘ C:YC:I
R, = R, CICY

and ¢ may be calculated from the known function of
time e2:

e =eC =eC,CY

If L, has a nonzero determinant, eqn. 13a may be rear-
ranged as

p"X = —(Lxx)_ l(Rxx "+ ei) (13b)

Eqn. 13b states the set of switched circuit differential
equations in a form suitable for numerical integration.
The number of differential equations is the smallest pos-
sible because they are expressed relative to x axes which
are a basis for switched circuit currents. The condition of
a nonzero L, determinant requires each circuit mesh to
have some inductance; numerical calculation accuracy
further requires that the circuit inductance must be suffi-
cient to give an L, matrix with a determinant that is not
very small.

6.4 Calculation of the initial value of y

Suppose the X axes of the previous switching state {the
one in which the switching occurred) are denoted by
XOLD. The value of y is interpolated at the switching
time to give i*'%; it is required to calculate /%, the initial
value of y at the switching time. The circuit currents may
be expressed relative to the W axes:

W w «xold
"= Cl4l
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If the calculation of the Z axes is additionally constrained
so that C* contains a square diagonal matrix of side
equal to the number of X axes, the corresponding rows of
the transformation

i* = O

allow i* to be calculated from . Note that it is not
necessary to distinguish the switching state to which §
belongs because current is continuous across switchings.
In the case of a diode switching off, the calculation
effectively projects " onto i*. i and i* specify the
same circuit currents since the current which is zeroed in
the projection passes through the diode and has already

been determined to be zero at the switching time.

6.5 Calculation of diode currents and voltages
The calculation of the currents in on diodes and the volt-
ages across off diodes from the state vector information y,
py, t will now be demonstrated.

The current through an on diode or, indeed, any
circuit coil, is given by the appropriate component of

{— C X ' WX
i =C.F = CLCyi

The voltage across off diodes € is readily calculated
relative to the W axes by applying KVL around the W
axes:

O=e,=L, pi*+ R, i"+e +ed

&= (L, pi*+ R, ¥+¢€) (14)
Transform this equation to the V axes to obtain
el = e0CY
= —(L, pi*+ R, " +€) (14a)

Transformation by C¥, which in this version of the algo-
rithm is the identity matrix, gives the required off diode
voltages ¢? in the terms of readily calculable quantities:
ef =e%Cy
= —(va p'x + va "+ ef)q
where
L,=L,,CC

R, = R..CIC}

vXx

& =eC

v

The calculation of €2 may also be explained as follows:
¢% may be calculated from readily available quantities
using eqn. 14. However, ¢ is the contribution of off
diodes around the W axes to the total mesh voltage and
each W axis may pass through several off diodes. Thus
calculating €2 gives simultaneous equations for €°. Trans-
forming eqn. 14 to the V axes effectively solves these
simultaneous equations. The choice of the V axes to pass
through exactly one off diode ensures the simple relation-
ship between €2 and €.

7 Representation of additional circuit
components

The circuit representation considered above may be
extended to include several additional circuit com-
ponents.

Capacitors may be introduced by augmenting the state
vector y with capacitor voltages ¢“**. For convenience of
notation, let the A4 axes be the C axes paths correspond-
ing to coils with nonzero capacitance. Then the circuit
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state vector becomes

y= pls

and the differential equations py = f(y, t) become
pix = —(Lxx)' I(Rxxix + (ecS + egAP)Ci)

delta and star secondaries. The delta windings have equal
numbers Qf turns and the delta/star turns ratio approx-
imates ,/3:1. The bridges are connected in parallel
@hrough an interphase transformer to a resistive and
inductive load with a capacitative filter and a freewheel
diode. The impedances of any step-down transformers
are assumed to be included with the AC line impedances.
Coils may be chosen for the circuit as shown in Fig. 8.

CAP a :X
pestt = Q1" = Q,,Cyi 17 . . .=
a aa aa X U7 The interphase transformer is represented by specifying
1PT1 1PT 2
Em :}32
BID! &8102 B103 8201 AB202 ?203
13 ZWu. 15 25 426 27
B1IN 3 B1SEC3 B2IN1
) IS
BIINT 12 < 19> B2SECT 22 ngws 33 36 |35
INT 4 ) a 1 B2SEC3 X
N0 24 Y w o)
BIINZ , ™ BISEC! B 1SEC 20JB2SEC2  ~B2IN2 wi o g
~n 2317 2| 3 -
u
w
BID4 kams B106 ACGEN1 &‘CGEM B2D4 82054&8206
16 417 18 3 28 |29 30

Fig.8 Choice of coils for 12-pulse convertor system

where Q is the elastance tensor and Cy is formed by sel-
ecting the appropriate rows from C. The ability to simu-
late capacitors is useful for studying capacitative
switching power supplies and rectifying circuits with
filters.

Voltage sources €5 may be generalised to any function
of circuit currents or time as the circuit currents are
available from the state vector y. (The right-hand side of
eqn. 17 remains a function of y and t.) [n particular, time-
variable and nonlinear resistances may be represented.

Thyristors may be modelled by modifying the diode
switching rules so that switch on is inhibited if a gate
pulse is not on. The firing control circuitry is modelled by
on/off gate pulse functions which may depend on time or
circuit currents. The dependence of gate pulse functions
and voltage generators on circuit currents may be used to
represent simple feedback control of the thyristor firing
angles.

8 Axes calculations for a 12-pulse convertor
system

Circuit and switched circuit axes are calculated for the
12-pulse convertor system shown in Fig. 6. An AC line
supplies two 6-pulse diode bridges through a phase shift
transformer with a single delta primary and separate

)
1 2 3 4 5 6 7
1 ACGENI 1 0 -1
2 ACGEN2 -1 1 0
3 ACGEN3 0 -1 1
4 PRIMI 1 0 0
5 PRIM2 0 1 0
6 PRIM3 0 0 1
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the self and mutual inductances of coils IPTI and IPT2
in the L, matrix.

81 Calculation of W axes
It is convenient to divide the circuit into four subcircuits
as shown in Fig. 9. The calculation of the W axes follows

interphase
bridge 1 and transformer and
delta secondary load
j—h
_%
bridge 2 and
star secondary
AC line and
delta primary

Fig. 9  Subcircuits of 12-pulse convertor system
the stages indicated in Section 3. Connections within the
subcircuits are applied to obtain the Ul axes and then
connections between the subcircuits are applied to obtain
the U2 axes. Finally, the remaining star secondary wind-
ings constraint is applied to give W axes satisfying all the
constraints. The use of subcircuits saves effort when other
systems including similar subcircuits are specified.
Electrical connections within subcircuits may be speci-
fied by a choice of U, axes:
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7 BISEC]I -1 0 04 0
8 BISEC? 0 -1 0 0
9 BISEC3 0 0 -1 0
10 BIINI 10 -1 0
11 BIIN2 11 0 0
12 BIIN3 0 -1 1 0
13 BIDI 10 -
14 BID2 -1 1
15 BID3 0 —1

16 BID4 0 0
¢, = 17 BIDS 0 0

18 BID6 0o 0
19 B2SEC! -
20 B2SEC2
21 B2SEC3
22 B2INI
23 B2IN2
24 B2IN3
25 B2DI
26 B2D2
27 B2D3
28 B2D4
29 B2D5
30 B2D6
31 1PTI
32 IPT2
33 FILTER -1 -1
34 FDIODE ~1 0
35 LOAD | o o0 0 1

—_——_ 0 = -~ OO0 0 0 O
— o~ o000 OO

=l
|

coo -0 —~0 0 —2S 0
I

O o000 — 00 -0 o=
cC o000~ 00—~ O — 0
e S e B =R e R o R = e [ e
N = I ol o i e I e R e i e i
IO o i = SIS < S v B o Bl ew R e S e i

0 0

o -0 -
O - O

The submatrices of C¢, correspond to subcircuits; all other entries are zero because connections between the sub-
circuits are not applied at this stage.
With this choice of U1 axes, the projections of the remaining constraints take the simple forms

1 2 3 4 5 6 7 g8 9 10 1t 12 13 14 15 16 17 18 19

1126 0 0 26 0 0 0 0 15 0 0
21 0 26 0 0 26 0 0 0 0 15 0
310 0 26 0 0 26 0 0 0 0 15
4 -1 0 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 -1 0 1 0 0
6 0 1 i 1 0 0 0 0 0 0 0

The first three constraints are the magnetic constraints connecting the transformer windings. (The transformer is
assumed to have a fourth limb so that there are three independent flux paths through each triple of one primary and
two secondary windings. The ideal magnetic connections may then be derived as in Section 3.) Constraints 4 and 5
connect the bridges to the interphase transformer and load. They express the equivalence of current in the DC output
of each bridge to the current in the corresponding winding of the interphase transformer. Constraint 6 is the star
connection of the secondary windings.

The first five projected constraints may be applied by choosing U2 axes:

1 2 3 4 5 6 7 8 9 10 1t 12 13 14

If-1 0 0 -15 0 0 7
20 0 -1 0 0 —15 0
3l 0 0 —1 0 0 —15
al 1 0 0
s o 1 o0
6] 0 0 1

cu- T 10
8 0o 1
9 1
10 0O 26 0 0
11 0o 0 26 0
12 o 0 0 26
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The remaining star constraint projected onto the U2 axes is

13
14

1

5

16
17
18
19

L

SO0 -0 OO o

© 0 00 00 2 2 20600000 0
and is applied by choosing W axes 7 and 8 in terms of U2 axes 7.8, 9 according to the C¥ submatrix

7

71 1
81 O
91-1

8
0
1
-1

10 11 12 13 14

and choosing W axes 1-6 and 9-13 respectively equal to U2 axes 1-6 and 10-14.
W axes representing the fixed circuit connections may be expressed in terms of the C axes by

¢ __ c ul u2 __
Cw - Culcu2 Cw -

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

ACGEN!1
ACGEN2
ACGEN3

PRIMI1
PRIM2
PRIM3
BI1SEC1
BISEC2
BISEC3
BI1IN1
BIIN2
B1IN3
B1DI1
B1D2
B1D3
B1D4
B1D5
B1D6
B2SECI
B2SEC2
B2SEC3
B2IN1
B2IN2
B2IN3
B2DI
B2D2
B2D3
B2D4
B2DS
B2D6
IPT1
IPT2
FILTER

FDIODE

LOAD

8.2 Calculation of switching axes

Suppose the circuit switching state is known to be

80

0 1
1 0
bridgel

0
1

010
1 00

bridge?2

0

|

1
—1
1
0
-1
0
0
-1
0
0
1
—1

2
0

-1
1
0

—1
0
0

—1
0
0

freewheel diode

3
1

0
—1
0
0
-1
0
0
—1
-1
0
1

oo o - O =

[ R o I I e R o R o B B o i

4

—_—— — = OO0 OO O

5

o O

6 7 8
—-30 —15
15 —15
15 30
—15 0
0 —15
15 15
0
0
0
0
0
0
0
0
1
0
0
1
—26 0
0 —26
26 26
26 0
0 26
—-26 —-26
26 0
0 26 -
—26 =26
0 0
0 0 -
0 0
1
0
1
0
0

IEE PROCEEDINGS

9 10 11 12 13

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

1 1 0

0 -1 1

1 0 0

1 1 0

0 -1 1
0 0 0
t 0 0
r -1 =1
0 —1 0
0 0 1
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Then the N axes

the corresponding rows of the €, matrix:

are {¢'3, ¢'?,

12
13BIDI 1 0
1S BID3 [0 -1
17 BIDS |0 0
25 B2DI

C =27 B2D3
29 B2DS
30 B2D6
34 FDIODEL

c

17

C

3
—1
1
0

25

,¢27.¢*°, ¢3°, ¢**} and the switching constraints projected onto the W' axes are

27 .29
4 5
1 0
0 -1

-1 1

A

S = O

26
—26
0

0

0

0

—26

0
0
0

10 1t 12
0 0 0

-1 1 0
1 0 0

1 0

0 0 -1

o OO

0

0

Eqn. 13 is then solved for C to determine the Z axes. As integer arithmetic is exact and fast on a computer, it is
convenient to scale the V axes during the solution of egn. 13 so that the calculation is performed in integers and yields
an integer C? matrix. The scaling is introduced into the calculation by placing scale factors along the diagonal of C7
and their reciprocals along the diagonal of C;. In this example, V axes 9, 10, 11, 12 were scaled by a factor of 26 and
the diagonal of C7 contains 1, 1, 1, 26, 26, 26, 26, 1.

1
170
211
3o
410
510
61
cr=1
8
9
10
11
12
131

X axes

2 3 4
1 1
1 1
0 1
1 0
1 0
0 0

1
-1
—26
—26
—26

0
0

- oo o 0 o0

O oo o — O
OO OO = O

Hence the Z axes may be calculated relative to the C axes:

C=C.Cr=

1 ACGENI1
2 ACGEN2
3 ACGEN3
4 PRIMI
5 PRIM2
6 PRIM3
7 BISECI
8 BISEC2
9 BISEC3
10 BIINI

11 BIIN2
12 B1IN3
13 BID1

14 B1D2

15 B1D3

16 B1D4

17 BIDS

18 B1D6

19 B2SECI
20 B2SEC2
21 B2SEC3
22 B2INI
23 B2IN2

1
0
-1
1
0
-1
0
0
-1
0
0
1
-1
0
1
0
0
0
1
0
0
0
0

0

X axes
2 3
1 —15
0 30
1 —15
1 —15
1 15
0 0
1 0
1 0
0 0
1 0
0 0
1 0
0 0
0 0
0 0
1 0
0 0
1 0
0 —26
0 26
0 0
0 26
0 —26

4
0
0
0

0
-1
—1
—1
—1
—1

OO0 OO0 O
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V axes ———————
9 10 11 12 13
1

1 0 1 1 0

1 -1 =1 0 0

0 0 —26 =26 0

0 0 0 —-26 0

0 0 0 0 0

0 0 0 0o -1

0 0 0 0 0 ]

V axes

5 6 7 8 9 10 11
0 -1 0O —1 —15 15 —15
0 1 1 1 30 15 30
0 0 —1 0 —15 -30 —15
0o -1 0 -1 —15 0 —15
0 0 1 0 15 15 15
0 0 0 0 0 —15 0
0 -1 0 -1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 1 0 1 0 0 0
o -1 -1 =1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
o -1 -1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 -1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 —26 0 —26
0 0 0 0 26 26 26
0 0 0 0 0 —26 0
0 0 0 0 26 0 26
0 0 0 0 —26 —26 —26

9]
o

[ —
OCARO OO OO0 ODOO VO

12

—_—
w b

DN
o o

—|

OOOOOOOOOOOOOOOOOOOOOOOU)
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X axes — « Vaxes———

\ 2 3 4 5 6 7 8 9 10 11 12 13

24 B2IN3 0 0 0 0 0 0 0 0 0 26 0 -26 0
25 B2Dl1 0 0 0 0 0 0 0 0 26 0 0 0 0
26 B2D?2 0 0 —-26 0 0 0 0 0 —26 —26 0 0 0
27 B2D3 0 0 0 0 0 0 0 0 0 26 0 0 0
28 B2D4 0 0 —26 0 0 0 0 0 0 0 —26 —26 0
29 B2DS5 0 0 0 0 0 0 0 0 0 0 26 0 0
30 B2D6 0 0 0 0 0 0 0 0 0 0 0 26 0
31 IPTI 1 0 0 0 0 0 0 0 0 0 0 0 0
32 IPT2 0 0 —26 0 0 0 0 0 0 0 0 0 0
33 FILTER 1 0 —-26 0 —1 0 0 0 0 0 0 0 1
34 FDIODE]} 0O 0 0 0 0 0 0 0 0 0 0 0 1
35 LOAD L 0 0 0 0 1 0 0 0 0 0 0 0 0

Examination of C¢ shows that no X axis passes through an
off diode.

off diode and that each V axis passes through exactly one

9

9.1 Outline specification
The techniques described above may be used to design a
simulation to solve the piecewise differential equations of
a general switching circuit. The circuit may contain the
following components:

(a) resistors, inductors, capacitors

(b) diodes, thyristors, switches

(c) voltage sources.

General switching circuit simulation

The circuit components are connected together by electri-
cal and ideal magnetic connections. Mutual inductances
may be specified. Diode or thyristor switchings are gov-
erned by general switching rules independent of the par-
ticular circuit arrangement or operational mode. The
firing delay angles of thyristors may vary and switches
may be opened or closed at preset times. The voltage
sources may depend on time or circuit currents and may
be used to model sinusoidal generators, batteries, nonlin-
ear resistors, or arbitrary time or current dependent
voltage sources.

The circuit components are input to the simulation as
a list of coils and the electrical and ideal magnetic con-
nections of the circuit are input as the integer connection
matrix C5,. The switched circuit differential equations are
automatically reformed at each switching using the
switching axes theory of Section 6 and solved by numeri-
cal integration. The choice of integration methods
includes Gear’s method so that fast transients may be
simulated [2] and switching points are located accurately
by interpolation [2]. A complete description of the circuit
state is output at each simulation time increment. When
the program run is complete, an interactive output pro-
cessing program is used to select, calculate and display
the desired output quantities. The basic outputs are
current and voltage waveforms from any part of the
circuit and a record of the circuit switching states.

The main application of the simulation to AC/DC
convertor systems is the detailed calculation of system
behaviour when the switching processes are to be taken
into account explicitly, particularly the determination of
behaviour under transient conditions or with nonideal
loads.

9.2 Assumptions and limitations
One of the main concerns when applying a simulation is
that the system is represented by an equivalent circuit at
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an appropriate level of detail so that useful conclusions
may be drawn from the results or understanding of the
system may be gained. Most parts of the system are rep-
resented by simple lumped circuit linear components and
the transformer connections and switchings are explicitly
but simply represented. These assumptions are customary
for conventional convertor calculations.

Transformer connections are assumed to be linear and
are represented either ideally or by constant mutual
inductances. The simple characterisation of diodes and
thyristors as being either off with infinite impedance or
on with the characteristics of the other components in the
coil cannot take account of effects such as those caused
by stored charge within the device. The crudity of the
switching representation at the semiconductor level
implies that the simulation may be properly applied only
to systems in which semiconductor effects are of a higher
order than the class of effects being studied. Detailed dis-
cussion of the applicability of the general switching rules
is outside the scope of this paper, but it is clear that they
may depend only on circuit effects derivable from a
knowledge of y and py over the switching test interval.

The simulation design does not allow for current
sources or variable inductances.

9.3 Implementation and application
The equations and simulation design considerations of
this paper have been tested by writing the Connie switch-
ing circuit simulation [9, 10]. Connie has been used to
analyse high-voltage supplies providing pulsed power for
plasma physics fusion experiments at Culham Labor-
atory. These supplies are typically required to power
nonstandard loads under rapidly changing conditions. It
has been found that the level of modelling detail assumed
in this paper is a useful one in the detailed analysis of
these power supply systems. Applications to plasma
heating power supplies have included calculation of the
transient response of a 12-pulse convertor system module
to load current interruptions and analysis of transient
overvoltages in a Marx generator switched capacitative
power supply. Connie has also proved useful in opti-
mising the design of the switching circuits used to power
the magnetic windings of fusion experiments. The method
of analysis is clearly of use in fusion engineering and may
well be applicable to switching circuits in other fields.
Connie is written in Fortran and uses National Algo-
rithm Group library routines [11] for standard calcu-
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lations such as numerical integration and interpolation.
A typical solution rate for a 12-pulse convertor circiit is
half a minute of central processor run time per supply
cycle on a Prime 750 computer.

10 Conclusions

Tensor treatment of elementary network theory is clari-
fied by the explicit use of both electrical axes and the
duality of currents and voltages. Electrical axes systems
may be chosen to represent circuit connections in the
physically intuitive forms of constraints and degrees of
freedom of circuit currents and voltages. In particular,
electrical axes may be chosen to represent the electrical
and transformer connections of a general AC/DC conver-
tor system. The electrical and transformer connections
are uniformly treated as linear constraints on circult cur-
rents. Integer connection matrices specifying the electrical
axes may be calculated systematically. Electrical axes
analysis of convertor systems lends itself to description
and visualisation of convertor system phendmena.

A general switching circuit simulation in which non-
conducting diodes or thyristors are effectively deleted
from the circuit has been designed and implemented
using fixed and varying electrical axes to represent the
fixed and varying circuit connections. The varying axes
system is convenient for the expression and solution of
the simulation equations and is recalculated automati-
cally whenever the circuit switches. Tensor techniques
have previously been used with advantage to simulate
particular switching circuits; electrical axes allow these
techniques to be uniformly applied to a wide range of
switching circuits. The simulation is capable of analysing
transients in 12-pulse AC/DC bridge convertor systems
with nonideal loads.
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13 Appendix: Dependent switching constraints

The switching constraints becoming dependent when
projected from the C’ axes to the W’ axes correspond to
KVL not providing sufficient independent constraints to
uniquely determine the voltages across off diodes. If, for
example, a single branch of the circuit contains two off
diodes in series, KVL specifies the total voltage across
the diodes but not the sharing of this voltage between the
diodes. Another example is when all the diodes of a
6-pulse bridge are off; there are six diode voltages to cal-
culate and only five independent KVL constraints.

When dependent projected switching constraints arise,
a subset of constraints with the maximum number of
independent constraints is chosen. If the number of inde-
pendent constraints is b, the last b Z axes are chosen as
the independent constraints. The Z axes may then be cal-
culated according to eqn. 13; the properties of the
resulting X axes are unaffected, but the V axes are related
to the N axes by an s x b C7 matrix of the form

r1 0 0 - 01
010 -0
Ccr=10 0 0 1
* *

L+ = * cee o ox

where the first b rows correspond to the independent
subset of constraints and the last s — b rows are not filled
with zeros. ¢ may be calculated from eqn. 14a, but the
form of C" shows that e2 does not uniquely specify the
required off diode voltages €°. The calculation requires
further, arbitrary constraints on ¢2 to be assumed. The
further constraints must be chosen arbitrarily at this level
of modelling detail because the physical principles deter-
mining the further constraints are not represented in the
model.
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