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Abstract

We introduce branching process models in discrete and
continuous time for the exponentially increasing phase of
cascading blackouts. Cumulative line trips from real black-
out data have portions consistent with these branching pro-
cess models. Some initial calculations identifying parame-
ters and using a branching process model to estimate black-
out probabilities are illustrated.

1. Introduction

We aim to capture gross features of large, cascading fail-
ure blackouts using probabilistic branching process mod-
els. Galton-Watson and Markov branching processes are
related to the timing of failures and this extends previous
work that models the evolution but not the timing of the
blackout failures with Galton-Watson branching processes
[5]. This overall approach is complementary to the tradi-
tional and useful detailed analysis of blackouts and offers
a number of possibilities for understanding and monitoring
the risk of large blackouts.

Section 2 examines transmission line failure data from
three recent North American blackouts for exponentially
increasing portions and estimates the exponents of the ex-
ponential increases. Section 3 considers Markov branch-
ing process models in discrete and continuous time that
reflect the exponential increase [1, 8] and suggests meth-
ods of identifying branching process parameters. Section
4 shows sample calculations of how a branching process
model could be used to explore the likelihood of a particu-
lar blackout occurring and the value of including real time
data on the cumulative number of line trips in estimates of
the blackout propagation.

2. Blackout data

This section examines cumulative high voltage line trips
in observed blackout data from the July and August 1996
WSCC blackouts [9, 11] and the August 2003 Eastern in-
terconnect blackout [10].

It is supposed that are three phases to the blackout. The
effect of the first phase is summarized as an initial distur-
bance that causes a certain number of line trips at the begin-
ning of the cascading phase. In the second, cascading phase,
the cascading process can cause exponentially increasing
cumulative line trips. In the final phase, the cascading pro-
cess saturates and the blackout starts to slow down and con-
verge to its final extent. The identification of the boundaries
between the blackout phases is done by inspection of the
data.

For each blackout, we plot the cumulative line trips with
respect to time to examine the overall trajectory of the
blackout. If there is an exponentially increasing phase, then
this should appear as a straight line portion in a plot of the
logarithm of the cumulative line trips with respect to time
and the slope of the line gives the exponent of the exponen-
tial growth.

There is no attempt to filter the data by, for example,
combining trips of parallel lines. Generator trips are not
included in the data. Trips of lines of different ratings are
counted in the same way. These assumptions are made for
simplicity in order to make a first analysis of the data from
this new perspective.

2.1. July 1996 WSCC blackout

Figure 1 shows cumulative line trips as function of time
extracted from the 1996 NERC system disturbance report
[9], page 28. The lines tripped include lines of ratings from
120 kV to 500 kV. The initial disturbance is taken as 2 line
trips at 14:24 MDT. Examining the logarithm of the cumu-
lative line trips in excess of 2 in Figure 2 suggests an expo-
nential growth between times 14:24 to 14:31 MDT. The ex-



ponent of the exponential growth isµ ≈ 0.47 min−1. This
corresponds to multiplication of the cumulative line trips by
a factor of 1.6 every minute.
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Figure 1. Cumulative line trips in WSCC July
1996 blackout. Time scale is minutes after
14:00 MDT.
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Figure 2. Log[cumulative line trips in excess
of 2] in WSCC July 1996 blackout. The
straight line growth corresponds to 1.6time.
Time scale is minutes after 14:00 MDT.

2.2. August 1996 WSCC blackout

Figure 3 shows cumulative line trips as function of time
extracted from the 1996 NERC system disturbance report
[9], page 38. The initial disturbance is taken as 2 line trips
at 14:46 PDT. Examining the logarithm of the cumulative
line trips in excess of 2 in Figure 4 suggests an exponential
growth between times 13:46 to 13:49 PDT. The exponen-
tial growth is somewhat less clear cut than in the July 1996
blackout because it evolves quickly in only a few jumps.

The exponent of the exponential growth isµ ≈ 1.4 min−1.
This corresponds to multiplication of the cumulative line
trips by a factor of 4 every minute.
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Figure 3. Cumulative line trips in WSCC Au-
gust 1996 blackout. Time scale is minutes
after 15:00 PDT.
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Figure 4. Log[cumulative line trips in ex-
cess of 2] in WSCC August 1996 blackout.
The straight line growth corresponds to 4time.
Time scale is minutes after 15:00 PDT.

2.3. August 2003 Eastern interconnect blackout

Figure 5 shows cumulative line and transformer trips as
function of time reprinted from the final blackout report
[10]. Since the data underlying Figure 5 is not yet avail-
able to us for study, we digitized by hand the cumulative
line and transformer trips curve in Figure 5 to obtain ap-
proximate data and then replotted the logarithm of the cu-
mulative trips as Figure 6. One way to parse the data in
Figure 6 is to consider a slowly cascading phase from time



5.5 to 8.5 and a fast cascading phase from time 8.5 to 9.5,
and then saturation of the fast cascading phase. The slow
cascading phase fits an exponential more approximately.
The slow cascading phase has exponent of the exponential
growthµ ≈ 0.34 min−1. This corresponds to multiplication
of the cumulative line trips by a factor of 1.4 every minute.
The fast cascading phase has exponent of the exponential
growthµ ≈ 2.9 min−1. This corresponds to multiplication
of the cumulative line trips by a factor of 18 every minute.

There are other ways of parsing the data in Figure 6; one
could simply fit the data with a single exponential cascad-
ing phase from time 5.5 to 9.5. One reason for preferring
the fit with two cascading phases considered in the preced-
ing paragraph in an initial exploration of the data is that
power system experts identified two cascading phases [10].
However, Figure 6 raises the question of whether the data is
best fit by one or two cascading phases.

Figure 5. Cumulative line and transformer
trips in August 2003 blackout. Reprinted from
[10].

We conclude that several recent North American black-
outs show a region or regions of exponential increase in cu-
mulative line failures.

3. Branching process models

Branching process models are an obvious choice of
stochastic model to capture the gross features of cascading
blackouts because they have been developed and applied to
other cascading processes such as genealogy, epidemics and
cosmic rays [8]. The first suggestion to apply branching
processes to blackouts appears to be in [5].

There are more specific arguments justifying branching
processes as good approximations to some of the gross fea-
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Figure 6. Log[cumulative line and transformer
trips in excess of 22] in August 2003 black-
out. The straight line growths correspond to
1.4time and 18time respectively. Time scale is
minutes after 16:00 EDT.

tures of cascading blackouts. An idealized probabilistic
model of cascading failure [7, 4] describes with analytic
formulas the statistics of a cascading process in which com-
ponent failures weaken and further load the system so that
subsequent failures are more likely. It is known that this cas-
cade model and variants of it can be well approximated by a
Galton-Watson branching process with each failure giving
rise to a Poisson distribution of failures in the next stage.
[5, 6]. Moreover, some features of this cascade model are
consistent with results from cascading failure simulations
[2, 4]. All of these models can show power law regions in
the distribution of failure sizes or blackout sizes consistent
with NERC data [3].

All the cascading failure models and branching pro-
cesses considered above make no reference to the time of
failures; the failures are produced in successive stages with-
out reference to the time of each stage. This raises the issues
of how to relate the stages to data that arises in real time and
whether a branching process model in continuous time can
be applied. We consider three possible approaches below.
The first two approaches consider a Galton-Watson branch-
ing process in which the failures occur in stages and the
third approach considers a continuous time branching pro-
cess. All the standard facts quoted below about branching
processes are available in [1, 8].

3.1. Galton-Watson branching process with vari-
able time between stages

The Galton-Watson branching process is assumed to
have each failure generate failures in the subsequent stage
according to a distribution with meanλ. λ is a measure of



the propagation of the failures. There is an initial number of
failuresθ. The number of failures at stagej is the random
variableMj . The mean number of failuresEMj increases
by a factorλ in each stage. More precisely,

EMj = θλj (1)

The mean cumulative number of failures at stagej is

E

j∑
i=0

Mi = θ(1 + λ + λ2 + ... + λj) = θ
λj+1 − 1

λ − 1
(2)

The critical case occurs forλ = 1 [8, 5]. Moreover, if
λ > 1, asj → ∞,

Mjλ
−j → θW a.s. (3)

whereW is a random variable withEW = 1 that is con-
stant in time. That is, asj → ∞,

log Mj ∼ jλ + log(θW ) (4)

To give some examples of this convergence, we simulate
the branching process for various values ofλ. This is shown
in Figures 7-10. The convergence improves asλ increases
away from 1.
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Figure 7. 40 samples of Galton-Watson
branching process for λ = 0.9. The lower
curve is λi − 1 where i is stage number to
show the form but not vertical placing of (11).

The subcritical case ofλ = 0.9 looks quite different
from the other figures as shown in Figure 7. The asymp-
totic slope is zero as the cascade ends. The supercritical
case ofλ = 1.1 contains some samples in which the cas-
cade dies out as shown in Figure 8. This is expected and
the probability of this can be computed fromλ as explained
in section 4.1. The slightly supercritical cases that die out
are qualitatively similar to slightly subcritical cases that die
out. However, when we identify an exponentially growing
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Figure 8. 40 samples of Galton-Watson
branching process for λ = 1.1. The lower
curve is λi − 1 where i is stage number to
show the form but not vertical placing of (11).
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Figure 9. 40 samples of Galton-Watson
branching process for λ = 1.5. The lower
curve is λi − 1 where i is stage number to
show the form but not vertical placing of (11).

phase in blackout data, we already know that the cascade
did not die out and we can expect the measured slope on the
log plot to reflect the value ofλ.

The discussion so far has not specified the relation of the
stages of the Galton-Watson branching process to time and
we now outline the first approach to this issue. We sup-
pose that failure data is available that includes the time of
each failure and perhaps some additional data explaining the
causes of the failure and specifying the type and location of
the failure. Then these data used to group the failures into
stages. Examples of factors that would tend to group sev-
eral failures into the same stage could be their closeness in
time or location, or being caused by failures in a previous
stage. In the initial analysis in this paper we only consider
the closeness in time; that is, we group together several fail-
ures if they are close in time and neglect the other possible
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Figure 10. 40 samples of Galton-Watson
branching process. The lower curve is λi − 1
where i is stage number to show the form but
not vertical placing of (11).

factors. In any case one applies criteria to group the fail-
ures into stages and then regards the failures in each stage
as arising from a Galton-Watson branching process. In this
model, there is no attempt to represent the time at which the
stages occur. Indeed the series of times near which failures
in each stage occur will generally be non-uniformly spaced.
That is, one can regard the stages as occurring with a vari-
able time between stages and this timing is not specified
within the branching process model in this approach.

3.2. Galton-Watson branching process with fixed
time between stages

We now discuss the second approach to relating the
Galton-Watson branching process to time. This approach
groups the failures into stages as in the first approach in
section 3.1, but then makes the explicit simplification or ap-
proximation that the stages occur with fixed timeb between
the stages.b is chosen to be the average time between stages
and is computed by dividing the time intervalT over which
the branching process model is applied by the number of
stagesJ .

This explicit description of the stage times has several
consequences. At each stage of timeb minutes, the mean
number of failuresEMj increases by a factorλ so that the
mean number of failures grows exponentially in time with
exponent

µ = ln(λ)/b (5)

min−1. More precisely, the mean number of failures is
θeµtj at the stage timestj = jb.

The mean cumulative number of failures at timejb is
given by (2). The mean cumulative number of failures is
piecewise constant with jumps at each stage and samples of

the cumulative number of failures at each stage are asymp-
totically exponential with exponentµ = ln(λ)/b min−1, the
same as the exponent for the mean number of failures.

When fitting this branching process model to failure
data, one can fit an exponentialeµt to a time interval of
the data of lengthT as is done in section 2. This yields an
estimate of the number of stageŝJ and an estimate of the
time between stageŝb = T/Ĵ . Then from (5) we have

λ̂ = eµb̂ = eµT/Ĵ (6)

One consequence of this approach is that in cases where
there are several plausible ways to group the failure data
into stages, there can be different estimatesĴ of the num-
bers of stages and hence different estimatesλ̂. A larger
number of stages yields âλ closer to 1. The variation of
λ̂ with the estimated number of stageŝJ is expected be-
causeλ is defined as the expected number of failures per
failure in the previous stage and so depends on the stages.
In the supercritical case ofλ > 1, increasing the number of
stages shortens the time between stages and must decrease
the average number of failures that occur over the shorter
time between stages. However the supercriticality (λ > 1)
or subcriticality (λ < 1) is independent of the time between
stages.

3.3. Continuous time Markov branching process

The third approach to relating the Galton-Watson
branching process to time considers a branching process
that produces failures at variable intervals in continuous
time. One simple assumption is that each failure causes its
subsequent failures at a constant rate1/a. That is, when
each failure occurs, the next failures “caused” by this par-
ticular failure will occur at a random time governed by an
exponential random variable with parameter1/a. The mean
time to this next failures isa. When these next failures oc-
cur, their number is governed by a fixed distribution with
mean valueλc. For example, the fixed distribution could
be a Poisson distribution. The failures existing at any time
propagate to cause more failures independently and at dif-
ferent random times. It follows that if there areM(t) fail-
ures at timet, then the next failures occur after a time in-
terval governed by an exponential random variable with pa-
rameterM(t)/a. This is a standard one dimensional con-
tinuous time Markov branching process [1]. WriteZ(t) for
the number of failures at timet andθ for the initial num-
ber of failures at time zero. The mean number of failures is
exponential:

EZ(t) = θeµt (7)

where

µ = (λc − 1)/a (8)



Moreover, ifµ > 0, ast → ∞,

Z(t)e−µt → θW a.s. (9)

whereW is a random variable withEW = 1 that is con-
stant in time. That is, ast → ∞,

log Z(t) ∼ µt + log(θW ) (10)

(SamplingZ(t) at regular intervalsδ of time yieldsZ(0),
Z(δ), Z(2δ), Z(3δ),... and this is a Galton-Watson branch-
ing process. However, one does not necessarily recover the
original Galton-Watson branching process by this sampling.
For example, a Galton-Watson branching process produced
with a Poisson distribution is not embeddable in any contin-
uous time Markov branching process [1] and so cannot be
the sampled Galton-Watson process.)

It follows from (7) that the mean cumulative number of
failures is

E

∫ t

0

Z(τ)dτ =
θ

µ

(
eµt − 1

)
(11)

If µ > 0, it follows from (9) that∫ t

0

Z(τ)dτ ∼ θ

µ

(
eµt − 1

)
W (12)

and, ast → ∞,

log
∫ t

0

Z(τ)dτ ∼ µt + log(θW/µ) (13)

so that plottinglog
∫ t

0
Z(τ)dτ againstt gives an asymptotic

slope ofµ. This result supports the procedure in section 2 as
long as convergence near to the asymptotic slope is achieved
before saturation effects apply.

Examining the cumulative number of failures as a func-
tion of time avoids much of the difficulties of grouping
blackout data into stages. That is, this approach is largely
insensitive to how previous failures were grouped, it only
needs to know that they happened in the past.

For the continuous time Markov branching process
model, the process evolves in jumps. (See [1], where the
jumps are also referred to as splits. Note that the jumps
in this process do not correspond to the stages of the fixed
stage Galton-Watson branching process model.) At each
jump, one of the previous failures is replaced by an aver-
age ofλc failures so that the average number of failures
increases byλc − 1. Write S1, S2, S3, ... for the num-
ber of failures at jumps1, 2, 3, ... Then the increments in
theSr are independent, identically distributed random vari-
ables with meanλc − 1. Under suitable conditions assuring
that the considered cascades do not die out as detailed in
[1],

Sr

r
→ λc − 1 as r → ∞ (14)

This motivates us to group the more nearly simultaneous
failures in the exponential increasing phase into jumps to
obtainS1, S2, S3, ..., and to examineS1/1, S2/2, S3/3, ...
for any indication of convergence toλc − 1.

3.4. Fitting branching models to the blackout data

One can readily conclude that both a supercritical fixed
stage Galton-Watson branching process and a supercriti-
cal continuous time Markov branching process model are
consistent with the exponentially increasing phases of the
blackout data in section 2. This conclusion is insensitive to
the generating function of the branching process. The crit-
icality for both processes occurs atλ = 1 or λc = 1 (in
the case of the continuous time Markov branching process
modelλc = 1 corresponds toµ = 0 according to (8)). (Ot-
ter’s theorem [8] shows that the power tail in the distribution
of total number of failures occurs atλ = 1 for generic as-
sumptions on the generating function.)

To progress beyond this qualitative modeling of the ex-
ponential blackout phases as a supercritical branching pro-
cess, we need to estimate model parameters. Since the
WSCC August 1996 blackout has very sparse data and the
raw data for the August 2003 blackout is not yet available
for study, we illustrate estimating model parameters for the
WSCC July 1996 blackout using the discrete and continu-
ous time branching process models. The time period of the
exponential growth is chosen to be the 7 minutes from 14:24
to 14:31 MDT. Section 2 fit the exponent of the exponential
growth in this time period asµ = 0.47 min−1. The failure
times are shown in Figure 11 and Table 1.

For the Galton-Watson branching process models, we
group the failures into stages according to their closeness
in time. Successive failures are grouped into the same stage
if the time between them is less than a fractionδ of the
average time between failures. For illustration we choose
δ = 0.5. The average time between failures for the fail-
ure times in Figure 11 is0.42 min so that (average time
between failures)δ = 0.21 and the corresponding grouping
into 8 stages is indicated in the third column of Figure 11.

In the first modeling approach of section 3.1, we plot
the logarithm of the cumulative staged failures as a function
of stage number and fit these data with an exponential as
shown in Figure 12 to obtain̂λ = 1.4.

In the second modeling approach of section 3.2, the esti-
mated number of stages iŝJ = 8. Then the estimated stage
time b̂ = T/Ĵ = 7/Ĵ = 0.875 and (6) giveŝλ = 1.5. As
discussed in section 3.2, a different assumption about the
grouping into stages would give different estimates. For ex-
ample, choosingδ = 1 would result in fewer stages so that
Ĵ = 5, b̂ = 1.2 andλ̂ = 1.9.

In the third, continuous time modeling approach of sec-
tion 3.3, we need to group the failure data into jumps.



Although the jumps in the continuous time process do
not directly correspond to the stages of the Galton-Watson
branching process, we can for illustrative purposes use the
same grouping of failure data into jumps as used for stages
in Table 1. The consequent evolution of the number of fail-
ures and the series (14) is shown in Table 2. The series in
Table 2 is too short and noisy for convergence to be verified,
but the average of the last four elements estimates the limit
of series (14) as≈ 0.5 and this yieldŝλc = 1.5. This im-
plies usingµ = 0.47 and (8) that the average time for one
failure to split isâ = 1.1.
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Figure 11. Times of line trips in WSCC July
1996 blackout in minutes after 14:00 MDT.
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Figure 12. Log cumulative failures in expo-
nential phase of WSCC July 1996 blackout as
a function of stage number. The straight line
is an exponential with exponent 1.4.

We do not yet have evidence available that the continu-
ous time Markov branching process approximates the time
sequence of actual failures; the present argument in favor of
this modeling is that the assumptions are simple. Given a
longer time series of failure data, such as the failure times
in the August 2003 blackout, we could try to discriminate
between the models and approaches suggested here and sta-
tistically or qualitatively test the fit of the models to the data.
The data currently available to us is too limited to attempt
this.

Table 1. Line trip times and stage numbers for
exponential phase of July 1996 WSCC black-
out. Time units are minutes after 14:00 MDT.

trip time increment in trip time stage number
23.867 1
27.219 3.352 2
27.336 0.117 2
27.868 0.532 3
28.052 0.184 3
28.319 0.267 4
29.602 1.283 5
29.608 0.006 5
29.695 0.087 5
29.835 0.140 5
30.144 0.309 6
30.145 0.001 6
30.159 0.014 6
30.604 0.445 7
30.953 0.349 8
30.965 0.012 8
30.971 0.006 8
31.045 0.074 8
31.094 0.049 8
31.815 0.721

Table 2. Evolution of number of failures in
jumps

r 1 2 3 4 5 6 7 8
Sr 1 2 2 1 4 3 1 5

Sr/r 1 1 0.67 0.25 0.8 0.5 0.14 0.63

4. Implications of branching model

Now we suppose that blackouts can be approximated by
a discrete time Galton-Watson branching process model and
explore some illustrative calculations using the model.

4.1. Probability of a given large blackout not hap-
pening

One interesting exercise is to use values ofλ estimated
from the large real blackouts that occurred with a region of
exponential increase to compute the probabilityq of those
blackoutsnot having the region of exponential increase. Of
course there may be a blackout without the region of expo-
nential increase, but such a blackout will have much more
limited size. Thus we considerq to be the probability that
the cascade dies out for that given value ofλ. (This was
alluded to in the discussion of Figure 8 above.) The value



of q is the same for the Galton-Watson branching process
and for the continuous time Markov branching process, but
it does depend on the generating functionf(s) that is used
to construct these branching processes. Here we will as-
sume that the generating function corresponds to a Poisson
distribution so thatf(s) = eλ(s−1), as suggested by the
branching process approximation to the abstract cascading
failure model in [7, 5]. The probabilityq is easily computed
as a root of the equationf(s) = s and the results are shown
in Table 3.

Suppose that a blackout has an exponential phase with
λ ≈ 2. This would imply that the probability that the ex-
ponential phase of the blackout did not occur is about 0.2.
This calculation is made in hindsight after the blackout, but
it does highlight the difficulties of making optimal decisions
during the evolution of the blackout, even given good infor-
mation. Blackouts with lower values ofλ will have higher
values ofq. Suppose thatλ = 1.1 and an exponentially in-
creasing blackout occurred. The probability that it did not
occur is0.82 and one could argue that, in the absence of real
time information about risk, a competent and well-informed
system operator might well have acted properly by assum-
ing the most likely outcome of no large blackout.

Table 3. Probability q of large blackout not oc-
curring

λ q

0.9 1.00
1.0 1.00

1.1 0.82
1.2 0.69
1.3 0.58
1.4 0.49
1.5 0.42
1.6 0.36
1.7 0.31
1.8 0.27
1.9 0.23

2.0 0.20
3.0 0.06
4.0 0.02
5.0 0.01

4.2. An initial approach to real time monitoring of
cascading blackouts

The exponential cascading phase starts slowly and ac-
celerates later. As we accumulate more failures, the prob-
ability of an exponentially accelerating cascade increases.
Is it possible to detect this increased probability during the

slow part? This subsection outlines an approach to quan-
tify the statistics of this problem by monitoring cumulative
line failures. Monitoring cumulative line failures would be
practical in real time in a well-instrumented control center.

We regard theλ parameter of a staged branching process
as a random variableΛ. Let the probability density function
of Λ for a given system condition (i.e. stress level) befΛ(λ)
in [λmin, λmax]. We assume that for given system condition
we have either historical data or off-line simulations giving
fΛ(λ).

We have set a threshold to limit cascading failure risk of
λ < λt. Presumablyλt < 1 to exclude the possibility of
exponentially increasing phases when the power system is
operated withλ < λt.

Let the cumulative line failures observed in real time be
S. Note that it would be necessary to somehow distinguish
line failures involved in the initial disturbance from those
involved in the cascading phase.

Suppose that we observe in real time thatS = k. Then
we know thatS ≥ k for the final cascade. So what, knowing
thatS ≥ k, is the probability of cascading failure caused by
λ > λt? That is, what isP [Λ > λt|S ≥ k]? We give a
sample calculation ofP [Λ > λt|S ≥ k] below. In particu-
lar, we numerically evaluateP [Λ > λt|S ≥ k] under some
assumptions for increasing values ofk. This quantifies how
the probability of a large cascade increases as the number
of observed line trips increases.

The calculations are done by evaluating the formula (27)
derived in the appendix. The assumptions are that the cas-
cade is modeled by a Galton-Watson branching process gen-
erated by a Poisson distribution. The distribution ofΛ on
[λmin, λmax], in the absence of any information about the
likely form of this distribution, is assumed to be uniform.
Saturation effects are neglected.

The data needed is the initial number of failuresθ and
the range[λmin, λmax] for the uniform distribution ofΛ.
We choose values of these parameters for a sample calcu-
lation and varyk. The results are shown in Table 4. When
k = 1 there is no information supplied by the line trip that
is additional to the information that a cascade has started
(the probability ofλ > 0.9 is clearly0.5 whenλ is uni-
formly distributed in[0.7, 1.1]. The probability ofλ > 0.9
increases withk, but the rate of increase is modest in this
example. Thus in this example the real time monitoring of
k would add little value to the offline calculation of the dis-
tribution of Λ. Note that waiting until largek is observed
does not help manage the cascading blackout because then
the cascading process is well under way and cannot readily
be corrected.



Table 4. Probability of λ exceeding threshold
λt when k line trips are observed.

k P [Λ > λt|S ≥ k] parameters

1 0.50 λt = 0.9
2 0.52 [λmin, λmax] = [0.7, 1.1]
3 0.53 θ = 1
4 0.55
5 0.57
6 0.58
7 0.60
8 0.61
9 0.62

10 0.63
15 0.69
20 0.73

5. Conclusion

The main contribution of this paper is to observe in re-
cent North American cascading failure blackouts exponen-
tially increasing phases of cumulative line trips and suggest
that these be modeled by supercritical Markov branching
processes. Simple discrete time branching process models
and a continuous time Markov branching process model are
considered. Several initial calculations illustrating how pa-
rameters may be estimated and these models might be ap-
plied are suggested. One interesting consequence of this
statistical blackout modeling is that the probability of a
given blackoutnot occurring could be estimated after the
blackout. A preliminary approach to real time blackout
monitoring is considered.

The blackout data sets currently available to us are not
long enough to distinguish between the models or defini-
tively estimate the parameters, but, when they are super-
critical, all the branching process models do qualitatively
reproduce the exponential growth of failures that seems to
be the manner in which the 1996 and 2003 North American
blackouts became widespread.
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A. Probability of λ > λt givenk failures

For a Galton-Watson branching process with a finite
number of components, the probability distribution of total
number of failuresS for a given value ofλ is P [S = s|Λ =
λ] given by saturating generalized Poisson distribution [5].

g(r, θ, λ, n) = θ(rλ + θ)r−1 e−rλ−θ

r!
; 0 ≤ r ≤ (n − θ)/λ, r < n (15)

g(r, θ, λ, n) = 0 ; (n − θ)/λ < r < n, r ≥ 0 (16)

g(n, θ, λ, n) = 1 −
n−1∑
s=0

g(s, θ, λ, n) (17)

Then joint distribution of(S, Λ) is

fS,Λ(s, λ) = P [S = s|Λ = λ]fΛ(λ) (18)

P [Λ > λt|S ≥ k] =
P [Λ > λt andS ≥ k]

P [S ≥ k]
(19)

=

n∑
s=k

∫ λmax

λt

fS,Λ(s, λ) dλ

n∑
s=k

∫ λmax

λmin

fS,Λ(s, λ) dλ

(20)

=

∫ λmax

λt
P [S ≥ k|Λ = λ]fΛ(λ) dλ∫ λmax

λmin
P [S ≥ k|Λ = λ]fΛ(λ) dλ

(21)

Since Λ is assumed to be uniformly distributed on
[λmin, λmax],

P [Λ > λt|S ≥ k] =

∫ λmax

λt
P [S ≥ k|Λ = λ] dλ∫ λmax

λmin
P [S ≥ k|Λ = λ] dλ

(22)

=

∫ λmax

λt
1 − FS|Λ=λ(k − 1) dλ∫ λmax

λmin
1 − FS|Λ=λ(k − 1) dλ

(23)

=

λmax − λt −
k−1∑
s=0

∫ λmax

λt

g(s, θ, λ, n) dλ

λmax − λmin −
k−1∑
s=0

∫ λmax

λmin

g(s, θ, λ, n) dλ

(24)

=

(λmax − λt)(1 − e−θ) −
k−1∑
s=1

∫ λmax

λt

g(s, θ, λ, n) dλ

(λmax − λmin)(1 − e−θ) −
k−1∑
s=1

∫ λmax

λmin

g(s, θ, λ, n) dλ

(25)

Suppose thatk − 1 is small enough to avoid saturation ef-
fects. Then∫ λmax

λt

g(s, θ, λ, n) dλ = − θ

ss!
Γ[s, θ + sλ]

]λmax

λt

(26)

and

P [Λ > λt|S ≥ k] =

(λmax − λt)(1 − e−θ) −
k−1∑
s=1

θ

ss!
Γ[s, θ + sλ]

]λt

λmax

(λmax − λmin)(1 − e−θ) −
k−1∑
s=1

θ

ss!
Γ[s, θ + sλ]

]λmin

λmax

(27)


