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Abstract 2. Blackout data

We introduce branching process models in discrete and This section examines cumulative high voltage line trips
continuous time for the exponentially increasing phase of IN observed blackout data from the July and August 1996
cascading blackouts. Cumulative line trips from real black- WSCC blackouts [9, 11] and the August 2003 Eastern in-
out data have portions consistent with these branching pro- terconnect blackout [10].
cess models. Some initial calculations identifying parame- It is supposed that are three phases to the blackout. The

out probabilities are illustrated. bance that causes a certain number of line trips at the begin-

ning of the cascading phase. In the second, cascading phase,

the cascading process can cause exponentially increasing

cumulative line trips. In the final phase, the cascading pro-

cess saturates and the blackout starts to slow down and con-
1. Introduction verge to its final extent. The identification of the boundaries

between the blackout phases is done by inspection of the

data.

For each blackout, we plot the cumulative line trips with
We aim to capture gross features of large, cascading fail-respect to time to examine the overall trajectory of the

ure blackouts using probabilistic branching process mod-plackout. If there is an exponentially increasing phase, then
els. Galton-Watson and Markov branching processes arehis should appear as a straight line portion in a plot of the
related to the timing of failures and this extends previous |ogarithm of the cumulative line trips with respect to time
work that models the evolution but not the timing of the and the slope of the line gives the exponent of the exponen-
blackout failures with Galton-Watson branching processestia| growth.

[5]. This overall approach is complementary to the tradi-  There is no attempt to filter the data by, for example,

tional and useful detailed analysis of blackouts and offers Combining trips of para||e| lines. Generator trips are not

a number of possibilities for understanding and monitoring included in the data. Trips of lines of different ratings are

the risk of large blackouts. counted in the same way. These assumptions are made for
Section 2 examines transmission line failure data from SimPplicity in order to make a first analysis of the data from

three recent North American blackouts for exponentially thiS Néw perspective.

increasing portions and estimates the exponents of the ex-

ponential increases. Section 3 considers Markov branch-2.1. July 1996 WSCC blackout

ing process models in discrete and continuous time that

reflect the exponential increase [1, 8] and suggests meth- Figure 1 shows cumulative line trips as function of time

ods of identifying branching process parameters. Sectionextracted from the 1996 NERC system disturbance report

4 shows sample calculations of how a branching procesd[9], page 28. The lines tripped include lines of ratings from

model could be used to explore the likelihood of a particu- 120 kV to 500 kV. The initial disturbance is taken as 2 line

lar blackout occurring and the value of including real time trips at 14:24 MDT. Examining the logarithm of the cumu-

data on the cumulative number of line trips in estimates of lative line trips in excess of 2 in Figure 2 suggests an expo-

the blackout propagation. nential growth between times 14:24 to 14:31 MDT. The ex-



ponent of the exponential growth js~ 0.47 min—!. This The exponent of the exponential growthise 1.4 min—1.
corresponds to multiplication of the cumulative line trips by This corresponds to multiplication of the cumulative line

a factor of 1.6 every minute. trips by a factor of 4 every minute.
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Figure 1. Cumulative line trips in WSCC July Figure 3. Cumulative line trips in WSCC Au-
1996 blackout. Time scale is minutes after gust 1996 blackout. Time scale is minutes
14:00 MDT. after 15:00 PDT.
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Figure 2. Log[cumulative line trips in excess Figure 4. Log[cumulative line trips in ex-
of 2] in WSCC July 1996 blackout. The cess of 2] in WSCC August 1996 blackout.
straight line growth corresponds to 1.6t™e. The straight line growth corresponds to 4™,
Time scale is minutes after 14:00 MDT. Time scale is minutes after 15:00 PDT.
2.2. August 1996 WSCC blackout 2.3. August 2003 Eastern interconnect blackout

Figure 3 shows cumulative line trips as function of time Figure 5 shows cumulative line and transformer trips as
extracted from the 1996 NERC system disturbance reportfunction of time reprinted from the final blackout report
[9], page 38. The initial disturbance is taken as 2 line trips [10]. Since the data underlying Figure 5 is not yet avail-
at 14:46 PDT. Examining the logarithm of the cumulative able to us for study, we digitized by hand the cumulative
line trips in excess of 2 in Figure 4 suggests an exponentialline and transformer trips curve in Figure 5 to obtain ap-
growth between times 13:46 to 13:49 PDT. The exponen- proximate data and then replotted the logarithm of the cu-
tial growth is somewhat less clear cut than in the July 1996 mulative trips as Figure 6. One way to parse the data in
blackout because it evolves quickly in only a few jumps. Figure 6 is to consider a slowly cascading phase from time



5.5 to 8.5 and a fast cascading phase from time 8.5 to 9.5, | og _
and then saturation of the fast cascading phase. The slow[cumul ative

. . . . failures-22]

cascading phase fits an exponential more approximately. 3
The slow cascading phase has exponent of the exponential
growthy ~ 0.34 min—!. This corresponds to multiplication
of the cumulative line trips by a factor of 1.4 every minute. 2
The fast cascading phase has exponent of the exponential /
growth ~ 2.9 min—!. This corresponds to multiplication 1.5 /
of the cumulative line trips by a factor of 18 every minute. 1 K

There are other ways of parsing the data in Figure 6; one /,/
could simply fit the data with a single exponential cascad- 0.5 ;
ing phase from time 5.5 to 9.5. One reason for preferring . time
the fit with two cascading phases considered in the preced- 6 7 8 9 10 11 12(mn)

ing paragraph in an initial exploration of the data is that
power system experts identified two cascading phases [10]. Figure 6. Log[cumulative line and transformer
However, Figure 6 raises the question of whether the datais trips in excess of 22] in August 2003 black-

best fit by one or two cascading phases. out. The straight line growths correspond to
1.4tme gnd 18%me respectively. Time scale is
Figure 6.1. Rate of Line and Generator Trips During minutes after 16:00 EDT.
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= = GWs of Generation Last /_' ke model of cascading failure [7, 4] describes with analytic
" il formulas the statistics of a cascading process in which com-
/ ponent failures weaken and further load the system so that

subsequent failures are more likely. Itis known that this cas-

cade model and variants of it can be well approximated by a
/ f T Galton-Watson branching process with each failure giving
rise to a Poisson distribution of failures in the next stage.
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__ pET— J [5, 6]. Moreover, some features of this cascade model are

" , . P— ==t § consistent with results from cascading failure simulations
RS IR B AmGs VR TBaD. kW AR [2, 4]. All of these models can show power law regions in
L the distribution of failure sizes or blackout sizes consistent

with NERC data [3].
Figure 5. Cumulative line and transformer All the cqscading failure models and branching pro-
trips in August 2003 blackout. Reprinted from cesses consml_ered above make no referenc_e to the t|m_e of
[10]. failures; the failures are produced in successive stages_ with-
out reference to the time of each stage. This raises the issues
of how to relate the stages to data that arises in real time and
We conclude that several recent North American black- whether a branching process model in continuous time can
outs show a region or regions of exponential increase in cu-be applied. We consider three possible approaches below.

mulative line failures. The first two approaches consider a Galton-Watson branch-
ing process in which the failures occur in stages and the
3. Branching process models third approach considers a continuous time branching pro-

cess. All the standard facts quoted below about branching

Branching process models are an obvious choice ofProcesses are available in [1, 8].
stochastic model to capture the gross features of cascading
blackouts because they have been developed and applied t8-1. Galton-Watson branching process with vari-
other cascading processes such as genealogy, epidemicsand ~ able time between stages
cosmic rays [8]. The first suggestion to apply branching
processes to blackouts appears to be in [5]. The Galton-Watson branching process is assumed to
There are more specific arguments justifying branching have each failure generate failures in the subsequent stage
processes as good approximations to some of the gross feaaccording to a distribution with mean ) is a measure of



the propagation of the failures. There is an initial number of
failures#. The number of failures at stagds the random
variableM;. The mean number of failurdSM; increases
by a factor) in each stage. More precisely,

EM; = 0N (1)
The mean cumulative number of failures at stage
J , VL
EY M;=0(1+A+A\+..+N) =05— @

=0

The critical case occurs fox = 1 [8, 5]. Moreover, if
A>1,asj — oo,

M\~ — W as. 3)
whereW is a random variable witl®WW = 1 that is con-
stant in time. That is, ag — oo,

log M; ~ j\ 4+ log(6W) 4

To give some examples of this convergence, we simulate
the branching process for various valuesoT his is shown
in Figures 7-10. The convergence improves\danscreases
away from 1.
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Figure 7. 40 samples of Galton-Watson
branching process for A = 0.9. The lower
curve is A* — 1 where i is stage number to
show the form but not vertical placing of (11).

The subcritical case ok = 0.9 looks quite different
from the other figures as shown in Figure 7. The asymp-
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Figure 8. 40 samples of Galton-Watson
branching process for A = 1.1. The lower
curve is X' — 1 where i is stage number to
show the form but not vertical placing of (11).
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Figure 9. 40 samples of Galton-Watson
branching process for A = 1.5. The lower
curve is X' — 1 where i is stage number to
show the form but not vertical placing of (11).

phase in blackout data, we already know that the cascade
did not die out and we can expect the measured slope on the
log plot to reflect the value of.

The discussion so far has not specified the relation of the
stages of the Galton-Watson branching process to time and
we now outline the first approach to this issue. We sup-
pose that failure data is available that includes the time of
each failure and perhaps some additional data explaining the
causes of the failure and specifying the type and location of

totic slope is zero as the cascade ends. The supercriticathe failure. Then these data used to group the failures into

case ofA = 1.1 contains some samples in which the cas-

stages. Examples of factors that would tend to group sev-

cade dies out as shown in Figure 8. This is expected anderal failures into the same stage could be their closeness in

the probability of this can be computed frovwas explained

in section 4.1. The slightly supercritical cases that die out
are qualitatively similar to slightly subcritical cases that die
out. However, when we identify an exponentially growing

time or location, or being caused by failures in a previous
stage. In the initial analysis in this paper we only consider
the closeness in time; that is, we group together several fail-
ures if they are close in time and neglect the other possible



log the cumulative number of failures at each stage are asymp-
Cu‘?ulative totically exponential with exponept = In(\)/b min—1, the
failures lambda=2. same as the exponent for the mean number of failures.

” When fitting this branching process model to failure
data, one can fit an exponentigt’ to a time interval of
the data of length” as is done in section 2. This yields an
estimate of the number of stagdsand an estimate of the
time between stagé& T/j. Then from (5) we have

stage A=
5 10 15 20 number

e,ui) — ep,T/j (6)

One consequence of this approach is that in cases where
there are several plausible ways to group the failure data
into stages, there can be different estimatasf the num-

bers of stages and hence different estimatesA larger
number of stages yields & closer to 1. The variation of

A with the estimated number of stagdsis expected be-
cause) is defined as the expected number of failures per
failure in the previous stage and so depends on the stages.
factors. In any case one applies criteria to group the fail- In the supercritical case of > 1, increasing the number of
ures into stages and then regards the failures in each stagétages shortens the time between stages and must decrease
as arising from a Galton-Watson branching process. In thisthe average number of failures that occur over the shorter
model, there is no attempt to represent the time at which thetime between stages. However the supercriticality=(1)
stages occur. Indeed the series of times near which failuregr subcriticality @ < 1) is independent of the time between

in each stage occur will generally be non-uniformly spaced. Stages.

That is, one can regard the stages as occurring with a vari-

able time between stages and this timing is not specified3.3. Continuous time Markov branching process

within the branching process model in this approach.

Figure 10. 40 samples of Galton-Watson
branching process. The lower curve is A — 1
where i is stage number to show the form but
not vertical placing of (11).

The third approach to relating the Galton-Watson
3.2. Galton-Watson branching process with fixed  branching process to time considers a branching process
time between stages that produces failures at variable intervals in continuous
time. One simple assumption is that each failure causes its
We now discuss the second approach to relating thesubsequent failures at a constant rate. That is, when
Galton-Watson branching process to time. This approacheach failure occurs, the next failures “caused” by this par-
groups the failures into stages as in the first approach inticular failure will occur at a random time governed by an
section 3.1, but then makes the explicit simplification or ap- €xponential random variable with parametés. The mean
proximation that the stages occur with fixed titneetween time to this next failures ia. When these next failures oc-
the stagesh is chosen to be the average time between stagesur, their number is governed by a fixed distribution with
and is computed by dividing the time inter&lover which ~ mean value\.. For example, the fixed distribution could
the branching process model is applied by the number ofbe a Poisson distribution. The failures existing at any time
stages/. propagate to cause more failures independently and at dif-
This explicit description of the stage times has several ferent random times. It follows that if there aké(¢) fail-
consequences. At each stage of timminutes, the mean ures at timet, then the next failures occur after a time in-
number of failuresZ M, increases by a factor so that the  terval governed by an exponential random variable with pa-
mean number of failures grows exponentially in time with rameterM (¢)/a. This is a standard one dimensional con-
exponent tinuous time Markov branching process [1]. Wriét) for
o =1n(\)/b (5) the num_ber of fai_lures at timeand# for the initial num-
ber of failures at time zero. The mean number of failures is
min—!. More precisely, the mean number of failures is exponential:
fetti at the stage timels = jb. EZ(t) = et @)
The mean cumulative number of failures at tiieis
given by (2). The mean cumulative number of failures is Where
piecewise constant with jumps at each stage and samples of w=A.—1)/a (8)



Moreover, ifu > 0, ast — oo, This motivates us to group the more nearly simultaneous
ot failures in the exponential increasing phase into jumps to
Z(t)e ™ — W as. 9  obtainSy, Ss, Ss, ..., and to examing; /1, So/2, S3/3, ...

whereW is a random variable witl®WW = 1 that is con- for any indication of convergence fo — 1.

stantin time. That is, as— oo, o i
3.4. Fitting branching models to the blackout data

log Z(t) ~ ut + log(OW) (10)
One can readily conclude that both a supercritical fixed

(SamplingZ(t) at regular interval$ of time yieldsZ(0), i . e
Z(0), Z(26), Z(36),... and this is a Galton-Watson branch- stage G_alton W{;\tson branching process and a supercriti
cal continuous time Markov branching process model are

ing process. However, one does not necessarily recover the ~ ~. : ; ; :
oriqinal Galton-Watson branching process by this samplin consistent with the exponentially increasing phases of the
Fo? example, a Galton-Watson b?a?nching pr)t{.)cess proltajuc?a. lackout data in section 2. This conclusion is insensitive to
with a Poisson distribution is not embeddable in any contin- igae“?e?:rr%tgﬁ furgggzgeosf g‘cifrrs;(t:Tn? grrc;\ces_s. 1T(ri]r? erit
uous time Markov branching process [1] and so cannot be Y proce X N €
the sampled Galton-Watson process.) the case of the continuous time Markov .branchlng process

It follows from (7) that the mean cumulative number of mo’del/\c = 1 corresponds tp = 0 accordmg to (8.))' .(Ot'.
failures is ter's theorem [8] shows that the power tail in the distribution

of total number of failures occurs at= 1 for generic as-
. ) : )
0 sumptions on the generating function.)
— 2 (Mt _

E/O Z(7)dr = [ (e =1) (11) To progress beyond this qualitative modeling of the ex-
ponential blackout phases as a supercritical branching pro-
cess, we need to estimate model parameters. Since the

t 0 WSCC August 1996 blackout has very sparse data and the

/ Z(r)dr ~ = (e’ = 1) W (12) raw data for the August 2003 blackout is not yet available

0 H for study, we illustrate estimating model parameters for the
and, ag — oo, WSCC July 1996 blackout using the discrete and continu-

. ous time branching process models. The time period of the
log/ Z(T)dr ~ pt + log(6W/ 1) (13) exponential growth is chosen to be the 7 minutes from 14:24
0 to 14:31 MDT. Section 2 fit the exponent of the exponential

. ¢ . . ) growth in this time period ag = 0.47 min—!. The failure
so that plottindog [, Z(7)dr against gives an asymptotic  times are shown in Figure 11 and Table 1.

slope ofu. This result supports the procedyre in se_ction_Zas For the Galton-Watson branching process models, we
long as convergence near to the asymptotic slope is achieveq o, s the failures into stages according to their closeness

before sgtgrahon effects a_pply. ) in time. Successive failures are grouped into the same stage
Examining the cumulative number of failures as a func- if the time between them is less than a fractibof the

tion of time avoids much of the difficulties of grouping  5arage time between failures. For illustration we choose
blackout data into stages. That is, this approach is largely; _ (5 The average time between failures for the fail-
insensitive to how previous failures were grouped, it only ure times in Figure 11 .42 min so that (average time

needs to know that they happened in the past. between failures) = 0.21 and the corresponding grouping

For the continuous time Markov branching process i g stages is indicated in the third column of Figure 11.
model, the process evolves in jumps. (See [1], where the In the first modeling approach of section 3.1, we plot

jumps are also referred to as splits. Note that the JUMPSq logarithm of the cumulative staged failures as a function

in this process do not correspond to the stages of the flxedof stage number and fit these data with an exponential as

_stage Galton-Watson _branch_lng process model.) At eachShOWn in Figure 12 to obtaih — 1.4.
jump, one of the previous failures is replaced by an aver-

age of \. failures so that the average number of failures In the second modeling approach of section 3.2, the esti-
increases by\, — 1. Write Sy, Sy, S5, ... for the num- mated number of stages.Js= 8. Then the estimated stage

ber of failures at jumpg, 2,3, ... Then the increments in timeb = T/.J =7/J = 0.875 and (6) gives\ = 1.5. As

the S,. are independent, identically distributed random vari- discussed in section 3.2, a different assumption about the
ablesT with meapn 1 iJnder suit)a:lble conditions assurin grouping into stages would give different estimates. For ex-
ce . ng .ample, choosing = 1 would result in fewer stages so that
that the considered cascades do not die out as detailed in; 2 2
[1] J=5b=12and\ =1.9.
' In the third, continuous time modeling approach of sec-

7T —A—1 as r—oo (14) tion 3.3, we need to group the failure data into jumps.

If © > 0, it follows from (9) that



Although the jumps in the continuous time process do
not directly correspond to the stages of the Galton-Watson Table 1. Line trip times and stage numbers for
branching process, we can for illustrative purposes use the exponential phase of July 1996 WSCC black-
same grouping of failure data into jumps as used for stages out. Time units are minutes after 14:00 MDT.
in Table 1. The consequent evolution of the number of fail-

ures and the series (14) is shown in Table 2. The series in triptime _increment in trip time _ stage number

Table 2 is too short and noisy for convergence to be verified, 23.867 1
but the average of the last four elements estimates the limit 27.219 3.352 2
of series (14) as= 0.5 and this yields\. = 1.5. This im- 27.336 0.117 2
plies usingu = 0.47 and (8) that the average time for one 27.868 0.532 3
failure to splitisa = 1.1. ;ggi’; 8;?‘71 2
29.602 1.283 5
29.608 0.006 5
24 25 26 27 28 29 30 31 ggggg 82% g
: . : . 30.144 0.309 6
Figure 11. Times of line trips in WSCC July 30.145 0.001 6
1996 blackout in minutes after 14:00 MDT. 30.159 0.014 6
30.604 0.445 7
30.953 0.349 8
30.965 0.012 8
30.971 0.006 8
| og 31.045 0.074 8
cunul ative 31.094 0.049 8
failures . 31.815 0.721
1.2
° [ ]
1
* Table 2. Evolution of number of failures in
0.8 . jumps
0.6
N r 1 2 3 4 5 6 7 8
0.4 S, 1 2 2 1 4 3 1 5
0.2 S./r 1 1 067 025 08 05 0.14 0.63
. st age
T2 4 6 8 nunber

4. Implications of branching model
Figure 12. Log cumulative failures in expo-

nential phase of WSCC July 1996 blackout as Now we suppose that blackouts can be approximated by
a function of stage number. The straight line a discrete time Galton-Watson branching process model and
is an exponential with exponent 1.4. explore some illustrative calculations using the model.

4.1. Probability of a given large blackout not hap-
pening
We do not yet have evidence available that the continu-

ous time Markov branching process approximates the time  One interesting exercise is to use values\astimated
sequence of actual failures; the present argument in favor offrom the large real blackouts that occurred with a region of
this modeling is that the assumptions are simple. Given aexponential increase to compute the probabijityf those
longer time series of failure data, such as the failure timesblackoutsnothaving the region of exponential increase. Of
in the August 2003 blackout, we could try to discriminate course there may be a blackout without the region of expo-
between the models and approaches suggested here and staential increase, but such a blackout will have much more
tistically or qualitatively test the fit of the models to the data. limited size. Thus we considerto be the probability that
The data currently available to us is too limited to attempt the cascade dies out for that given valuelof (This was
this. alluded to in the discussion of Figure 8 above.) The value



of ¢ is the same for the Galton-Watson branching processslow part? This subsection outlines an approach to quan-

and for the continuous time Markov branching process, but
it does depend on the generating functifis) that is used

tify the statistics of this problem by monitoring cumulative
line failures. Monitoring cumulative line failures would be

to construct these branching processes. Here we will as-practical in real time in a well-instrumented control center.
sume that the generating function corresponds to a Poisson

distribution so thatf(s) = e**~1), as suggested by the

We regard the\ parameter of a staged branching process

branching process approximation to the abstract cascading®s @ random variablé. Let the probability density function

failure model in [7, 5]. The probability is easily computed
as a root of the equatiof(s) = s and the results are shown
in Table 3.

of A for a given system condition (i.e. stress level)hé\)
iN [Amin, Amax)- We assume that for given system condition
we have either historical data or off-line simulations giving

Suppose that a blackout has an exponential phase with/a(A)-

A = 2. This would imply that the probability that the ex-
ponential phase of the blackout did not occur is about 0.2.
This calculation is made in hindsight after the blackout, but
it does highlight the difficulties of making optimal decisions
during the evolution of the blackout, even given good infor-
mation. Blackouts with lower values ofwill have higher
values ofg. Suppose thak = 1.1 and an exponentially in-
creasing blackout occurred. The probability that it did not
occur is0.82 and one could argue that, in the absence of real
time information about risk, a competent and well-informed
system operator might well have acted properly by assum-
ing the most likely outcome of no large blackout.

Table 3. Probability ¢ of large blackout not oc-
curring

A q
0.9 1.00
1.0 1.00
1.1 0.82
1.2 0.69
1.3 0.58
1.4 0.49
1.5 042
1.6 0.36
1.7 031
1.8 0.27
1.9 0.23
2.0 0.20
3.0 0.06
4.0 0.02
50 0.01

4.2. An initial approach to real time monitoring of
cascading blackouts

We have set a threshold to limit cascading failure risk of
A < X\ Presumably\; < 1 to exclude the possibility of
exponentially increasing phases when the power system is
operated with\ < \;.

Let the cumulative line failures observed in real time be
S. Note that it would be necessary to somehow distinguish
line failures involved in the initial disturbance from those
involved in the cascading phase.

Suppose that we observe in real time that k. Then
we know thatS > & for the final cascade. So what, knowing
thatS > k, is the probability of cascading failure caused by
A > \? Thatis, what isP[A > X|S > k]? We give a
sample calculation aP[A > X\;|S > k] below. In particu-
lar, we numerically evaluat®[A > \;|S > k] under some
assumptions for increasing valueskofThis quantifies how
the probability of a large cascade increases as the number
of observed line trips increases.

The calculations are done by evaluating the formula (27)
derived in the appendix. The assumptions are that the cas-
cade is modeled by a Galton-Watson branching process gen-
erated by a Poisson distribution. The distributionA\obn
[Amins Amax), N the absence of any information about the
likely form of this distribution, is assumed to be uniform.
Saturation effects are neglected.

The data needed is the initial number of failufeand
the range[A\min, Amax| for the uniform distribution ofA.
We choose values of these parameters for a sample calcu-
lation and varyk. The results are shown in Table 4. When
k = 1 there is no information supplied by the line trip that
is additional to the information that a cascade has started
(the probability of A > 0.9 is clearly 0.5 when X is uni-
formly distributed in[0.7, 1.1]. The probability ofA > 0.9
increases withk, but the rate of increase is modest in this
example. Thus in this example the real time monitoring of
k would add little value to the offline calculation of the dis-

The exponential cascading phase starts slowly and ac4ribution of A. Note that waiting until largé: is observed

celerates later. As we accumulate more failures, the prob-does not help manage the cascading blackout because then
ability of an exponentially accelerating cascade increasesthe cascading process is well under way and cannot readily
Is it possible to detect this increased probability during the be corrected.



Table 4. Probability of A exceeding threshold
A¢ When k line trips are observed.

o

P[A > \|S > K]

0.50
0.52
0.53
0.55
0.57
0.58
0.60
0.61
0.62
0.63
0.69
0.73

parameters

A =09
[>\Inina Amax] = [07, 11]
0=1
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5. Conclusion

The main contribution of this paper is to observe in re-
cent North American cascading failure blackouts exponen-
tially increasing phases of cumulative line trips and suggest
that these be modeled by supercritical Markov branching

processes. Simple discrete time branching process models
and a continuous time Markov branching process model are

considered. Several initial calculations illustrating how pa-

rameters may be estimated and these models might be ap-
plied are suggested. One interesting consequence of this

statistical blackout modeling is that the probability of a
given blackoutnot occurring could be estimated after the
blackout. A preliminary approach to real time blackout
monitoring is considered.

The blackout data sets currently available to us are not
long enough to distinguish between the models or defini-

tively estimate the parameters, but, when they are super-

critical, all the branching process models do qualitatively

reproduce the exponential growth of failures that seems to
be the manner in which the 1996 and 2003 North American
blackouts became widespread.
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