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Abstract: Hopf bifurcation of a power system
leads to oscillatory instabilities and it is desirable
to design system parameters to ensure a suffi-
ciently large loading margin to Hopf bifurcation.
We present formulas for the sensitivity of the
Hopf loading margin with respect to any power
system parameter. These first order sensitivi-
ties determine an optimum direction in param-
eter space to change parameters to increase the
loading margin. We compute the IHopf bifurca-
tion sensitivities of a simple power system with a
voltage regulator and a dynamic load model. Pa-
rameter sensitivities of the Hopf and saddle node
bifurcations are compared. An idea for eliminat-
ing some Hopf bifurcations is presented.

1 Introduction

Power systems require parameters or con-
trols to be chosen so that oscillatory instabilities
are avoided. This has previously been done by
linearizing the power system model about an op-
erating point and designing the linearized system
to avoid instabilities [16]. More recently, starting
with the work of Abed and Varaiya [1], the onset
of oscillatory instability is studied in a nonlin-
ear context as a Hopf bifurcation [20, 2, 3]. We
formulate the design to avoid oscillatory insta-
bilities in the nonlinear context as avoiding the
Hopf bifurcation in the following manner [11}:

Suppose a stable operating equilibrium with
a vector of nominal parameter values pg is given.
If loads increase, then stability is lost in a Hopf
bifurcation and the proximity of the base case
to the Hopf bifurcation is measured by a loading
margin M. M changes as the parameters p are
varied from their nominal values py. We want
to compute the first order sensitivity of M with
respect to the power system parameters p in or-
der to obtain an optimum direction of parameter
change to increase M. Increasing M improves
the system robustness to oscillatory instability
caused by slow load increase. This paper derives
and illustrates the computation of the sensitivity
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of M with respect to any power system param-
eters.

We review previous work [12] on avoiding of
saddle node bifurcations since this is similar to
the proposed method of avoiding Hopf bifurca-
tions. Saddle node bifurcation is associated with
voltage collapse of the power system [14] and al-
ways occurs for sufficently high loading. The dy-
namical consequences of saddle node bifurcation
[9] seem consistent with some observed voltage
collapses, in which voltage magnitudes decline
monotonically. However, some simplified power
system models become oscillatory unstable in a
Hopf bifurcation before the saddle node bifur-
cation occurs [1,20,2,3]. The load power mar-
gin to a saddle node bifurcation is computed by
continuation or direct methods by increasing the
loading until saddle node bifurcation is first en-
countered [e.g. 21, 6]. (We assume throughout
the paper that the distribution of load increase is
specified.) The next step is to compute the nor-
mal vector to the saddle node bifurcation surface
at the critical loading; the formula for the nor-
mal vector follows from one of the transversality
conditions of bifurcation theory [10]. It turns
out that the first order sensitivity of the load
power margin to any power system parameters
or controls is trivial to compute from the nor-
mal vector. This sensitivity determines (at least
locally) the combination of parameters and con-
trols to be varied in order to optimally increase
the load power margin.

Since there are computations for the first
Hopf bifurcation as loading increases [21, 5] and
there is a formula for the normal vector to the
Hopf bifurcation surface [13,7,15], the sensitiv-
ity to any power system parameters of the load
power margin to Hopf instability can similarly
be computed. In a Hopf bifurcation, a com-
plex pair of eigenvalues of the linearized system
crosses the imaginary axis and the normal vec-
tor essentially contains sensitivities with respect
to parameters of the real parts of these eigen-



values. (The Hopf bifurcation hypersurface is
determined by the vanishing of the real parts of
these eigenvalues.)

The sensitivity of the margin M also shows
which parameters couple most strongly with the
Hopf bifurcation. For example, one expects the
voltage regulator parameters to strongly influ-
ence the margin to Hopf bifurcation. The sensi-
tivity of the load power margin to both the Hopf
and the saddle node bifurcation are compared
to determine the extent to which different sets
of parameters affect both margins.

2 Hopf parameter sensitivity

Consider a power system modeled by smooth

parameterized differential equations

= f(z,A), z€R", XeR™' (1)
The parameter vector A = (£,p) consists of a
real loading parameter ¢ and a vector p of m
system design parameters. We write z € R" for
a particular equilibrium of (1) and assume that =
is asymptotically stable at the parameter vector
Mo = ({0, Po)-—po is a nominal choice of design pa-
rameters. We assume that when the loading pa-
rameter £ slowly increases to some critical value
£, and the design parameters are held fixed at
po, the equilibrium z loses stability in a Hopf bi-
furcation. The loading margin to instability is
then M = £, — £y. If we write A, = (£.,po0),
then the loading margin may also be expressed
as M = |A. — Ao|. The measure M of closeness
to Hopf bifurcation takes full account of system
nonlinearity.

The question we address is: What is the
optimum direction for first order change in the
design parameters p from pg in order to increase
the load margin M? That is, we regard the load
margin M as a function of the design parameters
p and want to compute the gradient or sensitivity
M|y, so that the design may be incrementally
improved by changing parameters in the direc-
tion Mp|p,.

The sensitivity M|,, is essentially a scaled
projection of a normal vector to the Hopf bifur-
cation hypersurface. The details follow: Write
vhopf for the set of A’ € R™*! for which equa-
tion (1) has a Hopf bifurcation at (z,,A%) with
fz|« having a simple pair of eigenvalues +jw.,
w, # 0 and all other eigenvalues with nonzero
real parts and satisfying the transversality con-
dition (4) presented below. Since f,|. is invert-
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ible, the implicit function theorem implies that
there is a smooth function u defined in a neigh-
borhood of A, with u(A,) = z., u(A) = z and
F(u(A),A) = 0. u()) specifies the position of the
equilibrium of interest as a function of the pa-
rameters and its Jacobian wu) is given by solving

for = —fir (2)
There is also a smooth function p evaluating to
an eigenvalue defined in a neighborhood of A,
with p(A,) = jw. and p(A) an eigenvalue of
fzl(u(n),n)- The real part of the eigenvalue p is a
function

() = Re{u(A)} 3)

which is smooth near A, and, if the transversality
condition

ax#0 (4)

is satisfied, then there is a neighborhood U 3 A,
in which Z10Pf is a smooth hypersurface specified
by the zero set of a:

PN ={AeU |a(N)=0}  (5)

That is, Z"°P js locally specified by the vanish-
ing of the real part of the complex pair of eigen-
values associated with the Hopf bifurcation. It
follows that a normal vector to ZPPf is given by
the sensitivities of the real part with respect to
the parameters:

N(A) = Da(Re{u(M})r. = anlr.  (6)

Now we compute the gradient ay|s, in (6)

in terms of the equations f in (1). Write v, and

w, for the right and left complex eigenvector of

fr|. corresponding to jw,; these eigenvectors are

normalized according to |[v| = 1 and wv = 1 (It

is convenient to regard w as a row vector). Using
this normalization, it is easy to show that

B(A) = wfzv
Differentiate with respect to A to obtain
s = wDA(f2)v + wafev + wfrvy
= wDx(fz)v + pDx(wv)
= wDA(fz)v
= w(fertr + fza)v
Take the real part and use Dy(Re{u(M)})|r. =
Re{pa}|r. and (6) to obtain
N(X) = aala. = Re{w(fozur + fzr)v}|, (7)

where uy is given by solving equation (2). (To
exemplify the notation, note that f,,u, is an



n X n X (m + 1) tensor; contraction with w and
v yields an (m+1) vector.) A different scaling of
formula (7) and similar computations appear in
[15,13]. If the power system equations (1) are lin-
earized before the sensitivity of the real parts of
the critical eigenvalues are computed, then the
term Re{w(fzour)v}|, does not appear. This
omission arises because the linearization effec-
tively fixes the equilibrium at the origin. Since
this term has often been overlooked in the past,
it would be interesting to know whether this
term is significant in typical power system ap-
plications.

The loading increase from Ag = (£o,po) to
A = (£.,p0) can be written as

A(€) = Ao + (£ - £o) e (8)

where e; = (1,0,0, ...,0). We assume a transver-
sality condition

DRe{p(A()}He. = arlrea 0 (9)

so that the critical eigenvalues pass the imag-
inary axis with nonzero speed as the Hopf bi-
furcation occurs. (This condition is generically
satisfied.) We prove below that the gradient of
M with respect to A is

M|, = -(NQA)e)'N(A)  (10)
Then it is clear from M = (Mg, M,) that M|,

is the projection 7 of M ,\| », Onto the m dimen-
sional design parameter space:

Mylp = TM|, (11)
That is, if
N(\.) = (n§,nf,nd,nb,...,nk)
then (10) and (11) yield
Mplpo = —(ng)7'(nf,nf, 5, omf) - (12)

Our assumption (9) implies that n§ # 0.

The proof of (10) is adapted from the proof
in [12] by substituting the Hopf bifurcation hy-
persurface LPoPf for a saddle node bifurcation
hypersurface. A,(A) is a well defined smooth
function of the parameters A near Ay because
$hopl is a smooth hypersurface near A, and (9)
implies that N(A,)e; # 0 so that the direction
of load increase e; intersects L"°Pf transversally
at A,. It follows that M(A) = |A.(A) — A] is a
well defined smooth function of the parameters
A near Ag. Then

0=a(\)=a(A+ M(N)e)
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and differentiating with respect to A and evalu-
ating at Ao yields

0 =axx (I + e1M,) |Ao
=N(\) + NOe My,

and the result (10) follows by rearranging terms.
The geometric content is clear: the optimum di-
rection to increase the distance in a given direc-
tion e; of a point Ag to a hypersurface ThoPf is
antiparallel to the outward normal to Z"°Pf.

3 Saddle node parameter sensitivity

We summarize formulas from [12] for the
sensitivity of loading margin to saddle node bi-
furcation to any power system parameters to es-
tablish notation used in the example and to com-
pare with the corresponding results for Hopf bi-
furcation.

The saddle node bifurcation occurs at load-
ing ¢{sny and the loading margin is M SN —
£sn—~£o. At the saddle node bifurcation f is sin-
gular and has left eigenvector w,, corresponding
to the zero eigenvalue of f;|sn. Under suitable
transversality assumptions the saddle node hy-
persurface has at A,, a normal vector

N()‘sn) = w"’"'fA|sn (13)

The normal vector formula (13) is simpler than
the corresponding formula (7) for Hopf.

The sensitivity of the loading margin fol-

lows from the normal vector in the same way as

developed for the Hopf bifurcation in section 2:

M:Nlpo = 'll'Mz\l)‘0 = —m(N(Asn)e1) "' N(Asn)

= (wsnfl.(snl )_lw-’"fPlPO

4 Tllustrative Example

We illustrate the computation of the sensi-
tivity of the Hopf load power margin in a simple
power system example.

Chow and Gebreselassie [8] compute a Hopf
bifurcation in a power system model consisting
of single machine with a voltage regulator sup-
plying a constant power load through a single
line. Our example (see Fig. 1) is based on this
model and we refer to [8] for most of the model
equations and their description. We simplify the
treatment of the voltage regulator set points in
(8] by setting the reference voltage setpoint E, .
= 1.1 pu and computing the transformer high
side voltage F, in terms of other state variables.
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Fig. 1 One machine system with dynamic load

One problem in computing Hopf bifurca-
tions is that the Hopf bifurcation depends on dy-
namical details of the models such as time con-
stants and little reliable information is known
about the dynamics of loads. (In contrast, sad-
dle node bifurcations are somewhat independent
of the details of load dynamics as argued in [Dob-
sonw].) We address the problem of poorly known
but possibly significant load dynamics by assum-
ing a crude form of dynamic load model and
roughly estimating parameter values of an ap-
propriate order of magnitude and then comput-
ing the sensitivity to the estimated parameters
to assess the validity of the results.

The dynamic load model represents an ag-
gregate load and replaces the constant real and
reactive power loads of [8] by

(PF+Dé+aVy

(V1-PF 4+ b8+ kVy

respectively, where ¢ parameterizes the increase
of the constant power part of the load, PF stands
for power factor and D, a, k, b are time con-
stants of the load dynamics. Induction load
models with similar terms are discussed in [19,9].
The nominal load parameters are PF = 0.95,
D =005 a=0,b=0,k=0.1. The order of
magnitude of D and k is consistent with power
system tests in [17,18,4].

The model of [8] could be written as 5 dif-
ferential equations and 2 algebraic equations, to-
gether with a procedure for determining settings
for E,.; at different loadings that yield a speci-
fied value of E,. Our modifications to the model
of {8] can be summarized as including a dynamic
load model with a lower power factor and fix-
ing Erey = 1.1 pu for all loading levels. We
use the nominal generator, machine and voltage
regulator parameters of [8] except that the sta-
bilizer gain Ky = 0.1. These modifications to
the model of [8] allow us to write the model as 7
differential equations with loading parameter £.
The state vector is (E}, E}, VR, EFp, R,0,VL)
where E) and E; are machine voltages, Vg is
the voltage regulator output voltage, Epp is the

field voltage, Ry is the state of the stabilizer,
and V1, /0 is the load voltage phasor. Specifying
the load dynamics resolves the singularity of the
load algebraic equations encountered in [8].

The first instability encountered by the sta-
ble equilibrium as the loading is increased from
¢y = 0is a Hopf bifurcation at £z = 0.370 so that
the loading margin M = 0.370. The power sys-
tem parameters are p = (D, a,b,k,PF, Eres, K 4,
Ta,Te, K5, T, 27, %e,Tdy Tq, Thyy T g, Tgo) Where
K 4 and T4 are the gain and time constant of
the voltage regulator, Tk is the exciter time con-
stant, Ky and Ty are the gain and time constant
of the stabilizer, z7 and z. are the reactances
of the step up transformer and the transmission
line, z4 and z, are the machine synchronous re-
actances, z) is the machine transient reactance,
and T}, and Ty, are the open circuit machine
time constants. The sensitivities M, are shown
in the second row of Table 1. We verified the re-
sults by increasing Ky by 0.01 and recomputing
M. M increased by 0.020 whereas the sensitivity
predicts M increasing by 0.022. Increasing T’y by
0.1 caused M to decrease by 0.015 whereas the
sensitivity predicts M decreasing by 0.015.

In our example, the dynamic load parame-
ters b and k are moderately sensitive, but since
their base values are small, the effect on the
loading margin of, say, letting a, b, k, D tend
to 0 is small. This is of interest since setting
a = b =%k = D = 0 effectively makes the
load differential equations into algebraic equa-
tions. Further modeling and experiments along
these lines are required to obtain a general con-
clusion about the relative importance of the dy-
namic load model.

The saddle node bifurcation occurs at the
loading margin M 5" = 1.03. The sensitivities
of MSN to the power system parameters were
computed according to the formulas of section 3
and are shown in the third row of Table 1. As ex-
pected, the voltage regulator parameters do not
affect MSN (The slight dependence of MSN on
K 4 can be attributed to our simplified model-
ing of E,.; as a constant). This suggests that it
might be desirable to design the voltage regula-
tor system of this example to avoid Hopf bifur-
cations and system oscillations before addressing
the avoidance of saddle node bifurcations and
voltage collapse. Increasing the power factor PF
or the reference voltage E,.; increases the mar-



gins to both the Hopf and saddle node bifurca-
tions.

5 Eliminating Hopf bifurcations

In cases in which a further increase in load-
ing past the Hopf bifurcation yields a “reverse”
Hopf bifurcation which restores the stability of
the equilibrium, we suggest that parameters be
optimally changed to eliminate the Hopf bifur-
cation by making it coalesce with the “reverse”
Hopf bifurcation.

Suppose the Hopf bifurcation occurs at a
loading £ and the reverse Hopf bifurcation oc-
curs at a higher loading ry > {H. The in-
evitable saddle node bifurcation occurs at a load-
ing £sy > Lru. Write z for the stable equilib-
rium at low loading. One of the possible situ-
ations as loading increases is that the Hopf bi-
furcation at £x makes 2 unstable and creates a
stable periodic orbit 4 which persists until it co-
alesces with the unstable equilibrium z at the
reverse Hopf bifurcation at £gy. The reverse
Hopf bifurcation restores the stability of 2 and
the stability of z persists as the loading fur-
ther increases until z disappears in the saddle
node bifurcation at £{sny. One possibility is that
the stable periodic orbit 4 can period double to
chaos and reverse period double back to a stable
periodic orbit in the interval (£, ¢rH).

We measure the extent to which Hopf bi-
furcation is present in the system by the extent
of the interval or “window” over which the Hopf
bifurcation destabilizes the system. That is, we
define the index W = £ryg — £y and suggest that
decreasing W to zero will eliminate the Ilopf
bifurcation by causing the Hopf and “reverse”
Hopf bifurcations to coalesce and disappear. We
compute the sensitivity of W with respect to
power system parameters. This sensitivity could
be used to obtain the optimum direction in which
to change the power system parameters so that
W is decreased. Driving W to zero eliminates
the Hopf bifurcations so that the stability of the
equilibrium « is only limited by the saddle node
bifurcation.

The sensitivity of W with respect to power
system parameters is easy to obtain from the
previous sensitivity results. Write M = (5 — £,
and MEH = {py — £, for the respective loading
margins of the Hopf and reverse Hopf bifurca-
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tions. The index
W=ty —Lbrg=M" - MFH

so that the gradient of W is now easy to compute
by applying formula (11):

Wplp = m(M{|, (14)
That is, using (12), the ith element of W,,|,, is

(Wolpe); = nH/nl —nFHBH =1, m.

- M{%Hlko)

6 Conclusions

Exact formulas for the first order sensitivity
of the loading margin to Hopf bifurcation to any
power system parameters have been obtained.
The formulas are illustrated using a small power
system example and verified by numerically com-
puting some of the sensitivities. These sensi-
tivities could be used to optimally increase the
loading margin to Hopf bifurcation. The load-
ing margin and the sensitivity computation take
full account of the system nonlinearities. The
sensitivity results follow easily from computing
a normal vector to a Hopf bifurcation hypersur-
face in parameter space. The normal vector con-
tains the sensitivities of the real part of the crit-
ical pair of eigenvalues associated with the Hopf
bifurcation. The formulas include a term asso-
ciated with movement of the equilibrium which
has been neglected in eigenvalue sensitivity stud-
ies of linearized power system models. Our re-
sults involve eigenvalue sensitivities but are ex-
act first order sensitivities of loading margins.
We also compare the sensitivities of the Hopf
and saddle node bifurcations in our example.

The Hopf bifurcation depends on dynamic
aspects of the load models and these are not well
known. We approach this problem by choos-
ing a crude dynamic load model with roughly
estimated parameters and then computing the
sensitivity of our margins to the estimated pa-
rameters. The dynamic load model allowed the
model to be differential equations rather than
differential-algebraic equations.

We have suggested a method of comput-
ing first order parameter changes which in some
cases would tend to make two Hopf bifurcations
coalesce and disappear.
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RP 8010-30 is gratefully acknowledged.
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D a b k PF | Erey | Ka | Ta Te | K; | Ty

P 0.05 000 [ 0.00] 0.10 | 0.95 | 1.10 [ 30.0 [ 0.40 | 0.56 | 0.10 | 1.30
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zTT T, Ty z, x4 Ty 20
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Table 1. Sensitivities of Hopf and saddle node loading margins to parameters
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